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Abstract

Producing accurate thickness maps of corrosion damage is of great importance for assessing life in the

petrochemical industry. Guided wave tomography provides a solution for this, by sending guided waves

through the region of interest, then using tomographic imaging techniques to reconstruct the thickness map,

importantly eliminating the need to take measurements at all points across the surface. However, to achieve

accurate maps, the imaging algorithm must account for the way in which the guided waves interact with cor-

rosion defects, and the complex scattering which occurs. Traditional approaches have exploited the dispersive

nature of guided waves: a velocity map is produced from a data set, then converted to thickness using the

dispersion relationship. However, these relationships are derived for plates of constant thickness, which is not

the case in the majority of defects, causing significant inaccuracies exist in the images. This paper develops a

more sophisticated inversion solution which accounts for the full guided wave scattering. Through this, more

accurate images with resolution better than a wavelength, compared to two wavelengths previously. This is

demonstrated with simulated and experimental data. The speed and stability of the algorithm in the presence

of random noise and systematic errors is also demonstrated.
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1 Introduction

Assessing the remaining life of assets is critical in the petrochemical industry, particularly in the presence of
corrosion which reduces wall thickness of pipes and pressure vessels, increasing the chance of unexpected failure.
Guided wave tomography [1] is a quantitative technique proposed to produce wall-thickness maps of pipes and
plates; this enables the remaining thickness to be extracted and hence the life of the component to be determined,
without requiring access to all points on the surface, making it a potentially valuable non-destructive testing
technique. Lamb waves are excited in a plate or plate-like-structure (including pipe walls provided the wall
is thin compared to the radius of curvature, meaning that curvature can be neglected [2]) from an array of
transducers; these then interact with a region potentially containing wall thinning caused by corrosion, and the
resulting waves are measured by another array. These measurements are subsequently processed to produce a
thickness map.

Clearly, it is critical that these maps are an accurate representation of the true map to avoid the risks
associated with overestimating remaining life, or waste associated with underestimating it. This accuracy is
highly dependent on the underlying assumptions used in the reconstruction. The primary assumption used
reformulates the guided wave scattering problem as one of acoustic waves being scattered by velocity [3]. As
shown in the dispersion curves of Fig. 1, the guided wave velocity is a function of the frequency-thickness product,
so by fixing frequency, wave velocity can be shown to be a function of thickness. This is a widely used assumption
which has been utilised for 20 years in guided wave tomography [3–12] but relies on a key approximation. The
dispersion curves are derived for infinite plates of constant thickness [13], and therefore it assumes that any local
thickness variations are sufficiently gradual that they can be neglected. As highlighted in [14] this manifests itself
as a resolution limit in the reconstruction of around 2λ, effectively applying a low-pass filter to remove any higher
spatial frequency components. This limit corresponds to 8T where T is wall thickness at 0.5MHz-mm A0, or 4T
at the constant group velocity around of 1.4MHz-mm A0. Importantly this limit is sufficient to cause significant
inaccuracies with typical corrosion defects.
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Figure 1: Dispersion curves for a steel plate. (a) presents phase velocity as a function of frequency-thickness for
a number of modes. (b) presents the group velocity.
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Figure 2: Schematic comparing acoustic and guided wave scattering behaviour. (a) shows the definition of the
scattering angle θ for a point scatterer, and (b) then presents typical scattering patterns as a function of this
scattering angle for acoustic and guided wave scattering from such a point scatterer. (b) also highlights a region
in which reasonably good matching is seen between the guided wave and acoustic models.

This lack of resolution when compared to the traditional limit of λ/2 can also be considered to be an effect
of the different scattering behaviour observed between guided waves with varying thickness and acoustic waves
with varying velocity. Figure 2 presents a schematic of this. Fig. 2(a) defines the scattering angle, while Fig. 2(b)
plots the scattering patterns for an acoustic and guided wave model. The acoustic case has a omnidirectional
behaviour whereas the guided wave model is more complex. From the diagram, it can be seen that the transmission
components, which provide information about the low spatial frequency components of the image (see for example
[15]), match between the guided wave and acoustic models, enabling a low resolution image to be produced.
However, in other scattering directions (closer to reflection, corresponding to high spatial frequency components)
there is a significant difference in scattering behaviour, which prevents higher resolution components from being
extracted for imaging.

Significant focus has been given to the development of velocity inversion schemes, utilising this assumption
that acoustic scattering matches guided wave scattering behaviour. Dominating this is the use of ray theory
in the inversion. Typically arrival times are extracted from the measured waves, then a ray model is fitted to
these such that the modelled and measured arrival times match. This can use straight ray assumptions [1, 5, 16],
although more recent approaches account for refraction by iteratively bending the ray paths [9, 11]. Resolution
improvements are available through the use of diffraction tomography for velocity inversion [8], although this is
only applicable to weakly scattering defects, i.e. ones which are low contrast and small. The HARBUT approach
[17] overcomes this by combining ray tomography with diffraction tomography to enable the benefits of diffraction
tomography to be realised across a wider range of defects, and was applied to guided wave tomography in [10].
Full wave inversion, where an acoustic finite difference model is iteratively updated to match the measurements,
has also been used for this problem [12], although the approach is still restricted to acoustic, rather than guided
wave, scattering and therefore is limited in the same way as other velocity inversion approaches.

To improve accuracy beyond this, approaches which can more accurately capture the guided wave scattering
are needed. A simple enhancement is to consider density in addition to velocity when inverting [18], which can
improve accuracy, but this still fails to capture guided wave scattering fully. In a more sophisticated approach,
Rose et al. developed Mindlin plate theory [19] for guided wave tomography [20, 21]. Under this model the
behaviour of the plate is modelled using three field parameters: two rotations and the out of plane displacement.
The scattering from guided waves can be captured by this model, and the paper illustrates scattering patterns and
discusses how this behaviour can be used in an inversion under the Born approximation to achieve a quantitative
map of thickness. However, the approach assumes small perturbations in local properties, i.e. small wall losses,
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and the use of the Born approximation severely limits the range of defects which can be modelled. Additionally,
while Mindlin theory is undoubtedly an improvement on the guided-wave-to-velocity mapping assumption, it is a
simplified model and therefore cannot capture the full scattering behaviour. Iterative solutions such as the Monte
Carlo Markov Chain have been applied to this problem [22], but this was limited to very small scatterers due to
the need to run the forward model many times. Other guided wave imaging approaches have been demonstrated,
including the use of the linear sampling method [23], and techniques producing non-quantitative images [24].

This paper develops a new general model, fully capturing guided wave scattering, and develops an inversion
technique based on this. The approach is based on the HARBUT algorithm [10, 17] and makes no restriction on
the width or depth of the scatterers and generally provides results that have superior resolution and accuracy
to the existing techniques. Section 2 discusses the theory, providing the background of the standard acoustic
(i.e. non-guided-wave) scattering model which is then extended to enable scattering from guided waves to be
captured. Section 3 then outlines approaches to invert the developed scattering model, with Sect. 4 presenting
results from the algorithm. Section 5 discusses aspects such as stability and effects of density.

2 Scattering Theory

2.1 Standard acoustic model

The analysis begins with the standard acoustic model, widely used for many quantitative imaging problems,
from which a more general approach will be derived which better captures complex scattering. The acoustic
wave equation is written in the frequency domain

[

∇2 + k (x)
2
]

φ = 0 (1)

where k(x) is the local wavenumber at position x and φ represents the local acoustic scalar potential. This can
be rearranged

[

∇2 + k20
]

φ = −
[

k (x)
2
− k20

]

φ (2)

= −O(x)φ (3)

where k0 is the background wavenumber, and the object function O(x) has been introduced; this is normally
expressed in terms of the velocity as

O(x) = k20

[

(

c0
c(x)

)2

− 1

]

. (4)

Here, c0 represents the background velocity and c(x) the local velocity.
The acoustic free space Green’s function can be derived as the solution to

[

∇2 + k20
]

G (y,x) = δ (x− y) (5)

which is solved by

G (y,x) = −
i

4
H

(1)
0 (k0R) (6)

where
R = |x− y|

and H
(1)
0 is the Hankel function of the first kind. This is then exploited in the integral formulation [15, 25]

φs (y) = φ (y) − φ0 (y) = −

ˆ

G (y,x)O (x)φ (x) dx (7)

where the scattered field φs is derived in terms of the total field φ and the incident field φ0.
Taking a point scatterer of scattering potential ρ at position x, the integral reduces to

φs (y) = −G (y,x) ρφ (x) (8)

which has a clear omnidirectional scattering behaviour visible due to the axisymmetric nature of G. It is well
known that guided waves do not scatter like this [26, 27]. As shown in [14], it is the discrepancy between this
acoustic scattering and the full guided wave scattering which limits the accuracy of the acoustic model and hence
its resolution. To improve this, a more accurate scattering model is required.
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2.2 Generalised scattering model

As discussed, the monopole scattering behaviour is unrealistic for capturing full guided wave scattering. Therefore
higher orders are needed; these can be expressed as a sum of cosine terms in a variation on eq. (7)

φs =

ˆ

GOφ
M
∑

m=0

Cm cos (mθ) dx (9)

where θ is the deviation angle between the illumination and reception direction and M is the highest order cosine
term; for the omnidirectional acoustic caseM = 0 is sufficient. The values Cm represent the coefficients associated
with each cosine term and hence describe the scattering behaviour. It is noted that the added directionality term
could be included in a Lamb wave Green’s function, however the terms will be kept separately throughout this
paper and G will always be used to refer to the 2D free space acoustic Green’s function.

Defects across a wide range of depths (including beyond 50% wall loss) are of interest so it is not guaranteed
that the scattering pattern will remain constant with depth. Therefore the model must be adjusted so that
different scattering patterns can be expressed at different depths, which is achieved via a polynomial expansion
of the object function in terms of the thickness parameter, h (x) = [T0 − T (x)] /T0, with T0 and T being
background and local thicknesses respectively

φs =

ˆ

Gφ
N
∑

n=1

M
∑

m=0

Cmnh
n cos (mθ) dx. (10)

Here the coefficient term Cmn has been expanded to account for the N polynomial terms. This form of equation
allows the scattering pattern to vary with depth. It is noted that, since scattering is not expected to originate
from the background region where h = 0, there is no constant term so n = 0 is not included. While this equation
represents an approximation due to the truncation of both the polynomial (n) and cosine (m) series, only low
orders of both are typically required to capture the scattering behaviour.

To predict the scattering behaviour under this model, the coefficients Cmn must be estimated. Rearranging
the equation gives

φs =

N
∑

n=1

M
∑

m=0

Cmn

ˆ

Gφhn cos (mθ) dx (11)

which can be rewritten

φs =

N
∑

n=1

M
∑

m=0

CmnPmn (12)

with

Pmn =

ˆ

Gφhn cos (mθ) dx. (13)

To determine φs and Pmn a suitable forward model is needed. Traditionally, significant simplifying approximations
were necessary to produce such data. However, the increasing computer power available makes running large
sets of full finite element (FE) simulations practical. The Pogo FE software package [28] solves elastodynamic
problems via an explicit time domain scheme, and is used here to simulate the wave interaction with defects. This
approach captures the full guided wave scattering behaviour, enabling the field φ to be determined. By running
a similar simulation without the scatterer present, the incident term φ0 can be determined and subtracted from
φ to give the scattered field φs away from the scatterer, and hence the left hand side of (12). The integral
(13) is calculated using a sum across the domain x with a sufficiently small spacing (typically λ/15 is sufficient,
depending on scatterer size, with λ being the wavelength). The terms in the integral are all straightforward to
determine: G is known from (6), φ can be taken directly from the simulation, h is known from the thickness map
and θ can be calculated from geometry.

Once φs and Pmn are known, Cmn can be extracted through the use of a linear solver to invert (12). Clearly
there are actually many scattering scenarios, giving multiple data sets for Pmn and φs; even for just a single
realisation of h(x) both the scattering direction and the illumination direction will vary, giving many scattering
values. Also it is desirable to have a solution which is valid across many different defects, so several defect sizes
and depths will be simulated. Ultimately (12) will represent a highly overdetermined system of equations, and
from this Cmn can be calculated in the least-squares sense.
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2.2.1 Acoustic scattering with the generalised scattering model

To demonstrate the general scattering model, the acoustic case is returned to. This is simpler than a full guided
wave case, and an analytical solution exists for comparison. An elemental scatterer under the acoustic model has
omnidirectional scattering, so as discussed, only a single order cosine expansion is needed, i.e. M = 0. Therefore
a set of coefficients C0n are sought to solve

φs =
N
∑

n=1

C0nP0n (14)

with

P0n =

ˆ

Gφhndx. (15)

It is noted here that while this is formulated in terms of the acoustic velocity, the velocity-to-thickness mapping
from the dispersion curves, traditionally used in guided wave tomography, is used so that the h term retains its
meaning. To test this, a frequency domain finite difference simulation is performed for several defects. This is
operated at 50kHz using parameters from the A0 mode on a 10mm thick steel plate; node spacing was 1mm
and 240 elements were used in a circular array around the defect. All defects were axisymmetric Hann defects
as described in [18], and had widths of 20, 40, 60, 80 and 120mm, and depths of 10, 30, 40, 50, 55, 60% of wall
thickness, making 26 simulations in total, including a run to obtain the incident field φ0. The coefficients are
then extracted from these scattered fields using the approach described previously.

There are likely to be two sources of error in the scattering behaviour predicted by these coefficients. Firstly,
there is uncertainty in the modelling of the scattered fields and subsequent fitting of the coefficients to these, and
secondly there is likely to be some truncation error due to fitting a polynomial to the function. It is possible to
separate these and just study the truncation error. Since the scattering behaviour is well known analytically, the
coefficients can be determined independently, without using the scattered field

−

ˆ

GOφdx =

ˆ

Gφ

N
∑

n=1

C0nh
ndx (16)

−O =

N
∑

n=1

C0nh
n. (17)

A direct approach to acquire C0n involves calculating O (h) then fitting the polynomial terms to it. The process
for determining O (h) is in two steps; firstly the phase velocity c, associated with the thickness, is derived by
interpolating the dispersion curves, typically calculated via a tool such as DISPERSE [29]. Then O is calculated
from that as in (4). Given the lack of simple analytical equation for the dispersion characteristics, the chosen
approach is to numerically evaluate the function O (h) across a range of thickness values from 0-60% wall loss;
the polynomial coefficients are then used to fit this function.

Figure 3 shows the comparison between the true O (h) term and two
∑N

n=1 C0nh
n terms for the coefficients

calculated via the different approaches discussed here. The ‘true’ curve O(h) is calculated semi-analytically as
discussed above, and the ‘direct’ curve compares that to its polynomial approximation calculated directly as
in (16). Comparing these two lines first, it is clear that the polynomial approximation does introduce small
differences, however these appear small and would be unlikely to severely affect the accuracy of a reconstruction.
This suggests that 3 polynomial terms is sufficient for this problem. The final line is calculated using coefficients
extracted from the scattered field. Here, there is a slightly larger deviation at deeper depths (beyond 50% wall
loss). One aspect to note is that this line and the true line match better for shallower defects, so there is a
possibility that better fitting has been performed for the shallower depths. It is noted that because each defect
varies from its maximum depth through to zero contrast, there average depth throughout each defect will be
significantly less than the maximum. Therefore across all of the scattered fields the majority of the scattering will
come from the shallower defect values; this is why bias was given to deeper defects in the simulations. However,
there are still more shallower areas in total and this could explain why better fitting is obvious in this area.
Additionally, as defects get deeper, more non-linearity tends to occur and the underlying assumptions (e.g. the
lack of multiple scattering) will break down, which could cause larger errors. However, based on this study it is
expected that the scattering model with 3 polynomial terms should be a good approximation for the majority of
defects across the range of interest.
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Figure 3: True and approximated scattering terms under the generalised scattering model applied to the standard
acoustic scattering problem. The direct field utilises (16) to obtain the coefficients without generating any
scattered fields, and compares this to the true scattering values defined by O. For the remaining line, several
finite difference simulations were performed and the scattered field extracted from these. Coefficients are then
extracted from these and used to produce the line.
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2.2.2 Multi-modal generalisation

In many scenarios, scattering occurs in a medium which can support multiple modes, and in the majority of cases
some mode conversion will occur. It is noted that the current formulation could, in theory, be used to capture
such multi-modal behaviour

φsr =

N
∑

n=1

M
∑

m=0

Q
∑

q=1

CmnqrPmnqr (18)

with

Pmnqr =

ˆ

Grφqh
n cos (mθ) dx. (19)

Here, q represents the incident modal wavefield with Q being the number of modes present. 1 ≤ r ≤ Q represents
the measured mode. Clearly this formulation increases the number of parameters which need to be determined
by a factor of Q2, compared to the single mode case. While this description is included for completeness, it has
not been tested in practice and a suitable inversion approach based on it has not been derived. A very similar
approach to this has been discussed in [30], and as highlighted there and investigated in [31], a particular problem
is that the K-space is not completely sampled by the combined two modes; a section of wavenumbers close to
zero cannot be extracted. Another practical challenge is the complexity of experimentally measuring and exciting
several different modes while maintaining ability to separate them.

2.3 Scattering behaviour

Figure 4 illustrates the scattering patterns associated with different depth ‘elemental’ defects, given by the
equation

s (θ) =

N
∑

n=1

M
∑

m=0

Cmnh
n cos (mθ) . (20)

The coefficients in this case are derived for M = 3 and N = 3, and are calculated by fitting the responses from
defects of a variety of widths and depths down to 60% wall loss following the approach in Sect. 2.2. It is observed
that these results match those predicted analytically for shallow defects in [21] under Mindlin theory, which
are further analysed in [30]. It is clear that in through-transmission the two curves generally match well, with
increasing deviation with depth, matching the trend seen in Sect. 2.2.1, Fig. 3. This is more clearly highlighted
in Fig. 4(g) showing the transmission component as a function of wall loss, with a very similar deviation to that
visible before.

In reflection, the guided wave scattering does not match the acoustic scattering behaviour well; at 10% it is
larger compared to the acoustic case, but it decreases in amplitude and between 30% and 40% wall loss becomes
negative. Scattering at other angles is also very different. As illustrated in Fig. 4(h) there is a significant zero
around 1 radian; despite the diversity of scattering behaviour with depth, at this angle the scattering amplitude
remains zero for all depths. This can be problematic since the information contained in the scattered field at this
angle is unavailable.

3 Inversion

The primary motivation for developing this model is to exploit it in inversions to generate improved images. This
section begins with an overview of the diffraction tomography based approaches for acoustic problems.

3.1 Acoustic inversion

3.1.1 Diffraction tomography

Beginning from the Lippmann-Schwinger equation of (7)

φs (y) = −

ˆ

G (y,x)O (x)φ (x) dx (21)
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two simplifying assumptions are employed, firstly that of the Born approximation, that φ = φ0 within the integral,
and secondly that the transducer array is in the far field, so that plane wave assumptions hold; this leads to
[15, 32]

A (ŝ, ŝ0) =

ˆ

O (x) e−ik(̂s−ŝ0).xdx (22)

where ŝ and ŝ0 represent directions for the scattered and incident fields respectively and A is the far field scattering
amplitude. It is clear that this represents a 2D Fourier transform

A (̂s, ŝ0) = Ô (K) (23)

where K = k(̂s− ŝ0), and by varying the incident and scattered directions all the wavenumber components of Ô
in the range |K| ≤ 2k0 can be determined. One approach is to acquire these components, interpolate them to a
regular grid, then perform a 2D inverse Fourier transform to obtain O, as in

O (x) =
1

4π2

ˆ Kx
ˆ Ky

A (̂s, ŝ0) e
ik(̂s−ŝ0).xdKxdKy (24)

where Kx and Ky are the Cartesian components of the vector K. Since this provides access to components up
to 2k0 this corresponds to a resolution limit of λ/2 [32]. However, it is possible to avoid this interpolation. If the
incident and scattered vectors are expressed as functions of angles, i.e. ŝ = ŝ (α) and ŝ0 = ŝ0 (β) then a change
of coordinates can be performed to give

O (x) =
1

4π2

ˆ α ˆ β

A (̂s, ŝ0) e
ik(̂s−ŝ0).xW (K) dαdβ (25)

where W is a weighting function, corresponding to the determinant of the Jacobian matrix, to account for the
change in coordinates; this is Devaney’s filtered backprojection algorithm [33]. It can be shown [34] that this
weighting function has the form

W (K) = |K| k0

√

1−

(

|K|

2k0

)2

. (26)

One option is to compute this integral directly incorporating the weighting function. Alternatively it is recognised
that this form is very similar to the standard beamforming (or total focusing method [35]) approach of delaying
and summing around the array, which in the far field integral form would become

O (x) =

ˆ α ˆ β

A (̂s, ŝ0) e
ik(̂s−ŝ0).xdαdβ (27)

i.e. matching (25) with the exception of the weighting function. Rose et al. have conducted a thorough study
of the behaviour of these different algorithms [36], and as explored in [37] this approach amplifies the low and
high spatial frequency components in the image; this effect can be removed by applying a filter to generate
the standard diffraction tomography image. One benefit of this approach is that beamforming images do not
rely on the far field (plane wave) assumption; since the same image can be generated regardless of transducer
location, the same diffraction tomography image will be generated from near- or far-field data. As highlighted
previously [8] there is often also no need for incident field subtraction with this approach, a traditional difficulty
with diffraction tomography. This approach is taken as the basis for the solutions developed in this paper.

3.1.2 HARBUT

As highlighted in [14], the capabilities of diffraction tomography are limited for guided wave tomography be-
cause the typical defect sizes generate sufficient phase shift through them that Born approximation is violated
(i.e. φ0 is not a good approximation of φ). Instead, HARBUT (Hybrid Algorithm for Robust Breast Ultrasound
Tomography) [17, 38] is employed. This splits the object function into two components

O = Oδ +Ob (28)

where Ob corresponds to an approximate, known background estimate of O, typically estimated from bent ray
tomography or a previous HARBUT iteration, and Oδ corresponds to the small, low contrast residual. Since Oδ
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is low contrast, the Born approximation should be suitable for reconstructing it against the known background
Ob. By reformulating the equations of Sect. 2.1 for this (see [17] for details) the scattering equation becomes

φ− φb = φ′
s = −

ˆ

GbOδφdx (29)

which is approximated by

φ′
s = −

ˆ

GbOδφbdx = −

ˆ

GbOδGbdx (30)

where subscript b is used to indicate the values of the scattered field and Green’s functions in the background,
and it has been recognised that the background field can be calculated using the Green’s function. The inversion
is then performed in a similar way to before

O′
δ = −

ˆ α ˆ β φ

GbGb
dαdβ (31)

for a beamforming image, which is then filtered to the diffraction tomography version to give the true Oδ value.
Clearly the terms Gb need to be calculated; these are derived as being the same as the standard Green’s functions
(6) except with a phase distortion accounting for the background, calculated by using a fast eikonal equation
solver [39]. It was shown that iterating HARBUT [10] can enable improved reconstructions to be achieved as Oδ

reduces in amplitude and φb becomes a better approximation of φ. HARBUT has been shown to produce the
best results based on the acoustic assumption across a range of defects [14], and will therefore be developed to
account for the full guided wave scattering behaviour.

3.2 Elastic guided wave inversion

Several techniques are possible, based on these methods, to derive a solution to invert guided wave data. Two
approaches are explored initially, which will introduce concepts which are ultimately combined into a single
algorithm to address the problem.

3.2.1 Fourier component weighting

One simplifying assumption in the scattering model which could be made is that

Cmn = AmBn (32)

i.e. that the polynomial terms are separable from the cosine terms. Based on this

s (θ) =
N
∑

n=1

M
∑

m=0

Cmnh
n cos (mθ) =

N
∑

n=1

Bnh
n

M
∑

m=0

Am cos (mθ) (33)

which demonstrates that the assumption is effectively forcing the scattered field to be the same shape regardless
of depth. As shown in Sect. 2.3 this is not a good assumption across the range of defects considered here,
however for shallow defects this may be valid, such as when Mindlin theory holds [21]. Under the far field Born
approximation, Eq. (22) becomes

φs = −

ˆ

eik(̂s−ŝ0).x
N
∑

n=1

Bnh
n

M
∑

m=0

Am cos (mθ) dx (34)

and the polynomial and cosine terms can be separated in the inversion

O =

N
∑

n=1

Bnh
n = −

1

4π2

ˆ α ˆ β φs [k(̂s− ŝ0)] e
−ik(̂s−ŝ0).xW (K)

∑M
m=0 Am cos (mθ)

dαdβ. (35)

The approach is to perform the inversion in the standard manner, with an additional weighting term resulting
from the cosine functions; this approach is similar to that developed by Rose et al. [21]. This solution gives O,

and then h must be determined by inverting O =
∑N

n=1 Bnh
n. Following the standard guided wave tomography
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approach of interpolating the dispersion curves to determine thickness from velocity, it is proposed that this could
be solved by calculating O(h) for a set of sufficiently sampled values of h in the range 0 ≤ h ≤ 1, which can then
be interpolated for each value of O to give h.

One challenge of solving eq. (35) is the division by
∑M

m=0 Am cos (mθ) required by the weighting; as shown
in Sect. 2.3 there are clear angles when the scattered field is zero, which will result in a singularity. It should be
possible to compensate for this by adding an arbitrary small constant to avoid the denominator ever becoming
zero although this will cause small errors in the reconstruction. Alternative solutions could be to combine
multiple frequencies, where the singularity will occur at different |K| values, thus enabling information which
is unavailable at one frequency to be replaced with information from another. It is possible to incorporate the
∑M

m=0 Am cos (mθ) terms into a filter to be applied to a beamforming image; this has similar advantages to before
by enabling near-field imaging and avoiding the incident field subtraction problem. The application of this filter
is described by an operator

Ogw = P (Oac) (36)

which converts a reconstructed acoustic object function Oac to a guided wave version Ogw .
This can be generalised to HARBUT. For the first iteration, the background object function Ob only contains

low frequency components, generated by a ray-tomography algorithm; these correspond to the transmission subset
and as shown in Sect. 2.3 the acoustic model matches the guided wave model well in this area, i.e.

Ob ≈ P (Ob) . (37)

When calculating the residual, Oδ, the weighting will need to be applied and this can either be applied immediately

Ogw = P (Oδ,ac) +Ob (38)

or after adding the background object function

Ogw = P (Oδ,ac +Ob) (39)

both of which should generate the same result because of (37). These two approaches can be utilised for iterative
HARBUT. Each contribution of Oδ can either be filtered immediately or at the end when they have been
summed up. In the latter case, because the corrections are not applied before the corrected steering functions are
calculated, there will be slight distortions to the wavefields Gb, however it is generally the low spatial frequency
components which are the most important in these calculations (and in fact the background is generally smoothed
prior to calculating Gb [10]) so any differences will be negligible.

3.2.2 Iterative solution

As discussed, the assumption that the scattering behaviour is constant with defect depth is not valid for the ranges
considered here. The complexity therefore increases significantly, because the algorithm must account for the
different scattering behaviour with depth without knowledge of what the depth is. One of the most straightforward
approaches would be to utilise a least squares minimisation based on the scattered field, minimising a cost function
defined as

F =
∑

|φs,model − φs,meas|
2
=
∑

|r|
2

(40)

where φs,meas is the measured scattered field and φs,model corresponds to the modelled scattered field, as generated
from (10), and r = φs,model − φs,meas is the residual. A gradient approach can be used to achieve this, and an
efficient gradient calculation method can produce this derivative relative to the values of h in the image. This is
expressed as

∂F

∂h (x)
=
∑

2r
∂φs,model

∂h (x)
(41)

and the derivative of the scattered field, based on the generalised scattering model, is calculated as

∂φs,model

∂h (x)
= Gφ

N
∑

n=1

M
∑

m=0

Cmnnh
n−1 cos (mθ) . (42)

With the exception of φ, these terms are all known. φ can be determined from any of a number of forward solutions
(e.g. finite difference or finite element) based on the current thickness map; probably the fastest approach would
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be to follow the HARBUT formulation [17] with an eikonal solver to distort the incident field. Having calculated
this gradient, a solution technique such as the conjugate gradient method could be utilised to minimise the cost
function by stepping to minimise it. While this approach has been included for completeness, it is not taken
further because it requires incident field subtraction to produce φs,model and is potentially slow since the sums
of (42) need to be calculated at every location x in the image for every iteration. However, the concept of
least-squares fitting explored in this section can be combined with the Fourier component weighting approach
discussed above, as will be explored in the next section.

3.2.3 HARBUT with an Improved Scattering Model (HARBUTISM)

As discussed above for the separable variables case, the standard acoustic reconstruction will contain all the
components of the true reconstruction, just distorted. When the variables are not separable this still holds, but
there is now no simple procedure to correct for the complex scattering behaviour since the depths are unknown.
The least-squares fitting approach is again proposed, this time minimising the cost function

F2 =
∑

∣

∣

∣
Ôac − Ôh

∣

∣

∣

2

=
∑

|rg|
2 (43)

where Ôac is the 2D Fourier transform of the object function directly generated by HARBUT; the use of HARBUT
at this point has corrected for wave distortions and any non-far field effects in the measurements, however it will
still contain the complexities of guided wave scattering. Therefore the equivalent fitted to it must also account
for the guided wave scattering behaviour, but can be produced using a far field Born approach. The equivalent
Ôh can be derived from the current thickness map using the improved scattering model, and by considering each
K value in terms of plane wave illuminations and far field measurements applied to (10)

A (̂s, ŝ0) =

ˆ

e−ik(ŝ−ŝ0).x
N
∑

n=1

M
∑

m=0

Cmnh
n cos (mθ) dx (44)

which can be remapped to give Ôh

Ôh (K) =

ˆ

e−iK.x
N
∑

n=1

M
∑

m=0

Cmnh
n cos (mθ) dx

where it is noted that the scattering angle θ will be a function of ŝ and ŝ0 and hence K.
The gradient is calculated, as before, relative to h (x)

∂F2

∂h (x)
=
∑

2rg
∂Ôh

∂h (x)
(45)

with

∂Ôh

∂h (x)
=

N
∑

n=1

M
∑

m=0

Cmnnh
n−1 cos (mθ) eiK.x. (46)

Combining the two equations gives

∂F2

∂h (x)
=

∑

2rg

N
∑

n=1

M
∑

m=0

Cmnnh
n−1 cos (mθ) eiK.x (47)

= 2

N
∑

n=1

M
∑

m=0

Cmnnh
n−1

∑

rg cos (mθ) eiK.x (48)

where it can be noted that the final summation is a discrete 2D Fourier transform of rg cos (mθ).
This approach will be referred to as HARBUTISM, HARBUT with an Improved Scattering Model. There are

a number of advantages to this approach. It is much faster; the 2D Fourier transform significantly reduces the
time taken compared to the multiple sums required previously. The approach also means that the advantages
of HARBUT are maintained: it can generate accurate images with a wide range of defects and does not require
the incident field to be subtracted. Also the singularity problem discussed for the separable variables case is

13



Plate

Axisymmetric 

defect

Transducer 

array

Measurements taken

Source

(a) (b)

D

W

(c) (d)

Figure 5: Configuration of the scattering setup. (a) shows the physical setup, with a source illuminating the
axisymmetric defect and measurements taken around the array. The grey area marks the region where experi-
mental data is acquired. (b) shows a cross section, defining the parameters D (depth) and W (width). (c) shows
the finite element meshing approach and (d) illustrates how the A0 mode is excited in the plate.

minimised because division by the scattering pattern is not required. Instead, the two fitted functions will both
have low amplitude components at particular values of |K| corresponding to the angle where scattering reaches
zero, however the issues arising from this can be compensated for via regularisation approaches or combining
multiple frequencies as mentioned previously.

In this paper, regularisation is applied at each iteration of the gradient descent algorithm to aid convergence.
Two forms of regularisation are used: positivity and filtering. Positivity exploits the prior information that it
is not possible to have negative wall loss, i.e. the plate thickness cannot increase, only decrease. This provides
a restriction on what the wall loss values can be; therefore at each iteration the image is forced to match
this restriction by setting any values h < 0 to 0. Filtering can remove spurious unwanted high spatial frequency
components. Filtering is applied within HARBUT anyway, as part of the beamforming to diffraction tomography
filter [37]; this removes any wavenumber components above the fundamental 2k0 limit. In fact, the filter cut-off
values are selected to be slightly lower than this, to 1.7k0, sacrificing resolution to improve stability. This filter
is also applied in HARBUTISM at every time step in order to minimise high spatial frequency artefacts.

It is noted that gradient descent methods as proposed here can suffer from convergence to local, rather than
global, minima. However, the starting point of the iterative process is the HARBUT reconstruction, which has
been shown to generally be close to the true solution. Analysis in this paper will evaluate several simple cases
and two complex defects, providing a degree of confidence that local minima do not cause a problem, however
future work may evaluate the stability of the algorithm across a much larger set of scenarios.

4 Results

The test cases presented here are similar to those used previously in [14, 18], so only the key parameters are
given here. In all examples, the A0 mode has been used at 50kHz on a 10mm thick steel plate, although
results are normalised to be valid for other thicknesses, provided the frequency is adjusted to ensure the same
frequency-thickness product.

4.1 Simple defects

The configuration is illustrated in Fig. 5. As shown in Fig. 5(a) the array surrounds the defect and has radius
180mm, with 240 transducers. Axisymmetrical Hann-shaped defects were used, with thickness functions defined
as

h (x) =

{

1− D
2

[

1 + cos
(

2π|x|
W

)]

|x| < W/2

1 |x| ≥ W/2
(49)
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for a defect of fractional depth D and width W . Due to symmetry, only a single illumination was needed,
and the information from that could be replicated to make a complete data set containing all the send-receive
combinations. The finite element software package Pogo [28] was used to simulate the different defects, with a
uniform structured mesh squashed to model the defects as shown in Fig. 5(c). At the frequencies used, only the
A0 and S0 modes are present, so the antisymmetric source shown in Fig. 5(d) was used to excite pure A0. Data
from these simulations is included as electronic supplementary material.

Figure 6 presents the results for defects of different widths and depths. Overall it is clear that the accuracy
is improved by using the improved scattering model in HARBUTISM versus relying on the acoustic to velocity
mapping approach of HARBUT. This is particularly notable for narrower defects, indicating a resolution im-
provement; this fits with the observed resolution limit of the velocity-to-thickness mapping approach of around
2λ first identified in [14]. With the deeper defects, larger errors are typically visible. The polynomial approxima-
tion will inevitably contain more errors for the larger values of h where the truncation errors become larger; this
will introduce errors both when calculating the coefficients Cnm and when using them in the inversion scheme.
HARBUTISM can generally be expected to perform best for shallower defects.

4.1.1 Experimental comparison

Data from the two axisymmetric experimental cases of [14] were used for experimental validation. The defects
had widths of 120mm and 60mm, and depths of 6mm and 3mm respectively. Measurements were taken around
half the array with a laser vibrometer at 129 locations, as illustrated in Fig. 5(a), and replicated to give a full
array, ultimately forming an array of 256x256 measurements.

Figure 7 presents the experimental results, with the equivalent simulated versions repeated for comparison.
For both defects it is clear that the experimental data shows the same trends visible in the simulations. For
the smaller defect, HARBUTISM clearly avoids the resolution limit present in HARBUT. In both experimental
data sets HARBUTISM tends to overshoot more than the simulated equivalent, but this is generally by a small
amount. It is likely that this has come from experimental uncertainties such as potential anisotropy present in
the plate. Another potential source of errors is the data replication process. Because of this, noise, which would
normally be incoherent between measurements, and hence be largely cancelled in the final image, is now coherent
and forms axisymmetric ring artefacts as seen in [10]. It could be expected that such artefacts could also be
superposed onto the defect reconstruction itself, affecting the accuracy.

4.2 Complex defect

The initial tests have demonstrated the performance of HARBUTISM for both simulated and experimental
defects. However, it is important to test its behaviour when being extended to a fully complex defect. For these
purposes, a laser scan of a real corrosion defect is used. This is scaled to make its maximum depth 50% of wall
thickness, and the resulting thickness map is illustrated in Fig. 8(a). As before, a full finite element simulation is
performed; this time, however, it is necessary to simulate all 240 sources in order to fully capture the field since
there is no symmetry.

The reconstruction using the standard velocity-thickness mapping, calculated with HARBUT, is shown in
Fig. 8(b). Clearly significant detail is missing from this reconstruction compared to the true thickness map.
When full guided wave scattering is accounted for with HARBUTISM, Fig. 8(c), more of the finer features are
visible in the reconstruction. Importantly, the deepest part of the defect is now a lot closer to being accurately
captured by the imaging method. This is validated in the cross section through the deepest point of the defect,
shown in Fig. 8(d). From this it is clear that the error between HARBUTISM and the true depth is less than
10%, while the HARBUT error is closer to 18%. This is largely caused by the differences in resolution between
the two methods.

Resolution can be analysed by looking at the spatial frequency components. These are obtained by performing
a 2D discrete Fourier transform on the values of h for the true, HARBUT and HARBUTISM images of Fig. 8;
the results are shown in Fig. 9. It is clear that HARBUTISM extracts significantly more spatial frequency
components than standard HARBUT. Quantifying resolution is challenging from such plots, but it is estimated
that HARBUT can extract components in the range |K| < 0.6, while HARBUTISM achieves around double this,
|K| < 1.2, corresponding to a resolution limit of less than λ. This is worse than the theoretical limit |K| < 2; in
part this is caused by the regularisation filter removing components above |K| = 1.7, but also likely to be related
to the challenges of accurately extracting and imaging from the very weak components scattered in the reflection
subset of the data. Future work may examine approaches to reach this limit.
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Figure 7: Experimental results. (a) and (b) show the 30% wall loss defect of width 60mm (1.6λ) and (c) and (d)
present the 60% wall loss defect with width 120mm (3.2λ).

A further example has been tested to examine this. This is shown in Fig. 10(a) and consists of several axisym-
metric Hann shapes superposed. As before, the HARBUT resolution is limited (Fig. 10(b)), while HARBUTISM
is more accurate (Fig. 10(c)). The spatial frequency components of Figs. 10(d)-(f) show similar results to before,
with HARBUT accurately capturing details up to around |K| < 0.6. However, for this defect, HARBUTISM
appears to produce a higher resolution reconstruction, up to around |K| < 1.6, close to the regularisation filter
level. It is unclear at present exactly why this case achieves better results. Notable differences include the shape
being simpler than the real corrosion patch, the in-plane extent being smaller, and also the depth being slightly
less than before, and it may be one of these which is related to the improvement.

One feature to note in Fig. 10(e) is the darker circle marked with the arrow, which is not visible in either
of the other spatial frequency spectra. This occurs at a constant value of |K| and therefore corresponds to a
particular scattering angle. This angle is an angle at which no scattering occurs from the guided waves, and
matches the zero identified in Fig. 4(h).

4.2.1 Speed

HARBUTISM has not been highly optimised for speed; potentially there could be good savings from using the
high parallelism of GPU (Graphical Processing Unit) technology for this task. However, even in its current
form, written in Matlab, it runs at an acceptable speed. For the initial complex case, running on an HP Z820
workstation with 4 8-core Intel E5-2665 Xeon processors operating at 2.4GHz, the ray tomography time was 2.3s,
standard HARBUT took 12.7s in addition to this, then HARBUTISM took a further 18.0s, making a total of
33s to generate a full image of a complex defect. This indicates that the system can deliver accurate images in a
practical time-frame.

An alternative approach to solving this problem is to use a full numerical model to generate data, then
iteratively update it until the numerical data matches the measured data. This could be done via a gradient
descent approach or with one of the many approaches to sample the parameter space in order to find a global
minimum. Either approach requires the full model to be run many times to match the two data sets. However, a
complete forward model, even on multiple GPUs with Pogo [28], typically takes many hours or days to produce
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Figure 8: Results from a complex defect. (a) shows the true thickness map. (b) shows the standard HARBUT
reconstruction and (c) HARBUTISM. (d) plots the cross section through the defect, on the line marked in (a).
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Figure 10: Artificial complex example. (a) shows the true map, (b) the HARBUT reconstruction and (c)
HARBUTISM. (d)-(f) give the respective spatial frequency spectra, with amplitude clipped to enable lower
amplitude details to be visible.

a full data set, and this must be repeated many times to achieve convergence. Even with the rapid pace
of computational improvements, it is unlikely that this approach will be a practical solution for guided wave
tomography in the foreseeable future.

5 Discussion

5.1 Density effect

A recent paper [18] discussed the effects of density in guided wave scattering, and highlighted how it can cause
critical errors in the reconstruction if neglected. It is noted that this is the effective density that the guided
wave experiences, rather than the material density; this effective density term is proportional to thickness. The
improved scattering model has so far not explicitly accounted for density, so the effects of it will now be explored.

The definition of the object function incorporating density is defined as [40]

O(x) = k20

[(

c0
c(x)

)2

− 1

]

− ρ
1/2(x)∇2ρ−

1/2(x) (50)

where ρ (x) is the local density. For simplicity in this analysis, it is assumed that thickness (and hence density)
changes are small and that ρ1/2 (x) = ρr (x) = ρr0 + δρr (x) where ρr has been introduced to signify the square
root of density. The density component of the object function then becomes

Oρ = − (ρr0 + δρr)∇
2 (ρr0 + δρr)

−1
(51)

≈ ρr0∇
2δρr (52)

where a truncated Taylor series has been used to expand (ρr0 + δρr)
−1

. Since, under the far field Born approxi-
mation, the scattered field can be mapped to the Fourier transform of the object function, the density component
of scattering can be written as

φsρ (̂s, ŝ0) = Ôρ [k0 (ŝ− ŝ0)] . (53)

The Laplacian term is a 2D second order spatial derivative so

Ôρ (K) = F
(

ρr0∇
2δρr

)

= −ρr0 |K|2 F (δρr) (54)

19



50

75

100

W
a

ll
 t

h
ic

k
n

e
ss

 (
%

)

-2% +2%-1% +1%No error

6dB SNR 10dB SNR 15dB SNR 20dB SNR

(a) (d)(c)(b) (e)

(h)(g)(f ) (i)

Figure 11: Effect of different errors on the HARBUTISM reconstruction of the complex defect from Sect. 4.2.
(a), (b), (d) and (e) show systematic errors, scaling the transducer positions given to the algorithm by offsets of
-2%, -1%, 1% and 2% respectively. (c) is included for reference, and is the case where no scaling is performed,
i.e. no error is introduced. (f)-(i) present different levels of incoherent random noise, giving signal-to-noise (SNR)
ratios of 6dB, 10dB, 15dB and 20dB respectively.

where F indicates the forward 2D Fourier transform. Then

Ôρ (K) = −ρr0k
2
0 |̂s− ŝ0|

2
F (δρr) (55)

which, from geometry, can be expressed in terms of the scattering angle θ as

Ôρ (K) = −4ρr0k
2
0 sin

2 θ

2
F (δρr) (56)

= −2ρr0k
2
0 (1− cos θ)F (δρr) (57)

using the half-angle identities. By expressing the equation in this way, it is clear that the Laplacian term is
equivalent to introducing a directionality into the scattering, which can be expressed as a sum of cosmθ terms.
Similarly the δρr term can be approximated easily by a polynomial in hn. This behaviour can therefore be
captured by the generalised scattering model, and will automatically be accounted for in the coefficients extracted
from the simulation. This integrated technique is arguably a more elegant solution for density correction compared
to the previous approach [18] where an initial thickness map was generated ignoring density, then iteratively
updated with a correction term based on the implied density.

This analysis has been performed using the assumption that the thickness variations were small, allowing the
equations to effectively be linearised. However, for the deeper defects, it is likely that the density scattering be-
haviour will be similar, and therefore the improved scattering model should still be able to capture the behaviour,
provided it has enough coefficients. It is recognised, however, that imperfect fitting of this could be a cause of
additional errors seen for the deepest defects.

5.2 Stability

Any algorithm which extracts more information from the same data is likely to suffer more when the data has
errors in it. The use of experimental data has helped to provide validation of the performance of HARBUTISM
in non-ideal scenarios, dealing with both noise and systematic errors, however it is challenging to quantify the
effect of such errors. The performance with different errors will be evaluated in a more controlled manner here
using synthetic data.

Systematic errors are considered first. These errors are coherent between different signals causing them all
to be distorted in the same way. Examples of this could be consistently mispositioning transducer locations or
a change in temperature causing a change in the sound speed. To study this, the transducers will be effectively

20



offset; however, to avoid re-running the full FE simulation, the modelled transducer locations are kept the same,
but their locations are mis-reported to the imaging algorithm, which will have an equivalent effect. The reported
transducer locations are scaled by a constant factor in both in-plane dimensions, making the circular array slightly
bigger or smaller. It should be noted that this is a slightly artificial scenario since, in general, the locations will
be calibrated beforehand (see for example [41]) to ensure the effect of any such errors are minimised in practice.
Figures 11 (a)-(e) show the results from this scaling in a range of ±2%; for reference, a 2% error corresponds
to around 20% of a wavelength for the through-transmission ray path, or 1.3 radians phase shift. It is clear
that in this range the shape still remains well defined, and HARBUTISM, while inevitably being sensitive to the
errors to an extent, does remain stable. When the given transducer array size is reduced, the algorithm reduces
the reconstructed sound speeds to compensate, which corresponds to the background errors clearly visible in
Fig. 11(a), and less so in Fig. 11(b). When the size is increased, at 1%, a slight underestimate in wall loss is
apparent (corresponding to a tendency to overestimate sound speed). At 2% the HARBUTISM fitting routine
has not worked because of the errors in the data preventing a better solution from being found, and the standard
HARBUT reconstruction, which is the starting point of the fitting routine, is produced.

In many scenarios the effect of random noise may be significant. This can be caused by electrical noise in the
acquisition system, or by any other incoherent transient effect on the system. To test these effects, noise is added
to the measured data matrix prior to imaging. This is done in the frequency domain at the frequency of interest,
and has normally distributed amplitude, with a standard deviation at a particular fraction of the true matrix in
order to give a certain signal-to-noise ratio (SNR). The phase of each component was uniformly distributed from
0 to 2π. The results are shown in Figs. 11(f)-(i) for 6dB, 10dB, 15dB and 20dB respectively. It is clear that as
the SNR increases, so does the image quality. HARBUTISM does show quite significant, large artefacts for the
low SNR values, but by the 20dB point (which most modern acquisition systems can achieve easily) the image
shows very little difference from the noise-free version.

5.3 Sampling

A full analysis of sampling is considered beyond the scope of this paper, however it will be briefly discussed here.
Provided the wavefield is fully sampled (i.e. with less than λ/2 transducer spacing) the Born-based inversion will
have sufficient data. For the array radius of 180mm and wavelength around 40mm, the minimum number of
transducers therefore needed is around 57; going beyond this with over 200 transducers, as has been done in this
paper, will have no effect on the resulting image. If the scattered field is used to image (rather than the total
field used here) then the sampling can often be reduced further [42]. Future work will study the case when fewer
transducers are used and subsampling occurs.

6 Conclusions

The majority of guided wave tomography approaches use a velocity-to-thickness mapping approach which assumes
that elastic guided waves scatter from corrosion defects in the same way as acoustic waves scattering from
velocity variations. This results in important inaccuracies in the reconstructions. This paper has introduced
HARBUTISM, a technique which avoids this assumption, more accurately capturing the guided wave scattering
when producing the thickness map. This leads to significantly improved accuracy in the reconstruction, which
is partly visible as an improvement in the resolution of the image. From a resolution limit of standard velocity
inversion of around 2λ, HARBUTISM has been shown to achieve at least λ and is theoretically capable of λ/2.
Such resolution improvements are critical for fully capturing the complex peaks often present in real corrosion
defects, which is necessary to enable the maximum wall loss to be accurately extracted. This is very important
to enable the petrochemical industry assess the life of their components.

HARBUTISM was tested and compared to the velocity-to-thickness approach for a number of cases: simple
axisymmetric shapes with simulated and experimental data, and on a complex simulated example taken from a
laser scan of a true corrosion defect. Accuracy was improved in the majority of cases. However, for some deeper
defects where wall loss was beyond 50%, modest overestimates in wall loss of around 5-10% of wall thickness
were visible, which is generally not significant. It is also noted that by overestimating damage, this provides
a conservative estimate of remaining life. HARBUTISM was tested with artificial sources of errors and noise,
confirming itself to be robust, and produced these images in practical time-frames of less than one minute.

Finally, it should be noted that the improved scattering model is a general approach. Provided that scattering
data exists to which the coefficients can be matched, it is then possible to perform an inversion to produce images.
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It is therefore expected that this approach, in combination with modern high-speed simulation tools, could be
applied to other areas where the inversion of complex scattering behaviour is needed.
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