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An extension to multivariate empirical mode

decomposition (MEMD), termed adaptive-projection

intrinsically-transformed MEMD (APIT-MEMD), is

proposed to cater for power imbalances and inter-

channel correlations in real world multichannel data.

It is shown that the APIT-MEMD exhibits similar or

better performance for a large number of projection

vectors, whereas it outperforms MEMD for the critical

case of a small number of projection vectors within

the sifting algorithm. We also employ the noise-

assisted APIT-MEMD (NA-APIT-MEMD) within our

proposed intrinsic multiscale analysis framework,

and illustrate the advantages of such an approach

in notoriously noise-dominated cooperative brain

computer interface (BCI) based on the steady state

visual evoked potentials (SSVEP) and the P300

responses. Finally, we show that for a joint cognitive

BCI task, the proposed intrinsic multiscale analysis

framework improves system performance in terms of

the information transfer rate (ITR).

1. Introduction
Brain computer interface (BCI) is a technology which

provides direct communication channel between the

human brain and computers via electrical potentials,

typically measured non-invasively via electroencephalo-

gram (EEG). BCIs are primarily targeted towards people

who have lost their cognitive or motor functions. For

example, patients with Amyotrophic Lateral Sclerosis

(ALS), suffering from severe neuromuscular disabilities
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as a result of progressive neurodegeneration, can use BCIs to communicate via virtual word

spellers [1] or even operate vehicles [2]. Nonetheless, this technology is not limited only to those

with disabilities, its applications for healthy individuals range from gaming [3] to navigation

[4] and robotics [5]. Cooperative BCI systems have recently been proposed to allow multi-user

participation in a joint cognitive BCI paradigm, resulting in performance improvements in terms

of the information transfer rates (ITR) and accuracy [6,7]. The feasibility of using cooperative BCIs

based on EEG signals has been explored in the areas of robotic control [7], decision making [8]

and gaming [9]. As mentioned earlier, EEG signals are the modality of choice in the vast majority

of BCI systems, but they exhibit nonlinear and nonstationary characteristics, and require signal

processing schemes which can provide physically meaningful signal representation; one of such

techniques is the empirical mode decomposition (EMD) [10].

Empirical mode decomposition is an adaptive, data-driven algorithm for the analysis of

nonlinear and nonstationary time series. The algorithm employs a sifting process to decompose

the signal into its multiple narrow-band amplitude/frequency modulated (AM/FM) components

in a deflation-type fashion. These components are referred to as intrinsic mode functions (IMFs)

and are used as a basis for the representation of the signal. Unlike conventional projection-

based time-frequency algorithms, such as the short-time Fourier transform and the discrete

wavelet transform, the basis functions within EMD enable physically meaningful interpretation

of instantaneous frequency and phase. Moreover, they also allow for a highly localised time-

frequency representation of the signal via the Hilbert transform [11]. The effectiveness of EMD

was demonstrated in a number of application areas, including bio-signal analysis [12], seismology

[13] and paleoclimatology [14].

Due to its empirical nature, EMD exhibits two types of artefacts: (i) mode-mixing and (ii) mode

splitting. Mode-mixing refers to the existence of different oscillatory components in a single IMF,

while mode splitting is the presence of the same oscillatory component in two or more IMFs. To

alleviate mode-mixing, a noise-assisted extension of EMD, called ensemble EMD (EEMD) [15],

has been proposed, which adds white Gaussian noise (WGN) directly to the input signal, thus

enforcing a dyadic filterbank structure. Large number of noise realisations with subsequent

application of EEMD are required to negate the effects of added noise and obtain ensemble means

which are treated as true IMFs.

To cater for complex-valued data, multivariate extensions to EMD have been developed,

including the complex EMD [16] and rotation invariant complex EMD [17]. Bivariate EMD

(BEMD) [18], trivariate EMD (TEMD) [19] and multivariate EMD (MEMD) [20] are also

multivariate extensions, but estimate the local mean via the projections of the input signal along

uniformly sampled direction vectors on a circle (BEMD), 3-dimensional sphere (TEMD) and

multidimensional sphere (MEMD), respectively. The mode-mixing phenomenon within MEMD

refers to the phenomenon where different oscillatory components, present in multiple channels,

appear in a single IMF. To mitigate this problem, noise-assisted MEMD (NA-MEMD) [21] was

developed, which adds WGN to channels adjacent to the input signal, thus enforcing the dyadic

filterbank structure and reducing mode-mixing in the multivariate case. Furthermore, decimated

MEMD filterbank (MEMDFB) [22] was introduced, to create an MEMD-based filterbank, without

the presence of added WGN as in the EEMD or NA-MEMD, with an arbitrary tree structure and

choice of frequency bands.

The MEMD can be used in conjunction with standard data-association measures such as phase

synchrony (PS), sample entropy (SE) and correlation, to quantify intra- and inter-component

dependences of a complex system, within a framework referred to as intrinsic multiscale analysis

[23]. Applications of MEMD include neural signal processing [24], brain-computer interfaces [25],

image processing [26] and artefact removal [27].

Real-world signals, such as electrical potentials measured via EEG, often contain power

imbalances or inter-channel correlations. Uniformly sampled direction vectors used in BEMD,

TEMD and MEMD, may not be optimal for capturing the dynamics of multivariate data, unless

a very high (greater than 127) number of projection vectors is used, which can dramatically
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Figure 1. Uniform and nonuniform projection vectors. (a): Projection vectors for MEMD based on a low-

discrepancy Hammersley sequence. (b): Project vectors for NS-TEMD when accounting for inter-channel dependencies.

increase computational complexity. For a low (8-31) to moderate (32-63) number of projections

and unbalanced (power mismatched) and/or correlated data channels these algorithms provide

suboptimal estimates of the local mean. To mitigate this problem, nonuniformly-sampled BEMD

(NS-BEMD) [28] was proposed, which generates a set of projection vectors representing the

direction of highest curvature. Another algorithm – dynamically-sampled BEMD (DS-BEMD)

[29] – employs Menger curvature to quantify local signal dynamics of bivariate signals to

generate projection vectors which align with the highest local dynamics. For trivariate signals,

nonuniformly-sampled TEMD (NS-TEMD) [30] globally identifies a set of nonuniformly sampled

projections by performing eigendecomposition of the covariance of a signal, subsequently

constructing an ellipsoid of non-uniform direction vectors which matches signal dynamics.

Despite recent progress in computationally efficient MEMD for unbalanced data which are

improper and correlated [31], a solution for the general multivariate case is still lacking. In

addition, as cooperative BCIs typically use a number of data channels to acquire ’correlated’

information from multiple users, an analysis approach which would adapt to the data and

would be capable of revealing ’intrinsic and correlated’ inter-channel information with physically

meaningful interpretation would be of great importance. To this end, this work extends NS-

TEMD to introduce adaptive-projection intrinsically-transformed MEMD (APIT-MEMD), which

caters for power imbalances and correlations in multichannel data. Similarly to the standard

MEMD, the proposed APIT-MEMD accommodates nonlinear and nonstationary signals. It is

also capable of alleviating mode-mixing and yields fewer IMFs for unbalanced data. This work

also introduces applications of intrinsic multiscale analysis [23] using noise-assisted APIT-MEMD

(NA-APIT-MEMD) to cooperative BCI applications based on SSVEP and P300 responses.

2. Adaptive-projection intrinsically-transformed MEMD (APIT-
MEMD)

The NS-TEMD algorithm [30] enhances the performance of the conventional TEMD by relocating

the direction vectors, pre-generated using the conventional uniform sampling scheme (see

Figure 1 (a)), to their new positions on an ellipsoid (see Figure 1 (b)), with the directions

and relative powers determined by all the eigenvectors and eigenvalues of the trivariate

covariance matrix of the signal. In the case of multivariate signals, relocating the pre-generated

n-dimensional uniform projection vectors to their new positions on an n-dimensional ellipsoid

using the above scheme is an exceptionally complicated task, not least because the direction of

global highest curvature of the original input signal may not always align with the direction of local

first principal component of each sifting input, resulting in a suboptimal estimate of the local mean.

To address this problem, we propose a projection scheme, whereby the direction of the first

principal component reflecting the largest power imbalance and/or correlation in the channels

of the multivariate signal, is determined adaptively. For a given multivariate input signal, s(t),

with covariance matrix C =E{sT (t)s(t)} (where E{·} is the statistical expectation operator and

(·)T is the transpose operator), the direction of the first principal component is determined via the

eigendecomposition of the covariance matrix, C = VΛVT , where the matrix V corresponds to the

matrix of eigenvectors and the entries of the diagonal matrix Λ are the corresponding eigenvalues.



4

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

(a) (b) (c)

0 0.1 0.2
−1

0

1
x1

Time (s)
0 0.1 0.2

−1

0

1
x2

Time (s)
0 0.1 0.2

−1

0

1
x3

Time (s)

(d) (e)

−1

0

1

−1

0

1
−1

0

1

 

XY
 

Z

v
o1

v
1

(f) (g)

Figure 2. Input signal to the first sifting operation. (a-c): The three data channels considered. (d): Scatter plot

of the trivariate data, first principal component and its diametrically opposite vector. (e-g): Projection vectors adapted

according to the proposed scheme using different α values (0, 0.5 and 1, respectively).

Subsequently, the first principal component, pointing in the direction of the highest power

imbalance, is used to construct a vector pointing in the diametrically opposite direction. These two

vectors are subsequently used to relocate the direction vectors pre-generated by the conventional

uniform projection scheme. Each sifting operation then projects its multivariate sifting input along

these adaptive direction vectors, so as to estimate the local mean; see Algorithm 1 for details of

the proposed adaptive-projection intrinsically-transformed MEMD (APIT-MEMD).

Algorithm 1: Adaptive-projection intrinsically-transformed MEMD (APIT-MEMD)

(i) Given an n-variate input signal to each sifting operation s(t), perform the

eigendecomposition of the covariance, C =E{ssT }= VΛVT , where V = [v1,v2, ..., vn]

is the eigenvector matrix, and Λ= diag{λ1, λ2, ..., λn} is the eigenvalue matrix, with the

largest eigenvalue λ1 corresponding to eigenvector v1 (first principal component).
(ii) Construct a vector pointing in the diametrically opposite direction to the first principal

component vector in n-dimensional space, vo1 =−v1.
(iii) Uniformly sample an (n-1) sphere using the Hammerseley sequence to generate a set of

K direction vectors {xθk}Kk=1 .
(iv) Calculate the Euclidean distances from each of the uniform direction vectors to v1.
(v) Half of all the uniform projection vectors, xθk

v1
, nearest to v1, are relocated using x̂

θk
v1

=
x

θk
v1

+αv1

|x
θk
v1

+αv1|
, where α is used to control the density of the relocated vectors.

(vi) The other half of all the uniform projection vectors, xθk
vo1

, nearest to vo1, are relocated

using x̂
θk
vo1

=
x

θk
vo1

+αvo1

|x
θk
vo1

+αvo1|
, where α is used to control the density of the relocated vectors.

(vii) Perform local mean estimation according to the conventional MEMD algorithm (see [20]

for more details), using the adaptive direction vectors x̂θk
v1

and x̂
θk
vo1

.

The α values can be determined through the degree of power imbalances between data channels,

and a suggested range is from 0 to 1. For α= 0, when power imbalances do not exist or are

not accounted for, the APIT-MEMD operates similarly to the standard MEMD – no adaptive

projection is performed. Conversely, for α= 1, the case with high power imbalances between
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Figure 3. Input signal to a sifting operation. (a-c): 3-channel data. (d): Scatter plot of the 3-channel data, the first

principal component and its opposite. (e): Projection vectors adapted to first principal component and the opposite vector.

data channels, the APIT-MEMD is perfectly well equipped to deal with the importance-sampling

of the signal space.

To illustrate the principle of APIT-MEMD, Figure 2 (a-c) shows the first, second and third

channels, respectively, of a trivariate signal, given by

x1(t) = k1 cos(2πf1t) + k1 cos(2πf2t) + n(t),

x2(t) = k2 sin(2πf2t), (2.1)

x3(t) = k1 sin(2πf1t),

where n(t) denotes the added WGN and k1 and k2 are scalars which define the degrees of

power imbalances between the data channels. In this example, the signal SNR of the first channel

was 0 dB, k1 =0.25, k2 = 0.75, f1=10 Hz and f2=30 Hz, with a sampling frequency of 10 kHz.

Figure 2 (d) shows the scatter plot of the input signal in a 3-dimensional space, together with the

first principal component, v1, and the diametrically opposite vector, vo1. Figure 2 (e-g) shows

the projection vectors adapted to the direction of highest power imbalance, x̂θk
v1

and x̂
θk
vo1

, of

the input. The densities of the projection vectors were controlled by different α values (0, 0.5

and 1). Observe that the relocated direction vectors, x̂θk
v1

and x̂
θk
vo1

, were clustered around the

corresponding ‘centroids’, v1 and vo1, and that the density of the direction vectors increased with

the α values. For the trivariate signal considered, we used α= 1 in order for the APIT-MEMD to

capture the directions of highest power imbalances. The input data to the first sifting operation

was then projected along all the resulting adaptive projection vectors generated, to estimate the

local mean within the sifting algorithm.

After a number of sifting operations, several IMFs containing decomposed WGN and the

higher frequency component in x1 and x2, that is f2, were obtained, resulting in the remaining

lower frequency component in x1 and x3, that is f1, as shown in Figure 3 (a-c); the remaining

3-channel data was then fed into the next sifting operation. Figure 3 (d) shows the scatter plot

of the remaining signal, together with the v1 and vo1, and Figure 3 (e) shows projection vectors

adapted to the dynamics of the remaining signal.

Performance of the proposed APIT-MEMD algorithm was evaluated using simulations on

multivariate signals with different channel powers and real-world P300 responses measured via

EEG.

(a) Reconstructing multivariate data with power imbalances

The performance of the APIT-MEMD in reconstructing sinusoidal oscillations in a 6-channel

signal was first examined against MEMD. The 6 channels consisted of sinusoidal oscillations

corrupted by additive WGN, given by
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Figure 4. Performance comparison between APIT-MEMD and MEMD in reconstructing a 6-channel

signal exhibiting power imbalance. All performance measures follow the format: "APIT-MEMD – MEMD". (a):

Difference in MSE in reconstructing the f1 sinusoid. (b): Difference in MSE in reconstructing the f2 sinusoid. (c):

Difference in MMR in reconstructing the f1 sinusoid. (d): Difference in MMR in reconstructing the f2 sinusoid. (e):

Difference in the number of IMFs.

x1(t) = cos(2πf1t) + cos(2πf2t) + n1(t), x4(t) = x1(t)− n1(t) + n4(t),

x2(t) = sin(2πf2t) + n2(t), x5(t) = x2(t)− n2(t) + n5(t),

x3(t) = sin(2πf1t) + n3(t), x6(t) = x3(t)− n3(t) + n6(t),

(2.2)

where f1=10 Hz, f2=30 Hz, and the sampling frequency fs =10 kHz. The SNRs of the first,

second and third channels corrupted by independent additive WGN processes, n1, n2 and n3,

were 0 dB, while the SNRs of the fourth, fifth and sixth channels governed by n4, n5 and n6,

were varied between 0 dB and 20 dB. The performance was measured using the mean square

error (MSE) in the task of reconstructing the f1 and f2 sinusoids in channel 4. The number of

direction vectors for MEMD and APIT-MEMD was varied from 32 to 256 (moderate to very high),

following the suggestion in [20] that the number of direction vectors should be considerably

greater than the dimensionality of the signals in order to extract meaningful IMFs. In our own

experience, trivariate signals require more than 16 projection vectors for the NS-TEMD to capture

the direction of highest power imbalances [30]. The α value for the APIT-MEMD was 1 due to

the power imbalances. To evaluate the performance of the APIT-MEMD and MEMD algorithms

in alleviating the mode-mixing problem, we introduce a novel performance measure, termed the

Mode-Mixing Ratio (MMR), given by

MMR=

∑i6=j
i=1:M ρi

ρj
, (2.3)

where
∑i6=j

i=1:M
ρi (M is the total number of IMFs) is the sum of the all the correlation values

between IMF index i, where i 6= j, which should not contain the desired oscillations (f1 or f2),

and the clean original oscillation (f1 or f2), while ρj denotes the correlation value between the

IMF index j containing the desired oscillation (f1 or f2) and the corresponding clean original

oscillation (f1 or f2). If mode-mixing is not present, there is correlation only between the

information-bearing IMF and the corresponding clean original oscillation, resulting in MMR= 0.

However, if mode-mixing is present, besides the non-zero correlation between the information-

bearing IMF and the clean original oscillation, there are also non-zero correlations between other

IMFs and the clean original signal, resulting in MMR> 0.

Figure 4 (a-e) shows the differences in MSE, MMR and the number of IMFs required for

reconstruction between APIT-MEMD and MEMD algorithms. All the results were obtained by

averaging over 30 realisations. Observe that the proposed APIT-MEMD algorithm outperformed
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Figure 5. Mean square error of P300 responses of two subjects at different electrode positions. (a):

Subject 1, Fz electrode. (b): Subject 1, Cz electrode. (c): Subject 1, Pz electrode. (d): Subject 2, Fz electrode. (e):

Subject 2, POz electrode. (f): Subject 2, Oz electrode.

Table 1. Average MSEs of the NA-APIT-MEMD and NA-MEMD algorithms for the two subjects at different electrodes.

Subject 1 Subject 2

Fz Cz Pz Fz POz Oz

NA-APIT-MEMD 9.39 × 10−15 1.96 × 10−14 1.12 × 10−14 1.43 × 10−14 5.32 × 10−15 1.61 × 10−14

NA-MEMD 5.03 × 10−13 3.28 × 10−13 2.34 × 10−13 8.51 × 10−14 4.20 × 10−14 1.13 × 10−13

MEMD in recovering the f1 and f2 sinusoids – having both lower MSE and MMR – in the channels

which exhibited significant power imbalance (channel 4 SNR = 0 dB) and where the number

of direction vectors was at least 32 (moderate). Moreover, the proposed algorithm consistently

produced fewer IMFs. Note that the quasi-dyadic filterbank structure of the IMFs obtained using

APIT-MEMD was preserved. This can be observed through the IMF spectra, and similar results

were obtained by performing signal decomposition with the assistance of noise (see Electronic

Supplementary Materials, Sections 1&2, for details).

(b) P300 reconstruction

Power imbalances and inter-channel correlation are typically found in multichannel EEG due to

different electrode impedances and adjacent locations – a perfect scenario for APIT-MEMD to

reconstruct multichannel real-world EEG data. The P300 response is a positive deflection in the

EEG signal, elicited approximately 250-500 ms after the brain is exposed to an unexpected visual

and/or auditory stimulus [32], the so called oddball paradigm. Two male subjects participated

in the experiment and were exposed to randomly coloured boxes (non-target) and a box with

white background and red foreground (target) presented on an LCD screen, where the time

intervals between each of the target stimuli were randomised. EEG signals were recorded from

the Fz, Cz and Pz electrodes of Subject 1 and from the Fz, POz and Oz electrodes of Subject

2. The recorded signals were then band-pass filtered to the 1-40 Hz range, averaged over 10

trials and combined to construct a multichannel signal. Channels 1-3 contained the responses

of Subject 1, channels 4-6 contained the responses of Subject 2, while channel 7 contained WGN to

facilitate the noise-assisted mode of operation of both the APIT-MEMD and MEMD. The α value

for the NA-APIT-MEMD was 1. The P300 ground truths for each of the 6 electrodes were then

constructed by averaging 1000 P300-IMFs (IMFs containing the maximum power were treated as

IMFs containing P300) obtained by applying 1000 realisations of the NA-APIT-MEMD and NA-

MEMD to the multichannel data (see Electronic Supplementary Materials, Section 3, for details).

We examined the performance of the both algorithms for P300 reconstruction as described in [30].

By performing another 100 realisations, the performance of both algorithms was evaluated in

terms of MSE in reconstructing the P300 response with respect to the P300 ground truth of each

electrode. Observe from Figure 5 (a-f) and Table 1 that the proposed NA-APIT-MEMD algorithm

yielded significantly lower MSE compared to the NA-MEMD for every electrode position of both

subjects.
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Figure 6. PSD and time-frequency spectrogram of SSVEP stimuli and brain responses. (a): PSD of

SSVEP stimuli presented to subjects 1 and 2 (s1 and s2). (b): Time-frequency spectrogram of s1. (c): Time-frequency

spectrogram of s2. (d): PSD of SSVEP responses of subjects 1 and 2 (y1 and y2). (e): Time-frequency spectrogram of

y1. (f): Time-frequency spectrogram of y2.
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Figure 7. Estimated PSI between SSVEP stimuli and brain responses. (a): PSI estimated using the standard

approach. (b): PSI estimated using the intrinsic multiscale analysis.

3. Applications of intrinsic multiscale analysis to cooperative
brain-computer interface

Information transfer rate (ITR) is an essential measure which indicates the performance of a

BCI system. In cooperative BCI systems, EEG data acquired from multiple users simultaneously

engaging in the same paradigm can provide joint and collective information, which can effectively

reduce the time required for data collection, thus increasing the ITR.

Phase synchrony is a measure of phase relationship between two signals and can be defined in

terms of the deviation from perfect synchrony via the phase synchronisation index (PSI) [23].

PSI can also be used to estimate phase synchrony between IMFs, yielding highly localised

phase information, the so called intrinsic phase synchrony [23]. Additionally, to account for both

magnitude and phase information another inter-IMF measure can be used, the so called intrinsic

correlation.

We next examined the utility of intrinsic multiscale analysis to providing a higher ITR in

cooperative BCI. EEG signals typically contain power imbalances between the data channels,

and we therefore used the noise-assisted APIT-MEMD (NA-APIT-MEMD) in the context of the

intrinsic multiscale analysis framework.

(a) Applications of intrinsic phase synchrony to cooperative SSVEP-

based BCI

The SSVEP is a natural response of the brain to the visual stimuli operating in the frequency

range of 5-60 Hz [33]. The SSVEP responses are typically discriminated based on their frequencies,

resulting in a limited ITR. Integrating phase information in SSVEP-based BCI systems promises a

higher number of possible targets and thus a higher ITR [34].
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In this section, intrinsic phase synchrony was applied to differentiate between SSVEP

responses of two subjects simultaneously participating in an experiment. The 4-minute SSVEP

responses were recorded from two subjects seated next to each other and attending two different

SSVEP stimuli with similar power spectral densities (PSDs), occupying the range 13-17 Hz (see

Figure 6 (a)), but different phases and generated with two separate LEDs. Subject 1 (y1) attended

a chirp signal (s1) with frequencies increasing from 13 Hz to 17 Hz over 2 minutes and decreasing

from 17 Hz to 13 Hz over the following 2 minutes (see Figure 6 (b)), while Subject 2 (y2) attended a

chirp signal (s2) with frequencies varying from 13 Hz to 17 Hz at twice the speed of s1 (see Figure

6 (c)). The recorded signals were then band-pass filtered to the range 10-20 Hz. The PSD and

spectrograms of SSVEP responses of the two subjects (y1 and y2), exposed to the corresponding

stimuli, are shown in Figure 6 (d), (e) and (f). Observe from Figure 6 (d) that PSD of SSVEP response

of subject 1 (y1) was similar to that of subject 2 (y2).

Following the standard approach to phase synchrony estimation, PSI between each of the two

stimuli (s1 and s2), and each of the responses (y1 and y2) was estimated and is shown in Figure 7

(a). Next, within our intrinsic multiscale analysis framework, the stimuli and responses (s1, s2, y1

and y2) were used to form 4-channel data which was decomposed using NA-APIT-MEMD with

10 adjacent WGN channels, and α was 0.3 due to low power imbalances. The IMF with maximum

power was treated as the information-bearing IMF (IMF containing the required 13 Hz or 15 Hz

oscillation). The PSIs between each of the information-bearing IMFs of the stimuli and responses

were then calculated from 30 realisations of NA-APIT-MEMD as shown in Figure 7 (b).

Figure 7 (a) demonstrates a subtle difference in the PSI values between y1-s1 (0.4091) and y2-

s1 (0.4054), implying that the standard approach could not effectively discriminate between the

phases of the SSVEP responses and stimuli, while the results obtained using the proposed intrinsic

multiscale approach in Figure 7 (b), indicate successful separation of the responses of the subjects,

determined by the Z-test at the significance level of 0.05. This approach is also applicable to

differentiating SSVEP responses at different frequencies (see Electronic Supplementary Materials,

Section 4, for details).

(b) Applications of intrinsic correlation to cooperative P300-based BCI

The P300 brain response reflects the outcome of stimulus evaluation and internal decision-making

processes [35]; however, its presence after a person is exposed to unexpected stimulus (target)

is not always guaranteed. The P300 used in BCI applications, such as word spellers, is therefore

typically obtained by averaging EEG segments over a number of trials. For real-time applications,

automatic detection of a single-shot P300 is imperative and can lead to practical cooperative real-

world BCI applications. EMD was applied in [36] to detect P300 in a single trial; however, the

average sensitivity (57.36%) and specificity (52.63%) were not high. We propose to use intrinsic

correlation to detect single-shot P300 from a pair of individuals to reduce the time and number of

trials normally required to establish an average P300, thus providing higher ITR. This approach is

based on an assumption that P300 responses of two people simultaneously engaging in the same

oddball paradigm are intrinsically cross-correlated.

In order to evaluate the performance of the proposed detection algorithm, it is essential to have

prior knowledge of whether P300 of a subject was present after each target in the recorded data.

To this end, we propose the following three criteria to determine the presence of P300: (i) at least

one positive peak must be present, (ii) a negative trend must not exist, and (iii) if two or more

positive peaks do exist, the difference in the magnitude between the largest and second-largest

peaks (d1) must be higher than half of the difference in the magnitude between the largest peak

and the ’valley’ located between the largest and second-largest peaks (d2), d1

d2
> 0.5. Figure 8 (a)

shows an EEG signal with P300 where: 1) at least 1 positive peak is present, 2) no negative trend

exists, 3) the difference between the first and second largest peaks (d1 = 1st peak − 2nd peak)

was larger than half the difference between the first peak and the valley (d2 =1st peak − valley),
d1

d2

=0.641> 0.5. Figure 8 (b) shows an EEG signal without P300 where: 1) a negative trend exists

2) the difference between the first and second largest peaks (d1) was lower than half the difference

between the first peak and the valley (d2), d1

d2
= 0.345< 0.5.
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Figure 8. Examples of EEG signals with and without the P300 present. (a): EEG signal with a P300 (two

positive peaks, no negative trends). (b): EEG signal without a P300 (negative trend, d1

d2
< 0.5).

The same experimental setting as in Section 2.(c) (P300 reconstruction) was considered, except

that EEG signals of Subject 1 were recorded from the Fz, POz and Oz electrodes. The recorded

signals of both subjects were band-pass filtered to the range 1-20 Hz. The P300 ground truth of

each subject was then constructed by averaging the signals recorded from the three electrodes

over 10 trials. The ground truth was next used to determine the time span of P300 of each subject.

The time span of P300 of Subject 1 was between 200-400 ms, while that of Subject 2 was between

300-500 ms. To detect the presence of P300 for both subjects and each trial, the 3-channel data of

Subject 1 between 200-400 ms after a target, and the other 3-channel data of Subject 2 between

300-500 ms after the same target were used to construct 6-channel data, which were decomposed

using NA-APIT-MEMD with 10 added WGN channels, where α= 0.4; 30 realisations of NA-

APIT-MEMD were carried out. Cross-correlation values between the spatially averaged primary

IMFs of the signal channels were statistically compared against those between the primary IMFs

of the noise channels (see Algorithm 2 for details of the proposed two-person single-shot P300

detection algorithm).

Algorithm 2: Two-person single-shot P300 detection using intrinsic correlation

Input N-channel EEG data of subject 1, x1(t) = [x11(t), x
2
1(t), . . . , x

N
1 (t)]T , and P-channel EEG data

of subject 2, x2(t) = [x12(t), x
2
2(t), . . . , x

P
2 (t)]T with the time length determined by the time span

of P300 ground truth of each subject.

(i) Construct (N+P+10)-channel data from EEG of two subjects and 10 adjacent WGN

channels, v(t) = [v1(t), v2(t), . . . , v10(t)]T . 1

(ii) Perform NA-APIT-MEMD on the (N+P+10)-channel data.

(iii) Average primary IMFs (IMFs with maximum power) of N and P channels of x1(t) and

x2(t), respectively, to construct spatially averaged IMFs of subjects 1 and 2, IMF1 and

IMF2.

(iv) Split each spatially averaged IMF (IMF1 and IMF2) of length 200 ms into 25 overlapping

windows of length 85 ms with 75 ms overlap. 2

(v) Calculate cross-correlation values between the window i of IMF1 and the window j of

IMF2, ρIMF1,IMF2(i, j, τ ), where i=1. . . 25, j=1. . . 25 and τ is the time lag.

(vi) Determine the maximum cross-correlation value of each pair of windows i and j,

ρ
IMF1,IMF2

max (i, j) =max(ρIMF1,IMF2(i, j, τ )).

(vii) Determine the final maximum cross-correlation value across all window pairs,

ρ
IMF1,IMF2

final max
=max(ρIMF1,IMF2

max (i, j)).

(viii) The 10 noise channels give 45 noise pairs to determine the maximum cross-correlation

value.

(ix) Split the primary IMF (IMF with the same index as the primary IMF of subject 1) of each

noise channel n, IMFn, into 25 overlapping windows of length 85 ms with 75 ms overlap.

1The number of adjacent WGN channels was 10, as this is sufficient to enforce the desired quasi-dyadic structure and thus

reduce the degree of overlap between the IMF spectra.
2Note that the P300 response is typically obtained by averaging EEG signals over a number of trials, resulting in an average

time span of P300 of approximately 150-200 ms. However, we have empirically found that the P300 in a single trial has a

relatively short time span of approximately 85 ms, so that overlapping windows of length 85 ms were thus used in order to

capture the P300 in a single trial.
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(x) Calculate cross-correlation values between window i of primary IMF of noise channel n,

IMFn, and window j of primary IMF of noise channel m, IMFm, ρIMFn,IMFm (i, j, τ ),

where i=1. . . 25, j=1. . . 25, n= 1 . . . 10 and m= 1 . . . 10;m 6= n.

(xi) Determine the maximum cross-correlation value between window i of primary IMF of

noise channel n, IMFn, and window j of primary IMF of noise channel m, IMFm,

ρ
IMFn,IMFm
max (i, j) =max(ρIMFn,IMFm (i, j, τ )).

(xii) Determine the final maximum cross-correlation value across all window pairs of primary

IMFs of noise channels n and m, ρIMFn,IMFm

final max
=max(ρIMFn,IMFm

max (i, j))

(xiii) Average 45 final maximum cross-correlation values obtained from 45 pairs of noise

channels n and m, ρnoiseave =
Σρ

IMFn,IMFm
final max

45
.

(xiv) By performing steps (i) - (xiii), two scalar values, ρIMF1,IMF2

final max
and ρnoiseave , are obtained.

(xv) Perform 30 realisations of NA-APIT-MEMD in order to assess the statistical relevance of

ρ
IMF1,IMF2

final max
and ρnoiseave , repeat steps (i) - (xiii) for each realisation.

(xvi) Perform the Z-test to determine a significant difference between 30 values of ρIMF1,IMF2

final max

and ρnoiseave .

(xvii) If 30 values of ρ
IMF1,IMF2

final max
are significantly higher than 30 values of ρnoiseave at a

significance level of 0.05, P300 is considered present in both subjects.

The performance of the proposed two-person single-shot P300 detection algorithm was

evaluated as described in [36]. By performing 30 realisations of this algorithm on 6 EEG signals

recorded from two subjects after 10 targets, the number of true positive (TP, P300 was present

in both subjects and detected), true negative (TN, P300 was not present in both subjects and

not detected), false positive (FP, P300 was not present in both subjects but incorrectly detected),

false negative (FN, P300 was present in both subjects but not detected), sensitivity ( TP
TP+FN ) and

specificity ( TN
TN+FP ) were calculated, and shown in Table 2.

Table 2. Performance of the proposed two-person single-shot P300 detection algorithm.

Present Not present

Detected TP = 109 FP = 61

Not detected FN = 41 TN = 89

Sensitivity= 72.67% Specificity = 59.33%

4. Conclusions
We have introduced an extension of the MEMD algorithm termed APIT-MEMD, in order to

cater for power imbalances between data channels. This is achieved through the assessment of

the statistical structure of multivariate data, and subsequent resampling of the direction vectors

to ensure that their density matches data dynamics. The performance of the algorithm has

been evaluated in terms of MSE, MMR and the number of generated IMFs in decomposing

unbalanced synthetic multivariate data with and without the presence of adjacent WGN channels.

The proposed algorithm has been shown to outperform conventional MEMD and NA-MEMD

in a noise-assisted mode of operation, for cases with significant power imbalance between data

channels. Simulations on EEG data have also shown that NA-APIT-MEMD yielded substantially

lower MSE in decomposing the P300, compared to NA-MEMD. Further development will include

clustering direction vectors into a number of different groups, depending on the number of

principal components in the data correlation matrix.

Intrinsic multiscale analysis [23] using NA-APIT-MEMD has been applied to cooperative

SSVEP- and P300-based BCI applications. We have shown that intrinsic phase synchrony

can effectively differentiate between SSVEP responses with different parameters (frequencies

or phases) of two subjects. We have also proposed a two-person single-shot P300 detection

algorithm. This approach employed intrinsic correlation to determine whether the maximum

cross-correlation between EEG signals of two people was higher than that of noise, which can

unveil the presence of P300 generated by two cooperating brains. Note that choices of parameters
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in this algorithm have been set empirically in order to optimally match the nature of P300 in a

single trial, and that changes in parameter values might affect the results.

We have observed that when performing either the APIT-MEMD or MEMD algorithm in a

noise-assisted mode of operation on SSVEP and P300 signals, the number of WGN channel(s)

must be chosen cautiously, as [23] has shown that the higher number of noise channels, the faster

the roll-off of a filterbank structure. For narrowband signals such as SSVEP, a filterbank structure

with a fast roll-off is required so that such signals are contained in a single IMF with as little

mode-mixing as possible. However, for signals with a wider bandwith such as P300, which are

composed of several oscillatory components, a filterbank structure with slower roll-off may be

required to contain those oscillations within the same IMF index. Finally, the APIT-MEMD is

sensitive to parameter α which reflects the degree of imbalances across the data channels. Future

work will focus on an automated selection of this parameter based, e.g. on real-time tracking of

the degree of impropriety.
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M, Żygierewicz J, Suffczński P, Durka PJ. 2013. On the quantification of SSVEP frequency
responses in human EEG in realistic BCI conditions. PLoS ONE 8(10), e77536.

34. Jia C, Gao X, Hong B, Gao S. 2011. Frequency and phase mixed coding in SSVEP-based brain–
computer interface. IEEE Trans. Biomed. Eng 58(1), 200-206.

35. Nieuwenhuis S, Aston-Jones G, Cohen JD. 2005. Decision making, the P3, and the Locus
Coeruleus-Norepinephrine system. Psych. Bulletin 131(4), 510-532.

36. Solis-Escalante T, Gentiletti GG, Yañez-Suarez O. 2006. Single trial P300 detection based on
the empirical mode decomposition. In Proc. IEEE EMBS Ann. Int. Conf., 1157-1160.


	1 Introduction
	2 Adaptive-projection intrinsically-transformed MEMD (APIT-MEMD)
	(a) Reconstructing multivariate data with power imbalances
	(b) P300 reconstruction

	3 Applications of intrinsic multiscale analysis to cooperative brain-computer interface
	(a) Applications of intrinsic phase synchrony to cooperative SSVEP-based BCI
	(b) Applications of intrinsic correlation to cooperative P300-based BCI

	4 Conclusions
	References

