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Abstract 

Finite Element (FE) simulations are conducted to predict the viscoelastic properties of uni-

directional (UD) fibre composites. The response of both periodic unit cells and random 

stochastic volume elements (SVEs) is analysed; the fibres are assumed to behave as linear 

elastic isotropic solids while the matrix is taken as a linear viscoelastic solid. Monte Carlo 

analyses are conducted to determine the probability distributions of all viscoelastic properties. 

Simulations are conducted on SVEs of increasing size in order to determine the size of a 

representative volume element (RVE); for the fibre volume fractions analysed (0.3 and 0.6), 

we conclude that elastic properties can be effectively predicted using RVEs of size equal to 

24 times the fibre radius, whereas numerical predictions of loss factors require smaller RVEs, 

of size equal to 12 times the fibre radius. The predictions of the FE simulations are compared 

to those of existing theories and it is found that the Mori-Tanaka [1] and Lielens [2] models 

are the most effective in predicting the anisotropic viscoelastic response of the RVE. 

Keywords: Composite, Damping, RVE, Finite Element 

1.  INTRODUCTION 

Fibre-reinforced polymers (FRPs) are widely used in industry due to their excellent specific 

strength and stiffness and also display relatively high material damping compared to metals 

of similar stiffness. Knowledge of their mechanical properties is essential to achieve optimal 
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designs with FRPs; while the anisotropic stiffness and strength of FRPs have received great 

attention from the research community, less studies exist on their damping properties, which 

are particularly important in aerospace applications. The damping of FRPs is strongly 

anisotropic and depends on the imposed frequency and temperature; experimental 

investigations are therefore time-consuming and require specialist equipment. For these 

reasons, effective numerical and theoretical predictions of the damping properties need to be 

developed and validated. 

Numerous theoretical models exist to predict the elastic response of UD composites; these 

can be easily extended to the case of viscoelastic materials via the elastic-viscoelastic 

correspondence principle. In addition to the upper and lower bounds given by the Voigt[3] 

and Reuss model[4], respectively, Hashin[5] and Hill[6] derived narrower bounds for 

transversely isotropic composites with isotropic constituents. Hashin and Rosen[7] later 

derived a predictive model based on a composite cylinder assemblage (CCA). Several 

predictive models are based on mean-field homogenisation, in which the microfields within 

each constituent of an inhomogeneous material are approximated by their phase averages by 

using Eshelby’s model[8] . Examples include the Mori-Tanaka [1] model, the Self-Consistent 

Method (Hill [9]) and Lielens model[2]. Other theoretical models have focused on 

predictions of viscoelastic properties via extension of previously developed elastic models, 

the most popular being  such as Hashin[10–12], Christensen[13] and Saravanos and Chamis 

[14].  

Several studies attempted validation of the above analytical models via numerical analysis; 

for example, Chandra et al [15] and Brinson et al [16,17] considered the viscoelastic response 

of square or hexagonal periodic unit cells; Tsai and Chi [18] pointed out that the damping 

properties predicted  by simulations on unit cell showed are strongly dependent on the choice 
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of unit cell. Such studies were either limited to a few selected loading cases or they analysed 

only damping properties but not the elastic response. 

Since the spatial distribution of fibres in a UD composite is closer to being random than 

periodic, it is intuitive to expect that an analysis of a random microstructure should yield 

more realistic results than the analysis of a periodic unit cell. Several  authors have analysed 

numerically random microstructures; for example Arnold et al. [19] analysed stiffness and 

strength of UD fibre composites and compared the predictions of periodic unit cells and 

random microstructures; Gusev et al. [20] analysed random distributions of spherical particles 

in a continuous matrix to extract its effective elastic properties.  Several researchers have 

focused on the dependence of numerical predictions upon the size of the material volume 

investigated and gave guidelines for the choice of an effective minimum size. For the case of 

composites with spherical filler particles, Drugan and Willis [21] found that the elastic 

properties could be effectively predicted using Representative Volume Elements (RVEs) of 

size 4R, where R is the radius of the spherical particle. Trias et al. [22] examined elasticity of 

UD carbon/epoxy composites and suggested an RVE size greater 50R.  

In the present work, we present a comprehensive numerical analysis of the anisotropic 

viscoelastic response of a UD fibre composite lamina, simulating both periodic unit cells and 

random microstructures. For the case of random microstructures we analyse the size-

dependence of the FE predictions and their scatter, determining an effective RVE size. 

Predictions are also compared to existing theoretical approaches with the objective of ranking 

the effectiveness of different models in predicting the viscoelastic properties. 

The outline of the paper is as follows: in Section 2 we review linear viscoelasticity and 

selected analytical models; the FE simulations are described in detail in Section 3 and the 
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corresponding numerical results are presented in Section 4. In Section 5 we present and 

discuss a comparison of numerical and theoretical predictions.  

2. REVIEW OF THEORETICAL PREDICTIONS OF THE VISCOELASTIC 

PROPERTIES 

2.1 Response of the constituent materials 

Damping in FRPs is primarily due to the viscoelastic nature of the polymeric matrix, since 

the most commonly used reinforcing fibres are inorganic (e.g. carbon, glass) and their 

damping properties are negligible. Accordingly, in this work we shall assume a linear elastic 

response of the fibres. 

In normal operating conditions composites experience small deformations; this justifies 

modelling the polymeric matrix as a linear viscoelastic material. Assuming an isotropic 

response of the matrix, the constitutive equations of viscoelasticity are given as 
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The above equations are analogous to those governing isotropic elasticity but are expressed in 

the Fourier domain; this correspondence is referred to as the elastic-viscoelastic 

correspondence principle. 
*( )G  and 

*( )K  are Fourier transforms of ( )G t  and ( )K t  and 

can be decomposed in their real and imaginary parts  

 
* ' ''( ) ( ) ( )G G iG  (5) 

  
* ' ''( ) ( ) ( )K K iK  (6) 

The real parts 
'( )G  and 

'( )K  are defined as storage moduli, while 
''( )G  and 

''( )K are 

the corresponding loss moduli. Loss factors are defined as ratios of the loss modulus to the 

corresponding storage modulus, i.e. 

 ''/ '; ''/ '.G KG G K K    (7) 

For typical polymers it is typically ,K G   due to the fact that dissipative mechanisms are 

more pronounced in presence of deviatoric strains. Existing predictive models of the effective 

elastic properties of fibre composites can be extended to the case of viscoelastic composites 

by using the elastic-viscoelastic correspondence principle.  

The viscoelastic materials can be modelled using normalized Prony series based on the 

generalized Maxwell model [23] as follows: 
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Where 
0
G  and 

0
K   are instantaneous shear and bulk moduli, and 

i
g , 

i
k  and 

i
 are the normalized 

shear and bulk moduli and relaxation time constant of the i-th arm of the generalised Maxwell model. 

2.2 Response of a transversely isotropic lamina  

For a transversely isotropic, uni-directional composite lamina, viscoelasticity can be 

expressed, in terms of complex engineering constants, as 
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Five independent loss factors can also be defined for such transversely isotropic material, as  
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where, a prime indicates storage properties and a double prime refers to loss properties. 

The engineering constants in eqns. (10) and (11) have to be determined experimentally or 

predicted numerically. Several analytical models exist to predict the values of such 

engineering constants and loss factors. We shall compare our numerical predictions to those 

of selected analytical models, namely: direct and inverse rule of mixture [3][4], Hashin’s 

upper and lower bounds [5][6][23][24], Saravanos and Chamis model [14][25], Composite 

Cylinder Assemblage model [7],  Mori-Tanaka model [1] and Lielens interpolative model [2]. 

The details of these analytical models and the corresponding formulae are provided in 

Appendix A. 
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3. NUMERICAL METHODS 

We employed the Finite Element (FE) method to simulate the viscoelastic response of a 

transversely isotropic lamina and to compare the numerical predictions to those of the 

existing theoretical models described in the previous section. We conducted comprehensive 

numerical analyses aimed at determining a homogenised viscoelastic tensor for a composite 

lamina. This was done by analysing the response of three-dimensional random arrays of 

cylindrical fibres, mimicking the microstructure of a unidirectional fibre composite. 

Such microstructure was subjected to four different cyclic loading cases, namely: uniaxial 

tension-compression in the fibre and transverse directions; transverse and axial shear. A 

steady state dynamics direct analysis step in the frequency domain was performed in 

ABAQUS Standard; the macroscopic strains imposed on the RVEs were pure sine waves of 

amplitude arbitrarily set to 0.01 and varying frequencies; the analysis allowed calculation of 

the corresponding macroscopic stress histories; such histories were interpreted as phasors and 

split into two components, in-phase and out-of-phase with respect to the imposed strain. The 

ratio of the in-phase stress amplitude to the corresponding strain amplitude provided the 

values of the storage moduli; similarly, the ratio of the out-of-phase stress amplitude to the 

strain amplitude gave the loss moduli.  

The microstructures simulated are random and in general their response is affected by 

intrinsic scatter; following the definition in [32][a1][a2], the microstructures analysed are 

statistical Volume Elements (SVEs). Monte Carlo Simulations are performed on each SVE: 

multiple realisations of the SVEs are simulated, allowing calculation of the cumulative 

probability distributions of all visco-elastic properties. Monte Carlo analyses are repeated at 

increasing SVE size in order to determine the size of a Representative Volume Element 

(RVE).  
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Figure 1: Examples of microstructures at vf=0.6 for different RVE sizes. 

 

Figure 2: Examples of different realizations of a microstructure with vf =0.6,  δ=24. 

 

Figure 3: Examples of microstructures of different volume fractions, for δ=12. 

Definitions of an RVE are given, for example, in [33] and [34]. In brief, while SVEs provide 

only apparent properties of the material, which are in general size-dependent, a RVE is 

sufficiently large to sample a great number of the microstructural features of a certain 

material, and this gives a size-independent response, associated to minimal scatter. For the 

case of a fibre composite, the minimum size of an RVE depends on the volume fraction of 

fibres as well as on the constitutive response of matrix and fibres. Many authors [22,35] have 

calculated the minimum RVE size suitable to determine the elastic stiffness constants of 

unidirectional composites; on the other hand, similar information is lacking for the case of 

damping properties and our study aims at addressing this. In our study we choose properties 

of the constituent materials representative of an epoxy resin and glass fibres and we explore 
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the effect of the fibre volume fraction (  0.2 0.6fv   ) on material response and minimum 

RVE size. For the purpose of comparison, FE analyses are also conducted on square and 

hexagonal periodic unit cells. The simulations were run using the ABAQUS finite element 

software. 

3.1 Details of the FE models 

The microstructures analysed consisted of random arrays of parallel, circular cylindrical 

fibres of equal diameter. In the plane perpendicular to the fibres the volume elements 

analysed were squares of side length L, and had thickness t in the fibre direction. These were 

generated via a new algorithm recently proposed by the authors [36], based on optimisation 

techniques. The microstructures generated were geometrically periodic and they were shown 

to be effectively random for / 7L R    (for the case of 0.65fv  ; R is the radius of the 

fibres). Python scripts were used to generate automatically multiple realisations of each SVE, 

to apply appropriate boundary conditions, to mesh the SVEs and automatically perform the 

Monte Carlo analyses and extract the relevant outputs. 

The microstructures were meshed using a combination of hexahedral and tetrahedral finite 

elements with linear shape functions (C3D8 and C3D6). A mesh sensitivity study was 

performed to determine the optimal element size in each loading case and it was found that 

finite elements of side length less than R/4 gave mesh-insensitive predictions for all loading 

cases. 
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Figure 4: Examples of periodic unit cells with vf =0.3. 

Three selected SVE sizes were analysed, namelyδ=8,12 and 24 , examples of which are 

shown in Figs. 2(a)-(c) for the case 0.6fv  ; the maximum value of   was chosen to give L 

comparable to the ply thickness of typical composites. The thickness t was shown to have 

negligible effect on the results, in line with the findings of other authors (e.g. Melro et al. 

[37]); in our analysis we assumed 4t R . Examples of multiple realisations of the largest 

SVE ( 24, 0.6fv   ) are presented in Fig. 3. 

Due to the geometric periodicity, the SVEs can only contain an integer number of fibres. The 

SVE sizes (L) were adjusted in order to achieve the desired volume fractions. The exact SVE 

sizes  L  are 39.633, 60.54 and 120 μm ; in all SVEs it was 5 μmR  .  

When conducting Monte Carlo analyses, simulations were repeated N times where N was 60, 

30 and 10 for 8,12 and 24,  respectively. Examples of SVEs of equal size and different 

volume fractions are presented in Fig. 4. Figure 5 presents examples of the square and 

hexagonal unit cells analysed, for the case 0.3fv  . 

It is widely accepted that periodic boundary conditions (PBC) are the most appropriate 

boundary conditions to analyse a geometrically periodic RVE [32,38] and PBCs are imposed 

on the SVEs analysed here, following, e.g., [39] or [37]. Loading was applied by imposing 
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nodal displacements on appropriate dummy nodes via the method of macroscopic degrees of 

freedom, as introduced by Michel et al. [40] and used by Tucker and Liang [30]. Periodic 

boundary conditions were also imposed for the analysis of periodic unit cells. 

The constitutive responses of fibres and matrix were chosen to be representative of a 

glass/epoxy composite. The fibres were linear elastic isotropic solids while the matrix was 

modelled as an isotropic, linear viscoelastic solid. For simplicity a one-term Prony series was 

considered to model the visco-elasticity of the matrix and the same normalised Prony series 

coefficients and relaxation time constant were used for both deviatoric and volumetric 

deformation modes. Relevant material constants are provided in Table 1 and 2.  

Table 1: Mechanical properties of constituent materials. 

 Elastic Modulus GPa Poisson Ratio 

Epoxy  2.76 0.38 

Carbon Fibre 50 0.2 

 

Table 2: Prony series coefficients. 

 
i
g   

i
k   

i
 (sec) 

Epoxy 0.6 0.6 20 

4.  RESULTS AND DISCUSSION 

FE simulations were conducted under steady state harmonic conditions, imposing a 

macroscopic strain amplitude of 0.01 at frequencies in the range 810 to 210 Hz . The response 

spectrum for selected viscoelastic constants are given in Fig. 6 for different SVE sizes and for 

the case 0.3
f
v ; the results are averages of simulation outputs over the multiple 
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realizations analysed, and each material property is normalised by the corresponding property 

of the neat matrix. 

As previously reported in literature [32], for all loading cases we detect a size dependence of 

the elastic constants, however predictions become practically insensitive to size for 24  . 

Such size dependence is more pronounced at high loading frequencies; this can be explained 

as follows: at lower frequencies (and therefore low strain rates) the effective matrix stiffness 

is very low, corresponding to low strain energy and viscous dissipation in the matrix; 

predictions become less sensitive to the detail of fibres arrangement, giving a low size-

dependence of the predictions. At any frequency, the most substantial size effect is observed 

for the transverse shear modulus
'

23G . For the case of damping properties (loss moduli), 

predictions are practically insensitive to size (in the range examined).  

We now present the results of the Monte Carlo analyses, examining the probability 

distributions of the predicted viscoelastic properties, for a selected loading frequency of

 
1

2


, corresponding to the peak of loss moduli for both the matrix and the composite. 

4.1 Results of the Monte Carlo analyses 

We begin by presenting the cumulative density functions (CDF) for the predicted axial 

storage modulus 
'

11E . In Fig. 7 we compare the cases of 0.3
f
v  and 0.6

f
v ; for both 

volume fractions predictions are size independent and associated to minimal scatter, 

indicating that a small SVE is sufficient to obtain accurate prediction of the axial modulus. 

Since the fibres are modelled as purely elastic, the corresponding axial loss factors are 

negligible and are omitted. 
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Figure 5: Effect of imposed  frequency on the viscoelastic response of SVEs of different size (vf =0.3). 

In Fig. 8 we present a similar comparison for the case of the major Poisson ratio; for this 

elastic property, we observe that average predictions are size-independent, however they 

display a substantial scatter, which reduces monotonically with increasing SVE size. 
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We proceed to analyse the predicted viscoelastic properties of SVEs with 0.3
f
v ; CDFs of 

predicted values of the remaining elastic constants (
' ' '

22 12 23, ,E G G ) and the corresponding loss 

factors (
22 12 23, ,   ) are presented in Fig 9. The scale on the horizontal axis is chosen to  

 

Figure 6: Cumulative distribution functions of E’
11 for vf =0.3 (left) and vf =0.6 (right). 

 

Figure 7: Cumulative distribution functions of ν12 for vf =0.3 (left) and vf =0.6 (right). 

display values from 60% to 140% of the mean, to allow a direct comparison of the predicted 

scatter for different viscoelastic properties.  

For the case of the elastic constants
' '

22 12and E G , predicted average values are size-

independent, as observed for the case of 
'

11E  and 
12 ; again, as expected, the scatter in the 

predictions reduces with increasing SVE size. In contrast, predictions for 
'

23G  display a 



15 
 

material size effect with the transverse shear modulus increasing with increasing SVE size; 

the size dependence is however negligible for 12  . For case of the loss factors, predictions 

are independent of size and the corresponding scatter is minimal for this volume fraction. 

Figure 10 presents identical information as Fig. 9 for the case 0.6.
f
v  The trends displayed 

by the predicted material’s constant are similar to those observed at the lower volume 

fraction: all predictions are size-independent with the exception of 
'

23G , for which a size 

effect is detected; the magnitude of such size effect is greater than observed for 0.3
f
v . 

Predictions of the loss factors at this higher volume fraction are associated to a larger scatter 

than observed at 0.3
f
v ; however such scatter is substantially less than that determined for 

the corresponding elastic moduli.  
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Figure 8: Cumulative distribution functions of viscoelastic properties (vf =0.3). 

For the case 0.3
f
v  we performed a best fit of the data to a Gaussian distribution and 

found, as expected, a very good fit, with Pearson’s coefficients higher than 97% for all 

samples sizes. The parameters of this best fit are as given in Table 3; from this we can deduce 

that the highest scatter in the predictions is associated with
'

12G , followed by 
'

23G , for every 

SVE size analysed; this indicates that comparatively more number of realisations must be 

analysed to obtain accurate average predictions of these two shear moduli. 
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Figure 9: Cumulative distribution functions of viscoelastic properties (vf =0.6). 

4.2 Determination of the minimum RVE size 

We now analyse the mean values of the predicted viscoelastic properties and the 

corresponding  95% confidence interval obtained with SVEs of different size; the objective of 

this analysis is to determine the minimum SVE size to give size-independent predictions of 

the mean properties as well as intrinsic scatter below a given tolerance, for a given number of 
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realisation. In other words, we seek the minimum size of a RVE suitable to determine the 

viscoelastic properties of a uni-directional fibre composite.  

Figure 11 presents numerical predictions for a composite with 0.3
f
v ; we omit results 

obtained for the axial modulus 
'

11
E  and corresponding loss factor 

11
 as predictions for these 

properties were found to be size independent and associated to minimal scatter in the range of 

SVE sizes analysed (see Fig. 7). The dashed horizontal lines in each graph represent a range 

of 5%  around the average predictions of each property, obtained by analysis of the largest 

microstructure. For all the material properties considered, predicted mean values are 

practically insensitive to size for 12 . As expected, the scatter in the predictions reduces 

monotonically with increasing SVE size. For the case of elastic properties, it is found that for 

microstructures with 24  the scatter in the predictions is less than 5% ; therefore, for the 

case of 10 repeated simulations on different realisations of the microstructure, 24  

represents the minimum RVE size for prediction of the elastic properties. In contrast, the 

scatter in the predictions of the loss factors is below 5%  for all the SVE sizes analysed; 

consequently if one is interested in determining only the loss factors, the analysis of a SVE of 

size 8  will provide sufficiently accurate predictions, for the case of 60 repeated 

simulations. 

Table 3: Curve fit parameters for vf=0.3 (  Mean,  Standard Deviation and R Pearson's coefficient). 
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Compare now with the case 0.6
f
v , presented in Fig. 12. The trend displayed by the data is 

similar to that observed for 0.3
f
v ; again, predicted mean values are scarcely insensitive to 

size for 12 , and predictions of elastic properties are associated with scatter of less than 

5%  for 24 , which therefore represents a suitable RVE size even for this higher volume 

fraction (for 10 repeated simulations). In contrast, predictions of the loss factors are 

associated with higher scatter than what observed for 0.3
f
v  and therefore the minimum 

RVE size necessary for accurate predictions of damping properties is 12 , corresponding 

to analysis of 30 different realisations. This can be explained observing that for the case 

0.3
f
v  fibres are more isolated within the polymeric matrix, therefore subject to a strain 

field scarcely dependent upon fibre position; on the other hand for 0.6
f
v  the strain fields 

around the fibres depend more strongly on the fibre arrangement in each realisation of the 

SVE, and predictions of the damping properties are expected to be more sensitive to SVE 

size. 

In summary we find that an SVE with 24  is sufficiently large to provide size-

independent predictions of the effective elastic properties with an accuracy of 5%  (for the 

case of 10 repeated simulations).  This is in contrast with the value 30  previously 

reported in the literature by Trias et al. [22] for an accuracy of 10% .  These authors 

analysed a CFRP with 0.5
f
v , characterised by a lower stiffness contrast of the constituent 

materials   / 6f mE E    than that used in the present study  / 30f mE E  ; it has been 

shown previously [41,42] that the minimum RVE size (for a given accuracy) increases with 

increasing stiffness contrast; considering that the volume fractions in the two analyses were 
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similar, the relatively larger RVE size 30  proposed by [22] must be explained in terms 

of the different features of the SVEs analysed (these were non-periodic and effectively 

random only at 40 ) and the type of boundary conditions used. 

No data is available, to the best of the authors’ knowledge, on the minimum RVE sizes for 

accurate predictions of loss factors; in our analysis, we find that an SVE of size 12  

provides size-independent predictions of accuracy 5% , for the case of 30 repeated 

simulations. 



21 
 

 

Figure 10: Means and 95% confidence interval of the predictions obtained with different SVE size (vf=0.3). 

4.3 Comparison of numerical and theoretical predictions  

Finally, we compare theoretical and numerical predictions of the viscoelastic properties. In 

Fig. 13 we present predictions of all elastic moduli and corresponding loss factors, at 

increasing fibre volume fractions, for 24  and 10 repeated simulations. The figure 

includes numerical predictions obtained by FE analysis of square and hexagonal unit cells 

(Fig. 5), for the purpose of comparison. We observe initially that the theoretical predictions 
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of Mori-Tanaka, CCA model and Hashin’s lower bound are practically coincident for all 

properties considered.  

For case of the longitudinal modulus and corresponding loss factor, all theoretical and 

numerical predictions coincide; accurate estimates of these properties can be made by any of 

the numerical or theoretical analyses considered, and these properties are independent of fibre 

arrangement.  

For the transverse Young modulus and loss factor, the predictions obtained by analysis of 

random RVEs are bounded by those obtained via numerical analysis of periodic unit cells. 

The theoretical approaches which provide predictions closest to those obtained from the 

analysis of random RVEs are the models by Lielens and Mori-Tanaka (the latter coincides 

with Hashin’s lower bound and very close to the CCA model). The numerical predictions lie 

approximately midway between those of Lielens and those of Mori-Tanaka, such that an 

average of the predictions of these models would give very accurate estimates of both 

transverse modulus and loss factors. 

For the case of axial shear modulus and loss factors, the analysis of RVEs and unit cells 

provides similar effective properties. Again, numerical predictions obtained via RVE analysis 

are bounded by the theoretical predictions of Lielens and Mori-Tanaka, with the latter being 

more effective than the former. 

Finally, for the transverse shear modulus and loss factors, the analysis of unit cells gives 

predictions substantially different from those of random RVEs; in particular, analyses 

conducted on square unit cells appear to violate Hashin’s lower bound, as observed by other 

authors [37,38,43]. As observed for the transverse Young’s modulus and loss factors, 

predictions from RVE analyses are bounded by the theoretical models of Lielens and Mori-
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Tanaka and lie approximately midway between these bounds, such that an average of these 

theoretical predictions provides accurate estimates of the transverse shear properties.  

For all load cases considered, the model by Saravanos and Chamis [14] provides reasonably 

good estimates of elastic moduli but poor predictions of the loss factors, estimating loss 

factors which increase with fibre content. 

It is expected that the numerical predictions obtained from RVE analyses and presented in 

this study should be closer to measurements than those obtained from analysing unit cells. 

Considering that all theoretical approaches presented rely on some approximations, while our 

RVEs more realistically represent the details of the composite microstructures, we expect the 

RVE analyses to be more accurate than any of the theoretical models. This should be, 

however, verified by conducting careful measurements on both composite laminae and their 

constituent materials (fibres and matrix); this is left as a subject of a future study. 

5.  CONCLUSIONS 

The main conclusions from the numerical studies presented are summarised as follows:  

 The predictions of viscoelastic properties obtained from analyses of SVEs display an 

intrinsic scatter which decrease with increasing fibre volume fraction.  

 For an accuracy on the predictions of 5% , it was found that the minimum RVE size 

for predictions of the elastic properties is / 24L R , for 10 repeated 

simulations; this value is smaller than previously reported in the literature. 

 For predictions of the damping properties with accuracy 5% , the minimum RVE 

size was found to be 12 , for 30 repeated simulations on different realisations of 

the microstructure; no similar conclusions had been previously reported in the 

literature. 
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 The prediction of the transverse shear modulus 
'

23G  shows the slowest convergence 

with increasing SVE size, at any volume fraction; if predictions of 
'

23G  are not 

required, and an accuracy of 7%  is sufficient, an RVE of size 12  (30 repeated 

simulations) is adequate for volume fraction 0.6
f
v . 

 A comparison of numerical and theoretical predictions of the viscoelastic properties 

of UD composites showed that the transverse storage moduli, 
' '

22 23andE G , and the 

corresponding loss factors, 
22 23and  , can be predicted accurately by considering a 

plain average of the theoretical predictions of Lielens [2] and Mori-Tanaka [1]. For 

the case of the in-plane shear modulus and corresponding loss factor, 
'

12 12and ,G   the 

Mori-Tanaka model provides the most accurate predictions among the theoretical 

models compared in this study; however this model under-predicts 
'

12G  by 

approximately 15% and over-predicts 12  by a similar extent. 
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Figure 11: Means and 95% confidence interval of the predictions obtained with different SVE size (vf=0.6). 
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Figure 12: Comparison of theoretical and numerical predictions.  
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APPENDIX A 

In this appendix we review a number of selected analytical models and provide the 

corresponding predictions for the elastic engineering constants and the corresponding loss 

factors.  

A.1 Voigt and Reuss bounds 

Such bounds correspond to assuming either a uniform strain (Voigt [3], providing an upper 

bound) or a uniform stress (Reuss [4], providing a lower bound) in the different phases of a 

composite. The effective engineering constants of a two-component composite, must be 

comprised between the Voigt and Reuss bounds, i.e. 

 

1

* * *

* *

f m
ij f f m m

f m

v v
P P v P v

P P



 
     

 

 (A1) 

In the above equation 
*

ijP  denotes a general engineering constant of the composite, 
* *,f mP P  are 

the corresponding constant for filler and matrix and ,f m   are the associated volume 

fractions. It is known that the direct rule-of-mixtures (ROM) corresponding to the Voigt 

bound provides accurate predictions of 
*

11E  and 
*

12 ; on the other hand, the inverse rule-of-

mixtures (IROM) given by the Reuss model can effectively predicts 
*

22E  and 
*

12G . 

A.2 Hashin - Hill bounds 

Hashin and Shtrikmann [24] developed more accurate bounds for the effective elastic 

constants of multiphase materials with an arbitrary microstructure. Subsequently Hashin[5] 

and Hill[6] extended the variational formulation in [23] to the case of transversely isotropic 

composites. By application of the correspondence principle, the Hashin-Hill bounds for the 

viscoelastic engineering lamina constants are given as  
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Where, * *,f mk k  represent the complex bulk moduli of fibres and matrix and 
*

23k  is the plane 

strain bulk modulus. Bounds on 
*

22E  can be obtained from manipulation of equations -. 

A.3 Saravanos and Chamis model 

Saravanos and Chamis [14],[25] constructed micromechanical models to predict stiffness and 

damping of transversely isotropic lamina. Elastic constants were obtained from analysis of a 

square unit cell, while loss factors followed from a strain energy method; namely, the authors 

assumed that loss factors for the composite can be calculated as a weighted average of the 

loss factors of the constituents, the relative weights being the fractions of strain energy stored 
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in the two constituents. For the case of isotropic fibres and matrix, Saravanos and Chamis 

provide 

 
11 11

11 11
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E E
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where, 
fs

 and 
ms

are the shear loss factors of fibres and matrix, respectively.  

A.4 Composite Cylinder Assemblage (CCA) model 

Hashin and Rosen [7] derived predictions of four engineering constants of a composite 

lamina, namely longitudinal modulus, longitudinal Poisson’s ratio, longitudinal shear 

modulus and plane strain bulk modulus. The composite is modelled as an assemblage of solid 

circular cylinders (representing the fibres) surrounded by annular cylindrical regions, 

representing the matrix. The ratio of fibre diameter and thickness of the annular matrix region 

is dictated by the volume fraction of the composite. Hashin [11] also developed a similar 

model based on an assemblage of composite spheres, to predict the properties of composites 
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with spherical inclusions. The predictions were found to be in good agreement with 

measurements [10,11]. The effective properties predicted by the CCA model are given below. 
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where , ,A B C  are functions of the engineering constants of the constituent materials [11].  
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Figure A1: Schematic description of different homogenization schemes. 

A.5 Mori-Tanaka model 

Mori and Tanaka [1] constructed a predictive micromechanical model for the elastic 

properties of two-phase composites, which was later simplified by Bensvite [26] as it is 

presented here. Mori and Tanaka introduced inter-particle interaction by adopting an average 

strain in the matrix phase given by the means of superposition of the far field applied strain 

0  to a strain perturbation caused by the inhomogeneous microstructure; such average strain 

in the matrix phase is related to the far-field applied strain by 
0m

m MTA   and similarly the 

average strain in the inclusions is related to the far-field strain by 
0f

f MTA  .  

The modelling approach is sketched in Fig. 1(a); the composite is considered as the assembly 

of an elliptical inclusion, of stiffness 
f
C  and volume 

f
, embedded in a large matrix domain 

of volume 
m  and stiffness .mC  The relationship between the average strain in the inclusion 

and in the matrix is given via Eshleby’s result [8] for embedded inhomogeneity in an infinite 

matrix at dilute concentrations, as ,f

f dil mA   where 
f

dilA  is the strain concentration tensor 

for dilute concentrations and is given as 

 1[ ( )]f

dil Eshelby m f mA I J S C C     (A17) 
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Where, I  is the identity matrix, 
Eshelby
J  is the Eshelby tensor, 

m
S  is the compliance tensor of 

the matrix material and 
m
C , 

f
C  are the stiffness tensors for matrix and inclusion materials, 

respectively. The Eshelby tensor solely depends on the Poisson’s ratio and  geometry of the 

inclusion; explicit expressions for this tensor can be found in text by Mura et al. [27]. The 

Mori-Tanaka strain concentration tensors, ,m f

MT MTA A  are given by 

 

 
1[(1 ) ]m i

MT f f dilA v I v A     (A18) 

  1[(1 ) ] .i i

MT dil f f dilA A v I v A     (A19) 

The effective stiffness tensor for the composite is then calculated as  

 * i

MT i i MTC v C A  (A20) 

Where, the index i refers to the various phases of the composite. For two-phase fibre 

composites, explicit Mori-Tanaka expressions for the effective material constants can be 

found in Dvorak[28]. The Mori-Tanaka model gives predictions close to those of the Hashin-

Hill lower bound in the case of fibres stiffer than the matrix, while it approaches the Hashin-

Hill upper bound in the case of compliant fibres in a relatively stiffer matrix; in this case the 

model is often referred to as the inverse Mori-Tanaka model *

IMT
C .   

A.7 Double Inclusion Model 

A schematic description of this model, suggested by Nemat-Nasser and Hori [29], is given in 

Fig. 1b. An inclusion of stiffness fC is surrounded by a shell of matrix material (of stiffness

mC ) which in turn is embedded in a reference material of stiffness 
rC . The model reduces to 

the M-T method for the choice of 
r mC C , while it recovers the inverse M-T method for 
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.r fC C   Lielens [2] proposed an interpolation between these two limiting cases in terms of 

a rule-of-mixtures based on the volume fraction of inclusions, as 

 

2 2

* * 1 * 1 1

( )( )
[(1 ) ( ) ]

2 2
f f f f

Lielens IMTMT

v v v v
C C C  (A21) 

It was found that the above expression gives accurate predictions of the materials properties 

over a wide range of volume fractions [30,31]. 
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