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ABSTRACT
Lock-free algorithms, in which threads synchronise not via
coarse-grained mutual exclusion but via fine-grained atomic
operations (‘atomics’), have been shown empirically to be
the fastest class of multi-threaded algorithms in the realm
of conventional processors. This paper explores how these
algorithms can be compiled from C to reconfigurable hard-
ware via high-level synthesis (HLS).

We focus on the scheduling problem, in which software
instructions are assigned to hardware clock cycles. We first
show that typical HLS scheduling constraints are insufficient
to implement atomics, because they permit some instruction
reorderings that, though sound in a single-threaded con-
text, demonstrably cause erroneous results when synthesis-
ing multi-threaded programs. We then show that correct be-
haviour can be restored by imposing additional intra-thread
constraints among the memory operations. We implement
our approach in the open-source LegUp HLS framework, and
provide both sequentially consistent (SC) and weakly consis-
tent (‘weak’) atomics. Weak atomics necessitate fewer con-
straints than SC atomics, but suffice for many concurrent al-
gorithms. We confirm, via automatic model-checking, that
we correctly implement the semantics defined by the 2011
revision of the C standard. A case study on a circular buffer
suggests that circuits synthesised from programs that use
atomics can be 2.5x faster than those that use locks, and
that weak atomics can yield a further 1.5x speedup.

Keywords
atomic operations, C/C++, FPGAs, high-level synthesis,
lock-free algorithms, memory consistency models, schedul-
ing.

1. INTRODUCTION
Gramoli [13] demonstrates in his comprehensive empir-

ical study that, when writing multi-threaded programs for
conventional multi-processors, the most efficient way to syn-
chronise threads is to use fine-grained atomic operations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA ’17, February 22-24, 2017, Monterey, CA, USA
© 2017 ACM. ISBN 978-1-4503-4354-1/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3020078.3021733

(‘atomics’) – as opposed to, for instance, coarse-grained mu-
tual exclusion based on locks. In this paper, we explore
how lock-free programs can be compiled from C to recon-
figurable hardware via high-level synthesis (HLS), and the
performance benefits of doing so.

We focus on the scheduling stage of synthesis, in which
software instructions are assigned to hardware clock cycles.
Typical HLS schedulers seek to maximise instruction-level
parallelism by allowing independent instructions to be ex-
ecuted out-of-order or simultaneously. In particular, non-
aliasing memory accesses, or those that exhibit only read-
after-read (RAR) dependencies (e.g. x=z; y=z), can be re-
ordered. These reorderings are invisible in a single-threaded
context, but in a multi-threaded context, they can introduce
unexpected behaviours. For instance, if another thread is
simultaneously writing to z, then reordering may introduce
the behaviour where x is assigned the latest value but y gets
an old one.

The implication of this is not that HLS tools are wrong,
because these optimisations can only introduce new behaviours
when the code already exhibits a race condition, and races
are deemed a programming error in C [17, §5.1.2.4]. Rather
the implication is that if these memory accesses are up-
graded to become atomic (and hence allowed to race), then
existing scheduling constraints are insufficient.

One approach for implementing atomics correctly is to en-
close each in its own critical region, and ensure that the sur-
rounding lock() and unlock() calls cannot be reordered.
We show that this approach, which is the only approach
available in LegUp [7], is expensive and scales poorly. In-
stead, we frame the implementation of atomics as a schedul-
ing problem: we treat atomic accesses as regular memory
accesses but impose additional intra-thread dependencies
when devising a schedule for each thread.

By default, C atomics enforce sequential consistency (SC),
which means that all threads have a completely consistent
view of shared memory, and memory accesses always oc-
cur in the order specified by the programmer [20]. Although
simple for programmers to understand, SC is an expensive il-
lusion for language implementations to maintain in the pres-
ence of optimisations by compilers (such as constant prop-
agation) and by architectures (such as store buffering) that
confound SC.

In fact, many concurrent algorithms do not need all threads
to share a completely consistent view of shared memory, and
hence can tolerate weakly consistent atomics, which do not
provide this guarantee in general. These ‘weak atomics’ in-
clude the acquire/release and relaxed atomics provided by
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the 2011 revision of the C standard (‘C11’) [17, §7.17.3],
and later incorporated into OpenCL [19, §3.3.4]. The exact
guarantees provided by these operations are specified by the
language’s memory consistency model (MCM); the rough
idea is that while SC forbids all reorderings, acquire loads
cannot be executed later, release stores cannot be executed
earlier, and relaxed accesses can be moved freely. We show
that C11’s acquire/release and relaxed consistency can be
implemented using fewer dependencies than SC, and hence
offer the potential for more efficient scheduling.

Unfortunately, weak atomics are notoriously hard to im-
plement correctly. A failure to anticipate their complex and
counterintuitive behaviours has been the root cause of bugs
in compilers [28], language specifications [4], and vendor-
endorsed programming guides [2]. To build confidence that
our work implements C11 atomics correctly, we use the Alloy
model checker [18], first to debug our implementation dur-
ing development, and then to verify automatically that any
C11 program (with a bounded number of memory accesses)
will be synthesised correctly.

We implement our approach in the LegUp HLS frame-
work [6]. LegUp is an attractive starting point because
it is open-source and already has some support for multi-
threaded programs [7].

We evaluate our work via a case study: an application
in which threads communicate via lock-free circular buffers.
We show that using SC atomics yields a 2.5x speedup com-
pared to locks, and that switching from SC atomics to weak
atomics (where safe to do so) yields a further 1.5x speedup.
Compared to an unsound implementation that omits locks
and atomics altogether, our weak atomics incur only a 7%
performance overhead and a 3% area overhead.

In summary,

• we show that LegUp cannot (in general) synthesise
multi-threaded algorithms without relying on locks,
because some instruction reorderings permitted by its
scheduler can introduce erroneous behaviours (§2);

• we modify LegUp’s scheduling algorithm to impose ex-
tra intra-thread dependencies on the atomics provided
by the C11 standard, thus ensuring correct inter-thread
communication (§4.2), and we show that a lock-free
buffer implemented in this way is on average 2.5x faster
than one that uses locks (§5);

• we further modify the scheduler to support weak atom-
ics, also part of the C11 standard, which suffice for
many algorithms despite requiring fewer dependencies
(§4.3), and we show that using weak atomics instead
of SC atomics in our lock-free buffer leads to a further
1.5x speedup (§5); and

• we confirm automatically, using the Alloy model checker,
that our revised scheduler correctly implements SC
and weak atomics as defined by the C11 standard (§4.4).

Experimental data, source code, and Alloy model files are
available online [1].

2. MOTIVATING EXAMPLES
In this section, we provide two simple multi-threaded pro-

grams that can exhibit unexpected behaviours when com-
piled to hardware using LegUp, as a result of LegUp’s re-
laxed scheduling constraints. In both cases, the unexpected
behaviour only arises when particular instruction sequences

int x=0;

T1() { T2() {

1.1 r0=x; 2.1 x=1;

1.2 r1=x; }

}

assert(r0 = 1⇒ r1 6= 0)

(a) A minimal violation of coherence.

int x=0; int y=0;

T1(int a) { T2() {

1.1 r0=y+y+y+y+y+y; 2.1 x=1;

1.2 r1=x; }

1.3 r2=x/a;

}

assert(r1 = 1⇒ r2 6= 0)

(b) A coherence violation witnessed in LegUp (where
thread T1 is launched with a = 1).

Cycle: 1 2 3 4 5 6 7 · · · 36

1.1 ld y

1.1 ld y

1.1 ld y

1.1 ld y

1.1 ld y

1.1 ld y

1.2 ld x

1.3 ld x

1.3 divide

2.1 st x

(c) Schedules for threads T1 (top) and T2 (bottom).

Figure 1: Violating coherence in LegUp.

are carefully contrived, but we argue that similar sequences
could easily occur in ‘realistic’ programs too. We emphasise
that the unexpected behaviours discussed in this section do
not mean that LegUp’s scheduler is wrong, because the pro-
grams are racy and are hence technically illegal. However,
if these programs were rewritten to use atomics (which are
allowed to race), and LegUp were to implement atomics sim-
ply as ordinary non-atomic accesses, then it would be wrong.

Coherence.
A multi-threaded program conforms to sequential consis-

tency (SC) if all memory accesses occur instantaneously and
in the same order as the corresponding instructions in each
thread [20]. One of the simplest violations of SC is a coher-
ence violation [24, §8], as illustrated in Fig. 1a. The variable
x, initially zero, is shared between two threads, T1 and T2.
A coherence violation occurs when the first load (line 1.1)
observes x’s new value but the second load (line 1.2) ob-
serves x’s old value. This is detected by the failure of the
final-state assertion.

We could not observe this particular coherence violation in
LegUp-generated circuitry, but we could observe a coherence
violation by first making some innocuous transformations to
the source code, as shown in Fig. 1b. These involve divid-
ing one of the loaded values by a variable that is set to 1
at run-time (so the compiler cannot optimise it away), and
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int x=0; int y=0;

T1() { T2() {

1.1 x=1; 2.1 if(y==1)

1.2 y=1; 2.2 r0=x;

} }

assert(r0 6= 0)

(a) A minimal violation of message-passing.

int x=0; int y=0;

T1(int a) { T2() {

1.1 x=a/3; 2.1 if(y==1)

1.2 y=1; 2.2 r0=x;

} }

assert(r0 6= 0)

(b) A message-passing violation witnessed in LegUp
(where thread T1 is launched with a = 3).

Cycle: 1 2 3 4 5 · · · 35 36

1.1 ld a

1.1 divide
1.1 st x

1.2 st y

2.1 ld y

2.2 ld x

2.2 slt y==1?

x:null

(c) Schedules for threads T1 (top) and T2 (bottom).

Figure 2: Violating message-passing in LegUp.

inserting extra loads of a second shared location, y. These
transformations result in LegUp finding the schedule shown
in Fig. 1c.1 Because of the high latency of the division oper-
ation, LegUp seeks to schedule the second read of x as early
as possible. It determines that line 1.3 depends neither on
line 1.2 (there is only a read-after-read (RAR) dependency
on x) nor on line 1.1, and hence can be executed first in
its thread. The repeated reads of y cause a delay between
the two reads of x, and it is during this gap that thread T2

updates x. In the main thread, threads T1 and T2 are forked
successively, which offsets the starts of their respective exe-
cutions by two cycles.

Message-passing.
Another example of an SC violation is illustrated by a

failure of the message-passing paradigm [24, §3], which is
illustrated in Fig. 2a. This example involves two shared
locations, x and y, where x represents the message being
passed from thread T1 to thread T2, and y is used as a ‘ready’
flag. A message-passing violation occurs if T2 observes that
y has been set (line 2.1) but then goes on to observe that x

is still zero (line 2.2).
As before, some innocuous code transformations are re-

quired to coax LegUp into revealing this behaviour, as shown
in Fig. 2b. This time, we simply arrange that the value being
stored to x is obtained by a division operation. As shown in
the resultant schedule (Fig. 2c), this high-latency operation

1The schedule is constrained by dual-ported memory access.

delays the store to x. Because lines 1.1 and 1.2 are deemed
independent, the schedule permits them to execute simul-
taneously, and the result is that y is written first. In the
reading thread (T2), LegUp schedules both loads simultane-
ously, having used if-conversion [23] to replace the control
flow with predicated statements (slt). By launching the
reading thread two clock cycles after the writing thread, we
can observe the new value of y but the old value of x – a
violation of message passing.

3. BACKGROUND
We now summarise existing HLS support for concurrent

programming (§3.1), and introduce the C11 MCM (§3.2).

3.1 High-level synthesis
Several HLS tools only accept sequential input, deriv-

ing parallelisation opportunities either automatically (e.g.
ROCCC [27], LegUp [6]) or with the aid of synthesis di-
rectives (e.g. Vivado HLS [31]). Other tools accept multi-
threaded input but only allow threads to synchronise via
locks (e.g. Kiwi [14]) or via execution barriers (e.g. SDAc-
cel [30]). Some HLS tools also support the OpenMP pro-
gramming standard, which defines an atomic directive that
enables lock-free programming. Leow et al. [21] transform
OpenMP to Handel-C for hardware synthesis and Cilardo
et al. [8] generate heterogeneous hardware/software systems
with OpenMP. Neither of these works support the explicit
multi-threading constructs defined by the Pthreads stan-
dard, so a direct comparison with the present work is diffi-
cult. Altera’s SDK for OpenCL [3] supports lock-free pro-
gramming via atomics [26], though the commercial nature of
the tool makes it difficult to ascertain exactly how these op-
erations are implemented. LEAP facilitates parallel memory
access through its provision of memory hierarchies that po-
tentially can be shared among Pthreads in a lock-free man-
ner [32].

The most important point of comparison between the tools
reviewed above and the present work is that we are the
first to synthesise hardware from software that features weak
atomics (as defined by C11 [17] and OpenCL 2.x [19]). Effi-
cient implementations of weak atomics have been extensively
studied in the conventional processor domain, and they have
been shown to yield average, whole-program speedups of
1.13x on x86 (Core i7) CPUs [25, Fig. 5] over their SC coun-
terparts. Our circular buffer case study suggests that on
FPGAs, weak atomics can yield a 1.5x average speedup.

Finally, Huang et al. [16] and Cong et al. [9] have shown
that compiler optimisations can affect the quality of HLS-
generated hardware. Our work shows that in a multi-thread-
ed context, some optimisations (as manifested through re-
laxed scheduling constraints) can even be unsound.

3.1.1 HLS Scheduling
An HLS front-end converts source code into a control/

data flow graph (CDFG) [11]. A CDFG is a directed graph
where each vertex is a basic block (BB) and each edge rep-
resents a control-flow path. Each BB is a data-flow graph
(DFG) with operations as vertices (Vop) and dependencies as
edges (Ed ⊆ Vop×Vop). Scheduling determines the start and
end cycles of each operation in a CDFG, taking into account
the control-flow and data dependencies as well as additional
constraints such as latency and resources. Scheduling is per-
formed alongside the allocation of resources and the binding
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of operations and memory locations to these resources [11].
One of the most common scheduling techniques, used by

Vivado HLS [31] and LegUp [6], expresses a CDFG schedule
as a solution to a system of difference constraints (SDC) [10].
Various optimisations, such as as-soon-as-possible (ASAP)
and as-late-as-possible (ALAP) scheduling, can be obtained
by reformulating the objective function. We focus in this
work on the constraint that captures data dependencies,
which is formulated as:

∀(v, v′) ∈ Ed : end(v)− start(v′) ≤ 0.

That is, for every edge (v, v′) where operation v′ depends
on v, the end of operation v must be scheduled before the
start of operation v′.

3.1.2 LegUp
We utilise LegUp, an open-source HLS framework that

enables applications to run on processors, as FPGA hard-
ware accelerators, or both [6]. LegUp compiles an input
C program to the LLVM Intermediate Representation (IR),
which it analyses in order to generate a CDFG for SDC-
based scheduling. To do this, LegUp firstly inserts control
dependencies between BBs based on program order to en-
sure that only one BB is active at a time. These control
dependencies eliminate any inter-BB instruction reordering
or parallelism. Secondly, LegUp inserts data dependencies
between instructions within a BB. LegUp insert two types
of data dependencies (Ed): register (Ereg) and memory de-
pendencies (Emem), where

Ed = Ereg ∪ Emem.

LegUp analyses register dependencies (Ereg) by identify-
ing producer-consumer relationships between instructions,
where data produced by an instruction is consumed by other
instructions.

Our focus is on memory dependencies (Emem), which hold
between memory operations, Vmem ⊆ Vop. LegUp preserves
read-after-write (RAW), write-after-write (WAW) and write-
after-read (WAR) dependencies to aliasing memory loca-
tions, as shown below:

Emem = ELegUp (1)

where

ELegUp = {(v, v′) ∈ Vmem × Vmem |
(v ∈ Vst ∨ v′ ∈ Vst) ∧ sb(v, v′) ∧ sloc(v, v′)}

and Vst ⊆ Vmem is the set of store operations (and elsewhere,
Vld ⊆ Vmem is the set of load operations), sb is the ‘sequenced
before’ relation (as determined from the program order), and
sloc is the ‘same location’ relation (as determined by an alias
analysis tool). That is, ELegUp contains every pair of aliasing
memory operations v and v′, where at least one is a store
and where v is sequenced before v′.

LegUp’s existing memory dependencies do not enforce or-
dering between memory instructions that have only read-
after-read (RAR) dependencies, or that are non-aliasing.
The omission of these orderings allows the potential for intra-
BB out-of-order or overlapping execution of memory ac-
cesses. Such optimisations are legal in a single-threaded
context and can lead to more efficient schedules.

LegUp’s Pthread support allows multi-threaded C pro-
grams to be synthesised for FPGAs [7]. LegUp maps each

thread to a CDFG, each of which is scheduled independently.
Because these threads can be executed in parallel, LegUp
provides locks to allow each thread mutually exclusive ac-
cess to shared memory.

Instead of resorting to using locks, we embrace fine-grained
concurrency by extending LegUp’s Pthread flow to support
atomics. By default, LegUp’s scheduler does not ensure
sufficient memory consistency for atomics. We augment
LegUp’s scheduler to add additional intra-thread ordering
edges to Emem; this ensures globally-synchronised memory
behaviour, without locks.

3.2 The C11 memory consistency model
The 2011 revision of the C and C++ languages, ‘C11’,

defines a suite of instructions called ‘atomics’, for loading
from and storing to shared memory without the need for
locks [17, §5.1.2.4, §7.17]. Co-existing with these atomics
are ordinary (non-atomic) memory loads and stores. Each
atomic can be assigned a consistency mode (also known as
a memory order). The available modes include: relaxed (for
loads and stores) acquire (for loads) release (for stores), and
SC (for loads and stores). Non-SC atomics can be more effi-
cient than SC atomics, but do not guarantee that all threads
have a consistent view of the memory they share. Each con-
sistency mode can be roughly understood by assuming that
all threads do share a consistent view of memory, but that
some instructions can take effect out of order:

• an atomic load or store cannot be reordered with an-
other atomic load or store that accesses the same lo-
cation (this property is called coherence);

• a relaxed atomic load or store can be reordered any-
where within its thread (notwithstanding the other
constraints);

• an acquire atomic load cannot be reordered with loads
or stores that are sequenced after it in program order;

• a release atomic store cannot be reordered with loads
or stores that are sequenced before it; and

• an SC atomic load or store cannot be reordered with
any other load or store.

However, it is important to note that the explanations
given above convey only a rough understanding. The official
C11 standard defines the semantics of atomics not in terms
of instruction reordering, but in terms of a detailed memory
consistency model (MCM). The MCM specifies which com-
plete executions of a program are allowed or forbidden. As a
result of this discrepancy, some of the reorderings forbidden
above are actually allowed under certain conditions.2 This
means that a program may actually exhibit more behaviours
than a programmer following the rules above can anticipate.

The official semantics for C11 programs works by first
mapping the program to a set of ‘candidate’ traces [4]. This
set of traces is obtained under the assumption that each
load from a shared memory location can read a completely
random value. In the second stage, candidate traces that
exhibit inconsistent sequences of memory accesses among
their events are rejected.

As an example of how this semantics works, consider the
C11-style program in Figure 3a, and one of its candidate

2For instance, an acquire load can be reordered with a subse-
quent non-atomic load providing it is immediately preceded
by another non-atomic load [12, §7.2].
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int x=0; atomic_int y=0;

x=1; r0=y.ld(ACQ);

y.st(1,REL); if(r0==1)

r1=x;

(a) a program

a: Wna x 1

b: WREL y 1

c: RACQ y 1

d: Rna x 0
rf

sb sb, cd

(b) a candidate trace

Figure 3: Example of C11 atomics.

traces (Figure 3b). We explain below why this particular
candidate trace is deemed inconsistent. The trace contains
four memory-related events (a, b, c, d), distributed between
two threads as shown by the dotted rectangles. The store
instructions give rise to write events (W) and the loads give
rise to reads (R). Each event is tagged with the location it
accesses (e.g., x or y), the value it reads or writes (e.g., 0 or
1), and whether it is non-atomic (na), atomic with consis-
tency mode release (REL), or atomic with consistency mode
acquire (ACQ). The sequenced before relation (sb) depicts the
order of the instructions in the program, while the cd rela-
tion represents the control-flow dependency induced by the
if-statement. The reads-from relation (rf ) records that, in
this particular trace, the read event c observes the 1 written
by the write event b, and that the read event d (which has
no incoming rf edge) observes the initial value, 0.

This trace is deemed inconsistent in C11 by the following
reasoning. The rf arrow between the release and the acquire
induces what is called ‘release/acquire synchronisation’ be-
tween the threads; we say that b happens-before c as a result.
Taken together with the two sb arrows, we can further de-
duce that a happens-before d. C11 prescribes that reads
must observe the most recent write in the happens-before
relation, but d, which observes x’s initial value, violates this
rule. Hence, the trace is disallowed.

4. METHOD
This section describes how we extend LegUp’s Pthread

flow [7] to support sequentially consistent (§4.2) and weakly
consistent (§4.3) atomics.

As we discussed in §3.1.2, LegUp’s MCM requires mu-
tual exclusion (locks) to ensure safe access to shared mem-
ory in a multi-threaded context. We propose strengthening
LegUp’s MCM so that multi-threaded programs can syn-
chronise using atomics rather than locks. We build on the
LegUp framework, as it offers Pthread support and is open
source, but our method is generally applicable to HLS tools
that use SDC-based scheduling because we simply inject ex-
tra ordering edges as SDC data dependency constraints.

We compile atomic operations from the C11 standard with
Clang 3.5 into LLVM IR. From the LLVM IR we can extract
the atomicity of each memory operation, and the consistency
mode of each atomic operation, and use this information
to decide which ordering edges to inject into the scheduler.
We focus on atomic loads and atomic stores in this paper,
but our full implementation also includes fences [1]. We do
not consider atomic read-modify-write instructions (such as
compare-and-swap).

We propose three different strengthenings of LegUp’s ex-
isting MCM, Emem, which was discussed in §3.1.2. A naive
approach, which gives the strongest possible MCM, is to ad-
here to strict program order and forbid any parallel memory
access (§4.1). We also define an MCM that only imposes or-

dering on atomic memory accesses (§4.2) and a third MCM
that relaxes some ordering for weak atomics (§4.3).

To help visualise the scheduling implications of the various
MCMs, we provide a running example: a single thread that
loads from four different memory locations. The third load
is atomic with the acquire (ACQ) consistency mode; the rest
are non-atomic (na). Each schedule is obtained using ASAP
scheduling assuming an unlimited number of memory ports.

Cycle: 1 2
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

The schedule above shows our running example implemented
with LegUp’s current MCM. LegUp treats atomic operations
as regular memory operations and since these memory ac-
cesses do not alias, all four memory operations are free to
be scheduled simultaneously.

4.1 Preserving SC semantics
A naive solution for correct program behaviour is to seri-

alise all memory operations, regardless of any alias analysis.
This is achieved by redefining Emem as follows:

Emem = {(v, v′) ∈ Vmem × Vmem | sb(v, v′)}. (2)

Emem now includes every pair of memory operations (v, v′)
where v is sequenced before v′. It overrides the memory
dependencies generated by LegUp’s existing MCM, ELegUp

(§3.1.2)
The schedule of our running example in this MCM is

shown below.

Cycle: 1 2 3 4 5 6 7 8
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Because of the serialisation, this schedule cannot utilise more
than one memory port for shared memory access. This stifles
any parallelism offered by a multi-ported memory controller.

4.2 Exploring atomics
We now define an MCM that specifies ordering depen-

dencies only for the atomic operations within each thread,
Vat ⊆ Vmem. We treat all atomic operations as SC, regard-
less of the consistency mode specified in the program. To
do this, we augment LegUp’s original scheduling constraints
with those in Eat9 and Eat8 :

Emem = ELegUp ∪ Eat9 ∪ Eat 8 (3)

where

Eat9 = {(v′, v) ∈ Vmem × Vmem | sb(v′, v) ∧ v ∈ Vat}
Eat8 = {(v, v′) ∈ Vmem × Vmem | v ∈ Vat ∧ sb(v, v′)}.

Eat9 specifies that for every atomic operation v and every
memory operation v′ sequenced before v, there must exist
an ordering edge from v′ to v. Eat8 specifies that for ev-
ery atomic operation v and every memory operation v′ se-
quenced after v, there must exist an ordering edge from v to
v′. The combination of these two constraints and LegUp’s
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existing MCM ELegUp allows us to define an MCM that sup-
ports SC atomics.

The schedule of our running example when implemented
in this MCM is shown below.

Cycle: 1 2 3 4 5 6
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r0=z; ldna z

The atomic load of y is constrained to happen after the loads
of w and x (by Eat9 ) but before the load of z (by Eat8 ).
Even though the atomic load uses the acquire consistency
mode, this MCM treats it as a SC atomic load. The MCM
definition in (3) is generally less restrictive than the one in
(2) because ordering is only enforced with respect to atomics,
but in the worst case, it is equivalent to (2) when all memory
accesses are atomic (Vat = Vmem).

4.3 Exploiting weak atomics
In §4.2, we defined an MCM that treats all atomic opera-

tions as SC atomics. This approach is suboptimal whenever
any atomics have consistency modes that are weaker than
SC. In this subsection, we take advantage of the relaxations
allowed for these weak atomics by injecting fewer ordering
edges compared to SC atomics.

Let Vsc, Vacq, Vrel, and Vrlx be the sets of sequentially
consistent, acquire, release and relaxed atomics, such that
Vsc ∪ Vacq ∪ Vrel ∪ Vrlx = Vat. We define a MCM that can
support weak atomics to be the union of LegUp’s existing
MCM, ELegUp, and the five sets of constraints given below:

Emem = ELegUp ∪ Esc8 ∪ Esc9 ∪ Eacq 8 ∪ Erel 9 ∪ ERAR (4)

where

Esc 8 = {(v, v′) ∈ Vmem × Vmem | v ∈ Vsc ∧ sb(v, v′)}
Esc 9 = {(v′, v) ∈ Vmem × Vmem | sb(v′, v) ∧ v ∈ Vsc}

Eacq8 = {(v, v′) ∈ Vmem × Vmem | v ∈ Vacq ∧ sb(v, v′)}
Erel9 = {(v′, v) ∈ Vmem × Vmem | sb(v′, v) ∧ v ∈ Vrel}
ERAR = {(v, v′) ∈ Vmem × Vmem | sb(v, v′) ∧

v ∈ Vat ∩ Vld ∧ v′ ∈ Vat ∩ Vld ∧ sloc(v, v′)}.

We define five rules to implement an MCM that exploits
the performance benefits of weak atomics. Esc9 and Esc 8
define the ordering dependencies for SC atomics, which are
similar to Eat9 and Eat8 from §4.2, except that they only ap-
ply to SC atomics rather than all atomics. Eacq8 represents
the ordering edges for acquire atomics: for every memory op-
eration v′ sequenced after an acquire atomic v, there must
exist an ordering edge from v to v′. Erel 9 represents the or-
dering edges for release atomics: for every memory operation
v′ sequenced before a release atomic v, there must exist an
ordering edge from v′ to v. ERAR enforces read-after-read
dependencies for all atomics: we inject an ordering edge from
v to v′ whenever v is sequenced before v′ and both load from
the same memory location (sloc).

The schedule of our running example for this MCM is
shown below.

Cycle: 1 2 3 4
r0=w; ldna w

r1=x; ldna x

r2=y.ld(ACQ); ldACQ y

r3=z; ldna z

Event count: 3 4 5 6 7 8 9

1 sec.

1 min.

1 hour

1 day
1 week

S
o
lv

e
ti

m
e

Figure 4: Solving time as the maximum number of
events increases (y-axis is logarithmic).

Since the load of y is an acquire atomic, it must be com-
pleted before the load of z (by Eacq8 ), which is sequenced
after it. However, the memory operations sequenced before
the acquire load of y can be scheduled in parallel.

4.4 Ensuring correctness
Even though the scheduling constraints that we enforce

are relatively straightforward, it is still challenging to justify
that they are sufficient to rule out all executions deemed in-
consistent by C11’s MCM, because the specification of C11’s
MCM is so complex. Previous work has proved the correct-
ness of implementations of C11’s MCM both on CPUs [4]
and on GPUs [28], but such proofs are laborious and fragile,
and hence ill-suited to our prototype implementation.

Therefore, we turn to lightweight methods for verifying
correctness. We employ the Alloy model checker [18] both to
debug our implementation and to verify its correctness (up
to a bound on the size of programs). Wickerson et al. [29]
have previously used Alloy to check implementations of the
C11 and OpenCL MCMs for several CPU and GPU archi-
tectures. Here, we port their work from the conventional
processor domain to HLS.

Specifically, we use Alloy’s constraint-solving abilities to
search for a C11 trace T and a strict total order <T over the
events in T , such that

• T is disallowed by C11, but

• v <T v′ holds for all (v, v′) ∈ Ed – that is, <T satisfies
all of the scheduling constraints given in §4.3.

The <T relation represents the order in which T ’s events
occur at run-time. The existence of such a trace implies
that the scheduling constraints need to be strengthened.

Figure 4 shows that Alloy’s execution time increases ex-
ponentially with the upper bound on the number of events.
The peformance figures were obtained on a machine with
four 16-core 2.1 GHz AMD Opteron processors and 128 GB
of RAM, and we used the Glucose SAT-solving backend. We
were able to verify up to a maximum of 9 events. Although
this bound appears small, many memory-related bugs can
be revealed using even smaller programs [22]. We also con-
firmed that LegUp’s original scheduling constraints are suf-
ficient to avoid memory-related bugs in a single-threaded
setting, again up to a 9-event bound.

5. EVALUATION
Thus far, our code examples have been relatively small,

and designed to convey the problems of weak behaviour and
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atomic_int tail=0; head=0;

int arr[SIZE]; res[MSGS];

1.1 while(prod<MSGS) { while(cons<MSGS) { 2.1

1.2 chead = head.ld(ACQ); ctail = tail.ld(ACQ); 2.2

1.3 ctail = tail.ld(RLX); chead = head.ld(RLX); 2.3

1.4 ntail = (ctail+1)%SIZE; nhead = (chead+1)%SIZE; 2.4

1.5 if(ntail != chead){ if(ctail != chead){ 2.5

1.6 arr[ctail] = prod res[cons] = arr[chead]; 2.6

1.7 tail.st(ntail,REL); head.st(nhead,REL); 2.7

1.8 prod++; cons++; 2.8

1.9 } } 2.9

1.10 } } 2.10

Figure 5: Acquire-Release semantics.

head

tail

The head and tail pointers
advance counterclockwise.

Figure 6: The circular buffer, diagrammatically.

demonstrate the potential of strengthening MCMs to imple-
ment atomics. In our evaluation, we investigate the perfor-
mance of SC atomics and weak atomics on a real-world ex-
ample: a lock-free single-producer-single-consumer (SPSC)
circular buffer due to Hedström [15]. Data structures sim-
ilar to this circular buffer are used in many real-time and
memory-sensitive systems, and also appear in the Boost
C++ library and the Linux kernel [5].

5.1 Case Study: SPSC Circular Buffer
Figure 5 shows the C-like code of a producer (on the left)

and consumer (on the right) communicating via a circular
buffer that is visualised in Figure 6. The buffer consists of
atomic head and tail pointers, a buffer array (arr) and
a result array (res). The producer only adds tasks and
the consumer only removes tasks, as reflected by the store
to arr (line 1.6) and the load from arr (line 2.6). The
producer and consumer first check that the buffer is not full
(line 1.5) and not empty (line 2.5), respectively. Finally, the
producer and consumer update the tail (line 1.7) and head

(line 2.7) pointers respectively with their next values. These
next tail (line 1.4) and head (line 2.4) values are computed
by a modular increment of SIZE to create a counterclockwise
update, as depicted in Figure 6. We fix the buffer size (SIZE)
at 64 and the number of messages transmitted (MSGS) to be
256. In addition, each atomic load (ld()) and atomic store
(st()) is assigned a weak consistency mode: either ACQ for
acquire, REL for release, or RLX for relaxed.

Ensuring correctness.
Hedström explains in detail why each memory access does

not require full SC [15]. Roughly speaking, the non-atomic
stores to arr (by the producer in line 1.6) do not race with
the non-atomic loads of arr (by the consumer in line 2.6)
because they are always separated by a release/acquire pair
on the tail or the head pointer. These pairs ensure correct
message-passing behaviour. The tail pair (lines 1.7 and 2.2)
ensures that the consumer always reads from the latest write
of the producer. Similarly, the head pair (lines 2.7 and 1.2)
ensures that the consumer completes the read from arr be-
fore the producer writes to arr again.
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Figure 7: Architecture diagram.

Ensuring the correctness of any concurrent program in a
weakly consistent setting is difficult because of the counter-
intuitive behaviours allowed by a weak MCM, and testing
is inconclusive because implementations of weakly consis-
tent operations vary significantly between architectures. As
such, to gain additional confidence in the correctness of this
code, we turn to automatic verification. We use the Cpp-
Mem tool [4] to confirm that the accesses of the shared non-
atomic variable do not cause a race. Because CppMem does
not support arrays, we replace arr with a scalar variable,
and because CppMem’s performance degrades rapidly with
the number of events, we remove the while-loops. We give
the actual code we verified online [1]. CppMem’s result is
of course weakened by the inclusion of these simplifications,
but taken together with the informal argument for correct-
ness given by Hedström, we obtain a reasonable degree of
confidence in the program’s correctness.

Implementation.
We map our buffer application to hardware via LegUp’s

pure hardware flow. We place-and-route our designs on
a Xilinx Zynq 7000 (XC7Z020) with 53200 Look-up Ta-
bles (LUTs), 106400 registers, and 36 KB of block RAMs.
Figure 7 shows the generated architecture. We synthesise
each Pthread as a hardware accelerator, with global mem-
ory implemented on the FPGA either as registers or block
RAMs. We accesses memory-mapped control registers from
the ARM processor via an AXI slave connection, which we
use to execute the accelerator system and extract both the
verified results and the cycle counts from an on-board hard-
ware timer. Shared memory access is protected by a mem-
ory controller. Although each thread has simultaneous dual-
ported access to global memory, the memory controller can
only perform two memory operations at a time. An arbiter
ensures that only one thread is given access (to both ports)
at a time. Also, LegUp’s hardware locks are connected to the
same memory controller via custom synchronisation logic.

5.2 Experiment Setup
We investigate the circular buffer on seven different design

variations (as shown in Table 1): an unsound version, three
lock-based versions, and three lock-free versions. Four of the
seven are implemented with LegUp’s pre-existing MCM and
three are implemented with the MCMs discussed in §4.

The first version, Unsound, uses neither atomics nor locks.
Although the results obtained from this implementation were
verified to be correct experimentally, its correctness is coin-
cidental and fragile. Small changes to the code, similar to
those discussed in §2, could lead to incorrect results. We
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Table 1: Design points. The last column gives the
latency of one consume step and one produce step.

Short name Description MCM Locks? Lat.

Unsound no atomics/locks (baseline) orig 7 10
OMP-criticals OpenMP critical sections orig 3 14
Mutexes Pthread mutexes orig 3 26
OMP-atomics OpenMP atomics orig 3 41
SC sequential consistency §4.1 7 17
SC atomics sequentially consistent atomics §4.2 7 17
Weak atomics weakly consistent atomics §4.3 7 12

Thread 1 Thread 2 Thread N

. . .produce

consume

produce

consume

Figure 8: Chaining experiment (for N from 2 to 17).

treat this implementation as an upper bound for the circu-
lar buffer’s performance.
OMP-criticals is implemented by wrapping the buffer’s en-

tire loop body with #pragma omp critical. LegUp imple-
ments these critical sections using a single global lock. Mu-
texes is similar, but in experiments that feature more than
one circular buffer, each buffer is protected by its own mutex.
This reduces the global contention to a single lock as can
happen with OMP-criticals. OMP-atomics is implemented
by wrapping each atomic instruction in a single-statement
critical section. This is equivalent to OpenMP’s #pragma

omp atomic. Although this implementation is lock-free in
source code, LegUp actually implements OpenMP atomics
using a single global lock.

Of the lock-free designs, SC is the strictest because it se-
rialises all memory operations regardless of their atomic-
ity or consistency mode (see §4.1). SC atomics implements
the MCM from §4.2 that takes into account the atomic-
ity of memory operations but ignores the consistency mode
of atomic operations. Weak atomics implements the MCM
from §4.3 that considers the consistency mode of atomics.

We conduct two experiments on the circular buffer: chain-
ing and bursting. Figure 8 shows the setup of the chaining
experiment. The producer thread sends 256 messages across
a chain of repeater threads to a consumer thread that verifies
the results. Each repeater thread consumes from one buffer
and immediately produces the same data to the next buffer
in the chain. Table 1 provides the schedule latency of each
repeater thread. In the chaining experiment, we observe the
performance of our implementations as the number of re-
peater threads increases. In the bursting experiment, we in-
crease the number of messages transmitted per transaction.
We set up this experiment with three threads: one producer,
one repeater, and one consumer. By increasing the number
of messages per transaction, we increase the number of non-
atomic memory accesses to the arr array. By doing so, we
can investigate the relationship between the ratio of atomic
accesses and the performance of our design points.

5.3 Results: Throughput
Figure 9 shows the throughput of the chaining and burst-

ing experiments for all seven design points. For the chain-
ing experiment, the overall throughput deteriorates with the
increase in threads by an average of 20x across all design

points. This can be explained by the fact that the arbitra-
tion cost to access shared memory is increasing with increase
in threads. In the burst experiment, the overall throughput
improves with the increase in elements per transaction by
an average of 5x. By transmitting more messages per trans-
action, we decrease the overall synchronisation cost required
to transfer the same amount of data across threads.

In both experiments, the Unsound implementation has
the best throughput, which can be attributed to this de-
sign point having the shortest schedule latency (as seen in
Table 1). All three lock-based implementations have large
throughput overheads compared to the upper-bound perfor-
mance of Unsound. This can be explained by the longer
schedule latencies (Table 1). For each mutually-exclusive
access, LegUp performs a pair of function calls to lock and
unlock a hardware lock. OMP-criticals has one pair, Mutexes
has two pairs, and OMP-atomics has six pairs of these func-
tion calls per repeater thread. These calls introduce schedule
delays and additional memory dependencies. These delays
affect OMP-atomics, which has an average overhead of 28x
(chaining) and 10x (bursting) compared to the Unsound im-
plementation.

In the chaining experiment, Mutexes outperforms OMP-
criticals for four threads or more. As we increase the num-
ber of threads, Mutexes tends to have less overhead than
OMP-criticals because it distributes the contention between
multiple hardware locks, whereas OMP-criticals relies on a
single lock. On average, the best lock-based implementa-
tions have performance overheads of 4x (chaining) and 3.5x
(bursting) compared to Unsound.

Of the three lock-free implementations, SC has the largest
performance overhead for both experiments, with 1.7x on
average (chaining and bursting) compared to Unsound. Al-
though SC exploits neither the atomicity nor the consis-
tency modes of memory operations, it still outperforms the
best lock-based implementations by 2.5x (chaining) and 2x
(bursting). This suggests that dealing with memory consis-
tency as an intra-thread scheduling problem is better than
incurring the overhead of locks.

SC atomics is, in the worst-case, as restrictive as SC, and
we see this behaviour in the chaining experiment, since both
of these implementations have the same schedule latency
(Table 1). In the burst experiment, we see that SC atomics
performs better than SC when there are more elements per
transaction. This corresponds to more non-atomic memory
operations. The fewer atomic memory operation there are,
the better SC atomics performs compared to SC. SC atomics
performs up to 1.5x faster than SC in the burst experiment.

Finally, Weak atomics only has a performance overhead
of 1.04x (chaining) and 1.15x (bursting) compared to Un-
sound. We are able to recover most of the performance of
the Unsound implementation, while guaranteeing correct be-
haviour. Compared to SC atomics, Weak atomics is on av-
erage 1.6x faster (chaining) or 1.2x faster (bursting). As
we increase the number of elements per transaction, the SC
atomics throughput approaches that of Weak atomics, be-
cause the increased potential for parallelising the non-atomic
accesses dominates any difference in the treatment of atomic
accesses between the two implementations.

5.4 Results: Resources
Figure 10 shows LUT utilisation for the chaining and

bursting experiments. We see an increase in LUT utilisa-
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Figure 9: Throughput for the chaining experiment (left) and the bursting experiment (right).
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Figure 10: LUT utilisation for the chaining experiment (left) and the bursting experiment (right)

tion with the increase in threads and elements per transac-
tion across all design points. At maximum LUT utilisation,
we fill 22% of the FPGA fabric. OMP-criticals and Mutexes
have the highest LUT utilisation. This can be attributed to
both of these implementations requiring the synchronisation
controller and hardware locks. SC and SC atomics have the
smallest LUT utilisations, which can be attributed to them
using only one memory port per thread due to serialisation
(information we extract from LegUp’s binding reports).

In the chaining experiment, we see that both the Un-
sound and the Weak atomics implementations use two mem-
ory ports per thread, resulting in their LUT utilisations be-
ing similar. For OMP-atomics, LUT utilisation lies between
the SC and the Mutexes implementations. This may be be-
cause OMP-atomics requires the synchronisation controller
and hardware locks (like Mutexes) but only uses one mem-
ory port per thread (like SC).

As we introduce more non-atomic memory accesses in the
bursting experiment, some implementations can parallelise

their intra-thread memory accesses and hence exploit the
second memory port provided by LegUp. This can explain
the rise in LUT utilisation that is particularly noticeable for
SC atomics and OMP-atomics.

6. CONCLUSION
This work has investigated how to implement lock-free al-

gorithms on FPGAs using HLS. Our case study suggests
that careful reasoning about memory consistency, as op-
posed to relying on locks, allows us to recover most of the
performance of unsound implementations, while guarantee-
ing correctness. Even our worst-case lock-free implemen-
tation (SC in Table 1) is on average 2.5x faster than our
best-case lock-based implementation (Mutexes). We have
also shown that weakly consistent atomics have a smaller
performance overhead than sequentially consistent atomics.

We hope our work will stimulate further support in HLS
tools for fine-grained synchronisation in multi-threaded C
programs, and raise awareness of the possibility of synthesis-
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ing weakly consistent atomics on FPGAs. Previous work on
implementing weak atomics has concentrated on mapping C
to processor-specific assembly code [4], [28]; our work shows
how HLS can compile weak atomics directly to hardware.

In the future, we hope to extend our approach beyond
loads and stores to handle compound atomic operations (such
as compare-and-swap), and thus enable a larger class of lock-
free programs to be synthesised into hardware.
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