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Abstract

Over the last two decades, the electricity industry has shifted from regulation of monop-
olistic and centralized utilities towards deregulation and promoted competition. With
increased competition in electric power markets, system operators are recognizing their
pivotal role in ensuring the efficient operation of the electric grid and the maximization
of social welfare. In this article, we propose a hypothetical new market of dynamic spa-
tial network equilibrium among consumers, system operators and electricity generators as
the solution of a dynamic Stackelberg game. In that game, generators form an oligopoly
and act as Cournot-Nash competitors who non-cooperatively maximize their own profits.
The market monitor attempts to increase social welfare by intelligently employing equi-
librium congestion pricing anticipating the actions of generators. The market monitor
influences the generators by charging network access fees that influence power flows to-
wards a perfectly competitive scenario. Our approach anticipates uncompetitive behavior
and minimizes the impacts upon society. The resulting game is modeled as a Mathemat-
ical Program with Equilibrium Constraints (MPEC). We present an illustrative example
as well as a stylized 15-node network of the Western European electric grid.

Keywords: Energy Economics, Electricity Markets, Game Theoretic Models,
Stackelberg Game.

1 Introduction

With increased competition in electric power markets, system operators are recognizing their
pivotal role in ensuring the efficient operation of the electric grid and the maximization of net
social welfare. For now, we define social welfare as a measure of the aggregate utility of a set of
economic decisions upon a society. This need primarily stems from the fact that over the last
two decades, the electricity industry has seen shifted from regulation of monopolistic and cen-
tralized utilities towards deregulation and promoted competition. These efforts were made by
governments hoping a renaissance of competition among firms would lead to increased societal
benefits such as lower prices, increased innovation and reduced barriers to entry (Nanduri and

∗email: pneto.a@gmail.com
†email: tlf13@psu.edu
‡Corresponding author, email: k.han@imperial.ac.uk

1



Das, 2009; Momoh, 2009). Therefore, the need for more advanced decision support models has
arisen for both private and public parties. In this article, we provide a framework of modeling
a hypothetical new electricity power market as a dynamic Stackelberg game. Dynamic opti-
mization games provides increased model fidelity as well a robust framework to study inter
temporal links that may go unseen otherwise.

We model the dynamic spatial network equilibrium among consumers, the market monitor
and electricity generators as a solution of a differential Stackelberg game. In the game, genera-
tors form an oligopoly and act as Cournot-Nash competitors who non-cooperatively maximize
their own profits. The market monitor acts as the Stackelberg leader and maximizes total
economic surplus by deciding the access charges generators pay to transmit electricity. The
differential game combining the leaders and the followers behaviors is expressed as a mathe-
matical program with equilibrium constraints (MPEC). The market monitor is an independent
entity charged with task of minimizing uncompetitive behavior in the market.

The advantage of this proposed mechanism is that the market monitor has new found
intelligence instead of simply reacting to what dominant firms have already decided. The
market monitor derives their strategic insights by employing a new market mechanism of
equilibrium congestion pricing. The market monitor sets the charges of transmitting power
not only to efficiently clear the transmission market (i.e. allocate transmission capacity with
the least amount of congestion) but also to increase social welfare. Interestingly, we show in
our numerical results that it possible to increase social welfare with equilibrium congestion
pricing when compared to the Cournot-Nash model. Thus, social welfare can be increased by
allowing the market monitor to employ equilibrium congestion pricing assuming our proposed
hypothetical market.

1.1 Electricity Market Design

A key feature that distinguishes game-theoretic models of electricity markets is the treatment
of bid and transactions of power. Bid-based systems, typically referred to as POOLCO models,
represent pool based systems where firms bid a supply curve to the central operator of the
grid Ventosa et al. (2005). The supply curve is typically submitted as quantity increments
and corresponding prices. The central operator collects all bids from firms and then decides
how best to operate the grid. The specific decisions depend on the planning horizon the
operator is interested. For example, a day ahead planning model may be referred to as a
unit commitment model (UC) where the central operator will inform each firm which of the
generation assets will need to be operational the next day. The central planner may not
yet know how much power will be required from each firm but allows firms to plan their
own operations with greater certainty. An economic dispatch problem (EDP) is typically run
either an hour or five minutes ahead of when the power will be consumed. In this scenario, the
central operator dispatches the generator to transmit certain amounts of power into the grid
Wood and Wollenberg (1996). These models require a fixed demand for the planning-horizon
of interest.

There are several pricing mechanisms to determine what price each generator receives.
We refer the readers to (Meier, 2006; Momoh, 2009; Wood and Wollenberg, 1996) for a more
detailed overview of the pricing mechanisms and the general operation of electricity markets.
In contrast to pool based systems, bilateral transaction markets feature generators directly
exchanging electricity and money. The central operator is therefore primarily concerned with
the security and reliability of the market. Hybrid systems also exist in which pool based
systems also allow bilateral transactions between agents.
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Both the UC and EDP are tactical planning tools. The central planner in conjunction with
the transmission grid operator must also, typically in parallel, solve an optimal power flow
(OPF) model. OPF models usually resemble UC and EDP model closely with the addition
of transmission, security and reliability constraints Momoh (2009). These constraints ensure
the the resultant flows from the UC and EDP model are feasible for the physical transmission
network. One common area of infeasibility is the overloading of the thermal capacity of a
transmission line. Such an infeasibility, if allowed to transpire, would cause potential loss of
power to customers as well as reduced reliability of the transmission network far beyond the
local area surrounding the transmission line Meier (2006). In this article, we provide models
for both pool based and bilateral transaction markets with emphasis on the latter.

The market monitor, or often referred to as market monitoring and mitigating group, is
an independent entity charged with minimizing uncompetitive behavior in electricity markets
and ensuring the market power among participants does not endanger other grid participants
(Güler and Gross, 2005). Market monitors have a plethora of tools at their disposable but a
majority of them are ex-ante tools. A more detailed discussion about the role that market
monitors play in electricity market may be found in (Rahimi and Sheffrin, 2003; Güler and
Gross, 2005).

We use game theoretic models to facilitate the computation of interactions between mar-
ket participants resulting in an equilibrium. The models serve as a decision support tool
rather than as a replacement, to the economic dispatch, unit commitment or other scheduling
models. There exists some overlap in the phenomena both types of models try to represent;
however game theoretic models are proxies for real world models so that market designs and
other theoretical exercises may be performed with increased fidelity. Game theoretic models
typically do not intend to model all portions of the system models. Rather they focus on
mimicking certain aspects of the model to explore various interactions and outcomes that
result from competition and interaction of generators, consumers, operators and regulators.
Game theoretic models do not perfectly represent the actual models that central planners use
to operate the grid. However, they do provide insight that allows the exploration of decision
support and the potential for new market design and operational policies.

Our proposed model is primarily focused on the equilibrium of market participants. Equi-
librium models are especially suited for decision support since the resulting model output is
derived from the interaction of market participants rather than specifically assuming behavior
of other participants. Ventosa et al. (2005) makes the distinction between equilibrium models
and single firm optimization problems as well as simulation models. Single firm optimization
models assume a market participant maximizes their own objection function, typically profit
or social welfare, within a known competing market. Market quantities, such as prices and
quantities, are usually derived from functions given the single firm’s decision variables. Simu-
lation models represent market phenomena that may be too complex to model in traditional
optimization or equilibrium models. Simulation models are descriptive models and offer insight
how phenomena of interest may behave. In contrast, prescriptive models such as optimization
and equilibrium models, offer the modeler information on how to make a decision.

We also focus on modeling imperfectly competitive markets as they offer the biggest chal-
lenge for market participants and regulators in modeling decision and behavior. Our proposed
market assumes oligopolistic competition where several firms have the ability to influence the
price of electricity by their actions for a sustained period of time.
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1.2 Preliminary Mathematics

1.2.1 Differential Nash Game

The concept of a differential Nash game is at the core of the type of model we set forth in the
article. We present the concise and abstract differential Nash game published in Friesz (2010).

Suppose there are N agents, each of which chooses a feasible strategy vector ui from the
strategy set Ωi which is independent of the other players’ strategies. Furthermore, every
agent i ∈ {1, N} has a cost (disutility) functional Ji(u) : Ω→ R1 that depends on all agents’
strategies where

Ω =

N∏
i=1

Ωi, u = (ui : i = 1, ..., N) (1.1)

Every agent i ∈ {1, N} seeks to solve the problem

min Ji(u
i, u−i) = Ki

[
xi(tf ), tf

]
+

∫ tf

0
Θi(x

i, ui, x−i, u−i, t)dt (1.2)

subject to

dxi

dt
= f i(xi, ui, t) (1.3)

xi(t0) = xi0 (1.4)

Ψ[xi(tf ), tf ] = 0 (1.5)

ui ∈ Ωi, (1.6)

for each fixed yet arbitrary non-own control tuple

u−i = (uj : j 6= i) (1.7)

where xi0 is a vector of initial values of xi, the state tuple of the ith agent and

x−i = (xj : j 6= i) (1.8)

is the corresponding non-own tuple.

1.2.2 Complementarity

The principle of complementarity is a powerful tool in solving differential and dynamics games
in electricity markets and several other domains (Gabriel and Leuthold, 2010). Complemen-
tarity allows for the efficient computation of certain types of optimization problems that model
game-theoretic models. A prerequisite in understanding complementarity is the concept of or-
thogonality. The symbol ⊥ signifies orthogonality of two vectors. For example, consider the
vectors A and B such that A = (a1, a2, ...ai) and B = (b1, b2, ...bi) with the same cardinality
(i.e. |A| = |B|). The orthogonality of A and B , 0 ≤ A ⊥ B ≥ 0 suggests:

ai · bi = 0 ∀i,
ai ≥ 0

bi ≥ 0

Orthogonality describes a relationship of vectors where their product is zero but both
have to be nonnegative. This property is especially convenient because we often see this
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relationship among constraints in optimization problems. It is seen when relating constraints
with their associated dual variables. This occurs since a dual variable can only be greater
than zero when a constraint is non-binding. A complementarity problem is a specific type of
optimization that uses the principle of orthogonality. The properties of the underlying vectors
describe the type of complementarity problem is constitutes. In this article, we are concerned
with mixed complementarity problems defined below

y solves MCP
(
h(x, ·),B

)
(1.9)

The variables x refer to the upper level variables while the variables y are associated with the
lower level as described by the MCP above consisting of both the function h(x, ·) and bounds
B. The constraints g can be a function of both types of variables. The variables y are a
solution to the MCP. A point y with al ≤ yl ≤ bl solves (1.9) if, for each l, at least one of the
following holds

hl(x, y) = 0 (1.10)

hl(x, y) ≥ 0, yl = al (1.11)

hl(x, y) ≤ 0, yl = bl (1.12)

1.3 Contributions

A key contribution of this article is the proposed market design where the market monitor
serves as an intelligent agent representing both the operation of the power grid and societal con-
tributor. The traditional role of the market monitor is that of penalizing generator’s behavior
that it has deemed uncompetitive. This has been replaced with a proposal of anticipating both
generators’ and consumers’ behaviors and reactions to intelligently use equilibrium congestion
pricing to increase social welfare. The dynamic Stackelberg model considers a new market
design mechanism that also includes the following numerous realistic and computable fea-
tures: oligopolistic competition, inter-temporal constraints, dynamic production constraints,
time-varying demand, transmission constrained network and multi generator assets.

1.4 Organization

We organize the article as follows: Section 2 provides a brief literature review of welfare
economics and industrial organization, dynamic and differential games, electricity markets and
different type of dynamics relevant to electricity markets. Section 3 sets forth a new paradigm
in modeling how a proposed market monitor or central planners utilizes equilibrium congestion
pricing to increase social welfare in oligopolistic competition as a dynamic Stackelberg game.
Section 4 provides numerical examples to demonstrate the computational efficiency of our
proposed model and formulation. We end the article with some conclusions presented in
Section 5.

2 Literature Review

Our work is in the domain of computable game theory and equilibria with the specific ap-
plication of electricity markets. Game theory allows us to model decision making under
competition. The computability of our state-space game allows us to apply our framework to
large problems that would not have been able to be accomplished with normal form games.
Specifically, our framework lies within the area of differential games where the state of the
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game evolves with time according to a differential equation. Our application area of electricity
markets poses unique challenges, primarily stemming from a physical transmission network
connecting agents and properties of electricity generation, consumption and transmission. The
economic conditions of electricity markets further serve as a connection between the electric
grid and the computable framework we put forth. The subsequent sections divulge further
details of the literature that exists in each of the above areas and fields of study.

2.1 Differential and Dynamic Games

Game theory can be originally attributed to the works of VonNeumann and Morgenstern
(1944). However, the computable game theory framework that we build upon in this research
is largely a result of Isaacs (1999). We have chosen to accept the widely-held definition that a
dynamic game requires that the game evolves over time (Dockner et al., 2000). We utilize the
normal form of games, or referred to as state-space games, where variables representing states
describe the behavior of the game at any point in time (Mehlmann, 1988). Our differential
game is a subset of dynamic games where we utilize ordinary differential equations to describe
the evolution over time of the state of the game. We limit our analysis to non-cooperative
differential games where decision makers, or agents, do not enter in agreements with other
agents. Our work also employs deterministic functions where stochasticity is not used but
simple scenario-based perturbation can be employed to mimic levels of degrees of uncertainty.

2.2 Electricity Markets

Electricity market models typically describe the generation, sales and flows of electricity on
a transmission network. The literature varies with the information structure of the games,
agents and markets as well as time horizon, degree of uncertainty and the objective or goal
of the analysis. Ventosa et al. (2005) classified electricity market models into three distinct
categories. First, the optimization problem for one firm, in which the firm assumes either an
exogenous price or has a known demand function. Second, simulation models are descriptive
models that attempt to describe market interaction typically via discrete-event simulation or
agent based simulation. Lastly, market equilibrium firms consider all firms and are prescriptive
in nature, and typically utilizing a Cournot or supply function equilibrium viewpoint. Cournot
competition is a structure in which firms compete by deciding their quantities of production.
Supply function equilibrium models require generation firms to submit offer curves to the
system operator. In this article, we focus on the market equilibrium considering all firms,
assuming Cournot competition. A more detailed survey of Cournot and supply function
equilibrium models can be found in Hobbs (2001) and Day et al. (2002), respectively. Wu et
al. (1996) provides a readable summary and interpretation of folk theorems that have been
developed in the electricity market literature with respect to transmission access. Specifically,
the authors provide details of “Nodal prices, congestion revenues, transmission capacity rights
and compensation of transmission access.” Key formulations of the economic dispatch and
optimal power flow models are provided for spot and bilateral transaction markets.

A common goal of system planners is to mitigate market power, typically done by incen-
tivizing or penalizing firms that earn excess profit above a certain threshold, or are excessively
depended upon for the successful operation of the grid. This concern is valid when the market
exudes imperfect competition. Our proposed model assumes imperfect competition. Specifi-
cally, we focus on oligopolies where a few firms dominate the market and can directly influence
the price of electricity. Nanduri and Das (2009) and Blumsack et al. (2002) provides a brief
survey of market mitigation and imperfect competition literature.
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Rivier et al. (2001) presents a hydrothermal coordination assuming Cournot equilibrium
and utilizes a Mixed Complementarity Problem (MCP) framework. Wei and Smeers (1999)
used Variational Inequalities (VI) to analyze congestion in a spatial network assuming Cournot
equilibrium. Mookherjee et al. (2010) utilized a MCP to analyze a Cournot-Nash equilibrium
between generation firms competing as oligopolies, simultaneously with a transmission clearing
system operator.

Our proposed model goes one step beyond imperfect competition and utilizes a Stackelberg
framework. A Stackelberg game is a bilevel game, often represented as a Mathematical Pro-
gram with Equilibrium Constraints (MPEC), where the leader has the advantage of deciding
their variables before the followers decide their own variables; Ventosa et al. (2002); Murphy
and Smeers (2005), Gabriel and Leuthold (2010) and Hobbs (2001) all provide unique contri-
butions to the MPEC problem. A bilevel game in which there are multiple leaders is defined
as an Equilibrium Problem with Equilibrium Constraints (EPEC). For a more comprehensive
review of literature of equilibrium in electricity markets see Ventosa et al. (2005); Nanduri and
Das (2009); Daxhalet and Smeers (2001); Yao et al. (2008) and Hobbs and Helman (2004).

Hobbs et al. (2000) set forth a framework to model imperfect competition (electricity
prices rise above marginal cost) of electricity markets via an MPEC approach. The model
and procedure calculates oligopolistic price equilibria assuming “supply function equilibrium”
in which generators decide on their bid curves (acceptable price vs quantity offer curved are
generated for each firm) on the belief that rival generators will not change their own bid curves.
Specifically, the model is relevant when the economy consists of several dominant firms. The
dominant firm acts as the leader (upper level) of the MPEC. They choose their bid curves
first and in anticipation of rival generators’ bids and the Independent System Operator’s (ISO)
actions. The ISO, modeled as the follower, solves a single commodity spatial price equilibrium
problem. The ISO decides quantity of power as to maximize social welfare given the upper
level bid curves. Quantity is an input to bid curves and price equilibrium emerges. Thus, the
dominant firms can strategically set their bid curves to maximize profit while anticipating the
actions of the ISO and non dominant firms.

2.3 Differential and Dynamic Games

Game theory can be originally attributed to the works of VonNeumann and Morgenstern
(1944). However, the computable game theory framework that we build upon in this research
is largely a result of Isaacs (1999). Nash (1951) brought forth the foundational concept of
a Nash equilibrium strategy where N players cannot increase their utility by deviating from
their own strategy. Stackelberg (1952) introduced a different behavioral assumption where a
leader can anticipate other player’s equilibrium strategies in a bilevel game. We have chosen
to accept the widely-held definition that a dynamic game requires that the game evolves over
time (Dockner et al., 2000). We utilize the normal form of games, or referred to as state-
space games, where variables representing states describe the behavior of the game at any
point in time. Our differential game is a subset of dynamic games where we utilize ordinary
differential equations to describe the evolution over time of the state of the game. We limit
our analysis to non-cooperative differential games where decision makers or agents do not
enter in agreements with other agents. Our work also employs deterministic functions where
stochasticity is not used but simple scenario-based perturbation can be used to mimic levels
degrees of uncertainty.
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3 Electric Power Network Oligopoly as a Dynamic Stackelberg
Game

In this section, we set fourth a hypothetical new market that allows market monitors to ensure
uncompetitive behavior is minimized. The proposed framework may serve as a starting point
for a new class of models that aids market monitors to anticipate and prevent uncompetitive
behavior ex-ante any electricity is transmitted. This is in contrast to most of the tools available
to market monitors that look ex-post to the alleged uncompetitive behavior. Specifically, we
present a model in the which the market monitor employs equilibrium congestion pricing of a
bilateral transaction market in which generators and consumers are in equilibrium.

We consider an electric power grid operating with consumers, a market monitor and gener-
ators forming an oligopoly. Specifically, each generator possesses the power of influencing the
price of electricity with their own production and sales plan. Our consumers are generalized
to include retail consumers, utilities and Load Serving Entities (LSE). We assume the market
monitor utilizes equilibrium congestion pricing for the purposes of clearing the transmission
market to prevent generators from exceeding the physical limitations of the network. Further-
more, we assume the market monitor has the power to use equilibrium congestion pricing to
represent society’s interests as a whole; with the objective of maximizing economic surplus
or commonly referred to as social welfare. Each generator maximizes individual profit in a
Cournot-Nash game with other generators given the access charges the market monitor has set
forth. Our unique Stackelberg approach models the market monitor as a single leader, with
the generators acting as followers. The leader has complete anticipatory knowledge of the
generators’ equilibrium problem and decides access charges such that the generators produce
a production and sales schedule that is optimal from a societal perspective. Furthermore, we
model the interaction of the game’s agents with the use of dynamics. The dynamic approach
allows us to represent a higher fidelity model, which advances the level of market design tools
available for the system operators to analyze the competitive implications of oligopolies in
electric power markets.

We start with presenting a general dynamic Stackelberg game of a electric power oligopoly.
The market monitor is represented as a leader maximizing social welfare. The lower level
consists of a Cournot-Nash equilibrium among generation firms. The section begins with
preliminary notation and assumptions while Section 3.2 presents a continuous time formulation
of dynamic Stackelberg game. Section 3.3 contains our discrete formulations of the Stackelberg
game as well as the Mathematical Program with Equilibrium Constraints (MPCC) into which
we reformulate our original game.

3.1 Notation and Assumptions

The price of electricity ($/MWH) of each node where electricity is consumed is a known
function of sales and continuous time since we assume an oligopoly market structure. π(t)
satisfies

π(t) ∈ L2[t0, tf ]

where L2[t0, tf ] is the space of square-integrable functions. Moreover, we stipulate that the
price is a square-integrable function of time. We further assume that every firm is an oligopoly
and that no firms are price-takers. An oligopoly is an economic market structure in which
firms can influence the market price through their own sales and generations while price-takers
do not have any influence on price and sell at a price determined by the market. Our model is
general enough to include price-takers but are omitted at this point to convey a homogenous
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market structure. Furthermore, we assume our decision structure is deterministic and open
loop. “Open loop” signifies that firms simultaneously determine the decision variable for all
time periods within the planning horizon. We further assume perfect initial information and a
finite time interval [t0, tf ] ⊆ <1

+, where t0 ∈ <1
+ is the fixed initial time, tf ∈ <f

++ is the fixed
terminal time and tf > t0. The ramping rate r(t) describes each generators’ instantaneous
rate of change of of output q(t) with respect to time. Each generator’s output rate is q(t)
with associated generation cost V (q(t)) with producing q(t) units of electricity (MW). The
rate of power sales is denoted as c(t) while w(t) represents the access charges that the market
monitor charges to transmit power from the hub node to the node of interest. The controls

r(·) ∈ L2[t0, tf ]

c(·) ∈ L2[t0, tf ]

w(·) ∈ L2[t0, tf ]

determine the generators’ dynamics q(t)

dqfi (t)

dt
= rfi (t) (3.13)

We impose the following upper bounds on generation and ramping respectively

qmax ∈ <f
++

rmax ∈ <f
++

−rmin ∈ <f
++

Our model focuses on spatial equilibrium since any electric grid of interest spans a network. We
denote each node of the network using the index i that belongs to the set N consisting of every
node of the network. We also define the set of nodes M in which there are markets for power
since it is possible to sell and generate power at different nodes simultaneously. Furthermore,
we assume a linearized DC power flow as an approximation to the real world AC flow electric
grid as published in Schweppe et al. (1988). This common model approximation allows us
to easily represent Kirchoff’s laws with a parameter PTDFi,a representing the proportion of
power that flows on each transmission line of the network when power is transmitted to node i.
Furthermore, firms behave non-cooperatively (i.e. no collusion). A summary of sets, variables
and parameters is shown in Table 1 in continuous time.

The following vector concatenations are used, when applicable, to simplify the notation.

qf : qfi (t) for all i ∈M, t ∈ [t0, tf ]

cf : cfi (t) for all i ∈M, t ∈ [t0, tf ]

rf : rfi (t) for all i ∈M, t ∈ [t0, tf ]
w : wi(t) for all i ∈M, t ∈ [t0, tf ]

We distinguish πi(c, t) and V f
i (q, t) as explicit functions that have both the arguments cfi (t)

and qfi (t) respectively and the time t as a parameter. The variables and parameters presented
above will be used in the subsequent section in discrete time by substituting t as a subscript
for a continuous function.
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Table 1: Notations
Sets

A: set of transmission lines (arcs) in the network
F : set of generating firms
M : set of nodes at which there are markets for power
N : set of nodes in the network
T : Set of time periods in planning horizon

Variables

qfi (t): generation in MW by firm f ∈ F at node i ∈ N
cfi (t): sales (consumption) in MW by firm f ∈ F at market i ∈M
wi(t): access Charge ($/MW) for market i ∈M
rfi (t): ramping rate for firm f ∈ F at node i ∈ N

πi(c, t): inverse demand function($/MW) at market i ∈M
V f
i (q, t): generation cost function for firm f ∈ F at node i ∈ N

Parameters

Ta: transmission capacity of arc a

qfi,max: upper bound of generation f ∈ F at node i ∈ N
PTDFi,a: describes how much MW occurs through transmission line (“arc”) a as a

result of a unit MW injection at the hub node and a withdrawal at node i.

rfi,min: minimum ramping for firm f ∈ F at node i ∈ N
rfi,max: maximum ramping for firm f ∈ F at node i ∈ N

3.2 Dynamic Stackelberg Game

We assume the market monitor uses its influence to maximize social welfare or economic
surplus. In this article, we assume that the only means of reaching their objective is by way
of enforcing access charges paid by the generators per MW of electricity transmitted on the
network.

We define access charges as tariffs per units of power transmitted from the hub node to
the node of interest. The hub node is single location within the network that all electricity
sales are assumed to pass through in order calculate the cost of transmission. For example,
if 1 MW is sold from a generator at location A to a consumer at location B, for transmission
pricing purposes only, the transaction is divided into two transactions: a 1 MW transfer from
location A to the hub node, and a 1 MW transfer from the hub node to location B. The hub
node is arbitrarily chosen and the charge can be simply thought as the price to transmit one
MW of electricity to the desired node of sales or consumption. We define the access charge to
transmit to a node may be either positive or negative.

Every feasible set of unique access charges influences each generator’s profit and thus, the
Cournot-Nash equilibrium of the generators as a whole. The generators take the access charges
as exogenous variables and play a Cournot-Nash game with other generators to maximize their
individual profit. The consumers are represented by an inverse demand function at each node,
making the game a complete market. Standard congestion pricing formulations set the price of
transmitting electricity equal to the difference of marginal pricing between nodes. Locational
marginal pricing (LMP) is one of such pricing schemes (Wood and Wollenberg, 1996). Thus,
the price of electricity is equal at every node when combined with the transmission cost for
each node. We propose a new congestion pricing scheme where the access charge is the market
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monitor’s decision variable. Our formulation gives the responsibility of the market monitor to
set the access charges so that: 1) Generators do not transmit electricity beyond the capacity
of each transmission line; and 2) The electricity flows between generators and consumers
maximize net economic surplus all assuming our proposed hypothetical market.

3.2.1 Market Monitor’s Upper Level Problem

Social welfare, or interchangeably economic surplus, represents the benefits that all agents in
a market receive from the economic participation of purchasing and selling goods. Gabriel
et al. (2013) states that “It is the standard measure of market efficiency.” It is the sum of
consumer, producer and market monitor surplus. Each surplus is defined as the monetary
gain experienced from purchasing/selling a good for less/more than what they are willing
to pay/sell for the good. The consumer surplus can be thought of the gain each consumer
receives from willing to pay for a quantity of electricity less what they actually paid for it. It
can also be thought as the psychological or perceived benefit derived from consuming a good
beyond the opportunity cost to purchase it. Producer surplus is completely synonymous with
its profit in producing and selling electricity. Note that in addition to the generation cost of
producing electricity, each generator must also pay an access charge to transmit the electricity
it produces. The market monitor surplus must also be considered since it is an active player
in the proposed market. The market monitor surplus is derived from the network assess
charge revenue it collects from the generators. Thus the gain of the market monitor surplus
is 100% at the loss of the generator surplus. This access charge is specifically included in the
calculation of producer’s surplus as seen later within this section. We directly stipulate for a
given time period that the total market monitor surplus must be non negative. A negative
market monitor surplus would indicate that market monitor would subsidize the users of the
network and thus require outside funding. In practice, it may be desired for the market
monitor to act as a non-profit entity serving the needs of the proposed market as a whole and
thus the revenue would be returned to the users of the network via a financial mechanism.

We present a general form of social welfare that can be evaluated at equilibrium values of
power consumption, generation and access charges. The market monitor’s objective function
is to maximize social welfare SW (c∗, q∗) for every node where a total of c∗ units of power were
sold, q∗ units of power were generated and w∗ dollars of access charges summed for every firm,
node and time period in the planning horizon. We, for the time being, drop the subscripts
for nodes, firms and time for the sake of clear exposition. SW (c∗, q∗) can be generally defined
as the summation of all surpluses associated with each agent in the market economy. Our
problem of interest consists of consumers, generators (also referred to as producers) and the
market monitor. We define consumer surplus CS(c∗) as

CS(c∗) =

∫ c∗

0
π(x)dx− [π(c∗) · c∗] (3.14)

where c∗ is the equilibrium value of sales, π is the inverse demand function and π(c∗) is the
equilibrium price that the consumers and producers pay and receive respectively. The first
term denotes integrating every consumer’s benefit derived from consuming electricity from the
the first unit of electricity up to c∗ units. Note that consumers do not receive any benefits
beyond c∗ units simply because we define c∗ as the equilibrium units that are sold. The second
term refers to the cost, price multiplied by quantity of sales, that the consumers paid to the
generators for their consumption.

Producer surplus PS(c∗, q∗, w∗) is defined as the profit of the electricity generation industry
given by revenue less costs. We define producer surplus as
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PS(c∗, q∗, w∗) = π(c∗) · c∗ − V (q∗)− w∗ · q∗ (3.15)

where V (q∗) is the total cost to generate q∗. In our current case of dropped node subscripts,
c∗

.
= q∗ since we have not explicitly defined social welfare for the network. The first term of

(3.16) represents the revenue received. The second and third terms denote the generation cost
and network access charges respectively associated with q∗ and w∗.

The market monitor surplus MMS(c∗, q∗, w∗) is the revenue the market monitor receives
from placing access charges on the network. We define market monitor surplus as

MMS(c∗, q∗, w∗) = w∗ · q∗ (3.16)

We can now state that social welfare is a summation of all surplus as seen in equations (3.17)-
(3.19).

SW (c∗, q∗, w∗) = CS(c∗) + PS(c∗, q∗, w∗) +MMS(c∗, q∗, w∗) (3.17)

=

{∫ c∗

0
π(x)dx− [π(c∗) · c∗] + π(c∗) · c∗ − V (q∗)− w∗ · q∗ + w∗ · q∗

}
(3.18)

SW (c∗, q∗) =

∫ c∗

0
π(x)dx− V (q∗) (3.19)

Simplification of equation (3.18) results in the dropping of the revenue terms of electricity and
access charges as they are net neutral in the calculation of social welfare. Equation (3.19)
shows that social welfare is not directly influenced by the access charges. Instead, the access
charges w∗ influence c∗ and q∗ which turn are used to calculate social welfare.

We now present a more formal notation and elaboration of social welfare maximization
as it relates to our problem, with the inclusion of the subscripts for nodes, firms and time.
The market monitor determines access charges wi,t such that social welfare is maximized as
seen in equation (3.20). The access charges represent the cost to transmit power from the hub
node to node i for time period t. These fees are set to clear the transmission market to ensure
that generators do not send power on a transmission line beyond its physical limitations. We
sum social welfare across all time periods within the planning horizon, as well as nodes where
power is consumed or generated. The summation of V across f represents the total cost of
generation for all firms f . With the planning horizon assumed to be approximately one day,
net present value (NPV) is not accounted for. Our modeling approach is general enough to
include longer time horizons and NPV calculations.

max
wi(·)

Z(cf , qf ) =

∫ tf

t0

∑
i∈N

{∫ ∑
g∈F cgi (t)

0
πi (x, t) dx−

∑
f∈F

V f
i (qfi (t))

}
dt (3.20)

Note that the market monitor’s objective function does not specifically contain the decision
variable wi(t). The market monitor uses wi(t) to influence the equilibrium quantity of c and q
determined in the lower level. Specific details of the lower level are presented in section 3.2.2.
The clearing of the transmission markets is modeled in Equations (3.21) and (3.22). The

quantity
∑

f∈F (cfi − q
f
i ) is the net power flow from the hub node to node i. The parameter

PTDFi,a is multiplied with the net power flow to determine what proportion of the power
flows on arc a. The summation of all power flows across nodes i results in the total net power
flow on arc a. Ta simply bounds the operating capacity of the transmission line. Electricity is
modeled as either a positive and negative quantity representing the direction of travel along a
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transmission line. Therefore, we must account for both directions not exceeding transmission
capacity as indicated by Equations (3.21) and (3.22). These two equations represent the upper
level constraints of our Stackelberg game.∑

i∈N
PTDFi,a ·

[∑
f∈F

(cfi (t)− qfi (t))
]
≤ Ta ∀a ∈ A (3.21)

∑
i∈N

PTDFi,a ·
[∑
f∈F

(cfi (t)− qfi (t))
]
≥ −Ta ∀a ∈ A (3.22)

The market monitor must also be concerned that the surplus be strictly positive. A negative
surplus would indicate a subsidy provided by the market monitor to generators and consumers.
Equation (3.23) states the constraint on the market monitor surplus in the upper level problem.∑

i∈N

∑
F∈F

wi(t)[c
f
i (t)− qfi (t)] ≥ 0 (3.23)

3.2.2 Generator’s Lower Level Problem

Each generating firm acts as a follower to the market monitor leader and plays a Cournot-
Nash game with all other firms given access charges wi,t set by the market monitor leader
in the upper level. “Cournot” refers to the fact that each firm competes with other firms by
determining their “quantity.” A “Nash” game indicates that the solution defines an equilibrium
such that no firm has an incentive to deviate from their strategy.

Each firm maximizes their individual profit function Jf consisting of production costs and
access charges subtracted from revenue to transmit their net balance of sales and production at
each node. The firms determine c and production q while in equilibrium with other generation
firms. Other firms’ sales are denoted by c−f where c−f : cg ∀g 6= f . The resulting game is
represented in Equations (3.24) through (3.28).

max Jf (cf , qf ; c−f , w) =

∫ tf

t0

{∑
i∈M

πi

∑
g∈F

cgi (t)

 · cfi (t)− V f
i (qfi (t))

−wi(t)[c
f
i (t)− qfi (t)]

}
dt (3.24)

subject to ∑
i∈N

qfi (t) =
∑
i∈M

cfi (t) ∀i ∈M (3.25)

qfi (t) ≤ qfi,max ∀i ∈M (3.26)

dqfi (t)

dt
= rfi (t) ∀i ∈M (3.27)

rfi,min ≤ r
f
i (t) ≤ rfi,max ∀i ∈M (3.28)

The oligopoly market structure that we assume has a direct consequence on the equilibrium
of the game since every decision to sell power affects the market price of power and thus, all
other firm’s profit functions. This is contrast to perfectively competitive markets in which
firms have no influence on price and thus would be considered price takers. A game theoretic
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approach is utilized, utilizing of the oligopoly market structure. Each agent in the economy has
a direct or indirect influence on the decisions and outcomes made and experienced by other
agents. Equation (3.25) ensures that all the power that a firm generates in the boundary
of the network is sold due to the assumption that electricity cannot be economically stored
in a meaningful capacity. Equation (3.26) bounds each firm’s production at each node. The

differential equation described in Equation (3.27) defines the ramping rate rfi (t) each generator
i experiences at each of their facilities as a function of time t. Equation (3.29) imposes

a lower and upper bound on rfi (t). These constrained dynamics add a level of modeling
sophistication that ensures our Stackelberg game follows real world limitations that generators
face. Our model is general enough to allow different firms and facility locations to have different
ramping bounds. These ramping limitations correspond to electricity generation technology
that prevents sudden deviations in the generation plan. In practice, generators use several
forecasts at multiple time scales to make both investment and operating decisions concerning
generation equipment and deployment of resources. However, as the planning horizon shortens
to the period of about one day, physical limitations are imposed on each generator on how
quickly they can deviate from the operational plan. These limits on the agility of electricity
generation in the short term are referred to as ramping rate bounds.

3.2.3 Complete MPEC Formulation

We present the concatenated bi-level game consisting of both the upper and lower level in
equations (3.29) through (3.37).

max
wi(·)

Z(cf , qf ) =

∫ tf

t0

∑
i∈N

{∫ ∑
g∈F cgi (t)

0
πi (x, t) dx−

∑
f∈F

V f
i (qfi (t))

}
dt (3.29)

subject to ∑
i∈N

PTDFi,a ·
[∑
f∈F

(cfi (t)− qfi (t))
]
≤ Ta ∀a ∈ A (3.30)

∑
i∈N

PTDFi,a ·
[∑
f∈F

(cfi (t)− qfi (t))
]
≥ −Ta ∀a ∈ A (3.31)

∑
i∈N

∑
F∈F

wi(t)[c
f
i (t)− qfi (t)] ≥ 0 (3.32)

where w∗i (·) is the minimizer of the objective function (3.29) and solves the following Cournot-
Nash game:

max Jf (cf , qf ; c−f , w) =

∫ tf

t0

{∑
i∈M

πi

∑
g∈F

cgi (t)

 · cfi (t)− V f
i (qfi (t))

−wi(t)[c
f
i (t)− qfi (t)]

}
dt (3.33)
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subject to ∑
i∈N

qfi (t) =
∑
i∈M

cfi (t) ∀i ∈M (3.34)

qfi (t) ≤ qfi,max ∀i ∈M (3.35)

dqfi (t)

dt
= rfi (t) ∀i ∈M (3.36)

rfi,min ≤ r
f
i (t) ≤ rfi,max ∀i ∈M (3.37)

The resulting game has the unique feature of having hierarchy relating the market moni-
tor’s optimization problem with |F | number of optimal control problems with state constraints.
This unique game theoretic approach can be classified as an optimization problem constrained
by other optimization problems (OPcOP). Furthermore, the optimization problems consist-
ing of the lower level can also be classified as a set of equilibrium constraints when viewed
together with the upper level problem. This classification leads us to the structure of a math-
ematical program with equilibrium constraints (MPEC). The hierarchal structure is also in
fact a Stackelberg game, as seen in microeconomic analysis, since we assume leader-follower
relationship. Specifically, the leader’s game is modeled in the upper level and has the luxury
of deciding its variables before the followers modeled in the lower level.

3.3 Discrete Time Formulations

We first present a general discrete time formulation stated in Section 3.2. We then reformulate
the game as a Mathematical Program with Complementarity Constraints (MPCC) in Section
3.3.2.

3.3.1 Discrete MPEC Formulation

In this subsection, we reformulate our continuos-time MPEC into a discrete-time MPEC. A
simple subscript t has been substituted for continuous time with T equal to the total number
of time periods in the planning horizon. We also rewrite the lower level constraints of the form
“less than or equal to zero” in order to be conducive to further mathematical manipulations
in later sections. The dual variables of each lower level constraint are presented in parentheses
to the right of each constraint. These dual variables represents the marginal increase of the
objective function per additional unit of the constraint. This concept is particularity powerful
in conjunction with complementarity as it allows for efficient reformulation and subsequent
computation of MPECs.

max
wi,t

Z(cf , qf ) =
∑
t∈T

∑
i∈M

{
−
∫ ∑

g cgi,t

0

{
πi,t(x)

}
dx−

∑
f∈F

V f
i,t(q

f
i,t)

}
(3.38)

subject to the upper level constraints∑
i∈N

PTDFi,a ·
[∑

f

(cfi,t − q
f
i,t)
]
≤ Ta ∀a ∈ A,∀t ∈ T (3.39)

∑
i∈N

PTDFi,a ·
[∑

f

(cfi,t − q
f
i,t)
]
≥ −Ta ∀a ∈ A,∀t ∈ T (3.40)

∑
i∈N

∑
F∈F

wi,t[c
f
i,t − q

f
i,t] ≥ 0 ∀t ∈ T (3.41)
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where w∗i,t is the minimizer of the objective function (3.29) and solves the following Cournot-
Nash game:

min Jf (cf , qf ; c−f , w) = −
∑
t

∑
i

πi,t · cfi,t − V
f
i,t − wi,t[c

f
i,t − q

f
i,t] (3.42)

subject to the lower level equilibrium constraints∑
i∈N

qfi,t −
∑
i∈M

cfi,t ≤ 0 ∀t ∈ T (ζ+f
t ) (3.43)

−
∑
i∈N

qfi,t +
∑
i∈M

cfi,t ≤ 0 ∀t ∈ T (ζ−ft ) (3.44)

−cfi,t ≤ 0 ∀i ∈M,∀t ∈ T (φfi,t) (3.45)

−qfi,t ≤ 0 ∀i ∈M,∀t ∈ T (ρfi,t) (3.46)

qfi,t − q
f
i,max ≤ 0 ∀i ∈M,∀t ∈ T (σfi,t) (3.47)

qfi,t − q
f
i,t−∆t

∆t
− rfi,max ≤ 0 ∀i ∈M,∀t = 1, ..., T (µfi,t) (3.48)

−qfi,t + qfi,t−∆t

∆t
+ rfi,min ≤ 0 ∀i ∈M,∀t = 1, ..., T (θfi,t) (3.49)

where ∆t is a user-chosen time step parameter used to approximate the derivative
dqfi (t)
dt .

Equation (3.28) and (3.29) can be transformed into the set of discrete time constraint as seen

in equations (3.48) and (3.49). The term
dqfi (t)
dt can be expressed as the quantity

qt−qt−∆t

∆t .

3.3.2 Complementarity Conditions for Generating Firms

We can now transform the discrete math program described in equations (3.42) through (3.49)
as a complementarity problem by formulating the necessary conditions for the generating
firms’s game. Our lower level program has the convenient property of containing only linear
constraints and thus Abadie’s constraint qualification holds. This property allows us to com-
pose the Karush-Kuhn-Tucker(KKT) conditions. These necessary conditions are combined
to form a Mixed Complementarity Problem (MCP) or more precisely, a Nonlinear Comple-
mentarity Problem (NCP). The KKT identities, with respect to c and q, are found to be
respectively

0 = −πi,t
∑
g∈F

cgi,t − c
f
i,t · π

′
i,t

∑
g∈F

cgi,t + wi,t − ζ+f
t + ζ−ft − φfi,t (3.50)

0 = −wi,t + ζ+f
t − ζ−ft + σfi,t − µ

f
i,t + θfi,t − ρ

f
i,t (3.51)

where π
′
i,t

(∑
g∈F c

g
i,t

)
denotes the derivative of π with respect to cfi,t. The following comple-

mentarily slackness conditions accompany the KKT identities
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0 ≤

[
−
∑
i∈N

qfi,t +
∑
i∈M

cfi,t

]
⊥ ζ+f

t ≥ 0 (3.52)

0 ≤

[∑
i∈N

qfi,t −
∑
i∈M

cfi,t

]
⊥ ζ−ft ≥ 0 (3.53)

0 ≤ cfi,t ⊥ φ
f
i,t ≥ 0 (3.54)

0 ≤ qfi,t ⊥ ρ
f
i,t ≥ 0 (3.55)

0 ≤ −qfi,t + qfi,max ⊥ σ
f
i,t ≥ 0 (3.56)

0 ≤
qti,t − q

f
i,t−∆t

∆t
− rfi,min ⊥ µ

f
i,t ≥ 0 (3.57)

0 ≤
−qti,t + qfi,t−∆t

∆t
+ rfi,max ⊥ θ

f
i,t ≥ 0 (3.58)

4 Numerical Examples

4.1 Data Sources and Methodology

A key feature of any proposed model is how computable it is with near real-world data sets.
In this section, we present an illustrative example as well as the stylized 15-node network
of the Western European electric grid. All examples are shown to be computable with the
commercially available NLPEC solver within GAMS. The illustrative example solved in less
than one second while the Western European network solved in eight minutes. We chose
∆t = 1 that resulted in 24 discrete time periods. All computations were performed on the
Network-Enabled Optimization System (NEOS) server Czyzyk et al. (1998). NEOS is a free
high performance computing platform that allows researchers to use a variety of software
packages and optimization solvers.

4.2 Specific Formulation

We assume π follows a well studied linear inverse demand where

πi,t = ai,t − bi,t ·
∑
f

cfi,t (4.59)

The parameter ai,t represents that amount of power (MW) that consumers at node i would
use if prices were set to zero, and bi,t signifies the slope of the inverse demand curve. We have
previously defined V (q) as an explicit function. A realistic generation cost function typically
exerts a quadratic or nonlinear property as a result of decreasing returns to scale (Varian,
2006). The model is general enough to handle higher order functions that would model to
scale both increasing and decreasing returns. We approximate a quadratic cost curve assuming
a piecewise linear function as described in (4.60).

V f
i,t = max

{
mf

1,iq
f
i,t + bf1,i , m

f
2,iq

f
i,t + bf2,i

}
(4.60)
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We can further express V f
i,t as a variable subject to the following inequalities

V f
i,t ≥ m

f
1,iq

f
i,t + bf1,i (4.61)

V f
i,t ≥ m

f
2,iq

f
i,t + bf2,i (4.62)

This clever reformulation, including V as a variable and additional inequalities, all us
to remove any nonlinear effects that a quadratic V function might have imposed. The two
constraints represented by (4.61) and (4.62) form a feasible region bounded below. The term

V f
i,t is always minimized by each generator and therefore is guaranteed to be on the lower

boundary of the feasible region set. This property allows V f
i,t to be equal the piecewise linear

segment, approximating a quadratic cost function. In our example, we approximated the
quadratic cost function with two affine segments. However, the model is general enough to
handle greater number of affine segments. A greater number of segments increases the quality
of the approximation.

We substitute V and π into the upper level market monitor problems in Equations (3.38)
through (3.40) along with the constraints (4.61) and (4.62). Equations (4.68) and (4.70) have
been modified accordingly to handle the addition of V as a variable.

max
wi,t

Z(cf , qf ) =
∑
t∈T

∑
i∈M

{
− ai,t

∑
f

cfi,t +
bi,t
2

[∑
f

cfi,t

]2
+
∑
f

V f
i,t

}
(4.63)
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subject to ∑
i∈N

PTDFi,a ·
[∑

f

(cfi,t − q
f
i,t)
]
≤ Ta ∀a ∈ A,∀t ∈ T (4.64)

∑
i∈N

PTDFi,a ·
[∑

f

(cfi,t − q
f
i,t)
]
≥ −Ta ∀a ∈ A,∀t ∈ T (4.65)

∑
i∈N

∑
F∈F

wi,t[c
f
i,t − q

f
i,t] ≥ 0 ∀t ∈ T (4.66)

0 ≤ cfi,t ⊥

2bi,tc
f
i,t − ai,t + bi,t

∑
g∈F,g 6=f

cgi,t + wi,t − ζ+f
t + ζ−ft

 = φfi,t ≥ 0 (4.67)

0 ≤ qfi,t ⊥
[
−wi,t + ζ+f

t − ζ−ft +mf
1,iγ

+f
i,t +mf

2,iγ
−f
i,t + σfi,t − µ

f
i,t + θfi,t

]
=

ρfi,t ≥ 0 (4.68)

0 ≤ V f
i,t ⊥

[
1 + γ+f

i,t − γ
−f
i,t

]
= δfi,t ≥ 0 (4.69)

0 ≤

[
−
∑
i∈N

qfi,t +
∑
i∈M

cfi,t

]
⊥ ζ+f

t ≥ 0 (4.70)

0 ≤

[∑
i∈N

qfi,t −
∑
i∈M

cfi,t

]
⊥ ζ−ft ≥ 0 (4.71)

0 ≤
[
V f
i,t −m

f
1,iq

f
i,t − b

f
1,i

]
⊥ γ+f

i,t ≥ 0 (4.72)

0 ≤
[
V f
i,t −m

f
2,iq

f
i,t − b

f
2,i

]
⊥ γ−fi,t ≥ 0 (4.73)

0 ≤ cfi,t ⊥ φ
f
i,t ≥ 0 (4.74)

0 ≤ V f
i,t ⊥ δ

f
i,t ≥ 0 (4.75)

0 ≤ qfi,t ⊥ ρ
f
i,t ≥ 0 (4.76)

0 ≤ −qfi,t + qfi,max ⊥ σ
f
i,t ≥ 0 (4.77)

0 ≤ qti,t − q
f
i,t−1 − r

f
i,min ⊥ µ

f
i,t ≥ 0 (4.78)

0 ≤ −qti,t + qfi,t−1 + rfi,max ⊥ θ
f
i,t ≥ 0 (4.79)

4.3 Toy Problem

Our first numerical example is a simple 3-node network based on the small network presented
in Gabriel and Leuthold (2010). All three nodes have demand, but the primary load resides
at node 3. There are two firms that act as followers, while the market monitor is modeled as
the only leader. Firm 1 possess facilities at nodes 1 and 2 . Firm 2 has a plant only at node
2. We present numerical results for two congestion scenarios; one with no congestion and the
other in which the transmission line connecting node 2 to 3 is congested.

4.3.1 Formulation

We assumed a planning horizon of one time period. Ramping bounds ri,min and ri,max were
not applicable since ramping only applies when more than one discrete time period is under
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consideration. A summary of the model topology and parameters of the network can be seen
in Figure 1 and Tables 2 through 5 respectively.

Figure 1: The 3-node network

Table 2: Inverse Demand data πi
Node ai bi

1 5 1
2 1 1
3 10 1

Table 3: Plant Production and Capacity data V and qmax

Firm Node m1 b1 m2 b2 qmax

1 1 2 0 2 0 10
1 2 1 0 1 0 10
2 2 3 0 3 0 10

Table 4: Transmission Arc Capacity Ta
Arc No Congestion Ta Congestion Ta

1-2 10 10
2-3 10 3
1-3 10 10

Table 5: PTDFi,a data with Node 3 as Hub

Node Arc 1-2 Arc 2-3 Arc 1-3

1 -1/3 -1/3 -2/3
2 1/3 -2/3 -1/3
3 0 0 0

The direction arrows in Figure 1 describe the sign of electricity flow. For example, a MW
flowing from node 1 to node 2 would be +1 MW while a MW flowing from node 3 to node 1
would be -1 MW. The inverse demand functions described by table 2 assert that the primary
load demand resides in node 3, a moderate amount in node 1 and small demand in node 2.
This simple example is equivalent to node 3 residing in a high population area while the other
nodes represent rural generation nodes. Table 3 describes the cost of electricity generation and
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capacity. For illustrative purposes, the piecewise production V is transformed into a simple
linear function. Firm 1 has a low-cost generation facility located at node 2 in addition to a
moderately low-cost facility at node 2. Firm 2 has a high priced facility at node 2. Each
facility has a capacity limit of 10 MWs. Table 4 describes the two congestion scenarios with
the transmission line connection node 2 and 3 limited to 4 MW in the congestion phase.

We compare our Stackelberg game detailed in section 3 with perfect competitive, Cournot-
Nash equilibrium and our dynamic Stackelberg game. Perfect competition serves as an ideal
comparison of what any central planner or market monitor hopes to achieve in a market. In a
perfectly competitive market, producers are forced to generate electricity with a profit equal
to zero. Thus, all economic surpluses reside with the consumer and market monitor. As a
consequence, the price of electricity at each node is equal to lowest marginal cost to produce
an additional unit of electricity. Furthermore, the concept of a Nash equilibrium between gen-
erators is dissolved. Generators must sell and generate electricity such that the consumer’s
and market monitor’s surpluses are maximized. However, it is not practically obtainable or
reasonable in real world electricity markets. The scenarios serves merely as a comparison with
other market structures. It also serves as a pseudo-upper bound of the possible improvement
of market efficiency. Is noted that we do interchange perfectly competitive and perfect compe-
tition. Perfect competition is a specific market structure that we do not possess since we have
limited buyers and sellers. Firms have an impact on price and we do not allow additional firms
to enter the market within our planning time horizon. The Cournot-Nash equilibrium for this
specific scenario is a game originated in Mookherjee et al. (2010), in which the ISO determines
the wheeling simultaneously with the Cournot-Nash game played by the generators. In their
model, the ISO’s only concern is to efficiently allocate scarce transmission line capacity among
the generators. Our Stackelberg equilibrium describes the market monitor possess the ability
to impose access charges on the network to incentivize generators to use transmission line
capacity efficiently while simultaneously maximizing social welfare.

4.3.2 Discussion

Figure 2 demonstrates a comparison of all the models described above for consumer, producer
and congestion surplus, social welfare for the no congestion scenario. We remind the reader
that consumer’s surplus is defined as utility derived from the difference of the maximum price
consumers are willing to pay and the actual price the pay for electricity. Producer’s surplus is
simply the net profit producers receive from revenue less generation cost and access charges
paid to the market monitor. Congestion surplus is defined as the total revenue the market
monitor receives from imposing access charges to the generators.1

The goal of the market monitor is to achieve economic surpluses as close as possible to
perfectly competitive scenario we described previously. This serves as a benchmark to compare
all models. Analyzing the perfectly competitive scenario for our illustrative example yielded
the highest consumer surplus and social welfare; by definition, producer surplus was zero
while consumer and congestion surpluses were maximized. The Cournot-Nash and Stackelberg
equilibrium models produced identical economic surpluses. These results suggest that the
market monitor did not utilize equilibrium congestion pricing to increase social welfare. We
posit that the Stackelberg equilibrium model is nearly identical to the Cournot-Nash game
when little or no congestion exists as socially optimal electricity flows are not encumbered
to transmission line constraints. It is only in the presence of congestion that there exists an
opportunity to incentivize generators to alter their electricity flows assuming our proposed

1Note, we distinguish congestion rent from the term “No congestion” describing the scenario.
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Figure 2: Model comparison under no congestion: Economic surplus and quantities

hypothetical market.
An interesting phenomena is observed in comparing the perfectly competitive solution with

both equilibrium solutions. In the perfectly competitive scenario, the market monitor forces
generators to produce electricity although they produce zero profit. From a generator’s per-
spective, producing a social welfare-optimal generation yields the same profit as not producing
at all. In realistic market structures, generators cannot be forced to generate electricity and
thus have to be incentivized by profit to generate power. A producer’s surplus of 20 units is
required for the generators to produce power at socially optimal levels. Any restriction placed
on the producer’s surplus would result in lower social welfare, assuming the realistic market
structure described by Cournot-Nash and Stackelberg equilibrium.

Figure 5 displays the access fees, sales and production for nodes and firms for the no
congestion scenario. The Stackelberg equilibrium demonstrated all equal access fees. Our
computational results indicate multiple arcs with equal access fees. This is a result of the
directionality of the transmission lines we have defined. The Cournot-Nash equilibrium solu-
tion produced identical sales and generation to the Stackelberg equilibrium without the use
of access charges/wheeling fees.

We now turn to the congested version of the network as demonstrated by Figure 4. The
transmission line connecting nodes 2 and 3 was reduced from a capacity of 10 to 3 units. The
remaining transmission lines were unchanged.

The congestion reduced social welfare and consumer surplus of the perfect competition
model by 8.5 units and 7.5 units, respectively. Interestingly, the congestion surplus increased
from zero to 1 unit in the presence of congestion. The Stackelberg equilibrium did achieve a
higher social welfare than the Cournot-Nash equilibrium as expected since its objective func-
tion was directly stipulated to maximize social welfare. This provides evidence that our model
has the potential to achieve higher social welfare compared to the Cournot-Nash equilibrium,
given all else equal. Social welfare was increased by employing equilibrium congestion pricing
even for such a small network presented. Furthermore, the increase was achieved without

22



0"

2"

4"

6"

8"

10"

12"

w1" w2" w3" c11" c12" c21" c22" c31" c32" q11" q21" q22"

Access"Charges,"Sales"and"Genera:on:"No"Conges:on"

Compe::ve" Stackelberg" CournotENash"

12 

10 

8 

6 

4 

2 

0 

Access Charges, Sales and Generation: No Congestion 

Competitive Stackelberg Cournot-Nash 

w1 w2 w3 c11 c12 c21 c22 c31 c32 q11 q21 q22 

Figure 3: Model comparison under no congestion: Access charges, sales and generation
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Figure 4: Model comparison under congestion: Economic surpluses and quantities

directly coercing generators to produce electricity. Simply, the access charges incentivized
generators to sell and produce electricity in a manner consistent with social welfare optimal
electricity flows. It is also noteworthy to state that all production and demand characteris-
tics were held constant between the Stackelberg equilibrium and Cournot-Nash equilibrium
scenarios.

Our analysis has shown the existence of multiple optimal solutions in presence of conges-
tion. Specifically, the access charges vary among solutions, suggesting the market monitor has
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a certain amount of latitude in determining the set of access charges to use within the network.
It makes sense that congestion allows access charges to influence the flow of electricity since
congestion creates price differentials between nodes.
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Figure 5: Model comparison under congestion: Access charges, sales and generation

Figure 5 shows the access fees, sales and production for nodes and firms for the no con-
gestion scenario. The first subscript each quantities refers to nodes and the second subscript
indicates firms. It is clear that the Stackelberg equilibrium had higher sales and production
than the Cournot-Nash since social welfare was improved. Production and sales were more
diverse among the equilibrium models than the perfectly competitive model.

4.4 Western European Electric Grid

We now present a stylized network based upon the Western European electric grid presented in
Neuhoff et al. (2005). Analysis and results are presented similarly to the previous illustrative
example but further demonstrate the ability of the computational framework to solve larger
network problems.

4.4.1 Data Formulation

The network consists of 15 nodes, 28 arcs and 12 generating firms. Specifically, the set of
firms is F = {1, ..., 12}, the set of nodes is N = {1, ..., 15}, the set of nodes in which there
are markets is M = {4, 5, 6, 8, 9, 14, 15} and the set of arcs is A = {1, ..., 28}. A total of 24
discrete time periods were considered in our planning horizon used to mimic each hour of a
day.

All data is formulated in the style of Mookherjee et al. (2010), in which the authors state
the inverse demand was created synthetically, based upon demand patterns obtained from
California Independent System Operator (CAISO). The data successfully represents the daily
load profiles of a typical node in California. This double hump profile matches the peak
profiles of consumers utilizing electricity in the middle of the day and again returning home
from work. The ramping bounds were created synthetically. Additionally, the piecewise linear
generation cost, PTDF and transmission line capacities originate from the Energy research
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Centre of the Netherlands (ECN). Figure 6 provides a topology of our network of interest at
time period 19.

Figure 6: Transmission flows for dynamic Stackelberg game (t=19)

4.4.2 Discussion

Figure 6 provides a clever manner of displaying the flow in MW of our optimal solution found
for t = 19. Nodes {4, 5, 6, 8, 9, 14, 15} represents markets while the color of the transmission
arc corresponds to the scale of flow on the left. The figure shows a large difference between
arcs as well as the phenomenon that a majority of the load resides in the upper portion of
the network. The figure demonstrates the intricacies that real world electric networks exhibit.
For example, two of the three lines connected to node 2 have extremely large flows while, the
third transmission line contains barely any flow.

Figure 8 shows the generation profile at node 4 for all 24 hours in the planning horizon.
Firm 7 produces a nearly constant generation profile as it has a zero marginal cost while firms
2 and 6 have traditional upward sloping cost curves. The sudden drop in generation at time
period 14 marks a point in which congestion fees rose and demand shifted to another node.

Figure 8 displays the power sales at node 15 across all time periods. The upper double
humped curve corresponds to the total sales of the node. This profile mimics the traditional
load profile experienced in California and many areas with similar daily consumption patterns.
The interaction among firms is particularly interesting in the first time period, as significant
market-share changes are experienced. This could be explained, in part, by the time periods
required for the ramping dynamics to exit a warmup period affected by the initial conditions.

Figure 9 displays the economic surpluses and quantities for our dynamic Stackelberg game
and the Cournot-Nash equilibrium model. All quantities were scaled to a value of 1 for
display purposes, since large social welfare numbers are difficult to compare. All economic
quantities were relatively similar with the slight exception of consumer and producer surplus.
It appears that our dynamic Stackelberg game shifted some economic benefits from producers
to consumers without increasing social welfare by a large amount. The production quantities
on the right hand axis did vary. The congestion surplus for both models was extremely small
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Figure 7: Generation at node 4 for all 24 hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Time (hrs) 

800 

700 

600 

500 

400 

300 

200 

100 

(MW) 

900 

0 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

4500 

0 

5000 

(MW) 

Node 15 Sales 

Figure 8: Sales at node 15 for all 24 hours

in comparison to other economic surpluses. This suggests that even for a large network, large
access charges may not be needed for the market monitor to influence electricity flows and
subsequently social welfare.

However, a comparison between our Stackelberg model to the Cournot-Nash game is not
completely relevant due to the large difference of each games’ information structure. Our
dynamic Stackelberg game anticipates and calculates the lower level equilibrium in tandem.
Hence, all agents execute their solutions simultaneously and in open-loop equilibrium. This
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Figure 9: Economic surpluses and generation between models

differs from the Cournot-Nash game where the generation firms use the model as a deci-
sion support tool for what their generation and sales will be given their forecasts of access
charges. Our dynamic Stackelberg game has the feature in which the optimal access charges
are announced to all generators and then an equilibrium is found among the firms.

5 Conclusions

In this article, we have presented a hypothetical new market represented by a dynamic Stack-
elberg game of an electric power oligopoly. Our single leader is represented by the market
monitor using equilibrium congestion pricing to increase social welfare. Our model may be
used as a decision support tool for the existing operations the market monitor conducts. The
followers are generators that play a Cournot-Nash game with other generators to sell and
transmit power over an electric network assuming an oligopoly market structure. The conges-
tion pricing determined by the market monitor solves the Cournot-Nash equilibrium problem
in the lower level. We described the evolution of ramping rates over time for each generator
via a differential equation as well employed a multi-period time horizon.

The dynamic Stackelberg model considers a new market design mechanism that also in-
cludes the following numerous realistic and computable features: oligopolistic competition,
inter-temporal constraints, dynamic production constraints, time-varying demand, transmis-
sion constrained network and multi-generator assets. We were able to compute the dynamic
Stackelberg game by first reformulating it as a Mathematical Program with Complementarity
Constraints (MPCC) and utilizing the commercially available NLPEC solver within GAMS.
We solved a 15-node Western European Electric Network in approximately eight minutes. Our
numerical experimentation concluded that equilibrium congestion pricing can increase social
welfare in our proposed market.
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