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ABSTRACT 

The diffusion of minimally invasive surgery has thrived in recent years, providing substantial 

benefits over traditional techniques for a number of surgical interventions. This rapid growth 

has been possible due to significant advancements in medical technology, which partly 

solved some of the technical and clinical challenges associated with minimally invasive 

techniques. The issues that still limit its widespread adoption for some applications include 

the limited field of view; reduced manoeuvrability of the tools; lack of haptic feedback; loss 

of depth perception; extended learning curve; prolonged operative times; and higher financial 

costs. The present review discusses some of the main recent technological advancements that 

fuelled the uptake of minimally invasive surgery, focussing especially on the areas of 

imaging, instrumentation, cameras, and robotics. The current limitations of state-of-the-art 

technology are identified and addressed, proposing future research directions necessary to 

overcome them. 
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INTRODUCTION 

Minimally invasive surgery (MIS) has experienced a surge in popularity over the past few 

decades, thanks to rapid technological advances and growing consensus in the clinical 

community. According to a report on laparoscopic devices recently released by Global 

Industry Analysts Inc., 7.5 million laparoscopies were performed worldwide in 2015.[1] For 

a number of operations – such as appendectomy, tubal ligation, cholecystectomy, gastric 

bypass, myomectomy, and prostatectomy – more than 90% of interventions are now 

performed through minimally invasive approaches, with projected growth rates of up to 15% 

in the next 5 to 10 years.[2] The main reason behind this paradigm shift is the significant 

reduction of trauma to the patient’s body that results from the minimisation or even 

elimination of surgical incisions. The reduced physical trauma, in turn, leads to a number of 

additional benefits for the patient: lower incidence of post-surgery complications, reduced 

pain, quicker recovery, shorter length of hospital stay, minimal cosmetic disfiguration, 

decreased psychological impact, and overall improved quality of life.[3–8] Choosing to 

perform MIS over open surgery, however, means also embracing a series of potential 

disadvantages from the surgeon’s perspective. These include limited operating space and 

field of vision; the lack of haptic feedback; the loss of stereo vision and depth perception; 

diminished hand-eye coordination; prolonged learning curves and training periods; extended 

operation times; and increased costs.[9–11] With the recent developments in medical and 

surgical technology, such complications are gradually being overcome, enabling the adoption 

of minimally invasive procedures in hospitals and clinics around the world. The latest high-

resolution miniaturised cameras now provide surgeons with a detailed view of the operating 

space, supplying stereo vision and optimal lighting of hidden targets regardless of their 

location in the body. In some cases, it is even possible to access and view certain anatomical 

locations better than with open interventions. Minimally invasive instruments have also been 
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designed and engineered to allow routine tasks to be performed safely and accurately even in 

a limited space. Modern imaging technology and image processing techniques, moreover, 

provide accurate guidance and navigation throughout the intervention, increasing precision 

and safety while speeding up the procedure. Recent navigation systems offer drastic 

improvements in the way information is acquired, displayed, and integrated in the surgical 

workflow, through augmented reality and multimodal image registration. Virtual reality 

simulations have revolutionised training of new practitioners by providing novel ways to 

steepen the learning curve. Advances in robotics, lastly, have contributed heavily to improve 

the surgeon’s dexterity and skilfulness through articulated tools and human–robot 

collaborative platforms. This review will discuss the main and most recent developments in 

the aforementioned areas, analysing the current limitations that still need to be addressed and 

suggesting possible future directions. 

 

CAMERAS AND VISION 

By eliminating or reducing the size of the incision on the body, the accessibility and visibility 

of the operating space becomes severely limited. While in open surgery the target can be 

easily exposed, in MIS other means must be used to gain a clear view of the operation. 

Firstly, it is necessary to obtain good illumination in an otherwise dark environment. The 

scene must also be viewed in colour and at high-resolution, in order for the surgeon to discern 

possible important details on the tissue. Moreover, it is often necessary to reach the target 

through long, tortuous paths in order to exploit the body’s natural orifices and passages.  

In the second half of the 20th century fibre optics first provided the bases to develop the first 

flexible endoscopes, gastroscopes, ureteroscopes and colonoscopes.[12] In the modern 

versions of these devices, illumination is most commonly provided by using either a bundle 

of optical fibres illuminated by a xenon lamp, or LEDs placed directly at the tip of the 
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scope.[13] The xenon light source provides wide-spectrum light and is generally augmented 

with a heat (infrared) filter to avoid overheating of the cable and tip, and to reduce the risk of 

damaging the target tissue. Until the advent of charged-coupled devices (CCD), coherent 

fibre optic bundles were also used to transmit images back to the viewer. In most modern set-

ups, high-resolution CCD cameras are used instead to transmit a live video stream to a flat 

screen via an ADC converter and processing unit.[13] Advanced laparoscopes, usually based 

on rod lens systems, have also benefitted from the employment of cameras by eliminating the 

requirement for the surgeon to look into the binocular eyepiece, minimising discomfort and 

stress. The operation can also be viewed by the whole surgical team, thereby enhancing team 

collaboration and cooperation. Furthermore, using digital cameras means that videos can be 

recorded and stored for future use. Image processing can be performed in real time, allowing 

the surgeon to tweak properties such as contrast or brightness to improve the visibility of the 

scene. Newer laparoscopic systems may also use a CCD at the endoscope tip, allowing the 

lenses to be removed from the interior of the endoscope shaft. These modern setups have 

been adopted almost universally in surgical theatres, substituting the more obsolete optical 

systems. 

 

FIGURE 1 

 

One of the main problems associated with video-assisted MIS is the loss of stereopsis, 

meaning the perception of depth and 3-dimensionality. This occurs when a 3D image is 

projected on a 2D screen, and is often the cause of impeded hand-eye coordination and 

erroneous movements of the tools.[14] The employment of multiple imaging channels and 

cameras corrects this problem, and allows stereo vision to be recorded while providing high 

resolution images that can be displayed on a 3D monitor.[15] The Olympus VISERA® 
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platforms (Olympus Corp., Shinjuku, Tokyo, Japan), for instance, include stereo videoscopes 

that can bend their tip of 100º in four directions and providing 3D videos in 4K resolution 

and offering flexibility for applications in laparoscopy and endoscopy. Another example is 

the 3D-Eye-Flex, developed by Nishiyama et al.,[15] an endoscopic video system which 

offers a wide angle of view for minimally invasive neurosurgery. This type of technology is 

already commercially available and has undergone early clinical trials, yielding improved 

performance, shorter learning curve, and greater accuracy and precision.[16]  

3D data can be recovered from non-stereo cameras through image processing algorithms such 

as computational or photometric stereo, which extract depth information and allow a 3D 

image to be reconstructed and displayed.[17,18] It is important to note that, while 3D 

visualisation improves performance and decreases operation time, high definition images are 

still necessary for optimal clinical results.[19] Recent work has focused on overcoming the 

problems caused by the misalignment between the operative field and the camera’s optical 

axis. It has been shown that performance is improved when the two orientations are mapped 

through automatic realignment algorithms.[20–22] Future improvements should be aimed at 

minimising the sense of visual fatigue and nausea that may arise upon looking at 3D display 

systems for a prolonged time, which could impede the surgeon’s concentration in long 

sessions.[23]  

 

SURGICAL TOOLS 

A challenge lies in designing instruments that are compact enough to fit in trocars or 

endoscopes, and that can operate in a confined space: the size of the tools needs to be 

minimised without compromising their function. A number of surgical tools have been 

converted into minimally invasive equivalents, leading to products such as Endo Stitch™ for 

sutures (Medtronic, Dublin, Ireland); Endo Catch™ pouches (Medtronic) for waste retrieval; 
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Endo Graspers (MetroMed Healthcare, Taiwan, Taiwan); and needle drivers (LiV™ 

Instruments, Estech, San Ramon, CA, USA) – all of which have been used for years and 

perform relatively well in simple tasks.[24–27] In particular, staplers and endoscopic suturing 

devices, such as the MicroCutter XCHANGE® (Cortica, New York, NY, USA), have allowed 

the performance of operations such as haemostatic bowel transection, closure of gastrotomy, 

and sudden anastomosis with increasing reliability, and have provided better performance 

compared to manual stitching or clips.[28] Another specific category of tools widely 

employed in MIS is the one aimed at energy delivery to ablate tissue, seal vessels, and 

cauterise wounds. Examples range from simple electrodes that heat up the tissue through the 

passage of currents, to harmonic scalpels – tools that convert electrical energy into 

mechanical motion, effectively cutting through tissue via high frequency vibrations of a 

blade.[29] For cauterisation, radiofrequency ablation systems and argon-enhanced 

electrosurgery allow efficient current delivery for improved outcomes and decreased 

operation time.[30,31] Lasers are also sometimes utilised for ablating tissues or tumours. In 

prostatectomy, laparoscopic laser surgery causes lower morbidity compared to traditional 

transurethral resection of the prostate (TURP), although open surgery is sometimes still 

preferred.[32] In fact, despite energy delivery technology being successfully used routinely, 

there are a number of safety considerations to take into account. Because of the limited field 

of view, the risk of burning the wrong area or activating the electrodes inadvertently is 

higher, as is the possibility of direct and capacitive coupling, which can too cause 

overheating and burns. 

These advancements have not only improved the state-of-the-art of many minimally invasive 

procedures, but have also allowed operations never performed endoscopically before, such as 

cholecystectomy through Natural Orifice Translumenal Endoscopic Surgery (NOTES), or 

image-guided keyhole neurosurgery for brain tumour removal.[33,34] The potential of 
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NOTES in particular has gained widespread attention in the clinical community, as it does 

not require a skin incision to access the body. However, it is limited by the restrictions 

imposed by the small size, large flexibility and high manoeuvrability required for endoscopic 

tools.[35] Indeed, most minimally invasive tools are much more difficult to manipulate than 

regular instruments.[27,36,37] It is often complicated to achieve triangulation of the 

instruments, flexibility, and traction, while avoiding cluttering. The tip of the instruments 

does not have the same degree of articulation as the human wrist, nor the same ability to 

grasp and manipulate objects. The need to frequently change endoscopic devices also tends to 

prolong operative times and may cause patient discomfort.[38]  

 

ROBOTICS 

Robotics offers some solutions to the aforementioned problems, and has proven to be a viable 

option to address the limitations associated with MIS. In robotic-assisted surgery, the 

instruments are not moved directly by the surgeon, but through ad hoc controllers and 

software. The tools can be supplemented with motors and end-effectors, improving the user’s 

ability to rotate, move and manipulate in minimally invasive procedures. By providing 

articulation, implementing filtering of tremors, and simulating tactile sensations, the 

surgeon’s dexterity and eye-hand coordination are enhanced, thereby subjectively improving 

surgical performance.[39,40] The most successful example of surgical robotic systems is 

perhaps the da Vinci® (Intuitive Surgical Inc., Sunnyvale, CA, USA), which was the first 

(and thus far, the only) console for teleoperated surgery to receive the approval of the Food 

and Drug Administration (FDA). In the past two decades it has been adopted widely in 

hospitals and clinics worldwide for operations that range from urological to cardiac to 

abdominal surgery. Its master console is equipped with controllers through which the surgeon 

intuitively controls a slave unit, made of up to four robotic arms and a 3D HD camera.[39] 
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The robotic arms allow mounting of custom-made tools and articulated end-effectors; 

actuators can also be installed to move catheters and endoscopes, enhancing the feasibility of 

robotic minimally invasive operations such as fenestrated stent grafting and 

prostatectomy.[32,40] The new da Vinci SP® offers single-port functionality and the 

possibility of using three fully articulated instruments through a single 25mm cannula – a 

feature not implemented in previous versions, which prevented single-port access.[41]  

FIGURE 2 

 

A product developed specifically for NOTES is the i-Snake® (Imperial College London, 

UK), a surgical flexible robot that allows movement in 8 degrees of freedom thanks to four 

articulating joints. Multiple tools, cameras and illumination fibres can be passed through its 

cylindrical body while still maintaining its flexibility and ability to steer, due to a novel 

tendon system and smart computer guidance.[42] The promising results obtained with the i-

Snake have set the stage for the development of the Micro-IGES platform (Imperial College 

London, UK), a fully integrated endoluminal surgical platform with bimanual control and 

hand-assisted instrumentation designed for incision-less transanal microsurgery, integrating 

novel mechatronics, force and contact sensing, and non-invasive structural and endo-

microscopic imaging. Another example is the Flex® Robotics System (Medrobotics, 

Raynham, MA, USA), designed for transoral procedures, which offers very similar 

capabilities.[43]  

Haptics 

A major area of focus in the development of surgical robotic platforms is the implementation 

of haptic feedback. Haptics include sensations such as force, pressure, temperature, and 

texture – all qualities that are difficult to quantify and represent in robotic and minimally 

invasive procedures.[44] It is hence problematic for the surgeon to judge the right amount of 
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force to apply and make decisions based on tactile palpation. The addition of force and tactile 

feedback has been shown to improve learning for novices, decrease the risk of tissue damage, 

and shorten operating times.[45–47] The da Vinci does not have native haptic feedback 

capabilities, although attempts have been made to implement it through its dedicated research 

kit.[48] This has been achieved by installing force sensors on the tools, and using actuators to 

provide active resistance through the controllers. However, this feature is still experimental 

and it is not present in the commercial product used in surgical theatres. Conversely, in 

handheld robotic tools haptic feedback has been successfully implemented through various 

approaches, including vibration as well as auditory and visual cues.[49–52] These techniques 

have also been applied in endoscopy, achieving good results.[53]  

Human-robot interactions 

Another fertile area of research in surgical robotics is the application of machine learning 

algorithms for the creation of human-robot cooperative control frameworks, in which the 

surgeon is aided by the machine in the most critical parts of a task.[54] This can not only 

speed up the learning curve for users new to robotic technology, but would also allow to 

perform repetitive tasks (such as laser ablation, which needs to be performed many times 

over the same area) with much greater precision and reliability. Using a double console setup 

can thus be beneficial for training and learning purposes, both for the novice and the 

machine: as expert surgeons perform a physical or virtual surgical simulation, the trainees 

can follow their steps using another machine, while the robot can track the instruments, 

implementing complex algorithms in order to improve performance.[55] For example, active 

constraints can be applied to enhance the safety of operations by limiting the reachable space 

of the end-effector;[54] the surgeon’s gaze can be tracked and registered with the tools in 

order to minimise erroneous movements;[56] visual servoing can be used to perform 

autonomous tissue scanning for enhanced real-time biopsies and diagnosis;[57] additional 
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instruments can be controlled through voice commands.[58] Furthermore, motion scaling can 

be applied in laparoscopic procedures, to mitigate for the effects of the varying amplification 

of the hand movements, due to the length of the instruments and the presence of a fulcrum 

point.[58]  

Challenges and limitations 

Despite the technical advantages that robotic set-ups can provide to minimally invasive 

surgeons, there is still little evidence of significant improvements from a clinical point of 

view.[59] Moreover, robotic technology is still extremely expensive – for instance, a single 

da Vinci system costs about $1.5M, and a robotic laparoscopic operation can require up to 

$5000 more than its traditional alternative. The high prices are due to the complexity of the 

technology, as well as to biocompatibility, maintenance and sterilisation issues.[60–62] It is 

therefore difficult to justify such expenses for a technology that, even though it has the 

potential to improve surgical performance,[63,64] does not yet seem to yield proven clinical 

benefits for the patients.[65] Therefore, until costs decreases, it is not realistic to imagine a 

widespread diffusion of robotic MIS. Moreover, because of the difficulty to prove the clinical 

advantages of surgical robotics, obtaining FDA approval tends to be especially lengthy and 

difficult.[59] This is also due to a number of ethical issues surrounding the use of robots for 

medical purposes, including the possibility of malfunctions and system downtimes which 

could harm the patient, and a lack of clear ways to define legal responsibilities if these events 

occur.[66,67] Efforts should be aimed at bridging the gaps in the legislation, while continuing 

to improve the safety of the robotic systems and studying ways to make the technology 

cheaper and more accessible. On this topic, the FDA has published a report outlining the 

challenges and regulatory pathways for introducing robotically-assisted surgical devices 

(RASDs) into the market. The major issues currently slowing down the approval of new 

RASDs are identified to be: the lack of a national registry; the lack of a formal framework to 
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describe their development stages; the lack of clarity about their actual clinical potential; the 

inability to assess and compare training and simulation technology; limited collaboration 

between stakeholders to generate and collect clinical data.[64]  

Addressing these points is crucial, because robotics has the potential to open the doors of 

MIS to a higher number of surgeons by assisting them in difficult tasks. As minimally 

invasive procedures become more advanced and technically complex, surgical robots are the 

key to assist the surgeons and thus contribute to the diffusion and establishment of MIS.[59]  

 

IMAGING 

Another main category of technology that provided major contributions to MIS is imaging. 

Since 1895, when X-rays were first discovered and their potential for medical purposes 

understood, radical developments in imaging techniques has led to the invention of MRI, CT, 

PET, and many other technologies, enabling surgeons to see inside the human body in ever 

greater detail and higher resolution. Minimally invasive interventions have benefitted 

especially from these techniques, since the target is always hidden from the surgeon’s naked 

eye. Furthermore, it is now possible to accurately plan the operation in advance; to offer 

training to the surgeon in the form of virtual reality simulations; to obtain intra-operative 

real-time guidance; to receive valuable diagnostic information from processed image data; 

and to perform diagnoses non-invasively.  

Planning and Training 

Preoperative planning has been shown to be extremely helpful in order to improve the 

surgeon’s preparation and to study the optimal strategy of intervention, leading to better 

performance and improved decision making.[68] In MIS, where access ports are small and 

paths are tortuous, accurate planning is key. Pre-operative scans can be used to build 3D 

models of target structures and organs, or even of the whole body. These can be used by the 
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surgeon to diagnose, plan, and evaluate the outcome of operations. CT and MRI are very 

commonly used for this purpose, often in combination, in a number of specialities ranging 

from orthopedics to cardiac surgery.[69–73] For the latter, for instance, CT angiography is 

critical to evaluate patients undergoing minimally invasive interventions: it can identify 

regions not apt for catheter passage and discover abnormalities of the arteries, thus avoiding 

possible serious complications.[74] Furthermore, preoperative imaging is often necessary to 

decide whether it is worth proceeding with a minimally invasive procedure or whether to opt 

for open surgery instead.[75,76] Sometimes an intervention may be too risky or too difficult 

to be performed with non-traditional techniques. This can be especially true for very delicate 

operations or for patients who would not be able to withstand lengthy surgeries. In fact, 

clinical decision support has been identified as one of the critical areas of improvement in 

computer-assisted surgery.[63] 

Volumetric reconstructions from pre-operative scans are also the basis for the development of 

patient-specific virtual reality simulations, through which the surgeon can perform procedural 

training before carrying out the actual intervention. Simulations have been proven to be 

crucial in order to steepen the learning curve for novices in MIS, and using patient-specific 

models can also be helpful to prepare surgeons before difficult operations.[77–79] Moreover, 

lack of proper practice opportunities has indeed been identified as one of the main reasons for 

the slow adoption of computer-aided procedures.[80] Training is not only aimed at improving 

technical skills; it also applies to “dealing with anatomic variations and complications, 

professionalism, communication skills, teamwork, leadership skills, and dealing with 

equipment failures.”[77] This can prove fundamental not only for novices, but also for more 

experienced surgeons who have performed traditional surgery for years, and who, for this 

reason, may be even slower than new trainees to assimilate new techniques. Further, as 

suggested by Kenngott et al., personalised feedback and training can potentially be enhanced 
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through the automatic detection and analysis of the surgeon’s movements, in order to 

understand and improve the patterns in the s workflow.[63] 

 

Image Guidance 

Another use of imaging is to offer image guidance and navigation during operations. Thanks 

to improved processing power and modern software, navigation has become a key part of 

surgical routines, allowing interventions such as aneurysm repair and stent grafting to be 

carried out endovascularly and thus resulting in a lower early mortality rate compared to open 

surgery.[81,82] In these procedures, CT angiography is usually employed to diagnose the 

aneurysm, track the stent during the operation, and perform follow-up checks.[74] In 

neurosurgery, navigation systems have existed since early times, in the form of stereotactic 

frames combined with MRI and CT imaging systems. Modern technology, such as the 

EasyGuide system developed by Wadley et al.,[83] offers dynamic guidance and interactive 

feedback to neurosurgeons by tracking the surgical tools and showing its position on a screen 

overlaid onto the preoperative scans. This allows the surgeon to understand the location of 

the instruments intuitively and with high precision. Minimally invasive image-guided surgery 

has also been gaining ground for cancer diagnosis and removal, for instance in the prostate: 

robotic ultrasound probes are used to improve needle localization, diagnostic accuracy, and 

removal precision.[84] Technology such as the C-arm, introduced in 1955, has allowed the 

employment of intraoperative X-rays and CT, providing huge benefits to minimally invasive 

spinal surgery, in which precise tracking of the instrument is vital.[85] Instruments can also 

be tracked through optical means – for instance using infrared receivers and emitters – or 

electromagnetic systems. The latter are especially useful in MIS, because they do not require 

the tool to be in the line-of-sight of the detector, and can be used to track catheters and 



 15 

laparoscopic tools. However, they can be susceptible to interference from metallic objects or 

external electromagnetic fields.  

Next-level guidance can be provided through augmented reality: an “image-enhanced 

operating environment”[86] is created by overlaying a visual representation of the subsurface 

anatomy and critical structures, and integrating it with the video feed from the camera. The 

rendered images are obtained from volumetric scans of the patient, and are therefore faithful 

representations of the real structure. This approach can alleviate the problems arising from 

the loss of depth perception and obstructed vision encountered in MIS, by showing 

anatomical information of targets that would otherwise be hidden to the eye.[51,52,86] 

Current set-ups have the possibility of offering ‘on-demand’ augmented reality overlaid 

directly on the video feed of the operative screen, using a transparent screen or a separate 

device such as a tablet PC.[87,88] Current research is focusing on relieving the surgeon from 

the pressure of deciding when visual input is needed, employing machine learning algorithms 

and analysis of surgical workflows to automate and improve the augmented reality 

systems.[89]  

While image guidance has indeed become an integral part of many minimally invasive 

interventions, the difficulty in registering soft tissue and modelling its deformation has 

slowed its adoption.[90] It is of paramount importance to use advanced engineering 

techniques to model the deformation of organs and tissue and implement it in real time in 

order to provide accurate information to the surgeon. These methods, however, tend to be 

computationally expensive and may not always be a good fit for real time. Requirements of 

processing and computational powers should therefore be a prime concern when developing 

new technology for image-guided surgery. Alternatively, live imaging techniques such as 

ultrasound can be used instead of preoperative models for augmented reality and navigation 



 16 

purposes. In this case, the position of the instruments is registered in real time directly with 

the ultrasound scan, eliminating the need for complex rendering and modelling.[86] 

 

FIGURE 3 

 

Optical Imaging 

Minimally invasive surgeons also benefit greatly from the opportunity to perform diagnoses 

on the spot through optical imaging. This technology uses visible, infrared and ultraviolet 

light to obtain biochemical and molecular information about the target tissue, and has a 

number of advantages compared to other imaging techniques. Firstly, the energy deposited in 

the body is much lower than for radiative imaging and does not lead to genetic damage; 

secondly, multiple optical approaches allow differentiation between soft tissues at good 

spatial resolution. Diffuse optical tomography, for instance, can offer an alternative to X-rays 

in diagnosis and image-guided removal of breast cancer, as it eliminates the risk of damage to 

delicate tissue through radiations.[91] The standard laparoscopes can also be augmented with 

imaging systems that are able to detect fluorescence, multispectral scattered light, Raman or 

the polarization properties of tissue. Moreover, the instrumentation is less bulky than for 

alternative techniques, and can be easily attached to minimally invasive instruments. The 

implementation in MIS currently remains limited to a subset of procedures, but it is of major 

importance in order to perform diagnoses, biopsies, and check-ups.[92] For example, 

fluorescence imaging has been proven to provide extremely accurate and rapid classification 

of pulmonary adenocarcinoma or bladder cancer through cystoscopy.[93] Fluorescence 

cystoscopy has resulted in further improvements in tumour detection.[94,95] This technique 

uses blue light to detect an agent that was previously injected near the target site, a 

fluorescent derivative of which accumulates in damaged tissue. Other extensively employed 
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techniques that take advantage of the fluorescent properties of tissues include confocal 

endomicroscopy – used to obtain optical biopsies of endoluminal surfaces (e.g. in 

prostatectomy) with high spatial resolution – and fluorescence lifetime imaging, used for 

instance to detect polyps in the colon.[96,97] Many promising results have also been 

achieved through 3D optical coherence tomography, a scanning method that allows to create 

depth maps of the tissue only using light, and thus can be incorporated well in 

endoscopy;[98,99] it can also perform high-resolution scans at the cellular level.[91]  

An issue with fluorescence-based techniques is that they often require the injection of 

fluorescent agents. While this may still be a less harmful option than being exposed to 

radiations, it is still undesirable to expose the body to external substances. Moreover, optical 

techniques have a reduced imaging depth, due to high absorption and scattering of light in 

tissue. For this reason, they are often combined with other diagnostic tools in order to get 

more complete information and better axial resolution. Multimodal imaging is in fact a 

common approach to integrate the strength of different techniques while overcoming their 

limitation,[100] and is especially valuable in MIS, where size constraints make it more 

difficult to employ bulkier imaging systems such as CT, PET or SPECT, effectively ruling 

out valuable methods for intraoperative data collection. Improving the integration and 

registration of images between different modalities is therefore vital in order to take full 

advantage of imaging technology. Recent efforts have focused on developing robotically 

actuated tools to achieve intraoperative multimodal fusion. For instance, endomicroscopy and 

ultrasound imaging have been combined in order to scan large areas of tissue in real time and 

perform three-dimensional reconstruction of complex structures during an 

intervention.[101,102]  

 

CONCLUSIONS  
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This review has demonstrated the role that technological advancements have played in the 

development and diffusion of minimally invasive surgery in the past decades. Some of the 

latest developments in vision, instrumentation, robotics, and imaging have been illustrated, 

investigating the limitation of current practice and identifying key points of improvement that 

need to be addressed in the future. 

Modern cameras can provide 3D images in high definition and offer a vision of the operative 

field comparable to open surgery, making up for the loss of stereovision and representing a 

definite improvement over fibre optics. Flexible videoscopes allow the surgeon to reach 

hidden targets even through tortuous paths, and have permitted the emergence of novel 

techniques that exploit the body’s natural openings. Efforts should be aimed at providing a 

more natural visualisation of 3D scenes, as well as at increasing the resolution of the images 

while reducing the size of the cameras. In addition, video images can be enhanced with 

virtual models of structures and tissues, creating an augmented reality environment that has 

been proven to improve the performance of the surgeon. These models, also used to create 

completely virtual scenes for surgical preparation and training, are rendered from volumetric 

data that is obtained from preoperative scans. Through imaging technology it is indeed 

possible to plan operations and train the surgeon in advance; to provide guidance and 

navigation during the intervention, enhancing the confidence of the surgeon and the safety of 

the operation; to perform accurate diagnoses, biopsies and postoperative check-ups in a 

minimally invasive way. 

Lastly, the advantages and shortcomings of tools for MIS have been analysed. A number of 

traditional instruments have been engineered to fit through laparoscopic trocars and other 

small tubes, so that many procedures can now be carried out with similar or better outcomes 

than open surgery. The limitations of minimally invasive instrumentation can be found in the 

loss of articulation compared to the human wrist; complexity of making them long and 
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flexible without losing traction; prolonged operative times due to difficult manoeuvrability. 

For this reason, robotics have shown promise to optimise surgical performance and minimise 

human errors. Tools can be articulated, computers may be employed to aid the surgeon, and 

complex software can enhance the safety and accuracy of the system. Nevertheless, the 

limitations of robotic systems are still numerous. Progress must be made on bridging the gap 

between surgeons and machines, accelerating the learning curve and reducing operative times 

and costs. Training programs must be implemented for this purpose, improving on the 

existing systems for virtual reality and simulations and allowing both novices and 

experienced surgeons to adapt to robotic and minimally invasive surgical systems. Haptic 

feedback, loss of eye-hand coordination, and lack of depth perception are also still major 

issues that have not been completely overcome yet, which should be the focus of future 

research in order to allow the discipline of minimally invasive surgery to grow and spread. 
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MAIN MESSAGES 

 Rapid growth in the popularity of minimally invasive surgery has been possible due to 

developments in medical technology, which minimised many problems traditionally 

associated with minimally invasive techniques. 

 

 High-resolution miniaturised cameras provide a detailed view of targets inside the body, as 

well as stereo vision and optimal lighting. 

 

 Imaging technology is used for planning and real time navigation during the intervention, 

increasing precision, speed, and safety. 

 

 Training and guidance can be offered through virtual and augmented reality systems, using 

realistic patient-specific simulations and rendering of anatomical structures. 

 

 Robotics allows to increase the surgeon’s dexterity through articulated tools, sensors, and 

human–robot collaborative platforms.  

 

 A number of issues still need to be addressed, including: a lack of proven clinical 

benefits of robotic platforms; the high cost of technology; steep learning curves for 

both novices and expert surgeons. 

 

CURRENT RESEARCH QUESTIONS 

 

 Can robotic technology provide proven clinical benefits in minimally invasive 

surgery? 
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 How can the costs of surgical technology be reduced in order to increase the diffusion 

of minimally invasive surgery? 

 What can be done to ensure that surgeons undertaking minimally invasive 

interventions are trained to use the latest technology available? 

 

SELF ASSESSMENT QUESTIONS 

 

1) In video-assisted minimally invasive surgery, which of the following does NOT 

provide any benefits to the surgeon?  

a) Stereoscopic vision. 

b) A permanent, static overlay of a rendered hidden structure. 

c) Haptic feedback through visual cues on the screen. 

d) Articulated tools. 

 

2) What is one of the chief reasons for the limited spread of robotic surgical systems? 

a) No surgical robot has received FDA approval yet. 

b) The advantages of using robots are only applicable to open surgery. 

c) They are extremely expensive. 

d) They are difficult to customise, hence there is currently little research done to 

improve them. 

 

3) Which of the following statements is correct regarding the training of surgeons? 

a) Experienced surgeons need little training to learn how to use minimally invasive 

and robotic technology. 

b) The learning curve is steeper for minimally invasive surgery than for open 

surgery. 

c) Navigations systems should not be used in the early stages of training to avoid 

confusing the surgeon. 

d) Virtual reality simulation are useful both to prepare before an intervention and to 

train novices for minimally invasive procedures. 

 

4) Which of the following pairs is most likely to increase the dexterity of the surgeon in 

laparoscopy and reduce the operative time? 

a) Articulated tools with robotic actuators and a 3D HD camera. 

b) A rod lens scope and an electromagnetic tracker 

c) Rigid tools and a binocular eyepiece. 

d) An ultrasound scanner and a xenon light. 

 

5) TRUE or FALSE: Thanks to further advances in technology, it is extremely likely 

that minimally invasive surgery will eventually replace traditional techniques for the 

vast majority of interventions. False. 
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FIGURE LEGENDS 

 

Figure 1 – Laparoscopy and Endoscopy. Left: diagram showing a setup for video-assisted 

laparoscopy. The surgeon holds the tools, while the camera is usually held by an assistant. 

The instruments are inserted into the body via a trocar – a hollow tube which pierces the 

abdomen and provide a point of access to the target. The abdominal cavity is filled with gas 

(usually CO2) to create more space to operate. Picture by Cancer Research UK (Wikimedia 

Commons) distributed under a CC-BY-SA 4.0 license. Right: a flexible endoscope, which can 

be equipped with 3D cameras, light guides, instrument channels, as well as pipes for water 

and air. ©2016 Intuitive Surgical, Inc. 

 

Figure 2 - The da Vinci surgical robotic platform. 1) The surgeon console. The surgeon 

operates through master controls, and is supplied with a high definition, 3D view of the 

operating space. Hand, wrist, and finger movements control the tools accurately and in real 

time. The double console setup allows for cooperation between surgeons, and can be used for 

training purposes. 2) The patient-side cart, consisting of three or four robotic arms which 

carry the camera (usually a flexible HD 3D endoscope) and the instruments. The tools are 

controlled directly by the surgeon, with safety mechanisms preventing independent 

movements. The tip of the tools  is articulated to simulate the 7 degrees of freedom of the 

human wrist and fingers. Tremor reduction and motion scaling can also be implemented. 3) 

The vision system. Dedicated hardware and software for image processing provides detailed 

images of the patient’s anatomy; the screen provides a view of the operating field to the 

whole surgical team. ©2016 Intuitive Surgical, Inc. 

 

Figure 3 – A navigation setup based on augmented reality, in use with a da Vinci console. 

Left: the real scene is augmented with virtual images showing a reconstruction of the target’s 

anatomy. The same scene, or a different one, can be seen on a tablet positioned next to the 

console. Image adapted with permission from Hughes-Hallett et al.[85] ©2014 Elsevier Inc. 

Right: examples of navigation images available on the tablet. The surgeon can choose to view 

the raw scans (such as MRI or CT), or the 3D reconstructions. Registration software makes 

sure that the position of the tools relative to the anatomy is always known. Image courtesy of 

Philip Pratt, Imperial College London. 
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