
Metalenses for flexural waves Colombi, JASA-EL, p.1

Resonant metalenses for flexural waves in plates1

Andrea Colombia)2

Department of Mathematics3

Imperial College4

South Kensington, London5

SW7 2AZ, UK6

a)e-mail: andree.colombi@gmail.com



Metalenses for flexural waves Colombi, JASA-EL, p.4

Abstract7

The dispersion curves of a cluster of closely spaced rods supported by a thin plate are char-8

acterised by subwavelength bandgaps and slow group velocities induced by local resonance9

effects. A recent analytical study, Williams et al. [2015], has shown how the slow veloc-10

ity branch depends, amongst other parameters, on the height of the rods that make up11

the cluster. Such metamaterial, offering easy-to-tune spatial velocity gradients, is a perfect12

candidate for building gradient index lenses such as Luneburg, Maxwell and 90◦ rotating13

Eaton. Here theoretical results are combined with numerical simulations to design and test14

metalenses for flexural waves. The lenses are obtained by tuning the height of the cluster of15

rods such that they provide the required refractive index profile. Snapshots and videos from16

three-dimensional numerical simulations in a narrow band centered at ∼ 4 kHz are used to17

analyse the performances of three types of gradient index metalens (Luneburg, Maxwell and18

90◦ rotating). PACS numbers: 43.40Dx,43.40At,43.40Fz,43.20Tb.19

I. Introduction20

Gradient index (GRIN) lenses or flat-lenses have been known since Maxwell’s early21

works for their capacity to bend and focus waves with less distortion and losses than classic22

lenses [Maxwell, 1853; Rudolf Karl Luneburg, 1964]. Compared to classic lenses, GRIN23

lenses modify the ray trajectories in the most natural way, i.e. using a smooth refractive24

index transition throughout the lens [Sarbort and Tyc, 2012]. If, on one hand this makes25
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the lens free of aberrations and losses, on the other it requires ad-hoc composite structures26

that are very complicated to create. This obstacle was overcome, at the end of the last27

century, with the advent of photonic crystals [Yablonovitch, 1987] and metamaterials28

[Pendry et al., 1999] that popularised composite objects made of micro-structured and29

tunable media. Henceforth, GRIN devices based on metamaterials have been used as a30

showcase for transformation optics [Pendry et al., 2006; Leonhardt, 2006b] and (surface)31

plasmonics [Pendry et al., 2004], producing spectacular examples of the control of waves32

including, the much debated, features of wave cloaking and invisibility [Kundtz and Smith,33

2010; Kadic et al., 2012; Leonhardt, 2006a; Fleury and Alù, 2014]. While applications34

initially remained limited to the realm of electromagnetic waves, recently, an increasing35

number of works have demonstrated that this new paradigm of wave control via36

metamaterials can be applied to mechanical waves (hence governed by Navier’s equation)37

at very different length scales [Kadic et al., 2013; Wegener, 2013]. Examples of this duality38

between electromagnetic and elastic waves are the locally resonant acoustic metamaterial39

[Liu et al., 2000] made of soda cans fabricated by Lemoult et al. [2012] or, for flexural40

waves, the cluster of rods attached to a plate [Rupin et al., 2014; Achaoui et al., 2013].41

Said metamaterial, made of rods attached to a plate with its potential broad applicability42

from ultrasonics to geophysics, is considered herein. Local resonances between the rods and43

the supporting plate create exotic dispersion curves for this metamaterial that, besides44
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bandgaps, feature strong frequency dependent velocity contrasts at a very subwavelength45

scale; this is due to the hybridisation between the longitudinal resonances of the rods and46

the vertically polarised motion of the A0 mode in the plate. Recently, Williams et al. [2015]47

have derived the analytical relationship for the dispersion curves of this medium, that48

among other parameters, depends on the rod height. Hence, a GRIN metamaterial can be49

obtained by spatially tuning the height of each rod that compose the cluster of resonators.50

Before William’s analytical work was published, and with the goal of building a directional51

cloak, Colombi et al. [2015] studied circular arrangements of rods with a radially graded52

profile that can reduce the back scattering produced by an obstacle. Now, using a similar53

circular arrangement of rods and with the analytical dispersion relationship available, we54

can directly compute the height profile for any given refractive index function and hence55

build a metalens for flexural waves.56

Luneburg, Maxwell and 90◦ rotating Eaton type lens are fascinating examples of57

circular GRIN lenses. Mainly used in optics, radio and microwaves [Pfeiffer and Grbic,58

2010; Xu et al., 2014; Falco et al., 2011], each lens is characterised by a refractive index59

profiles that shape ray trajectories in a distinctive way [Rudolf Karl Luneburg, 1964;60

Sarbort and Tyc, 2012]. The 90◦ rotating Eaton lens is certainly the most complex to61

realise because it is characterised by a maximum refractive index of n = 5, while Maxwell62

and Luneburg have approximately n =1.5 and n =1.3 respectively.63
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This is not the first work on GRIN lenses for flexural waves: other groups have64

proposed to tune the plate thickness or to use composite materials or phononic crystals to65

create the index gradient [Climente et al., 2014; Jin et al., 2015]. Our work is however the66

first that exploits the slow velocity branch of an elastic resonant metamaterial and utilises67

it to build a resonant metalens.68

We have chosen time domain numerical simulations computed with a parallel spectral69

element solver [Peter et al., 2011] to test the performances of the lenses. The simulations70

aim at being as close as possible as an actual experiment in the laboratory (e.g. no71

absorbing boundaries) because the results contained in this report will be used for an72

experimental validation with a setting similar to that in Rupin et al. [2014].73

We proceed by recalling the dispersion relationship obtained by Williams et al. [2015]74

and combining it with the refraction index formula for the 3 types of GRIN lenses. The75

resulting transcendental equation is then solved for the height profile of each lens. Finally76

snapshots and videos from numerical simulations illustrate the behaviour of the lenses with77

a source in the kHz range.78

II. Results79

To introduce and use the dispersion relationship obtained by Williams et al. [2015],80

we recall the metamaterial configuration and some important paramaters used for the81

derivation. The one-dimensional array of resonators, rods of constant height h and circular82
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section attached to a flexible one-dimensional support transmitting flexural waves83

(identical to the A0 mode in a thin plate), is shown in Fig 1a. In spite of the problem being84

one dimensional, information about the cross-sectional area are important for both rods85

and plate. The material used for the (numerical) model is aluminium with density86

ρ = 2710 kg/m3 and Young’s modulus E = 69 GPa. The rods are characterised by a87

diameter d = 0.003 m and a height h, while the one-dimensional supporting plate has a88

thickness b = 0.006 m and a depth d equals to the spacing between rods l = 0.015 m. The89

metamaterial’s dispersion, in the frequency ω and wavenumber k space, can be accurately90

modelled using the longitudinal resonances of the rod, neglecting its flexural motion that91

plays a minor role [Rupin et al., 2014; Williams et al., 2015]. Before moving to the92

metamaterial’s dispersion equation, we recall the dispersion relationship of the flexural93

waves in the one-dimensional support (equal to the A0 mode in a plate), that is:94

k = 4

√
ρApω

2

EIp
, (1)

where Ap represents the cross sectional area of the segment, and Ip its inertia moment (Fig.95

1a). After defining the mass of the rod and the segment over the unit cell (Fig. 1a) as Mr96

and Mp respectively, we write the dispersion equation as [Eq. 32 in Williams et al., 2015]:97

keff = 4

√
k

(
Mr

Mp

tan(kh)

kh

)
+ 1. (2)

As expected the hybrid mode induced by the local resonance between plate and rods,98
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profoundly differs from the A0 mode of the bare plate given by Eq. (1). The difference is99

highlighted in Fig. 1b where the dispersion for an array of rods of h = 0.6 m is compared to100

that of the bare plate. Besides two bandgaps at approximately 2 and 6 kHz, we notice two101

asymptotically flat branches occurring close to the longitudinal modes of the rod, this is102

the hallmark of slow group velocities. The frequency dependent velocity profile, used later103

as input to design the GRIN lens, is easily derived from Eq. (2) through the relationship104

k = ω/vp:105

veff =

[
vp

(
Mr

Mp

tan(kh)

kh

)
+ 1

]−1/4

, (3)

where vp represents the A0 mode wavespeed derived from Eq. (1). As previously106

anticipated, in Fig. 1c, as we get close to the bandgaps the velocity approaches zero. A107

second striking feature of this plot is that the effective velocity in the metamaterial and in108

the plate overlaps only at one discrete frequency (∼ 4.2 kHz in this case). Hence, if we109

consider an incoming wave, the abrupt velocity change from plate to metamaterial will110

produce a diffraction pattern at all frequencies except at the crossing point. This111

phenomenon is likely to be at the root of the directional cloak studied by Colombi et al.112

[2015] when the analytical dispersion formula was not yet available. Therefore, to limit the113

reflection caused by diffraction between metamaterial and plate in the numerical results,114

we work between 4 and 4.4 kHz, around the equal effective velocity point (Fig. 1c). The115

strategy used to build the metalens is outlined in Fig. 1d. At any frequency located before116



Metalenses for flexural waves Colombi, JASA-EL, p.10

Lens type n(r)

Luneburg
√

2 − r2

R2

Maxwell 2/(1 + r2

R2 )

90◦ rn4 − 2n+ r = 0

Table 1: Refractive index for each lens as a function of the radial coordinate r.

the bandgap, say, here at 4 kHz, the group velocity is inversely proportional to the rod’s117

height. The curve at 4.4 kHz exhibits a kink at lower speed because it is located on to the118

bandgap when the height of the rod is increased. The significant velocity drop allows us to119

design GRIN lenses with very strong refractive index variation such as the Luneburg,120

Maxwell and 90◦ rotating Eaton type developed in this study. All are characterised by a121

circular shape with radius R =0.18 cm while the refractive index for each lens is given in122

Tab. 1 as a function of the radial coordinate r. The refraction index n between two media,123

say, material 0 and material 1 can be formulated in terms of the ratio of velocity contrast124

n =
v0
v1

. We combine this latter definition with the lens refractive index profiles (Tab. 1)125

and we plug it into Eq. (3) to obtain a relationship that relates the rod’s height profile to126

refractive index. The result is the following transcendental equation where the127
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right-hand-side depends on the refractive index profile n(r) (Tab. 1):128

tan(kh)

kh
=
Mp

Mr

[(
n(r)

vp
v0

)4

− 1

]
. (4)

Here vp is the A0 mode wavespeed obtained from Eq. (1) through k = ω/vp and v0 is the129

input wavespeed at r = R. Since at r = R the rods have h = 0.6 m and at 4 kHz vp = v0130

the transition from plate to metamaterial takes place smoothly. The root of Eq. (4) over131

the interval k = [0, π] represents the rod’s height that provides the sought refractive index.132

Contrary to the original derivation of the dispersion curves in Williams et al. [2015], where133

the metamaterial was infinite, and with constant rod’s height, the metalenses have radially134

varying profile over a finite area as shown in Fig. 2. The very positive results presented in135

this letter indicate that Williams et al. [2015] approach remains robust although not all136

fundamental assumptions are met precisely; the height and effective velocity profile for137

each metalens are gathered together in Figs. 1b-d. Notice that for the 90◦ case, the138

velocity is truncated at 100 m/s to avoid working too close to the bandgap where veff is139

zero; this approximation has little to no effect on the lens behaviour. We notice that the140

height profiles in Fig. 2 are negatively correlated with the plate thickness profile obtained141

in other implementations of the GRIN lens by Lefebvre et al. [2015] and Climente et al.142

[2014]. In the cited studies the plate thickness is decreasing, while here the height of the143

rods is increasing towards the center. The anti-correlation can be explained considering the144
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following expression for the refractive index n in a thin plate of thickness b:145

n =
1

veff
=

4

√
12ρ(1 − ν2)

Eb2ω2
, (5)

where ν is the Poisson’s ratio of the material. To achieve high value of n (hence low veff ), b146

must decrease toward the center of the lens. In this study, we do not act on b but, through147

the resonance of the rod, on the effective density ρ appearing at the numerator and hence148

anti-correlated .149

The performance of these metalenses is verified using the well tested numerical code150

SPECFEM3D [Peter et al., 2011], a spectral element solver for time domain151

elastodynamics. Details concerning the model discretisation and implementation of the152

simulations can be found in previous publications [Colombi et al., 2014, 2015]. The model153

consists of a 6 mm-thick plate whose shape and dimension are given in Fig. 2 supporting154

the cluster of resonators. Both are made of aluminium. The metalens is positioned155

approximatively at the center of the plate and the boundaries are all traction-free as in an156

actual laboratory set-up. Rods, are regularly distributed with a 15 mm spacing. This157

spacing guarantees the metamaterial to be very subwavelength at this frequency (λ, the158

wavelength, varies between 15 to 7 cm in the 1-10 kHz band). While the regular spacing159

was chosen to ease the meshing of the model, in practice periodicity is not required since160

the metamaterial is very subwavelength and hence resilient to disorder. Depending on the161

type of lens, the source generating flexural waves is implemented differently. For the162
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Luneburg type we have used a plane wave, for the Maxwell type a point force located on163

one side of the lens while for the Eaton type we used a Gaussian beam like source.164

Regardless of the source shape, they are all driven in time by a broadband Ricker pulse165

[Komatitsch and Tromp, 1999]. The wavefield in the plate is then filtered between 4 and166

4.4 kHz. Snapshots of the wavefield are shown in Fig. 3 for the different types of lenses.167

The videos associated with these simulations are available as supplementary material. We168

notice that, despite the reverberations produced by plate borders, the lensing effect is169

clearly visible. The results suggest that a laboratory experiment with a set up similar to170

that of Rupin et al. [2014] would be perfectly feasible. Although not visible in the171

snapshots the initial transient regime of the metamaterial is clearly visible in the videos: In172

the first instance part of the energy is taken by the resonators and only after a fraction of a173

millisecond the system reaches a more stationary condition. This transient behaviour can174

be seen as the time taken by the energy to be equipartitioned between the rods and the175

plate in the metamaterial. This timelag is comparable to the resonance period of the rod176

approximately 0.15 ms for the longitudinal mode at ∼6 kHz.177

Mm. 1. Video Luneburg lens.178

Mm. 2. Video Maxwell lens.179

Mm. 3. Video 90◦ Eaton rotating lens.180

III. Conclusion181



Metalenses for flexural waves Colombi, JASA-EL, p.14

We have tested numerically 3 types of GRIN lenses for flexural waves based on a182

recently developed locally resonant metamaterial. The metamaterial is made of a cluster of183

circularly arranged, closely spaced rods attached to a plate and shows strong velocity184

variations directly proportional to frequency and rod’s height. This latter parameter has185

been used to obtain the required refractive index variation that characterises each lens. By186

using a laboratory model made of aluminium the lenses will be easily manufactured and187

tested in an actual laboratory experiment. Starting from the similarity between the case of188

the plate and a halfspace with resonators [Colombi et al., 2016], metalenses can be189

designed for Rayleigh waves.190
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Figure 1: Dispersion properties of the metamaterial. (a) The set-up similar to that used in

Williams et al. [2015] to the derived Eq. (2). (b) Dispersion curves for metamaterial and bare

plate. (c) Effective velocity in the metamaterial and in the bare plate. The equal velocity

frequency is highlighted. (d) Effective velocity in the metamaterial as a function of the rod’s

height for the frequency band used to test the metalenses. (Color online).
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Figure 2: (a) Numerical model of the cluster of rods and the plate used in the simulations.

(a-d) Different heights and effective velocity profiles for the three types of metalenses. (Color

online).
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Figure 3: Snapshots at different time of the vertical component of the wavefild showing the

behaviour of each metalens. The lens circular boundary is highlighted in black. Videos

available as suplementary material. Wavefields are passband filtered between 4 and 4.4 kHz.

The amplitude is normalised. (Color online).


