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Abstract. In this paper we present a general method for computing the ir-

reducible components of the permutation modules of the symmetric groups

over a field F of characteristic 0. We apply this machinery to determine the
decomposition into irreducible submodules of the F [Sn]-permutation module

on the right cosets of the normaliser in Sn of the subgroup generated by a
permutation of type (3, 3).

1. Introduction and notations

Throughout this paper, G is a finite group and F a field of characteristic 0 or
coprime to |G|. For a subgroup L of G, denote by MG

L the F [G]-permutation
module associated to the action of G by right multiplication on the set of right
cosets of L in G. If S is an irreducible F [G]-module, the multiplicity of S in MG

L

is the number of the composition factors of MG
L isomorphic to S. If H and N are

subgroups of G, with H ≤ N ≤ NG(H), let, for every x ∈ N ,

xτ : MG
H →MG

H

be the linear map defined, for every right coset Hg of H in G, by

(1.1) (Hg)x
τ

:= Hx−1g.

Note that, since N ≤ NG(H), xτ is a well defined F [G]-isomorphism of MG
H and

the map
τ : N → AutF [G](M

G
H ),

defined, for every x ∈ N , by x 7→ xτ , is a representation of N with kernel H. This
induces on MG

H an (F [G], F [N ])-bimodule structure, which on turn defines, in the
natural way, an F [N ]-module structure on HomF [G](S,M

G
H ) for every F [G]-module

S (see [5, Proposition 3.5]). Clearly τ depends on the subgroup H. When needed,
we shall specify this by indexing τ with the subgroup H. In Section 2, we prove

Theorem 1.1. Let H and N be subgroups of G with H ≤ N ≤ NG(H). Then,
for every irreducible F [G]-module S, the multiplicity of S in MG

N is equal to the
multiplicity of the trivial F [N ]-module in HomF [G](S,M

G
H ).

In Section 2 we prove a variation of Theorem 1.1 which will turn to be useful for
simplifying computations in certain situations. In Sections 3 and 4 we apply the
above results to give a general method for computing the irreducible submodules of
MSn
N , where N is a subgroup of the symmetric group Sn on {1, . . . , n} (n a positive
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integer). The idea, here, is to trap N between a Young subgroup Yµ, associated to
a suitable partition µ, and its normaliser in Sn and use the theory of λ-tableaux
of type µ to describe explicitly the action τ . In Section 5 we apply the above
machinery to the case where µ = (n− 6, 1, 1, 1, 1, 1, 1) and prove

Theorem 1.2. Assume the characteristic of F is 0. Let N be the normalizer in
Sn of a subgroup generated by a permutation of type (3, 3). Then MSn

N decomposes
as a direct sum of irreducible submodules as follows:

MSn
N =

⊕
λ∈Λ

mλS
λ,

where for every λ ∈ Λ, Sλ is the Specht module associated to λ, the elements of
the set Λ are listed in the first column of Table 1, and, for each n ≥ 6, the values
mλ are given in the remaining columns (note that, for small values of n, some of
the displayed λ’s do not correspond to a partition of n; boxes corresponding to such
pairs (λ, n) are left blank).

λ n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n ≥ 12
(n) 1 1 1 1 1 1 1
(n− 1, 1) 0 1 1 1 1 1 1
(n− 2, 2) 1 1 2 2 2 2 2
(n− 3, 3) 0 1 1 2 2 2 2
(n− 4, 4) 1 1 2 2 2
(n− 5, 5) 0 1 1
(n− 6, 6) 1
(n− 3, 2, 1) 0 1 1 1 1 1 1
(n− 4, 3, 1) 0 1 1 1 1 1
(n− 5, 4, 1) 1 1 1 1
(n− 4, 2, 2) 1 1 2 2 2 2 2
(n− 5, 3, 2) 0 1 1 1 1
(n− 6, 4, 2) 1 1 1
(n− 5, 2, 2, 1) 1 1 1 1 1 1
(n− 6, 2, 2, 2) 1 1 1 1 1
(n− 4, 1, 1, 1, 1) 1 1 1 1 1 1 1
(n− 5, 2, 1, 1, 1) 1 1 1 1 1 1
(n− 5, 1, 1, 1, 1, 1) 0 1 1 1 1 1 1
(n− 6, 2, 1, 1, 1, 1) 1 1 1 1 1

Table 1

Our interest for this particular case arises from the context of Majorana theory
(see [4]). More specifically, this result is needed for computing the linear span of
3A-axes in a standard Majorana representation of Sn (see [3]).

2. A remark on permutation modules

Lemma 2.1. Let H ≤ N ≤ NG(H). With the notation established in Section 1,
CMG

H
(Nτ ) is an F [G]-submodule of MG

H isomorphic to MG
N .

Proof. Since the elements of Nτ are F [G]-automorphisms of MG
H , we have that

CMG
H

(Nτ ) is an F [G]-submodule of MG
H . Let G (resp. N ) be a right transversal of

N in G (resp. of H in N), then {xg|x ∈ N , g ∈ G} is a right transversal of H in G
and, since Nτ is transitive on the set {Hxg|x ∈ N}, the element∑

g∈G

∑
x∈N

ax,gHxg ∈MG
H (with ax,g ∈ F ),

centralizes Nτ if and only if, for every g ∈ G, the coefficients ax,g have a constant
value. Therefore the linearly independent elements

∑
x∈N Hxg, where g ∈ G,

generate CMG
H

(Nτ ) and the map

γ : CMG
H

(Nτ )→MG
N ,
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defined by ∑
g∈G

ag
∑
x∈N

Hxg 7→
∑
g∈G

agNg,

is an F [G]-isomorphism. �

Theorem 1.1 follows immediately from Lemma 2.1 and from the following gen-
eralisation of Lemma 4 in [3] (whose proof is essentially the same).

Lemma 2.2. Let G and K be finite groups, M an (F [G], F [K])-bimodule, and S
an irreducible F [G]-module. Then the multiplicity of S as a composition factor of
the F [G]-module CM (K) is equal to the multiplicity of the trivial F [K]-module in
HomF [G](S,M).

Assume now that G = A〈ω〉, where A is a normal subgroup and ω is an involution
not contained in A. Let Y be a subgroup of G containing ω, N a subgroup of G
with Y ≤ N ≤ NG(Y ), and set H := A ∩ Y . Then H ≤ N ≤ NG(H) and, via
the action τH (resp. τY ) of N defined as in Section 1, MG

H (resp. MG
Y ) is an

(F [G], F [N ])-bimodule. Let

sgn: G→ F

be the linear character of G whose value is 1 on the elements of A and −1 otherwise.
Let U be the (A,N ∩A)-alternating (F [G], F [N ])-bimodule, i.e. an F -vector space
of dimension 1 on which G (resp. N) acts with kernel A (resp. (N ∩A)).

Lemma 2.3. MG
H is isomorphic, as an (F [G], F [N ])-bimodule, to

MG
Y ⊕ (MG

Y ⊗F U).

Proof. For ± ∈ {+,−}, let D± be the F [G]-submodule of MG
H generated by the

element H ± Hω. Let ν ∈ N . Since |ω| = 2, 〈H,ω〉 = Y , and Y is a normal
subgroup of N , we have that Hνω = Hων, whence

(H ±Hω)ν
τ

= Hν−1 ±Hν−1ω = Hν−1 ±Hων−1 ∈ D±,

showing that D+ and D− are (also) F [N ]-submodules. Let σ1, . . . , σt a right
transversal of H in A. Then the 2t-tuple

C := (Hσ1, . . . ,Hσt, Hωσ1, . . . ,Hωσt)

is a basis of MG
H and

C± := (Hσ1 ±Hωσ1, . . . ,Hσt ±Hωσt)

is a basis of D±. Since G contains an involution, char(F ) 6= 2, whence

MG
H = D+ ⊕D−.

Fix u0 a non zero vector in U and let

θ+ : D+ →MG
Y (resp. θ− : D− →MG

Y ⊗F U)

be the F -isomorphism defined, for every i ∈ {1, . . . , t}, by

Hσi +Hωσi 7→ Y σi (resp. Hσi −Hωσi 7→ Y σi ⊗ u0).

Since θ+ and θ− are isomomorphisms of (F [G], F [N ])-bimodules, the result follows.
�

For an F -vector space V denote by V ∗ its dual space.
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Lemma 2.4. With the above notation, for every F [G]-module S, we have

HomF [G](S,M
G
Y ⊗F U) ∼=F [N ] HomF [G](S ⊗ U∗,MG

Y )⊗F U.

Proof. Set M := MG
Y . For f ∈ S∗, m ∈M and u ∈ U let

φf,m,u : S → M ⊗ U
s 7→ f(s)m⊗ u and

φf,m,u : S ⊗ U∗ → M
s⊗ g 7→ f(s)g(u)m

.

By [8, Chapter XVI, Propositions 1.1 and 1.2 and Corollaries 5.5 and 5.6] there is
a unique (natural) isomorphism of F -spaces

ζ : HomF (S,M ⊗F U)→ HomF (S ⊗F U∗,M)

such that, for every f , m, and u as above,

φf,m,u 7→ φf,m,u

and, by [1, Proof of Theorem 43.14], ζ induces, by restriction, an F -space isomor-
phism ζ0 between HomF [G](S,M ⊗F U) and HomF [G](S ⊗F U∗,M). Let δ ∈ N .

Since (φf,m,u)δ = φf,mδ,uδ , for every s ∈ S and g ∈ U∗, we have that

(s⊗ g)(φf,m,u)δζ = f(s)g(uδ)mδ

= sgn δf(s)g(u)mδ

= sgn δ(s⊗ g)(φf,m,u)ζδ ,

whence (φf,m,u)δζ = sgn δ(φf,m,u)ζδ. Therefore, the required F [N ]-isomorphism is
obtained by fixing a generator u0 of U and composing ζ0 with the F -isomorphism

HomF (S ⊗F U∗,M) → HomF (S ⊗F U∗,M)⊗F U
φ 7→ φ⊗ u0

.

�

Corollary 2.5. For every irreducible F [G]-module S, the multiplicity of the triv-
ial F [N ]-module in HomF [G](S,M

G
Y ⊗F U) is equal to the multiplicity of the A-

alternating F [N ]-module in HomF [G](S ⊗ U∗,MG
Y ).

Proposition 2.6. Let A be a normal subgroup of G and let ω ∈ G be an invo-
lution such that G = A〈ω〉. Let Y and N be subgroups of G such that ω ∈ Y
and A ∩ Y ≤ N ≤ NG(Y ). Then, for every irreducible F [G]-module S, the mul-
tiplicity of S in MG

N is equal to the sum of the multiplicity of the trivial F [N ]-
module in HomF [G](S,M

G
Y ) with the multiplicity of the A-alternating F [N ]-module

in HomF [G](S ⊗ U∗,MG
Y ).

Proof. By Lemma 2.3 and Lemma 2.4, we have that

HomF [G](S,M
G
Y ∩A)∼=F [N ] HomF [G](S,M

G
Y )⊕HomF [G](S,M

G
Y ⊗F U)

∼=F [N ] HomF [G](S,M
G
Y )⊕ (HomF [G](S ⊕ U∗,MG

Y )⊗F U),

and the result follows by Lemma 2.1. �
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3. Permutation modules for the symmetric group

From now on, assume G is the symmetric group Sn on the set {1, . . . , n}, A
the alternating group An, and F a field of characteristic 0. Refer to [6] for basic
facts about ordinary representation theory of the symmetric groups. For better
readability, we briefly recall the notation of [3, Section 4].

Let µ := (µ1, . . . , µr) and λ := (λ1, . . . , λs) be partitions of n. We shall always
assume that µi ≥ µj (resp. λi ≥ λj), if i < j. Let Bµ := {B1, . . . , Br}, where
Br := {1, . . . , µr}, and, for every i ∈ {1, . . . , r − 1},

Br−i := {
i−1∑
j=0

µr−j + 1, . . . ,

i∑
j=0

µr−j}.

The block normaliser Nµ is the subgroup of all elements of Sn that induce a permu-
tation on Bµ. The kernel of the action induced by Nµ on Bµ is the Young subgroup
Yµ associated to µ, defined by:

Yµ := S{1,...,µr} × S{µr+1,...,µr+µr−1} × . . .× S{n−µ1+1,...,n}.

Denote by [λ] the diagram associated to λ. Recall that a λ-tableau is a bijection
t : [λ]→ {1, . . . , n}. Denote it, as usual, by replacing each node of [λ] by its image
under t. Sn acts on the set of all λ-tableaux by composition on the right: tσ := tσ,
for every λ-tableaux t and σ ∈ Sn. Given a λ-tableau t, the λ-tabloid {t} associated
to t is the orbit of t under the action of the rows stabiliser of t in Sn. The action of
Sn on the λ-tableaux induces an action of Sn on the set of all λ-tabloids. Let Mλ be
the permutation module of Sn on the set of all λ-tabloids. Since the stabiliser of a
λ-tabloid is conjugate in Sn to Yλ, Mλ is F [Sn]-isomorphic to MSn

Yλ
. From now on,

we fix a λ-tableau tλ, so that the Specht module Sλ is the cyclic F [Sn]-submodule
of Mλ generated by

etλ :=
∑
σ∈Ctλ

(sgn σ){tλ}σ,

where Ctλ is the columns stabiliser of tλ. A λ-tableau T of type µ is a function
T : [λ] → {1, . . . , r}, such that |T−1(i)| = µi, for every i ∈ {1, . . . , r}. T is called
semistandard if the entries are non-decreasing along the rows of T and strictly
increasing down the columns of T . Denote with F(λ, µ) the set of all λ-tableaux of
type µ and by F0(λ, µ) the set of all semistandard λ-tableaux of type µ. Define an
action (depending on tλ) of the symmetric group Sn on F(λ, µ) setting, for every
T ∈ F(λ, µ) and every σ ∈ Sn,

(3.1) Tσ := tλσ
−1t−1

λ T.

This action is equivalent to the action of Sn on the set of µ-tabloids (see [6, p. 44]),
so that the module Mµ is isomorphic to the permutation module Mλµ associated
to the above action of Sn on the set F(λ, µ).

Let NSr (µ) be the normaliser of the partition µ, that is the subgroup of Sr
containing all the elements δ ∈ Sr such that µiδ = µi for every i ∈ {1, . . . , r}, and
let

πµ : Nµ → NSr (µ)

be the map sending σ ∈ Sn to the permutation σ̄ ∈ Sr defined, for every i ∈
{1, . . . , r}, by the condition iσ̄ = j ⇐⇒ (Bi)

σ = Bj . Then πµ is a well defined
surjective group homomorphism with kernel Yµ, whence NSr (µ) ∼= Nµ/Yµ.



6 CLARA FRANCHI, ALEXANDER A. IVANOV, AND MARIO MAINARDIS

For every T ∈ F(λ, µ) and δ ∈ NSr (µ), let

(3.2) T δ := Tδ,

so that T δ is the λ-tableau of type µ obtained from T by replacing every node x
of T by xδ, and let αδ : Mλµ →Mλµ be the F -automorphism induced on Mλµ by
the permutation T 7→ T δ of its basis F(λ, µ).

Lemma 3.1. With the above notation, αδ is an F [Sn]-automorphism of Mλµ and
the map

α : NSr (µ) → AutF [Sn](M
λµ)

δ 7→ αδ

is a group homomorphism, thus defining a structure of (F [Sn], F [NSr (µ)])-bimodule
on Mλµ and Mµ (∼=F [Sn] M

λµ).

Proof. This follows immediately from the definitions (note that the action of NSr (µ)
on Mµ permutes the rows of equal length of the µ-polytabloids). �

Let T0 be the λ-tableau of type µ defined, for each (h, k) ∈ [λ], by the condition:

(h, k)T0 = i ⇐⇒ (h, k)tλ ∈ Bi.

Lemma 3.2. With the above notation, Yµ is the stabiliser of T0 in Sn and there is
an F [Sn]-isomorphism (of cyclic F [Sn]-modules)

ξ : MSn
Yµ
→Mλµ

such that (Yµ)ξ = T0.

Proof. This follows from the definition of T0, since the action of Sn on the Sn-orbit
of T0 is equivalent to the action on the set of right cosets of Yµ in Sn. �

Given a bijection f : X → Z, between two sets X and Z, denote by f∗ the map

(3.3)
f∗ : SX → SZ

φ 7→ f−1φf
.

Lemma 3.3. Let λ and µ be partitions of n and τ : Nµ → AutF [Sn](M
µ) be the

map defined in Section 1. Then the following diagram commutes.

Nµ
τ−−−−→ AutF [Sn](M

Sn
Yµ

)yπµ yξ∗
NSr (µ)

α−−−−→ AutF [Sn](M
λµ)

Proof. By definition we have that, for every δ ∈ Nµ,

(3.4) δt−1
λ T0 = t−1

λ T0δ
πµ .

Thus for every x ∈ Nµ, we have

(T0)x
τξ∗

= (T0)x
−1

= tλxt
−1
λ T0 = tλt

−1
λ T0x

πµ = (T0)x
πµα

and the result follows, since Mλµ is a cyclic F [Sn]-module generated by T0. �

Using Lemma 3.3 we can restate Theorem 1.1 and Proposition 2.6 when the
group G is the symmetric group. Set Hλµ := HomF [Sn](S

λ,Mµ).
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Theorem 3.4. With the above notation, let Yµ ≤ N ≤ Nµ. Then, for every

partition λ of n, the multiplicity of Sλ as a composition factor of MSn
N is equal to

the multiplicity of the trivial F [Nπµ ]-module in Hλµ.

Proof. It follows from Lemma 3.3 and Theorem 1.1. �

Denote by λ′ the conjugate of λ, that is the partition whose diagram [λ′] is the

transposed of [λ]. Write λDµ if and only if s ≤ r and
∑k
i=1 λi ≥

∑k
i=1 µi for every

k ∈ {1, . . . , s} and let Λµ be the set of partitions λ such that λD µ.

Proposition 3.5. Let µ be a partition of n, µ 6= (1n) and let N ≤ Nµ such
that N ∩ Yµ = 1 and for every x ∈ N, sgn xπµ = sgn x. Then, the F [Sn]-module

MSn
N(Yµ∩An) decomposes as a direct sum of irreducible submodules as follows:

M =
⊕
λ∈Λµ

(mλS
λ ⊕ nλSλ

′
),

where mλ is equal to the multiplicity of the trivial F [Nπµ ]-module in Hλµ, and nλ
is equal to the multiplicity of the Ar-alternating F [Nπµ ]-module of Hλµ.

Proof. Let λ be a partition of n and let U be the (An, Ar)-alternating (F [Sn], F [NSr (µ)])-
bimodule. Then U is an F [N ]-module via πµ, and, since by hypothesis sgn xπµ =
sgnx for every x ∈ N , U is the alternating F [N ]-module. By Theorem [6, Theorem
6.7] (that holds for any field of characteristic 0),

Sλ ⊗F U∗ ∼=F [Sn] S
λ ⊗F U ∼=F [Sn] S

λ′ .

By Proposition 2.6 (with A = An, Y = Yµ, and ω = (n, n− 1)) and Lemma 3.3 we

have that the multiplicity of Sλ in MSn
N(Yµ∩An) is given by the sum of the multi-

plicity of the trivial F [Nπµ ]-module in HomF [Sn](S
λ,Mµ) with the multiplicity of

the alternating F [Nπµ ]-module in HomF [Sn](S
λ′ ,Mµ), and the result follows since,

by [6, Corollary 13.17], HomF [Sn](S
λ,Mµ) = 0 unless λD µ. �

4. Action of NSr (µ) on Hλµ

By Theorem 3.4 (resp. Proposition 3.5), we are reduced to compute the dimen-
sion of the trivial (resp. trivial and alternating) F [Nρµ ]-module of Hλµ. We do so
by explicitly computing the matrices associated to the elements of a generating set
of Nρµ , with respect to a basis Bλµ of Hλµ. For every T ∈ F(λ, µ), set

R(T ) := {T δ | δ ∈ Rtλ},
where Rtλ is the row stabiliser of tλ in Sn. Since Sλ is a cyclic F [Sn]-module

generated by etλ , for every T ∈ F(λ, µ) there is a unique element θ̂T in Hλµ such
that

(4.1) eθ̂Ttλ =
∑
σ∈Ctλ

sgnσ
∑

S∈R(T )

Sσ.

Let

(4.2) Bλµ := ({θ̂T | T ∈ F0(λ, µ)},≤λµ),

where ≤λµ is the order induced by the following “lexicographic” order on F0(λ, µ):

θ̂R ≤λµ θ̂S if and only if
∑

(i,j)∈[λ]

nn
i+j(i, j)R ≥

∑
(i,j)∈[λ]

nn
i+j(i, j)S .
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By [6, Theorem 13.13], Bλµ is a basis for Hλµ, thus, for every θ ∈ Hλµ, there exist
unique scalars cθ,S , where S ranges in F0(λ, µ), such that

(4.3) θ =
∑

S∈F0(λ,µ)

cθ,S θ̂S .

Since F(λ, µ) is a linearly independent set of generators of Mλµ, for every θ ∈ Hλµ,
there exist unique scalars dθ,R, where R ranges in F(λ, µ), such that

(4.4) eθtλ =
∑

R∈F(λ,µ)

dθ,RR.

For θ as above, let

s(θ) :=
∑

R∈F0(λ,µ)

dθ,RR

be the semistandard part of eθtλ .
Note that, in general, for S ∈ F0(λ, µ), the coefficients cθ,S ’s do not coincide

with the dθ,S ’s: consider, e.g., the following (2, 2, 1)-tableaux of type (15):

T :=
1 4
2 5
3

If we compute eθ̂Ttλ , we see that, in the summands of the righthandside of Equa-
tion (4.4), together with T , the following ”parvenu” semistandard λ-tableaux of
type µ appears too:

T δσ =
1 2
3 4
5

,

where δ is the rows stabilising permutation interchanging the two entries in the
second row of T and σ is the column stabilising permutation interchanging the last
two entries of the first column and the two entries of the second column of T δ. In
order to deal with such parvenus, given T ∈ F(λ, µ), set

bi(T ) :=

λi∑
j=1

j(i, j)T for every i ∈ {1, . . . , s}

and

b(T ) :=
∑

(i,j)∈[λ]

j(i, j)T =
s∑
i=1

bi(T ).

Thinking of the entries of T as weights, bi(T ) (resp. b(T )) can be viewed as the
(non normalized) horizontal coordinate of the center of mass of the i-th row of T
(resp. of T itself). The following lemma shows that this coordinate is maximal
precisely when the heaviest weights are placed as far right as possible.

Lemma 4.1. With the above notations,

(1) for every σ ∈ Ctλ , we have that b(T ) = b(Tσ);
(2) if (i, j)T ≤ (i, h)T for every 1 ≤ j ≤ h ≤ λi, then, for every σ in Rtλ , we

have that bi(T
σ) ≤ bi(T ), with equality if and only if (i, j)T

σ

= (i, j)T for
every 1 ≤ j ≤ λi;

(3) if T is semistandard, then, for every δ ∈ Rtλ , either T = T δ or b(T ) > b(T δ).

Proof. (1) follows immediately from the definitions of bi(T ) and b(T ), (2) is an
elementary exercise and (3) follows from (2). �
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Lemma 4.2. Let θ and ζ be in Hλµ, then θ = ζ if and only if s(θ) = s(ζ).

Proof. It is enough to show that θ = 0 if and only if s(θ) = 0. Since Sλ is a cyclic
F [Sn]-module generated by etλ , we have that θ = 0 implies eθtλ = 0 and hence
s(θ) = 0. Conversely, assume θ 6= 0. Let S ∈ F0(λ, µ), with cθ,S 6= 0 and b(S) as

large as possible. Then, by the definition of the θ̂T ’s and by Lemma 4.1, it follows
that dθ,S = cθ,S 6= 0. �

For R ∈ F(λ, µ), let Γ(R) be the quiver with vertex set

V (R) := F0(λ, µ) ∪ {R}
and edge set

E(R) := {(σ, S, T )|σ ∈ Ctλ , S ∈ V (R), T ∈ V (R) \ {R,S} and Tσ
−1

∈ R(S)},
where, for each edge (σ, S, T ), S is the source and T is the target. Given a vertex
T ∈ V (R), let P(T ) (respectively P1(T )) be the set of paths (resp. paths of length 1)
starting from T . Define a labeling on E(R) by

χ : E(R) → {−1, 1}
(σ, S, T ) 7→ sgn σ

.

Given a path p := (e1, e2, . . . , ek) in Γ(R), with ei := (σi, Si, Ti) for i ∈ {1, . . . , k},
denote by l(p) the length k of p, by Sp1 the ending vertex Tk of p, and set

χ(p) :=

k∏
i=1

χ(ei).

Lemma 4.3. Let Γ(R) be as above, then Γ(R) contains no cycles.

Proof. By Lemma 4.1, for every (σ, S, T ) ∈ E(R) with S 6= R, we have b(T ) < b(S).
And the claim follows since, by definition, R is not a target. �

Lemma 4.4. Let λ and µ be partitions of n, then, for every T ∈ F(λ, µ)\F0(λ, µ)
and T0 ∈ F0(λ, µ) we have

s(θ̂T ) =
∑

p∈P1(T )

χ(p)T p and s(θ̂T0) = T0 +
∑

p∈P1(T0)

χ(p)T p0 .

Proof. This follows immediately from the definitions. �

Proposition 4.5. Let λ and µ be partitions of n, then, for every T ∈ F(λ, µ) \
F0(λ, µ), we have

θ̂T =
∑

p∈P(T )

(−1)l(p)+1χ(p)θ̂Tp .

Proof. Set θ := θ̂T +
∑
p∈P(T )(−1)l(p)χ(p)θ̂Tp . By Lemma 4.2, it is sufficient to

prove that s(θ) = 0. By Lemma 4.4, we have

s(θ) = s(θ̂T ) +
∑

p∈P(T )

(−1)l(p)χ(p)s(θ̂Tp)

=
∑

p∈P1(T )

χ(p)T p +
∑

p∈P(T )

(−1)l(p)χ(p)(T p +
∑

q∈P1(Tp)

χ(q)(T p)q)

=
∑

p∈P(T )

(−1)l(p)χ(p)T p −
∑

p∈P(T )

(−1)l(p)χ(p)T p = 0.
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�

Corollary 4.6. Let Let λ and µ be partitions of n, T ∈ F0(λ, µ) and ε ∈ NSr (µ).

Then either T ε ∈ R(S), for some S ∈ F0(λ, µ), in which case (θ̂T )ε = θ̂S, or

(θ̂T )ε =
∑

p∈P(T ε)

(−1)l(p)+1χ(p)θ̂(T ε)p .

Proof. This follows from [3, Lemma 5] and Proposition 4.5. �

As an example consider the case

λ = (5, 5, 1), µ = (5, 1, 1, 1, 1, 1, 1), and ε = (2, 5, 3, 6, 4, 7).

Then Bλµ = (θ̂T1
, θ̂T2

, θ̂T3
, θ̂T4

, θ̂T5
), where

T1 =
1 1 1 1 1
2 3 4 5 6
7

, T2 =
1 1 1 1 1
2 3 4 5 7
6

, T3 =
1 1 1 1 1
2 3 4 6 7
5

, T4 =
1 1 1 1 1
2 3 5 6 7
4

, T5 =
1 1 1 1 1
2 4 5 6 7
3

,

and

T ε1 =
1 1 1 1 1
5 6 7 3 4
2

.

Since any of the Ti’s, for 1 ≤ i ≤ 5 can be obtained from T ε1 by a permutation of
the second row followed by the transposition that interchanges the last two entries
of the first column while, for every δ ∈ Rt(5,5,1) , σ ∈ Rt(5,5,1) , and {i, j} ⊆ {1, . . . , 5},
we have T δσi = Tj if and only if i = j, it follows that the quiver Γ(T ε1 ) is

T ε1

��
���

��q -

T1 q
-

�
�
�
�
�/

T2

q

?

T3

q-

S
S
S
S
Sw
T4

q
-

HH
HHH

Hj
T5

q-

and by Corollary 4.6, (θ̂T1
)ε = −θ̂T1

− θ̂T2
− θ̂T3

− θ̂T4
− θ̂T5

.

5. Proof of Theorem 1.2

Let Kn be the normalizer in Sn of the subgroup 〈(1, 2, 3)(4, 5, 6)〉. Then

Kn = 〈(1, 2, 3), (4, 5, 6), (1, 4)(2, 5)(3, 6), (2, 3)(5, 6)〉 × Ln
where Ln ∼= Sn−6. Consider first the case n = 6 and set µ := (3, 3). We have that

K6 = (Y(3,3) ∩A6)×N ≤ N(3,3), where N = 〈(1, 4)(2, 5)(3, 6)〉.

Then, c := (1, 4)(2, 5)(3, 6)πµ = (1, 2), hence, for every element x ∈ N , we have
that sgn x = sgn xπµ . Since Λ(3,3) = {(6), (5, 1), (4, 2), (3, 3)}, by Proposition 3.5
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MS6

K6
decomposes into F [S6]-irreducible submodules as follows

MS6

K6

∼= m(6)S
(6) ⊕m(5,1)S

(5,1) ⊕m(4,2)S
(4,2) ⊕m(3,3)S

(3,3) ⊕

n(3,3)S
(2,2,2) ⊕ n(4,2)S

(2,2,1,1) ⊕ n(5,1)S
(2,1,1,1,1) ⊕ n(6)S

(16),

where for λ ∈ Λ(3,3), mλ is equal to the multiplicity of the trivial F [〈c〉]-module
in Hλµ and nλ is equal to the multiplicity of the alternating F [〈c〉]-module in
Hλµ. By [6, Corollary 13.14], for every λ ∈ Λ(3,3), Hλµ has dimension 1 and, by
Corollary 4.6 and [6, Theorem 6.7], c acts trivially on it, if λ ∈ {(6), (4, 2)}, and as
multiplication by−1, if λ ∈ {(5, 1), (3, 3)}. Thusm(6) = m(4,2) = n(5,1) = n(3,3) = 1
and m(5,1) = m(3,3) = n(6) = n(4,2) = 0 as in the first column of Table 1. To get

the second column, note that K7 = K6 ≤ S6, whence MS7

K7
= MS6

K6
↑S7

, and the
result follows by the Branching Theorem ([6, Theorem 9.2]).

Assume now n ≥ 8 and let µ := (n− 6, 1, 1, 1, 1, 1, 1). Then Yµ ≤ Kn ≤ Nµ and

Kπµ
n = 〈(2, 5, 3, 6, 4, 7), (3, 4)(5, 6)〉.

Set a := (2, 5, 3, 6, 4, 7) and b := (3, 4)(5, 6). By [6, Corollary 13.17], the irreducible
F [Sn]-submodules of Mµ are isomorphic to the Specht modules Sλ, where λ belongs
to the set

Λ(n−6,1,1,1,1,1,1) = {(n), (n− 1, 1), (n− 2, 2), (n− 3, 3), (n− 4, 4), (n− 5, 5),

(n− 6, 6), (n− 2, 1, 1), (n− 3, 2, 1), (n− 4, 3, 1), (n− 5, 4, 1),

(n− 6, 5, 1), (n− 4, 2, 2), (n− 5, 3, 2), (n− 6, 4, 2), (n− 6, 3, 3),

(n− 3, 1, 1), (n− 4, 2, 1, 1), (n− 5, 3, 1, 1), (n− 6, 4, 1, 1),

(n− 5, 2, 2, 1), (n− 6, 3, 2, 1), (n− 6, 2, 2, 2), (n− 4, 1, 1, 1, 1),

(n− 5, 2, 1, 1, 1), (n− 6, 3, 1, 1, 1), (n− 6, 2, 2, 1, 1),

(n− 5, 1, 1, 1, 1, 1), (n− 6, 2, 1, 1, 1, 1), µ} .

By Theorem 3.4, we can obtain the multiplicity of the Specht module Sλ in MSn
Kn

once we determine, for every λ ∈ Λ(n−6,1,1,1,1,1,1), the multiplicity of the trivial
F [〈a, b〉]-module in Hλµ.

Lemma 5.1. For every λ ∈ Λ(n−6,1,1,1,1,1,1) and n ≥ 6 + λ2, the multiplicity mλ

of the Specht module Sλ in MSn
Kn

does not depend on n.

Proof. The result follows since, for every λ ∈ Λ(n−6,1,1,1,1,1,1), the structure of the
F [NSr (µ)]-modules Hλµ does not depend on n when n ≥ 6 + λ2. �

Lemma 5.2. Let 0 ≤ k ≤ 6 and n ≥ 6 + k. Then m(n−k,k) = 2, if k ∈ {2, 3, 4},
and m(n−k,k) = 1, if k ∈ {0, 1, 5, 6}.

Proof. For λ = (n − k, k), with 1 ≤ k ≤ 6, we have that, by Corollary 4.6, 〈a, b〉
permutes the elements of the basis Bλµ in the same way as it permutes the elements
of F0(λ, µ), and this action is equivalent to the action of 〈a, b〉 on the set of k-subsets
of {1, . . . , 6}. Hence, the multiplicity of the trivial F [〈a, b〉]-module in Hλµ is equal
to the number of 〈a, b〉-orbits on the set of k-subsets of {2, . . . , 7}, and the result
follows. �

This gives the first seven rows of Table 1 with the exceptions of m(5,3), m(4,4),
m(5,4), and m(5,5). From Lemma 5.1 and the case n = 7, we have that, for every
n ≥ 8, the values of m(n−4,1,1,1,1) and m(n−5,1,1,1,1,1) are as given in Table 1, while
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m(n−3,1,1,1) = m(n−6,1,1,1,1,1,1) = m(n−2,1,1) = 0. This completes the cases where
λ ∈ Λ(n−6,1,1,1,1,1,1) with λ2 = 1.

We consider now the case mλ where λ = (n−6, 5, 1) and n ≥ 11. By Lemma 5.1
we can reduce to n = 11. Using Corollary 4.6, as in the example at the end of that
section (that, incidentally, gives the first row of the first matrix), one can show that
the matrices associated to a and b with respect to the basis Bλµ are respectively


−1 −1 −1 −1 −1

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 and


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 ,

whence, m(5,5,1) = 0. In a similar way one shows that m(n−5,4,1) = 1, m(n−6,4,2) =
1, and m(n−6,4,1,1) = 0, for n ≥ 10, and m(5,5) = 0. Note that, for λ = (n− 5, 4, 1),
Hλµ has dimension 24, while in the other cases the dimension is at most 10.

The remaining cases could be also dealt similarly, using Theorem 3.4 with
µ = (n − 6, 1, 1, 1, 1, 1, 1), but the dimensions involved increase (up to 45). To
reduce the size of the matrices, it is more convenient to use Proposition 3.5 re-
placing µ with a different partition µ as follows. Assume n = 8. Set J8 :=
NS8

(〈(3, 4, 5)(6, 7, 8)〉), and µ := (3, 3, 1, 1). Then J8 = (Yµ ∩A8)×N ≤ Nµ, where
N = 〈(3, 6)(4, 7)(5, 8), (1, 2)〉, and Nπµ = 〈c, d〉, where c := (3, 6)(4, 7)(5, 8)πµ and
d := (1, 2)πµ . Then, for every x ∈ N , we have that sgn x = sgn xπµ . Since λ2 = 1
if and only if λ′2 = 1,

Λ(3,3,1,1) = {(8), (7, 1), (6, 1, 1), (6, 2), (5, 1, 1, 1), (5, 2, 1), (5, 3),

(4, 1, 1, 1, 1), (4, 2, 1, 1), (4, 2, 2), (4, 3, 1), (4, 4), (3, 2, 2, 1),

(3, 3, 2), (3, 3, 1, 1)},

and (3, 2, 2, 1) = (4, 3, 1)′, we are reduced to compute the multiplicities mλ and nλ
for λ in the set

{{(6, 2)(5, 2, 1), (5, 3), (4, 2, 1, 1), (4, 3, 1), (4, 2, 2), (4, 4), (3, 3, 2), (3, 3, 1, 1)}.

The matrices representing c (resp. d), with respect to the basis Bλµ defined as in
Section 4, are given in the second (resp. third) column of Table 2. By Proposi-
tion 3.5, the dimension of their common 1-eigenspace (resp. −1-eigenspace) is mλ

(resp. nλ) and these are given in the fourth (resp. fith) column of Table 2.
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λ c d mλ nλ

(6, 2)


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 2 1

(5, 2, 1)


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 1 1

(5, 3)

 −1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

 1 0

(4, 2, 1, 1) (1) (−1) 0 0

(4, 3, 1)


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 1 1

(4, 2, 2) (1) (1) 1 0

(4, 4)

(
1 0
0 −1

) (
1 0
0 −1

)
1 1

(3, 3, 2) (−1) (1) 0 0

(3, 3, 1, 1) (−1) (−1) 0 1

Table 2

By Proposition 3.5 and Lemma 5.1, this gives all the entries in the fourth column
and in the rows corresponding to the partitions (n − 3, 2, 1), (n − 5, 2, 2, 1) (n −
6, 2, 2, 2), (n− 6, 2, 1, 1, 1, 1), (n− 5, 2, 1, 1, 1), (4, 3, 1), and (n− 4, 2, 2) of Table 1,
whilst showing that, for every n ≥ 8, the values m(n−4,2,1,1), m(n−6,2,2,1,1), m(3,3,2),
m(3,3,1,1), and m(n−4,2,1,1) are all 0.

Similarly, for n = 9, set J9 := NS9(〈(4, 5, 6)(7, 8, 9)〉) and µ := (3, 3, 1, 1, 1).
Then J9 = (Yµ ∩ A9) × N ≤ Nµ, where N = 〈(4, 7)(5, 8)(6, 9), (1, 2), (2, 3)〉 and
Nπµ = 〈c, d, e〉, where c := (4, 7)(5, 8)(6, 9)πµ , d := (1, 2)πµ and e := (2, 3)πµ .
Again, for every element x ∈ N , we have that sgn x = sgn xπµ , so Proposition 3.5
applies. Since

Λ(3,3,1,1,1) = {(9), (8, 1), (7, 1, 1), (7, 2), (6, 1, 1, 1), (6, 2, 1), (6, 3), (5, 1, 1, 1, 1),

(5, 2, 1, 1), (5, 2, 2), (5, 3, 1), (5, 4), (4, 2, 1, 1, 1), (4, 2, 2, 1),

(4, 3, 1, 1), (4, 3, 2), (4, 4, 1), (3, 3, 3), (3, 3, 2, 1), (3, 3, 1, 1, 1)},

and (3, 3, 2, 1) = (4, 3, 2)′, by Proposition 3.5, we need to determine the multiplici-
ties mλ and nλ for

λ ∈ {(5, 4), (5, 3, 1), (4, 3, 2), (3, 3, 3), (4, 3, 1, 1), (3, 3, 1, 1, 1), (4, 4, 1)}.

As in the previous case we get that the multiplicities mλ and nλ are as in Table 3:
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λ (5, 4) (5, 3, 1) (4, 3, 2) (3, 3, 3) (4, 3, 1, 1) (3, 3, 1, 1, 1) (4, 4, 1)

mλ 1 1 1 0 0 0 1

nλ 0 0 0 0 1 1 1

Table 3
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