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ABSTRACT. In this paper we present a general method for computing the ir-
reducible components of the permutation modules of the symmetric groups
over a field F' of characteristic 0. We apply this machinery to determine the
decomposition into irreducible submodules of the F[Sy]-permutation module
on the right cosets of the normaliser in S, of the subgroup generated by a
permutation of type (3, 3).

1. INTRODUCTION AND NOTATIONS

Throughout this paper, G is a finite group and F' a field of characteristic 0 or
coprime to |G|. For a subgroup L of G, denote by M the F[G]-permutation
module associated to the action of G by right multiplication on the set of right
cosets of L in G. If S is an irreducible F[G]-module, the multiplicity of S in M
is the number of the composition factors of MLG isomorphic to S. If H and N are
subgroups of G, with H < N < Ng(H), let, for every x € N,

T MG — MY
be the linear map defined, for every right coset Hg of H in G, by
(1.1) (Hg)* = Hz"'g.

Note that, since N < Ng(H), 27 is a well defined F[G]-isomorphism of M§ and
the map
7: N — AutF[G](Mg),

defined, for every « € N, by x — 27, is a representation of N with kernel H. This
induces on M§ an (F[G], F[N])-bimodule structure, which on turn defines, in the
natural way, an F'[N]-module structure on Hompg(S, M) for every F|G]-module
S (see [5, Proposition 3.5]). Clearly 7 depends on the subgroup H. When needed,
we shall specify this by indexing 7 with the subgroup H. In Section 2, we prove

Theorem 1.1. Let H and N be subgroups of G with H < N < Ng(H). Then,
for every irreducible F[G]-module S, the multiplicity of S in MY is equal to the
multiplicity of the trivial F[N]-module in Homp(q)(S, M§).

In Section 2 we prove a variation of Theorem 1.1 which will turn to be useful for
simplifying computations in certain situations. In Sections 3 and 4 we apply the
above results to give a general method for computing the irreducible submodules of
Mf,", where N is a subgroup of the symmetric group S, on {1,...,n} (n a positive
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integer). The idea, here, is to trap N between a Young subgroup Y,,, associated to
a suitable partition p, and its normaliser in .S,, and use the theory of A-tableaux
of type p to describe explicitly the action 7. In Section 5 we apply the above
machinery to the case where u = (n —6,1,1,1,1,1,1) and prove

Theorem 1.2. Assume the characteristic of F' is 0. Let N be the normalizer in
Sn of a subgroup generated by a permutation of type (3,3). Then Mf/" decomposes
as a direct sum of irreducible submodules as follows:

Vi = @ms
AEA

where for every A € A, S* is the Specht module associated to X, the elements of
the set A are listed in the first column of Table 1, and, for each n > 6, the values
my are given in the remaining columns (note that, for small values of n, some of
the displayed \’s do not correspond to a partition of n; boxes corresponding to such
pairs (\,n) are left blank).

A n=6 | n=7|n=8|n=9 | n=10 | n=11 | n > 12
(n) 1 1 1 1 1 1 1
(n—1,1) 0 T 1 1 T T 1
(n —2,2) 1 T 2 2 2 2 2
(n —3,3) 0 T T 2 2 2 2
(n —4,4) 1 1 2 2 2
(n—5,5) 0 1 1
(n —6,6) T
(n—3,2,1) 0 T 1 1 T T 1
(n—4,3,1) 0 1 1 T T T
(n—5,4,1) 1 1 1 T
(n —4,2,2) 1 1 2 2 2 2 2
(n—5,3,2) 0 T T T T
(n—6,4,2) 1 1 1
(n—5,2,2,1) 1 1 1 T il 1
(n —6,2,2,2) 1 1 T T 1
(n—4,1,1,1,1) T T 1 1 T T 1
(n—5,2,1,1,1) 1 1 1 T 1 1
(n—5,1,1,1,1,1) 0 1 1 1 T T 1
(n—6,2,1,1,1,1) 1 1 1 1 T
TABLE 1

Our interest for this particular case arises from the context of Majorana theory
(see [4]). More specifically, this result is needed for computing the linear span of
3A-axes in a standard Majorana representation of .S, (see [3]).

2. A REMARK ON PERMUTATION MODULES

Lemma 2.1. Let H < N < Ng(H). With the notation established in Section 1,
Cyg(NT) is an F|G]-submodule of M§ isomorphic to M§.

Proof. Since the elements of N™ are F[G]-automorphisms of M§, we have that
Cng(NT) is an F[G]-submodule of M§. Let G (vesp. N) be a right transversal of

N in G (resp. of H in N), then {zg|z € N, g € G} is a right transversal of H in G
and, since N7 is transitive on the set {Hxg|r € N}, the element

Z Z az g Hrg € MG (with a, 4 € F),
geG zeEN

centralizes N7 if and only if, for every g € G, the coefficients a, , have a constant
value. Therefore the linearly independent elements ) _\ Hxg, where g € G,
generate Cy;¢(NT) and the map

v: Cpg(NT) — Mg,
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defined by

Zag Z ngHZagNg,

gegG  zeN g€eg
is an F'[G]-isomorphism. O

Theorem 1.1 follows immediately from Lemma 2.1 and from the following gen-
eralisation of Lemma 4 in [3] (whose proof is essentially the same).

Lemma 2.2. Let G and K be finite groups, M an (F[G], F[K])-bimodule, and S
an irreducible F[G)-module. Then the multiplicity of S as a composition factor of
the F[G]-module Cy(K) is equal to the multiplicity of the trivial F[K]-module in
HomF[G] (S, M)

Assume now that G = A(w), where A is a normal subgroup and w is an involution
not contained in A. Let Y be a subgroup of G containing w, N a subgroup of G
with Y < N < Ng(Y), and set H := ANY. Then H < N < Ng(H) and, via
the action 7z (resp. 7y) of N defined as in Section 1, M§ (resp. M) is an
(F[G], F[N])-bimodule. Let

sgn: G — F

be the linear character of G whose value is 1 on the elements of A and —1 otherwise.
Let U be the (A, NN A)-alternating (F[G], F[N])-bimodule, i.e. an F-vector space
of dimension 1 on which G (resp. N) acts with kernel A (resp. (VN A)).

Lemma 2.3. M§ is isomorphic, as an (F[G], F[N])-bimodule, to
ME @ (ME @pU).

Proof. For + € {+,—}, let D+ be the F[G]-submodule of M§ generated by the
element H £ Hw. Let v € N. Since |w| = 2, (H,w) =Y, and Y is a normal
subgroup of N, we have that Hvw = Hwv, whence

(H+ Ho) =Hv '+ Hv 'o=Hv '+ Hov™' € Dy,

showing that D, and D_ are (also) F[N]-submodules. Let o1,...,0; a right
transversal of H in A. Then the 2¢t-tuple

C:=(Hoy,...,Hoy, Hwoy, ..., Hwoy)
is a basis of M§ and

Ci:=(Hoy £ Hwoy,...,Hoy = Hwoy)
is a basis of Dy. Since G contains an involution, char(F') # 2, whence

M§=D,®D_.
Fix ug a non zero vector in U and let
0, :D, — ME (resp. _: D_ — ME @p U)
be the F-isomorphism defined, for every i € {1,...,t}, by
Ho; + Hwo; — Yo; (resp. Ho; — Hwo; — Yo; @ ug).

Since 0, and #_ are isomomorphisms of (F[G], F[N])-bimodules, the result follows.
(I

For an F-vector space V denote by V* its dual space.
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Lemma 2.4. With the above notation, for every F[G]|-module S, we have
Homp[g](S, M;C/: ®@pU) gF[N] HOIIIF[G](S U™, M}Cj) Qp U.
Proof. Set M := M. For f € S*, m € M and u € U let

¢f7rn,u: S — M® U and &f,m,u: S® U* — M
s = flsmeu s®g  —  f(s)glu)ym °

By [8, Chapter XVI, Propositions 1.1 and 1.2 and Corollaries 5.5 and 5.6] there is
a unique (natural) isomorphism of F-spaces

¢: HOHIF(S,M®F U) — HOHIF(S RF U*7M)
such that, for every f, m, and u as above,

¢f,m,u = af,m,u

and, by [1, Proof of Theorem 43.14], ¢ induces, by restriction, an F-space isomor-
phism (o between Homp(g)(S, M ®r U) and Homp(g) (S @F U*, M). Let 6 € N.
Since (¢fm.u)® = @ f.mo us, for every s € S and g € U*, we have that

(s@g) @)™ = f(s)g(u’ym?
= sgndf(s)g(u)m
sgnd(s ® g)(d’f”"’“)

0

¢S

whence (@ .m,u)° = sgn 6(¢f,m.)%°. Therefore, the required F[N]-isomorphism is
obtained by fixing a generator ug of U and composing (y with the F-isomorphism

HOIHF(S@FU*,M) — HOIHF(S®FU*,M)®FU
¢ = 9 ®uo '

O

Corollary 2.5. For every irreducible F[G]-module S, the multiplicity of the triv-
ial F[N]-module in Homp(g (S, ME ®p U) is equal to the multiplicity of the A-
alternating F[N]-module in Hompg)(S @ U*, M{).

Proposition 2.6. Let A be a normal subgroup of G and let w € G be an invo-
lution such that G = A{w). Let Y and N be subgroups of G such that w € Y
and ANY < N < Ng(Y). Then, for every irreducible F[G]-module S, the mul-
tiplicity of S in M is equal to the sum of the multiplicity of the trivial F[N]-
module in Homp(g) (S, M) with the multiplicity of the A-alternating F[N]-module
in Hompg (S ® U*, Mg).

Proof. By Lemma 2.3 and Lemma 2.4, we have that

HomF[G] (S, MgﬁA) gF[N] HomF[G] (S, Mg) &) HOmF[G] (S, Mg QF U)
=~ i) Hompig) (S, MyY) & (Homp(q)(S & U*, MY) @p U),

and the result follows by Lemma 2.1. (I
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3. PERMUTATION MODULES FOR THE SYMMETRIC GROUP

From now on, assume G is the symmetric group S,, on the set {1,...,n}, A
the alternating group A,, and F a field of characteristic 0. Refer to [6] for basic
facts about ordinary representation theory of the symmetric groups. For better
readability, we briefly recall the notation of [3, Section 4].

Let p:= (u1,..., ) and A := (A1,...,As) be partitions of n. We shall always
assume that p; > p; (resp. Ay > Aj), if ¢ < j. Let B, := {Bi,...,B,}, where
B, :={1,...,u.}, and, for every i € {1,...,7r — 1},

i—1 )
Brfi = {Z Hor—j + 1, ey Z,u,n,j}.
3=0 j=0

The block normaliser N, is the subgroup of all elements of S, that induce a permu-
tation on B,,. The kernel of the action induced by IV, on B,, is the Young subgroup
Y,, associated to p, defined by:

YH = S{l 11111 et X S{ﬂr+17---7ﬂr+#r—l} X ... X S{n7#1+1 ..... n}-

Denote by [A] the diagram associated to A. Recall that a A-tableau is a bijection
t: [A] = {1,...,n}. Denote it, as usual, by replacing each node of [A] by its image
under . S;, acts on the set of all A-tableaux by composition on the right: t7 := to,
for every A-tableaux ¢t and o € S,,. Given a A-tableau ¢, the A-tabloid {t} associated
to t is the orbit of ¢ under the action of the rows stabiliser of ¢ in S,,. The action of
S,, on the A-tableaux induces an action of S,, on the set of all Ad-tabloids. Let M* be
the permutation module of S, on the set of all A-tabloids. Since the stabiliser of a
A-tabloid is conjugate in S, to Yy, M* is F[S,]-isomorphic to M,i” From now on,
we fix a A-tableau ty, so that the Specht module S* is the cyclic F[S,]-submodule
of M* generated by
e = Y (o)),
o€Ct,

where C, is the columns stabiliser of ty. A A-tableau T of type p is a function
T: [\ — {1,...,r}, such that |T71(i)| = u;, for every i € {1,...,7}. T is called
semistandard if the entries are non-decreasing along the rows of T and strictly
increasing down the columns of T. Denote with F(A, ) the set of all Ad-tableaux of
type p and by Fo(A, 1) the set of all semistandard A-tableaux of type p. Define an
action (depending on ty) of the symmetric group S,, on F(A, u) setting, for every
T € F(\ p) and every o € S,

3.1 T :=tyo T
A

This action is equivalent to the action of S, on the set of p-tabloids (see [6, p. 44]),
so that the module M* is isomorphic to the permutation module M* associated
to the above action of S,, on the set F(A, ).

Let Ng, (1) be the normaliser of the partition u, that is the subgroup of S,
containing all the elements § € S, such that p;s = p; for every i € {1,...,r}, and
let

m, Ny — Ng, (1)
be the map sending ¢ € S, to the permutation ¢ € S, defined, for every i €
{1,...,r}, by the condition i = j <= (B;)” = Bj. Then 7, is a well defined
surjective group homomorphism with kernel Y),, whence Ng, (1) = N,/Y,,.
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For every T € F(\, u) and § € Ng,_(u), let
(3.2) T° :=T§,

so that T is the A-tableau of type u obtained from T by replacing every node x
of T by 2°, and let a5: MM — M* be the F-automorphism induced on M* by
the permutation T+ T? of its basis F(, ).

Lemma 3.1. With the above notation, as is an F[S,]-automorphism of M and
the map
a: Ng, (n) —  Autpg,) (M)
d — (0%

is a group homomorphism, thus defining a structure of (F[Sy], F[Ng, (1)])-bimodule
on MM and M" (2p(s,] MM).

Proof. This follows immediately from the definitions (note that the action of Ng, (1)
on M* permutes the rows of equal length of the p-polytabloids). (I

Let Ty be the A-tableau of type u defined, for each (h, k) € [A], by the condition:
(h, k)0 =i <= (h, k)" € B,.

Lemma 3.2. With the above notation, Y, is the stabiliser of Ty in S, and there is
an F[Sy]-isomorphism (of cyclic F[Sy,]-modules)

& My — MM
such that (Y,,)* = Tp.

Proof. This follows from the definition of T}, since the action of S, on the S,-orbit
of Ty is equivalent to the action on the set of right cosets of Y, in S,. O
Given a bijection f: X — Z, between two sets X and Z, denote by f* the map
f* : SX — SZ
¢ = flof

Lemma 3.3. Let A\ and p be partitions of n and 7: Ny, — Autp(g,j(M*) be the
map defined in Section 1. Then the following diagram commutes.

(3.3)

N, — AUtF[S,L](Mg:)
[ ¢
Ns, (1) — Autpys,) (M)
Proof. By definition we have that, for every ¢ € IV,
(3.4) 5t 1Ty =ty " Tos™.
Thus for every x € N, we have
27" 7t — — T xTHY
(To)™" = (To)"  =taaty ' Ty = taty  Toa™ = (Ty)
and the result follows, since M** is a cyclic F[S,]-module generated by Tj. O

Using Lemma 3.3 we can restate Theorem 1.1 and Proposition 2.6 when the
group G is the symmetric group. Set Hy, := HomF[Sn](S’\, MH).



PERMUTATION MODULES FOR THE SYMMETRIC GROUP 7

Theorem 3.4. With the above notation, let Y, < N < N,. Then, for every
partition X of n, the multiplicity of S* as a composition factor of M]“\g," 1s equal to
the multiplicity of the trivial F{NT+]-module in Hy,,.

Proof. 1t follows from Lemma 3.3 and Theorem 1.1. O

Denote by X' the conjugate of A, that is the partition whose diagram [\'] is the
transposed of [A]. Write Al p if and only if s < r and Zle A > Zle 1; for every
ke{l,...,s} and let A, be the set of partitions A such that A > p.

Proposition 3.5. Let p be a partition of n, p # (1") and let N < N, such
that NNY, =1 and for every x € N,sgna™ = sgnx. Then, the F[S,]-module
Mﬁ?K‘,ﬂAW,) decomposes as a direct sum of irreducible submodules as follows:

M= P (maS* @S,
AEA,
where my is equal to the multiplicity of the trivial F{N™*|-module in Hy,, and ny
is equal to the multiplicity of the A,-alternating F[N™+]-module of Hy,,.

Proof. Let A be a partition of n and let U be the (A,, A, )-alternating (F'[Sy,], F[Ns, (1)])-
bimodule. Then U is an F[N]-module via m,, and, since by hypothesis sgn 2™ =
sgnz for every x € N, U is the alternating F[N]-module. By Theorem [6, Theorem

6.7] (that holds for any field of characteristic 0),

’

S* @F U* 2pis,) $* @ U Zpyg,) S
By Proposition 2.6 (with A= A4,,,Y =Y, and w = (n,n — 1)) and Lemma 3.3 we
have that the multiplicity of S* in M ]‘\g,’(LYm A) is given by the sum of the multi-
plicity of the trivial F[N™#]-module in HomF[Sn](S)‘, M*) with the multiplicity of
the alternating F'[N™]-module in Homgg, (S XM #), and the result follows since,
by [6, Corollary 13.17], HomF[SH](SA, MH) =0 unless A\ > p. O

4. ACTION OF Ng, (1) ON Hy,

By Theorem 3.4 (resp. Proposition 3.5), we are reduced to compute the dimen-
sion of the trivial (resp. trivial and alternating) F[N»]-module of Hy,. We do so
by explicitly computing the matrices associated to the elements of a generating set
of NPr, with respect to a basis By, of Hy,. For every T' € F (A, 1), set

R(T) :={T°|J € Ry, },
where Ry, is the row stabiliser of ¢\ in S,. Since S* is a cyclic F[S,]-module

generated by e, , for every T € F(\, ) there is a unique element 67 in H ap such
that

(4.1) etA Z sgno Z S7.

o€Ct, SER(T)
Let
(4.2) By, = ({0r] T € Fo(A )}, <o)
where <, is the order induced by the following “lexicographic” order on Fy(A, p):
OR<>\M931fandon1y1f Z n"ﬂzy Z n"'”zy

(4.3) €] ( €A
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By [6, Theorem 13.13], By, is a basis for Hy,,, thus, for every 6 € Hy,, there exist
unique scalars cg g, where S ranges in Fo(\, ), such that

(4.3) 0= Z Co,s és.

S€Fo(A,u)

Since F(A, i) is a linearly independent set of generators of M**, for every 6 € Hy,,,
there exist unique scalars dg g, where R ranges in F(\, u), such that

(4.4) e/, = > dorR
ReEF (A1)

For 6 as above, let

8(9) = Z d97RR
ReFo(A,u)
be the semistandard part of e}, .
Note that, in general, for S € Fy(A, ), the coefficients ¢y g’s do not coincide
with the dg s’s: consider, e.g., the following (2,2, 1)-tableaux of type (1°):
14
T:= 25
3
If we compute eff, we see that, in the summands of the righthandside of Equa-
tion (4.4), together with T, the following ”parvenu” semistandard A-tableaux of
type p appears too:

T&a _ ;i ,
5

where 0 is the rows stabilising permutation interchanging the two entries in the

second row of T" and ¢ is the column stabilising permutation interchanging the last

two entries of the first column and the two entries of the second column of 7. In

order to deal with such parvenus, given T' € F (A, u), set
A
bi(T) == Zj(i,j)T for every i € {1,...,s}
j=1

and
S

oT) = D )" =) b(T).
(6:3)€[A] i=1
Thinking of the entries of T' as weights, b;(T") (resp. b(T)) can be viewed as the
(non normalized) horizontal coordinate of the center of mass of the i-th row of T
(resp. of T itself). The following lemma shows that this coordinate is maximal
precisely when the heaviest weights are placed as far right as possible.

Lemma 4.1. With the above notations,

(1) for every o € Cy,, we have that b(T) = b(T7);

(2) if (i,7)T < (i,h)T for every 1 < j < h < \;, then, for every o in Ry, , we
have that by(T?) < by(T), with equality if and only if (i,5)T = (i,7)T for
every 1 < j < Ai;

(3) if T is semistandard, then, for every§ € Ry, , either T = T° or b(T) > b(T?).

Proof. (1) follows immediately from the definitions of b;(T") and b(T'), (2) is an
elementary exercise and (3) follows from (2). O
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Lemma 4.2. Let 0 and ¢ be in Hy,, then 0 = ¢ if and only if s(0) = s(().

Proof. Tt is enough to show that = 0 if and only if s(6) = 0. Since S* is a cyclic

F[S,])-module generated by e;,, we have that § = 0 implies efA = 0 and hence

s(0) = 0. Conversely, assume 6 # 0. Let S € Fo(A, ), with cg g # 0 and b(S) as
large as possible. Then, by the definition of the 6r’s and by Lemma 4.1, it follows
that do,s = cg,s #0. O

For R € F(A, p), let T'(R) be the quiver with vertex set

V(R) == Fo(A p) U{R}

and edge set

E(R):={(0,8,T)|c € C,,,S€V(R),T € V(R)\{R,S} and T° ' € R(S)},
where, for each edge (0, 5,7T), S is the source and T is the target. Given a vertex
T € V(R), let P(T) (respectively P;1(T)) be the set of paths (resp. paths of length 1)
starting from 7. Define a labeling on F(R) by

x:  BER) — {-1,1}
(6,5, T) — sgno

Given a path p := (e1,ea,...,¢ex) in I'(R), with e; := (04,5, T;) for i € {1,...,k},
denote by I(p) the length k of p, by S? the ending vertex T of p, and set

k
) = Hx(ei)-

Lemma 4.3. Let T'(R) be as above, then T'(R) contains no cycles.

Proof. By Lemma 4.1, for every (0, S,T) € E(R) with S # R, we have b(T) < b(S).
And the claim follows since, by definition, R is not a target. O

Lemma 4.4. Let A and p be partitions of n, then, for every T € F(\, 1)\ Fo(A, i)
and Ty € Fo(A, ) we have

s(fr) = Z x(p)T? and s(0r,) = Ty + Z p)Ty.
pEP(T) PEP1(To)
Proof. This follows immediately from the definitions. ]

Proposition 4.5. Let A and p be partitions of n, then, for every T € F(A, u) \
Fo(A, p), we have

Or= > (=)' (p)ors.

peP(T)

Proof. Set 6 := 7 + Zpep(T)(fl)l(p)X(p)éTp. By Lemma 4.2, it is sufficient to
prove that s(f) = 0. By Lemma 4.4, we have

s(0) = s(br)+ Y (=1)'"Px(p)s(brr)

peEP(T)

Z p)TP + Z l(p) p)(TP + Z

peP1(T) peP(T geP1(TP)

> =)' = Y (=1)'Px(p)T =0.

peP(T) peP(T)
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d

Corollary 4.6. Let Let X and p be partitions of n, T € Fo(A, 1) and € € Ng,_(p).
Then either T¢ € R(S), for some S € Fo(A, p), in which case (01)° = 0g, or

(br)° = > (=1)!Px(p)0reys.
pEP(T*)

Proof. This follows from [3, Lemma 5] and Proposition 4.5. O
As an example consider the case
A=(551), p=(51,1,1,1,1,1), and ¢ = (2,5,3,6,4,7).

Then BA,u = (éTl s éTg 5 éTS, éT4, éTS), where

11111 11111 11111 11111 11111
Ty = 23456 ,To= 23457 ,Ty= 23467 ,Ty= 23567 ,Ts= 24567 ,
7 6 5 4 3
and
11111
T = 56734 .
2

Since any of the T;’s, for 1 < i < 5 can be obtained from 77 by a permutation of
the second row followed by the transposition that interchanges the last two entries
of the first column while, for every 6 € Ry, _ ), 0 € Ry, and {4, j} C {1,...,5},
we have 7?7 = T} if and only if i = j, it follows that the quiver I'(T¥) is

17
T, - Ty
T ' T
2 T

and by Corollary 4.6, (01,)° = —0p, — g, — Og, — 07, — 07,

5. PROOF OF THEOREM 1.2
Let K, be the normalizer in S,, of the subgroup ((1,2,3)(4,5,6)). Then
K, =((1,2,3),(4,5,6), (1,4)(2,5)(3,6), (2,3)(5,6)) x Ly,
where L,, 2 S,,_g. Consider first the case n = 6 and set p := (3,3). We have that
K¢ = (Y(3,3 N Ag) x N < N33y, where N = ((1,4)(2,5)(3,6)).

Then, ¢ := (1,4)(2,5)(3,6)™ = (1,2), hence, for every element z € N, we have
that sgn x = sgn z™. Since A 3) = {(6),(5,1),(4,2),(3,3)}, by Proposition 3.5
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Mff) decomposes into F[Sg]-irreducible submodules as follows
M 2 m SO @ me 18O @ my28HD) @ ms 550 @
6
n(373)5(2,2,2) & n(472)5(2,2,1,1) @ n(5’1)5(2,1,1,1,1) o n(ﬁ)S(l )7

where for A\ € A3y, my is equal to the multiplicity of the trivial F'[{c)]-module
in Hy, and ny is equal to the multiplicity of the alternating F'[(c)]-module in
H),. By [6, Corollary 13.14], for every A € A3 3), Hx, has dimension 1 and, by
Corollary 4.6 and [6, Theorem 6.7], ¢ acts trivially on it, if A € {(6), (4,2)}, and as
multiplication by —1,if A € {(5,1),(3,3)}. Thus m@) = m(4,2) = n(s,1) = Nz,3) = 1
and ms,1) = Mm(3,3) = M) = N4,2) = 0 as in the first column of Table 1. To get
the second column, note that Ky = Kg < Sg, whence M IS{? =M }3‘; TS7, and the
result follows by the Branching Theorem ([6, Theorem 9.2]).

Assume now n > 8 and let 4 := (n—6,1,1,1,1,1,1). Then Y, < K,, < N, and

K;:“ = <(27 3,3,6,4, 7)3 (3a 4)(57 6)>

Set a :=(2,5,3,6,4,7) and b := (3,4)(5,6). By [6, Corollary 13.17], the irreducible
F[S,]-submodules of M* are isomorphic to the Specht modules S*, where \ belongs
to the set
Apm—s1,111,1,1) = {(n),(n—1,1),(n—-2,2),(n—3,3),(n —4,4),(n - 5,5),
—-6,6),(n—2,1,1),(n—3,2,1),(n — 4,3,1),(n — 5,4,1),
—6,5,1),(n—4,2,2),(n—5,3,2),(n—6,4,2),(n—6,3,3),
-3,1,1),(n—4,2,1,1),(n —5,3,1,1),(n — 6,4,1,1),
n—>5221),(n—6,3,2,1),(n —6,2,2,2),(n —4,1,1,1,1),
(n—5,2,1,1,1),(n — 6,3,1,1,1),(n — 6,2,2,1, 1),
(n-5,1,1,1,1,1),(n - 6,2,1,1,1,1), u} .

(
(
(
(

By Theorem 3.4, we can obtain the multiplicity of the Specht module S* in M}i"
once we determine, for every A € A¢,_61,1,1,1,1,1), the multiplicity of the trivial
F[(a,b)]-module in Hy,.

Lemma 5.1. For every A € A(—¢,1,1,1,1,1,1) and n > 6 + Ao, the multiplicity my
of the Specht module S in MIS(" does not depend on n.

Proof. The result follows since, for every A € A(,,_¢,1,1,1,1,1,1), the structure of the
F[Ng, (1)]-modules Hy, does not depend on n when n > 6 + Xs. O

Lemma 5.2. Let 0 < k <6 andn > 6+ k. Then meu,_pr) = 2, if k € {2,3,4},
and me,_pry =1, if k € {0,1,5,6}.

Proof. For A\ = (n — k, k), with 1 < k < 6, we have that, by Corollary 4.6, (a,b)
permutes the elements of the basis By, in the same way as it permutes the elements
of Fo(A, p), and this action is equivalent to the action of (a, by on the set of k-subsets
of {1,...,6}. Hence, the multiplicity of the trivial F[(a,b)]-module in Hy, is equal
to the number of (a,b)-orbits on the set of k-subsets of {2,...,7}, and the result
follows. (]

This gives the first seven rows of Table 1 with the exceptions of ms 3y, M (4,4),
ms,4), and ms 5). From Lemma 5.1 and the case n = 7, we have that, for every
n > 8, the values of m(,,_4.1,1,1,1) and m(,—51,1,1,1,1) are as given in Table 1, while



12 CLARA FRANCHI, ALEXANDER A. IVANOV, AND MARIO MAINARDIS

Mn-3,1,1,1) = M(n-6,1,1,1,1,1,1) = M(n-2,1,1) = 0. This completes the cases where
NS A(n—ﬁ,l,l,l,l,l,l) with AQ = 1.

We consider now the case my where A = (n—6,5,1) and n > 11. By Lemma 5.1
we can reduce to n = 11. Using Corollary 4.6, as in the example at the end of that
section (that, incidentally, gives the first row of the first matrix), one can show that
the matrices associated to a and b with respect to the basis By, are respectively

and

O O O
_ o O O
OO OO
OO O =
OO = O
OO OO
oo OO
OO O =O
_ o o oo
o= O OO

whence, m s 5,1) = 0. In a similar way one shows that m,_54.1) = 1, m_g4,2) =
1, and m(y,—4,1,1) = 0, for n > 10, and m(5 5) = 0. Note that, for A = (n — 5,4, 1),
H),, has dimension 24, while in the other cases the dimension is at most 10.

The remaining cases could be also dealt similarly, using Theorem 3.4 with
uw = (n—26,1,1,1,1,1,1), but the dimensions involved increase (up to 45). To
reduce the size of the matrices, it is more convenient to use Proposition 3.5 re-
placing p with a different partition @ as follows. Assume n = 8. Set Jg :=
Ns, (((3,4,5)(6,7,8))), and 1t := (3,3,1,1). Then Jg = (YzN Ag) x N < Ng, where
N ={(3,6)(4,7)(5,8),(1,2)), and N™ = (¢, d), where ¢ := (3,6)(4,7)(5,8)™ and
d := (1,2)™. Then, for every € N, we have that sgn z = sgn ™. Since Ay = 1
if and only if X, =1,

A(S,S,l,l) = {(8 7(771)a(67131)a(672)3(5a17171)a(55271)3(5a3)7
1a 15 1)7 (4a 23 17 1)7 (4a 25 2)7 (4a 33 1)7 (474)5 (37 27 2a 1)5
a2)7 (3737 1a 1)}a

and (3,2,2,1) = (4,3,1)’, we are reduced to compute the multiplicities my and ny
for A in the set

{{(6,2)(5,2,1),(5,3),(4,2,1,1),(4,3,1),(4,2,2),(4,4),(3,3,2), (3,3, 1, 1)}.

The matrices representing ¢ (resp. d), with respect to the basis By; defined as in
Section 4, are given in the second (resp. third) column of Table 2. By Proposi-
tion 3.5, the dimension of their common 1-eigenspace (resp. —1l-eigenspace) is m)
(resp. my) and these are given in the fourth (resp. fith) column of Table 2.
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1 0 0 o0 1 0 0 0
0 -1 0 0 00 1 0

(6,2) 0 0 -1 o0 01 0 0 2 |1
0o 0o o0 1 00 0 1
1 0 0 o0 01 0 0
0 -1 0 o0 1 0 0 o0

.

(5,2,1) o 0 1 0 0 0 0 1 Lot
o 0o 0 1 0 0 1 0

-1 0 0
(5,3) 0 1 o0
o o0 1

(4,2,1,1) (1) (-1) 0 0
1 0 0 0 0 1 0 0

won (83“1 8) (588‘5) e
0 0 0 —1 0 0 1 0

(4,2,2) (1) (1) 1 0

(4,4) ( (1) —01 ) ( (1> 701 ) 1 1

(3,3,2) (=1) (1) 0 0

(3,3,1,1) (-1) (-1) 0 1

TABLE 2

By Proposition 3.5 and Lemma 5.1, this gives all the entries in the fourth column
and in the rows corresponding to the partitions (n — 3,2,1), (n — 5,2,2,1) (n —
6,2,2,2), (n—6,2,1,1,1,1), (n—5,2,1,1,1), (4,3,1), and (n —4,2,2) of Table 1,
whilst showing that, for every n > 8, the values m,_4,2,1,1), M(n—6,22,1,1), 7(3,3,2)s
m(3,3,1,1), and m(n,4_’271,1) are all 0.

Similarly, for n = 9, set Jy := Ng,({(4,5,6)(7,8,9))) and @ := (3,3,1,1,1).
Then Jy = (Yz N Ag) x N < Ny, where N = ((4,7)(5,8)(6,9), (1,2), (2, )> nd
N™ = {(¢,d,e), where ¢ := (4, 7)(5,8)(6,9)”“, d = (1,2)7”T and e := (2,3)™.
Again, for every element x € N, we have that sgn x = sgn 2™, so Proposition 3.5
applies. Since

A(3,3,1,1,1) = {(9),(871)3(7,171)3(772)7(631a1 1) (6 2 1) (6 3),(571313171)7
(5,2,1,1),(5,2,2),(5,3,1), (5,4), (4,2,1,1,1), (4,2,2, 1),
(4737171)7(47372)7(47471))(37373>7(3737271))(3737171a1)}u

and (3,3,2,1) = (4, 3,2)’, by Proposition 3.5, we need to determine the multiplici-
ties my and ny for

A€ {(5,4),(5,3,1),(4,3,2),(3,3,3),(4,3,1,1),(3,3,1,1,1), (4,4, 1) }.

As in the previous case we get that the multiplicities my and n) are as in Table 3:
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x| (5,9 | (5,3,1) | (4,3,2) | (3,3,3) | (4,3,1,1) | (3,3,1,1,1) | (4,4,1)
my 1 1 1 0 0 0 1
ny 0 0 0 0 1 1 1

TABLE 3
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