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TaggedPAbstract

Automatic speech recognition in everyday environments must be robust to significant levels of reverberation and noise. One

strategy to achieve such robustness is multi-microphone speech enhancement. In this study, we present results of an evaluation of

different speech enhancement pipelines using a state-of-the-art ASR system for a wide range of reverberation and noise condi-

tions. The evaluation exploits the recently released ACE Challenge database which includes measured multichannel acoustic

impulse responses from 7 different rooms with reverberation times ranging from 0.33 to 1.34 s. The reverberant speech is mixed

with ambient, fan and babble noise recordings made with the same microphone setups in each of the rooms. In the first experi-

ment, performance of the ASR without speech processing is evaluated. Results clearly indicate the deleterious effect of both noise

and reverberation. In the second experiment, different speech enhancement pipelines are evaluated with relative word error rate

reductions of up to 82%. Finally, the ability of selected instrumental metrics to predict ASR performance improvement is

assessed. The best performing metric, Short-Time Objective Intelligibility Measure, is shown to have a Pearson correlation coeffi-

cient of 0.79, suggesting that it is a useful predictor of algorithm performance in these tests.

� 2016 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

TaggedPReal-world applications of Automatic Speech Recognition (ASR), such as meeting transcription and human-robot

interaction, demand that the speaker be some distance from the sound capture device. This leads to degradation of the

desired signal by both additive noise and reverberation, both of which have a significant degrading effect on ASR

accuracy. It has been proposed that robustness in distant-talking ASR be achieved through three approaches, namely

enhancement of the audio signal, front-end based approaches which enhance the signal in the feature domain and

back-end methods (Haeb-Umbach and Krueger, 2012). Recent challenges such as the REVERB challenge (Kinoshita

et al., 2013) and CHiME3 (Barker et al., 2015) have demonstrated the effectiveness of all three approaches.
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TaggedPOur work focusses on speech enhancement algorithms and particularly on the case when the ASR system itself

cannot be altered, or it is impractical to alter it. This is relevant in many real-world applications where an ASR

engine is supplied by a third-party, either as embedded code or as a cloud-based system. It is also relevant during

algorithm development where many alternative parameters or algorithm variations are to be assessed. It is, in gen-

eral, not practical to process the training data with every algorithm and retrain the ASR system for each. This is par-

ticularly true when the range of acoustic conditions that need to be considered is wide, as in everyday environments

where a broad range of Reverberation Times (RTs), Direct-to-Reverberant Ratios (DRRs), noise types and Signal-

to-Noise Ratios (SNRs) may be encountered.

TaggedPSpeech enhancement for human listening has a long history with a great many algorithms being proposed and

refined over the decades which attempt to mitigate both additive and convolutive noise (Naylor and Gaubitch,

2010). By exploiting multiple microphones, the most successful algorithms can improve the perceived audio quality

and/or intelligibility. Conducting listening tests using human listeners is time consuming and expensive and so

instrumental measures have been developed which attempt to model human responses in order to predict the perfor-

mance of new algorithms (Taal et al., 2011; ITU-T, 2001).

TaggedPThe ultimate performance measure of speech enhancement algorithms for ASR will always be the Word Error Rate

(WER) achieved over a particular set of test data. However, we propose that just as instrumental measures can be use-

ful for modelling human listening, they can also be helpful for evaluating speech enhancement for ASR. To test this

assertion, the current study is split into three parts. The first establishes the performance bounds of an “off-the-shelf”

recogniser for a broad range of acoustic conditions. The second determines the performance improvements obtained

by a range of speech enhancement pipelines for a representative subset of acoustic conditions. The third compares the

performance measured using WER and relative WER reduction (rWERR) to that predicted by instrumental metrics.

TaggedPTo summarise, the novel contributions of the current study are (i) results for the CHiME3 (Barker et al., 2015) base-

line system under more diverse acoustic conditions than have hitherto been considered; (ii) independent verification of

the efficacy of linear prediction-based dereverberation, particularly when combined with beamforming (Yoshioka and

Nakatani, 2012; Delcroix et al., 2014, 2015); (iii) evaluation of multi-channel speech enhancement for ASR under

reverberant conditions with high levels of noise, and especially babble noise; (iv) a comparison showing strong correla-

tion between ASR performance and instrumental metrics. It is hoped that the results of (i) and (iii), which make use of

the Acoustic Characterization of Environments (ACE) Challenge database of Acoustic Impulse Responses (AIRs) and

noise, will serve as a baseline for future robust ASR systems and speech enhancement algorithms.

TaggedPIn Section 2, we describe the setup of the experimental framework and then evaluate the ASR system for 210 dif-

ferent acoustic conditions with unprocessed audio. In Section 3, we select a subset of 54 acoustic conditions, each of

which is enhanced using 6 different enhancement strategies consisting of different combinations of noise reduction,

dereverberation and beamforming. In Section 4, the results from Section 3 are compared to the results of instrumen-

tal metrics. The significance of the results is discussed in Section 5 and our conclusions presented in Section 6.
2. Experiment 1: effect of acoustic conditions without speech enhancement

TaggedPThe aim of the first experiment is to characterise the performance of a standard state-of-the-art ASR system for a

broad range of acoustic conditions using only the received signal. In this way, the effect of reverberation, noise type

and SNR can be individually analysed. The results of this experiment also inform the selection of a reduced subset

of acoustic conditions for which speech enhancement is used in the second experiment.

2.1. ASR system

TaggedPThe ASR employed in this work corresponds to the updated Kaldi CHiME3 baseline recipe available in the Git

Kaldi repository.2 This system is an improvement of the original baseline which includes a feature-space maximum

likelihood linear regression transformation on the DNN features and output hypothesis rescoring with a Kneser�Ney

smoothed 5-gram model and an RNN language model (Hori et al., 2015). By choosing a system that can be freely

downloaded and used, new algorithms can be objectively compared to the baselines presented here.
2 https://github.com/kaldi-asr/kaldi/tree/master/egs/chime3/s5 commit id: 7e44bc74c3388cd134485672fd1c9687c68073b9.

https://github.com/kaldi-asr/kaldi/tree/master/egs/chime3/s5


Table 1

AIRs from ACE Challenge database used in Experiment 1 with associated

acoustic parameters for the first microphone channel. AIRs marked with an

asterisk are used in Experiment 2.

AIR RT [s] DRR [s] C50 [dB]

Building Lobby 1 0.68 8.1 14.1

Building Lobby 2 0.75 5.1 11.8

Lecture Room 1 1 0.68 3.8 10.9

Lecture Room 1 2 0.61 6.4 13.1

Lecture Room 2 1* 1.34 3.8 7.3

Lecture Room 2 2* 1.28 3.6 7.1

Meeting Room 1 1 0.47 10.6 16.6

Meeting Room 1 2 0.47 7.0 13.4

Meeting Room 2 1* 0.38 9.8 17.6

Meeting Room 2 2* 0.39 8.7 18.0

Office 1 1 0.36 10.5 19.7

Office 1 2 0.33 4.3 15.3

Office 2 1* 0.41 13 19.4

Office 2 2* 0.38 9.5 14.6
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TaggedPThe system is trained using the real and simulated noisy scenarios provided in the CHiME3 Challenge, which are

based on the Wall Street Journal (WSJ0)(Garofalo et al., 2007) 5 k corpus and contains utterances read from the

Wall Street Journal newspaper. The real scenarios (1600 utterances) were recorded in 4 environments (on a bus, in a

cafe, in a pedestrian area and at a street junction) by 4 different speakers using a 6 channel microphone array. The

simulated scenarios (7138 utterances) were produced by mixing the clean data from the WSJ0 5 k training set with

background noise recorded in the same 4 environment types as the the real data. See (Barker et al., 2015) for full

details of how this mixing was performed. The average SNR of the recordings is reported to be 5 dB. Only the fifth

channel of each recording is employed in the training, i.e., no beamforming or speech enhancement of any sort is

applied.

TaggedPIn the testing stage, the language model weight is set to the value that provides the lowest WER in the develop-

ment set, which in this case is 6.

TaggedPEvaluation is based on the “SI ET 05” simulation test set. This consists of 330 read speech utterances from the “no

verbal punctuation” (NVP) part of the WSJ0 speaker-independent medium vocabulary (5 k) evaluation set. Since we are

specifically interested in the performance variations caused by different acoustic conditions, the clean test set was used

to generate the simulated multi-channel noisy reverberant speech from the clean signals as described in Section 2.2.
2.2. Evaluation data generation

TaggedPEvaluation data were generated to simulate a 4-element linear microphone array using the recently-released ACE

Challenge database (Eaton et al., 2015, 2016a, b). This database is uniquely relevant in that it contains AIRs for a

large number of rooms with two source distances per room, for a variety of microphone arrays. Table 1 lists the rele-

vant acoustic parameters associated with the first element of the microphone array in each case. In addition to the

AIRs, the ACE Challenge database contains noise recordings made using room-microphone setups identical to the

setups used to measure the corresponding AIRs. In this way, the noise and reverberation are entirely consistent.

TaggedPMultichannel noisy reverberant speech was simulated according to the signal model

xmðtÞD
XL¡1

tD 0

hmðtÞsðt¡tÞC nmðtÞ; ð1Þ

where xm(t) is the signal received at the mth microphone, hm(t) is the L-tap, time-invariant impulse response between

the source and the mth microphone, s(t) is the desired speech signal and nmðtÞ is the additive noise at mth microphone.

The microphone signals are therefore simulated by convolving each of the 330 speech files from the CHiME3 simulation

evaluation set “SI ET 05” with each of the AIRs from the ACE Challenge database (7 rooms £ 2 source-array

distances per room), as described above. The A-weighted speech power of the reverberant speech at the first microphone



Fig. 1. WER as a function of SNR for all AIRs with Ambient, Fan and Babble noise. Bold lines indicate AIRs selected for use in Experiment 2.
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TaggedP(i.e., the clean speech convolved with the measured impulse response for the first channel) was determined according to

ITU-P56 (ITU-T, 1993). For each utterance a randomly selected segment of multichannel noise from the appropriate

noise recording was added, adjusting the level to obtain A-weighted SNRs of ¡10, 0, 10, 20 and 30 dB. This process

was repeated for each available noise type in the ACE Challenge database, namely Ambient, Fan and Babble. Ambient

noise consisted of the background noise in each room and so, depending on the ventilation system, equipment in the

room and any pedestrian traffic could be quite variable in its nature. Fan noise was produced by a portable fan heater

with an approximately stationary noise characteristic. Babble noise was recorded live by between 4 and 7 simultaneously

active talkers, reading from a variety of source material. For both Fan and Babble noise the Ambient noise is inevitably

also present in the background but the level of the Fan or Babble is dominant in those cases. A Matlab script to generate

the evaluation data as described is available.3
2.3. Results

TaggedPFig. 1 shows the WER achieved for each AIR and noise type as a function of SNR. It can be seen that, for all noise

types, noise is the dominant source of error at low SNRs, with WER tending to 100% at ¡10 dB SNR. It should be

noted that 100% WER is not an upper bound since there is no limit to the number of insertions which could occur,
3 http://www.commsp.ee.ic.ac.uk/~sap/resources/csl-ace-asr.

http://www.commsp.ee.ic.ac.uk/~sap/resources/csl-ace-asr
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TaggedPbut for this system and stimuli the insertions peaked at 0 dB SNR and dropped again at ¡10 dB SNR. At

30 dB SNR the WER varies between 3.9 and 21.5% due to the differing reverberation, independently of the noise

type. At intermediate SNRs there are substantial differences according to the AIR, noise type and SNR. The results for

Fan and Ambient noise are very similar, reflecting the fact that, for most rooms, the ambient noise was due to stationary

noise sources. For these noise types the performance plateaus at 20 dB SNR. With Babble noise, as is well known, the

performance is considerably worse for a given SNR and so the performance continues to improve as the SNR is

increased to 30 dB. The substantial differences in WER for the different AIRs and for each noise type and at any par-

ticular SNR demonstrates the huge influence of the diverse reverberation properties of the ACE Challenge database.

TaggedPIt is interesting that certain AIRs result in consistently better (or worse) performance compared to the other AIRs,

regardless of the noise type and SNR. We therefore select a subset of the noisy reverberant speech for speech

enhancement and subsequent analysis in Section 3. The 6 selected AIRs are taken from rooms “Lecture Room 2”,

“Meeting Room 2” and “Office 2” since together they span the range of achieved WERs with the AIRs representing

best and worst WERs being “Office 2 1” and “Lecture Room 2 2”, respectively. We note that these also represent

the extreme values of the DRR and C50. We choose to use both AIRs from each room so that the effect of RT, which

is constant in each room, can be separated from that of DRR, which varies with the source-microphone distance.

3. Experiment 2: effect of speech enhancement algorithms

TaggedPThe aim of the second experiment is to compare the effectiveness of different realisations of speech enhancement

with the specific goal of reducing the WER of a standard ASR system. In particular, variations in performance due

to a diverse range of acoustic conditions are considered.

TaggedPBased on the results of Section 2, the data for rooms “Lecture Room 2”, “Meeting room 2” and “Office 2” are

selected for speech enhancement as they represent the full range of performance observed in Experiment 1. To

reduce the total number of test conditions only SNRs of 0, 10 and 20 dB are considered as these represent the region

of greatest variation in the results of Experiment 1.

3.1. Enhancement algorithms

TaggedPSpeech enhancement algorithms of three types are tested in the current study—non-linear speech enhancement,

spatial filtering and linear dereverberation—and these will be discussed below. As well as testing each algorithm

individually, a number of combinations of algorithms are additionally considered.

TaggedPNon-linear speech enhancement (SS). TaggedPWe include in this study a version of non-linear speech enhancement based on

Spectral Subtraction (SS). Based on the work of Xiong et al. (2014), we have implemented a single channel algo-

rithm that includes cepstral smoothing to reduce the musical noise commonly associated with this type of non-linear

processing in the Short Time Fourier Transform (STFT) domain. The noise Power Spectral Density (PSD) is first

estimated using minimum statistics (Martin, 2001), the late reverberation PSD is estimated according to (Lebart

et al., 2001) which uses an estimate of the RT from (Eaton et al., 2013). After estimating the speech PSD the Mini-

mum Mean Squared Error (MMSE) gain is found using (Breithaupt et al., 2008).

TaggedPSpatial filtering (DSB). TaggedPSpatial filtering, or beamforming, attempts to enhance the signal based on the spatial distri-

bution of the sound sources, interference, reverberation and noise. Many beamformers have been proposed which

are optimal under different assumptions about the spatial properties of the noise and reverberant soundfields (see, for

example, Brandstein and Ward, 2001; Benesty et al., 2008). The simplest and arguably the most robust is the classic

Delay-and-Sum Beamformer (DSB) and we include this beamformer in our evaluation. In this case, only the Time-

Differences-of-Arrival (TDOAs) of the desired sound at each microphone must be estimated. We obtain such an esti-

mate using Generalised Cross-Correlation with Phase Transformation (GCC-PHAT) (Knapp and Carter, 1976)

applied to the Linear Predictive Coding (LPC) residuals, where a single set of LP coefficients are jointly estimated

using all 4 channels (Gaubitch et al., 2006).

TaggedPLinear dereverberation (WPE). TaggedPMultichannel linear filtering has the potential to offer high performance dereverber-

ation, assuming the AIRs are known exactly (Miyoshi and Kaneda, 1988). However, in practice these are difficult to
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TaggedPestimate with sufficient accuracy. Using an autoregressive model of the reverberation process, linear prediction

and inverse filtering can be applied in subbands to achieve dereverberation (Nakatani et al., 2010). In the

Weighted Prediction Error (WPE) approach (Yoshioka et al., 2010), an estimate of the desired signal energy is

used to weight the prediction error to take account of the non-stationary nature of speech. To avoid over-whiten-

ing the speech signal, no attempt is made to dereverberate the early reflections. A set of dereverberation filters

are designed for each channel using an iterative approach to alternately estimate the desired signal energy and

the linear prediction filter.

TaggedPThe WPE algorithm is inherently multiple-input, multiple-output. When applied in isolation, without being com-

bined with beamforming, the ASR uses only the first channel.

3.2. Enhancement pipelines

TaggedPAs well as evaluating the individual enhancement methods, we have additionally considered the following combi-

nations of methods, which we refer to here as speech enhancement pipelines.

TaggedPDSB C SS. TaggedPIn this combination of the above two methods, the output of the DSB is processed using single channel

non-linear speech enhancement (SS).

TaggedPWPE C DSB. TaggedPThe four output channels from the WPE dereverberation algorithm are time aligned using the same

TDOAs as calculated for the DSB in isolation, such that the performance of the beamforming when combined with

WPE is not impacted (whether positively or negatively) by the accuracy of the TDOAs estimation.

TaggedPWPE C DSB C SS. TaggedPIn this combination of speech enhancement processing, the single channel output of

WPE C DSB is further processed using the above non-linear speech enhancement (SS).

TaggedPNone. TaggedPBaseline performance is achieved as in Experiment 1, where the first channel of noisy reverberant speech is

input to the ASR without any front-end enhancement.

3.3. Results

TaggedPFig. 2 shows the WER obtained with each of the enhancement pipelines, arranged in order of increasing perfor-

mance. The differences between the means of all the pipelines are statistically significant (p< 0.005) other than

those indicated by braces. We can therefore conclude that, in isolation, both the multichannel algorithms (i.e., WPE

and DSB) are successful at reducing the WER and that the best performance is obtained when the two algorithms

are combined into a single pipeline (i.e., WPE C DSB). On the other hand, the single channel algorithm (SS) does

not lead to an overall improvement under the conditions tested. Moreover, when SS is employed on the output of

either DSB or WPE C DSB the performance of the combination is actually degraded.

TaggedPTo gain more insight into the conditions under which each of the enhancement pipelines are effective, Fig. 3

shows the WER for each pipeline according to the noise type and SNR. For clarity each plot only shows the results

for the “Lecture Room 2 2”, “Office 2 1” and “Office 2 2” AIRs as these represent the range of results and results for

the other AIRs followed a similar pattern. Comparing the variation in performance due to different AIRs, the overall

trends observed in Experiment 1 are also evident in the enhanced signals. In particular, performance in Babble noise

at 0 dB SNR is dominated by noise as indicated by the similarity of the WER for the different AIRs. The similarity

between the performance in Fan and Ambient noise at each SNR suggests that the statistical properties of these two

noise types have a similar impact on the enhancement pipelines.

TaggedPThe pipelines are arranged according to their overall performance, as in Fig. 2, such that deviations from the mean

behaviour are characterized by non-monotonically decreasing lines. The WPE algorithm is noteworthy in this regard.

At both 10 and 20 dB SNR it performs notably better than the rank order neighbouring pipelines. This suggests that

its low average performance seen in Fig. 2 is due to the high WERs obtained at 0 dB SNR.

TaggedPAt the lowest SNR the relative difference between the AIRs can be seen to be broadly consistent. As the SNR

increases the WERs start to converge for the better performing pipelines. This suggest that at higher SNRs, the better

performing pipelines have a relatively large improvement on the less favourable reverberation conditions. These



Fig. 2. WER for each enhancement pipeline averaged over 6 selected AIRs, 3 noise types and 3 SNRs. Pipelines are ordered on merit and braces

above bars indicate pairs of pipelines which are not significantly different at p< 0.005 level.
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TaggedPrelationships can also be observed in Fig. 4 which shows the rWERR of each pipeline for each AIR with respect to

the corresponding noisy reverberant speech. It is remarkable that for the most challenging AIR the best case pipeline,

WPE C DSB, achieves an rWERR of up to 82%. In contrast there are a number of datapoints indicating negative

rWERRs. Almost all of these have SS in the pipeline, suggesting that the poor performance may be due to the intro-

duction of artefacts due to the non-linear processing.
4. Evaluation using instrumental metrics

TaggedPTo evaluate the performance of each speech enhancement pipeline over the full range of acoustic conditions

employed in the second experiment is very time consuming. During the development of new algorithms it is there-

fore desirable to predict WER scores using more easily computed instrumental measures, where the clean non-rever-

berant speech reference is available. In this study, we consider 3 possible instrumental measures. The first,

Normalised Signal-to-Reverberation Ratio (NSRR), is based on the segmental SNR but includes normalisation of

the noisy reverberant signal such that the direct path power is the same as in the reference signal (Naylor et al.,

2010). The second, Perceptual Evaluation of Speech Quality (PESQ), is designed to model the perceived audio qual-

ity of narrowband speech (ITU-T, 2001). The third, Short-Time Objective Intelligibility Measure (STOI), attempts

to model human speech intelligibility (Taal et al., 2011).

TaggedPFig. 5 shows the WER for every combination of acoustic condition and enhancement pipeline plotted against the

corresponding instrumental measures. Whilst WER does not seem to vary systematically with NSRR there is a clear

relationship with PESQ and STOI, especially for Ambient and Fan noise.

TaggedPTo be useful in predicting the performance benefit of speech enhancement algorithms, the improvement in WER

should be correlated with improvements in the instrumental metrics. Fig. 6 shows these correlations and the corre-

sponding Pearson correlation coefficient, r, for each metric. The correlations are statistically significant in all cases

but the size of the correlation coefficient for STOI, 0.79, is much larger than for NSRR, 0.46, and PESQ, 0.55. For

each point in Fig. 6, the colour represents the value of the metric for the “None” pipeline. The gradient in colours for

both PESQ and STOI suggests there is a tendency for more severely degraded signals to benefit more in terms of

rWERR for a particular relative improvement in the instrumental metric. This is consistent with the non-linear shape

of the corresponding curves in Fig. 5.



Fig. 3. WER for each algorithm and AIR. Each plot shows results for a particular SNR and noise type.
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5. Discussion

TaggedPIn this paper, we have evaluated the CHiME3 baseline ASR system in a wide range of acoustic conditions that

significantly extends the breadth of acoustic conditions employed in the CHiME3 challenge itself. The multichannel

noisy reverberant speech signals were simulated using 14 AIRs measured in 7 different rooms with RTs varying

from 0.33 to 1.34 s. Noise of three different types, recorded for the same microphone arrangements as the AIR meas-

urements was mixed at SNRs ranging from ¡10 to 30 dB.

TaggedPIn the first experiment, where the noisy reverberant signals were not enhanced, the WERs ranged from 3.9 to

99.3% indicating that in favourable acoustic conditions the ASR system is capable of excellent performance and that

in the most severe cases the degradation of the signal due to reverberation and noise was complete. Even at the high-

est SNR the difference in reverberation properties between the AIRs caused the WER to vary from 3.9 to 20%. This

clearly demonstrates the deleterious effect of reverberation on the ASR system.

TaggedPIn the second experiment, a representative subset of the signals from the first experiment, including those corre-

sponding to the best and worst case AIRs, were enhanced using 6 different processing pipelines. At 20 dB SNR the

best performing pipeline achieved WERs between 2.1 and 7.1%, clearly demonstrating the effectiveness of the

speech enhancement.

TaggedPOf the different algorithms tested it was found that single channel non-linear speech enhancement used both in

isolation and as part of a pipeline had a negative impact on the WER. In contrast both beamforming, using a DSB,

and dereverberation, using WPE, contribute positively and combining the two led to the best results. Our comparison



Fig. 4. rWERR for each algorithm and AIR. Each plot shows results for a particular SNR and noise type.
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TaggedPof WPE, DSB and WPE C DSB is similar to the results of the comparison by Delcroix et al. (2015) between WPE,

Minimum Variance Distortionless Response (MVDR) and WPE C MVDR. Note that we chose to use a DSB beam-

former rather than an MVDR beamforer because, unlike (Delcroix et al., 2015), our tests include acoustic conditions

with non-stationary noise and inaccuracies in estimating the noise statistics can negatively affect the performance of

MVDR beamforming. Furthermore, our results include rooms with up to 1.3 s, compared to 0.7 s in the REVERB

challenge. Since the specific beamformers and acoustic conditions vary between the two studies, a direct comparison

of the WERs achieved in each case is not meaningful. Nevertheless, it is interesting that in their study the relative
Fig. 5. WER as a function of instrumental metrics NSRR, PESQ and STOI for all acoustic conditions and enhancement algorithms.



Fig. 6. rWERR as a function of relative improvement in instrumental metrics NSRR, PESQ and STOI for all acoustic conditions and enhancement

algorithms. Text insets show Pearson correlation, r, and p-value. The colour of each point indicates the value of the metric in the baseline case.
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TaggedPperformance of MVDR and WPE were reversed for Simulated and Real data. Our results agree with their Real data

result suggesting that the naturalness of the noise recordings increased the realism in our simulations.

TaggedPIn the present study, room reverberation was simulated by convolving dry speech with acoustic impulse responses

measured in real rooms. The filtering effect is therefore more realistic than the common approach where the AIRs

themselves are generated by simple acoustic simulation, e.g., using the image source method (Allen and Berkley,

1979). However, this method of simulation does not include the temporal variations of the acoustic channel from the

desired source to the microphones which occur if either is moving. Since all speech enhancement methods tested

here used offline implementations, any change in the spatial properties of the sound field over the observed duration

of the received signals due to changes in the acoustic channel would likely degrade performance. Online enhance-

ment algorithms, which update their parameters in response to changes in the signal characteristics, can mitigate

such degradation but depend on the ability to track acoustic changes. An analysis of algorithm behaviour under non-

stationary conditions is increasing in importance, as demonstrated by the CHiME3 challenge, but as yet there is no

database of recorded speech under dynamic conditions in which the SNR can be controlled or with such a diverse

range of reverberation conditions as was used in the current study.

TaggedPThe similarity of the results obtained with Fan noise and Ambient noise are perhaps not surprising given the sta-

tionary nature of building ventilation and computer fans, which was the primary source of noise in most of the simu-

lated conditions. This raises the question of whether in future work it is sufficient to evaluate new algorithms on

either one or the other.
6. Conclusions

TaggedPThe performance of the CHiME3 baseline ASR system has been evaluated in a diverse range of acoustic condi-

tions using the ACE Challenge database of AIRs and noise, which goes beyond the conditions of the CHiME3 chal-

lenge. The benefit of speech enhancement processing has been clearly demonstrated, with rWERRs of up to 82%.

The STOI metric has been shown to be well correlated with the rWERR and so can be helpful in evaluating the per-

formance of novel algorithms prior to testing as part of an ASR system.
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