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A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts
for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the
sensor is related to the far-field velocity by an expression containing a term representing the potential flow
around the prongs, and a term representing their viscous effect. This latter term is absent in the response
equations available in the literature but is essential in representing some features of the observed response
of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce,
with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies
the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters
and a Reynolds-dependent drag coefficient need to be determined.
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I. INTRODUCTION

A hot-wire probe, in its simplest form, consists of a
thin sensing element supported by two prongs attached
to a stem. The probe operates by exposing the sens-
ing element to a fluid stream and measuring the rate
of convective heat loss Q̇c. The heat loss is related to
the flow velocity and direction by a calibration law. A
calibration law which accurately models the response of
the probe is an indispensable ingredient of flow mea-
surements with hot-wire probes. For a heated wire with
length-to-diameter ratio greater than 200, exposed to a
stream of speed u and direction orthogonal to its axis,

King
1

suggested that

Q̇c = Q̇ − Q̇0 = Bu
1/2

(1)

where Q̇ is the total loss rate, Q̇0 the heat loss rate in
absence of flow and B a constant coefficient. Equation
(1) has underpinned most of the anemometry work to

this day. Collis and Williams
2

later showed that a better
representation for the heat loss rate is

Q̇c = Bu
m

(2)

with m ≈ 0.45. A similar value is normally found when
calibrating commercially available hot-wire probes.

In flows with far-field velocity at an angle β to the
direction orthogonal to the sensor (see Figure 1), King’s
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law (1) implies

q
2(β) = ( Q̇c

B
)

2/m

= u
2

cos
2
β (3)

where q is usually referred to as the effective cooling ve-

locity and β the yaw angle. Shubauer and Klebanoff
4

reported data fitting equation (3), but only for β < 70
◦
.

Equation (3) represents the simplest embodiment of

the directional sensitivity of a hot-wire probe. King
1

also observed that the angular response of these probes
could be used to determine the flow direction as well as
the magnitude of the flow velocity. Skanstrad

3
devised a

slanted wire probe, exploiting this directional sensitivity,
to measure Reynolds stresses in turbulent boundary lay-
ers. Data from probes of various characteristics, however,
show significant departures from the behavior described
by equation (3) and a large body of literature has been
generated over the years in an attempt to relate the ef-
fective cooling velocity to the flow velocity far away from
the probe.

Newman and Leary
5

found that the angular response
of hot wires is approximated more closely by

q
2(β) = u2

cos
2n
β (4)

with n ≈ 0.457 at low Mach numbers. Sandborn and
Laurence

6
performed measurements over a wire range of

yaw angles β and Mach numbers and found that the co-
sine law (3) only represent measured data correctly at
very low Mach numbers. Furthermore, to match data at
β > 70

◦
, i.e. with flows nearly parallel to the sensor, they

proposed - albeit with reservations - a relation containing
terms associated to the component of the flow tangential
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FIG. 1. The main dimensions of a slanted hot-wire wire probe and the pitch (α), yaw (β) and slant angles (ϕ).

to the wire:

q
2(β) = u2 ((A +B cos(β)) cosβ + (C +D sin(β)) sinβ)

(5)

Hinze
7

also proposed an equation for the effective cooling
velocity containing a small contributions from the veloc-
ity component tangential to the sensor:

q
2(β) = u2 (cos

2
β + κ

2
sin

2
β) (6)

with κ in the range 0.1 and 0.3 and with values increasing
with decreasing velocitiy. In a similar vein, but writing a

decade later, Jørgensen
8

proposed an expression for the
squared effective cooling velocity based on the velocity
components in the wire frame of reference vi:

q
2
= δ

2
1v

2
1 + δ

2
2v

2
2 + δ

3
2v

2
3 (7)

but his data showed that the δi coefficients are in real-

ity sensitive to the probe orientation. Webster
9

analysed
the response of probes with sensor length-to-diameter ra-
tios 86 < `/d < 1456 but for a limited range of speeds
and found that the yaw response could be reasonably
well represented by Hinze’s expression (6) with κ = 0.2.

Champagne et al.
10

performed detailed measurements of
the temperature field of hot-wire probes and concluded
that the heat loss rate is indeed sensititve to the velocity
component tangential to the wire. They found that equa-
tion (6) could represent heat transfer data from wires
with length-to-diameter ratios above 200 with κ ≈ 0.2
for `/d ≈ 200, with κ decreasing to essentially 0 for
`/d ≈ 600. Champagne’s experiments were carried out
with wires of identical diameters and their results on the
sensitivity of κ on the ratio `/d may well be interpreted
in terms of prong distance-to-diameter ratio. The find-
ings in Champagne et al. were then used by Champagne

and Sleicher
11

to derive a response equation which took
into account tangential velocity components as well as
large turbulent fluctuations.

Friehe and Schwartz
12

proposed a modified cosine law

q
2(β) = u2 (1 − b (1 − cos

1/2
β)) (8)

In this expression, b is a parameter sensitive only to the
sensor length-to-diameter ratio. b is insensitive to veloc-
ity and yaw angle, at least for β < 70

◦
. Based on their

modified cosine law, Friehe and Schwartz showed that
the κ parameter in (6) must also be a function of yaw

angle and showed that Champage’s data
10

support this
conclusion.

Bruun
13

reviewed some aspects of hot-wire calibration
and recommended a response law of the type

q
2(β) = A +Bun cos

m
β (9)

and reported measurements showing the variation of the
response with flow velocity, pitch (see Figure 1) and yaw.
However, in discussing some practical aspects of hot-wire

calibration, Bruun
14

later recommended a response func-

tion similar to the one proposed by Newman and Leary
5
.

In reality, the angular response of hot-wire probes is
inextricably linked to the relation between the velocity
in the stream far away from the probe and the veloc-
ity near the probe. This relation is determined by the
aerodynamic interference of the structures supporting the

sensor. Champagne et. al
10

suggested that the angular
response of slant wires probes deviates from the cosine
law because of the presence of a tangential velocity com-
ponent induced by the asymmetry of the prongs.

Comte-Bellot et al.
15

systematically studied the effect
of interference from the prongs and from the stem. The
overall effect of the interference from the components of
the probe is to decrease the effective cooling velocity with
respect to the free stream when the wire is aligned with
the flow, and to increase it when the wire is orthogonal
to it. Furthermore, it was found that the perturbation
induced by the prongs has a dominant effect on the re-
sponse of the wire, and that it is inversely proportional
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q(β) Year, authors Remarks

(3) u
2

cos
2
β 1946, Shubauer and Klebanoff

4
From King’s law, β < 70

◦
, low Mach.

(4) u
2

cos
2n
β, n ≈ 0.457 1950, Newman and Leary

5
Low Mach.

(5) u
2 ((A +B cos(β)) cosβ +

(C +D sin(β)) sinβ) 1955, Sandborn and Laurence
6

Wide β-range.

(6) u
2 (cos

2
β + κ2

sin
2
β) 1959, Hinze

7
0.1 < κ < 0.3, `/d > 200.

(8) u
2 (1 − b (1 − cos

1/2
β)) 1968, Friehe and Schwartz

12
β < 70

◦
.

(10) u
2 (cosβ + ε (cosβ − cos 2β)) 1968, Fujita and Kovasznay

21
α > 20

◦
.

(7) δ
2
1v

2
1 + δ

2
2v

2
2 + δ

3
2v

2
3 1971, Jørgensen

8
Velocities in wire-fixed frame.

(9) A +Bun
cos

m
β 1971, Bruun

13

(11) aijuiuj 1987, Buresti and Di Cocco
24

,

1997, Stella et al.
28

Tensor aij from calibration data.

TABLE I. Summary of angular response equations. Only equations (5) and (10) can produce maximum effective cooling velocity
at β ≠ 0

◦
.

to the prong spacing δ. This scaling is consistent with

potential theory
16

and will be used - in a slightly mod-

ified form - in this paper. Strohl
17

studied the effect of
interference on Reynolds stress measurements with ro-
tated hot-wires and showed that aerodynamic interefer-
ence by the elements supporting the sensor can alter the
measured values by up to 16% for commercial probes.

Brehmorst
18

also studied the aerodynamic interefer-
ence of the prongs on the wire and suggested that the
apparent variation in κ with pitch could be attributed to
the flow being channeled between the prongs. Adrian et

al.
19

used the slender body approximation to the poten-
tial flow of the prongs and the stem to study the aero-
dynamic interference between the supporting elements
and the sensor, and estimated its effect on the yaw and
pitch response by estimating the velocity perturbations
induced at the midpoint of the sensor. The comparison
was based on original data as well as Comte-Bellot’s data
and found that the effect of each element could be su-
perimposed seperately. Bruun and Tropea

20
performed

measurements of the response of probes with single nor-
mal, and slanted wires and found that the coefficients in
Jørgensen’s equation, as well as the linear coefficient in
King’s law, change with pitch.

Fujita and Kovasznay
21

presented a rotated slanted
wire technique for the simultaneous determination of
three normal and one shear Reynolds stress. The tech-
nique was based on a least square fit of a number of
measurements taken with a single probe, exposed to the
flow at several angles. The technique used the response
equation

q
2(β) = u2 (cosβ + ε (cosβ − cos 2β)) (10)

valid for yaw angles above 20
◦
. The quantity ε in equa-

tion (10) is an empirical parameter and varies with the

mean velocity. Kuroumaru
22

measured three velocities
and six Reynolds stresses with a slanted hot-wire behind
a fan impeller. Their measurement technique relied on
finding the minimum response orientation to determine
the flow direction and then on a least squares procedure

to determine the remaining properties of the flow. In
view of the difficulty of fitting trigonometric expressions
to the measured response to pitch variations, their re-
sponse law was based on a polynomial representation for
the sensitivity to pitch, and a trigonometric expression

for the sensitivity to yaw. Samet and Einav
23

noticed
that the sensitivity to yaw angle β depends on pitch angle
α. In particular, they noticed that at β = 0 the response
is monotonic, but not at higher yaw, therefore preclud-
ing the possibility of finding velocity from a regression
technique.

Buresti and Di Cocco
24

combined Jørgensen’s equation
and a coordinate transformation to show that the effec-
tive cooling velocity is a bilinear function of the velocity
vector of the type

q
2
= aijuiuj (11)

where aij depend on the orientation of the probe and
on its slant angle. Buresti and Di Cocco, however,
did not discuss the implications of aerodynamic inter-
ference on their method. The bilinear form of Bu-
resti and Di Cocco’s response equation results in alge-
braic relationships between the time-mean and the mean-
square fluctuating response of the sensor and the veloci-
ties and Reynolds stresses. The validity of the relations
was demonstrated through numerical tests. Wagner and

Kent
25

also used Jørgensen’s equation on rotated straight
wires and found that using coefficients determined at se-
lected flow directions yields sufficiently accurate veloci-

ties. Russ
26

presented a set of response equations based
on Jørgensen’s equation, King’s law and a coordinate
transformation together with a least-squares procedure
to determine velocities and Reynolds stresses for a nearly
one dimensional flow. The method used the assumption
of low-turbulence intensity and one-directional mean flow
to obtain a simplified form of the response equations pre-

sented in Buresti and Di Cocco
24

. The coefficients were
determined from calibration data.

Peña and Arts
27

presented a slanted hot-wire method
for the measurement of three velocity components and
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six Reynolds stresses. The method relied on Jørgensen’s
equation and a response equation based on coordinate
transformation. The method was tested in a wall jet flow
with favourable results when compared with PIV data.
The calibration curves for Peña and Arts’ probe show
the peak response at 0

◦
pitch located at β ≠ 0

◦
. Such

response would be produced by Fujita and Kovasznay’s
21

response equation but not from the other equations re-

ported earlier in this section. Stella et al.
28

presented a
generalised form of Jørgensen’s equation in tensor form
which allowed the calibration of hot-wire sensors with re-
spect to pitch as well as yaw response. Whilst reporting
the relation between effective cooling velocity and sensor
orientation, Stella et al pointed out that the components
of the tensor appearing in the response equation ought
to be determined via calibration, rather than evaluated
from the geometric parameters of the probe.

This brief review shows that a large number of response
equations, summarised in table I, have been proposed
over the years. Some of these relations are, however,
only valid over a narrow range of yaw and pitch angles.
The most recent slanted wire methods rely on modified
forms of Jørgensen’s equation and King’s law and assume
a bilinear relation between wire response and velocity.
However, no attempt has been reported so far to derive
a response equation incorporating directly the potential
and viscous effects of the prongs and the stem on the
velocity in close proximity to the sensor. The purpose
of this paper is to derive such a response equation and
to demonstrate its validity for commonly used probes.
The view will be taken that the convective heat loss rate
can be determined in two conceptual steps. In the first
step the velocity in proximity of the wire is related to the
velocity far upststream of the probe when mounted in a
calibration facility or, equivalently, to the velocity at the
position of the sensor if the probe was removed from the
flow. In the second step the rate of heat loss from the
sensor is related to the velocity in its proximity.

II. EXPERIMENTAL APPARATUS

The data presented in this paper were measured in a
small open loop tunnel with vertical flow axis. Ambi-
ent air is drawn in through a thick gauze and a honey-
comb screen into a 4:1 contraction nozzle discharging
into a cylindrical test section. The nozzle diameter is
D = 32mm. The test section has diameter of 5D and
length 20D.

The turbulence intensity in the potential core of the
jet is found to be less than 0.1%. The exit of the test
section features an additional thick honeycomb section.
The facility is drawn down by a constant speed fan and
the flow rate is regulated via a throttling valve at the exit
of the flow path.

At the beginning of each set of measurements, the fa-
cility is run for 30 minutes to allow the temperature and
pressure in the laboratory to settle to a steady state.

A settling time of 1 second is also allowed before mea-
surements are taken after the probe is moved to its new
position during angular traverses.

The velocity of the potential core of the jet is recorded
indepenently of the hot-wire probe via a dual head pitot
probe located near the hot-wire sensor. The pitot probe
heads have diameter of approximately 10d, d being the di-
ameter of the prongs of the hot-wire probe (see Figure 1)
and are placed at a distance of approximately 100d from
the hot-wire sensor during normal operation. The pitot
readings are recorded manually using micromanometer.
The hot-wire probes are inserted from the side of the
facility through a harness which allows pitch and yaw
variations. The mechanism is powered by two stepper
motors.

The hot-wire probes are operated in constant temper-
ature mode with oveheat ratio 1.8. The dead voltage
is determined by recording the signal from the hot-wire
probe with the facility switched off and with a lid placed
on the entrance and at the exit throttling valve com-
pletely closed to prevent spurious circulation of air. The
dead voltage is measured at the beginning and at the
end of the test. Data are acquired through a standard
anemometer. The acquisition time at each measuring
point is 20 seconds at a sampling rate 100kHz.

III. METHODOLOGY

In order to build a response model for a conventional
slant wire probe, the prongs are idealised as two semi-
infinite bodies of revolution of identical shape and diam-
eter D, but offset in length with respect to the x12 plane
by a distance δ tanϕ, δ being the distance between the
axis of the two prongs and ϕ the slant angle (see Fig-
ures 1 and 2). The tips of the prongs are represented as
truncated cones, but any shape can be catered for.

The wire is idealised as a straight line segment between
the points x0 and x1, located on the tips of the short and
long prongs, respectively. A coordinate ξ is introduced on
the wire, its value being 0 at x0 and 1 at x1. The length
of the wire is ` and is approximately equal to δ/cosϕ.
The effect of the wire on the flow pattern is neglected
throughout this paper.

A wire frame of reference is introduced, with the y1

axis aligned with the wire and oriented from the short
prong to the long prong, the y2 axis normal to the plane
containing the prongs and y3 completing a right-handed
orthogonal system, as shown in Figure 2. At a probe an-
gle θ = 0

◦
, the probe rests with its prongs in the x13 plane

and its axis parallel to the x3 axis. A velocity vector u in
the laboratory frame of reference and its representation
v in the wire frame of reference are related by the linear
transformation

vi = RijSjkuk = Likuk (12)
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FIG. 2. Hot-wire probe frames of reference. The frame
(x1, x2, x3) is the laboratory frame of reference. The frame
(y1, y2, y3) is the probe frame of reference. The probe has
slant angle ϕ. The plane π containing the prongs and the
sensor forms an angle θ with the (x1, x3) plane.

where the matrices R and S are

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

The velocity at a location x(ξ) along the wire differs from
the velocity in the far-field on account of the potential
field of the prongs and their wakes. This difference is also
equal to the difference between the measured velocity and
the velocity at the location of the sensor if the probe was
removed from the flow.

The potential part of the flow around the prongs can
be represented by a dipole distribution Φ(η), η being a
pair of coordinates specifying the position of any point
on the surfaces of the prongs. The corresponding velocity

field is
16

u
Φ
i (x) =∬

∂Ω
−Φ(η) 1

∣r∣3
(δij − 3

rirj

∣r∣ )nj(η)dη (14)

In equation (14), ∂Ω is the surface of the two prongs,
n(η) is the normal to the prongs surface and r is the
distance vector between any point x and a point on the

prongs surface x
P (η)

ri = xi − x
P
i (η) (15)

For a given far-field velocity u, the dipole distribution is
the solution of the problem

0 =∬
∂Ω

Ψ(η)ni (ui + uΦ
i (xP (η))) dη (16)

where Ψ(η) is any generally integrable function defined
on the surface of the prongs. This problem can be solved

numerically using standard techniques
29

. It is convenient
to represent the flow field of the prongs as the superpo-
sition of three distinct fields, each corresponding to the
solution of the problem (16) with unperturbed velocity
of unit magnitue, aligned with one of the coordinate axis
and with the prongs in the x13 plane:

0 =∬
∂Ω

Ψ(η)ni (δij + εUij(xP (η))) dη (17)

where ε = d/δ is the prong diameter-to-spacing ratio.
This induces the same scaling with prong spacing as

found by Comte-Bellot et al.
15

. The non vanishing com-
ponents of the tensor Vij = RihUhj are shown in Figure
3 for two probes with different values of ε. It can be seen
that the ε-scaling holds with very good approximation
near the mid-point of the sensor, i.e. ξ = 0.5. It can
also be seen that the largest interference effects are to be
expected at the ends of the sensor. For arbirtrary probe
angles θ the velocity field induced in the proximity of the
wire is a linear function of the velocity vector at a large
distance from the probe

uk(x) = (δik + εShkUhj(x)Sji)ui (18)

The velocity in proximity of the wire, expressed in wire
coordinates, is therefore

v
Φ
i (ξ) = Rij (δjk + εUjk(ξ))Skhuh =

Lijuj + εMij(ξ)uj (19)

The tensor Lij is a function of the probe orientation and
slant angle. The tensor Mij(ξ) is a function of the posi-
tion along the wire, of the geometry of the probe as well
as probe orientation.

The displacement effect of the boundary layers and
wakes being shed from the prongs can be approximated

by using the method of surface sources
30

, as customar-
ily done when coupling boundary layer calculations with
inviscid calculations. For the purpose of the present
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FIG. 3. The contribution of the potential flow around the prongs to the perturbation velocity in the proximity of the wire
from equation (18). □, ■: V11(ξ); ○, ●: V13(ξ); △, ▲: V22(ξ); ▽,▼: V31(ξ); ◇, ◆: V33(ξ). Empty symbols for ε = 2

−1
, filled

symbols for ε = 2
−2

.

analysis, it is sufficient to use a uniform surface source
strength, related to the magnitude of the far-field veloc-
ity through a coefficient Cd. In general, Cd depends on
the Reynolds number. For the sake of simplicity it will
be assumed that Cd is constant in the range of velocities
for which the probe has been calibrated. This is the case
for Reynolds numbers based on flow velocity and prong
diameter between 20 and 80. For a dipole distribution

Φ
V (η) and in absence of oncoming flow, the velocity in-

duced in the space surrounding the prongs is

Wi(x) =∬
∂Ω
−Φ

V (η) 1

∣r∣3
(δij − 3

rirj

∣r∣ )nj(η)dη (20)

The velocity induced by the boundary layers and wakes
is given by the solution to the problem

0 =∬
∂Ω

Ψ(η) (1 − niWi(xP (η))) dη (21)

so that the velocity induced at the sensor, in the wire
frame of reference, is

v
V
i (ξ) = εCdRijWj(ξ)u = εCdNiu (22)

The non-vanishing components of Nj(ξ) are shown in

Figure 4 for ε = 2
−1

and ε = 2
−2

, where it can be seen
that the interference from prongs wakes and boundary
layers also scales with ε.

It is now possible to write the velocity at the sensor
in terms of the far-field velocity and of the interference
effects due to the potential and viscous flow field of the
prongs:

vi(ξ) = vΦ
i + v

V
i = Lijuj + εMij(ξ)uj + εCduNi(ξ) (23)

The convective heat flux can be obtained from the ve-
locity in equation (23) by integrating along the wire a
cooling law of the type (6)

Q̇c

`B
= ∫

1

0
(Jhkvh(ξ)vk(ξ))

n

Θ(ξ)dξ (24)

where the tensor Jhk is

Jhk = κδ1hδ1k + δ2hδ2k + δ3hδ3k (25)

and Θ(ξ) represents distribution of difference between
the flow temperature and the wire temperature as well as
the effect of additional coatings on the surface of the wire.
For sensors with plated ends, the effect of the coating is
to remove the contribution to the integral in equation
(24) from the parts of the sensor where the disturbances
generated by the prongs are largest. The coefficient κ is
retained in the formal derivations, but its value is set to

zero in the rest of the paper. Champagne results
10

show
this to be the correct value for a sensor in isolation, i.e.
for ε→ 0.

The external product vi(ξ)vj(ξ) can be written in
terms of far-field velocity components

vi(ξ)vj(ξ) = Ghk
ij (ξ)uhuk + εCdu (Hh

ij(ξ)uh +Hh
ji(ξ)uh)

(26)
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FIG. 4. The contributions of Cd to the perturbation velocity in proximity of the wire from equation (20). □, ■: N1(ξ); ○, ●:
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where

Ghk
ij (ξ) = Ljk

ih + εM
jk
ih(ξ) + ε

2Pjk
ih (27)

Hh
ij(ξ) = (Lih + εMih(ξ))Nj(ξ) (28)

Lhk
ij = LihLjk (29)

Mhk
ij (ξ) = LihMjk(ξ) + LjkMih(ξ) (30)

N h
ij(ξ) = LihNj(ξ) (31)

Phk
ij (ξ) =Mih(ξ)Mjk(ξ) + C2

dNi(ξ)Nj(ξ)δhk (32)

The convective heat flux can finally be written in terms
of the far-field velocity and interference effects:

Q̇c

`B
= ∫

1

0
(Gij(ξ)uiuj + εCduHi(ξ)ui)

n

Θ(ξ)dξ (33)

with

Gij(ξ) = JhkGij
hk(ξ) (34)

Hi(ξ) = Jhk (Hi
hk(ξ) +Hi

kh(ξ)) (35)

Equation (33) is the sought for response model for a
slanted wire probe, including an approximation to the
viscous behaviour of the prongs. For practical computa-
tions, the integral in equation (33) cannot be evaluated
analytically, but can be evaluated using numerical inte-
gration rules. In the following, 8-points Gauss-Lobatto
formulae have been used.

Equation (33) can be also approximated by a Taylor
series in ε around ε = 0 to find

Q̇c

`B
= Θ(Lijuiuj)

n

+

εn(Lijuiuj)
n−1

(M hkuhuk + CduN huh) +

O(ε2) (36)

where

Lhk = JijL
hk
ij (37)

Θ = ∫
1

0
Θ(ξ)dξ (38)

M hk = ∫
1

0
Θ(ξ)JijMhk

ij (ξ)dξ (39)

N h = ∫
1

0
Θ(ξ)JijN h

ij(ξ)dξ (40)

Equation (36) shows that the complex behaviour de-
scribed by equation (33) reduces to an effective cooling
velocity which is a bilinear function of the far-field veloc-
ity for probes with very widely spaced prongs, i.e. ε→ 0.
For probes of finite spacing, the heat loss rate contains a
correction proportional to ε and is made of two contribu-
tions. The first contribution is also a bilinear function of
the far-field velocity and is due primarily to the poten-
tial flow of the prongs. The second contribution is linear
with respect to the the direction of the velocity vector,
but quadratic in its magnitude, and is due to the wakes
and the boundary layers of the prongs.

For a far-field velocity aligned with the wire, the re-
sponse equations (33) and (36) predict heat loss from
the sensor even if κ = 0. This is due to a small velocity
with direction orthogonal to the wire induced by aero-
dynamic interferene by the prongs. Therefore, even if a
local cooling law which is not sensitive to longitudinal

velocities is used, an overall response similar to Hinze’s
7

and Jørgensen’s
8

is predicted. The apparent values of
the longitudinal sensitivity coefficients, κ in equation (6)
and δ1 in equation (7), would however be sensitive to the
flow direction, as indeed found in experiments.
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FIG. 5. The maximum response of a slanted wire probe with varying pitch angle α and displacement coefficient Cd. Probe
with ε = 2

−1
. Solid lines: model in Equation (33), dashed lines: model in Equation (36). κ = 0.
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FIG. 6. The maximum response of a slanted wire probe with varying pitch angle α and displacement coefficient Cd. Probe
with ε = 2

−2
. Solid lines: model in Equation (33), dashed lines: model in Equation (36). κ = 0.

IV. RESULTS

One of the most visibile consequences of the inter-
ference from the prongs and the stem on response of
a slanted sensor is that the maximum response at 0

◦

pitch does not take place at θmax = 90
◦
. Furthermore,

at pitch angles diffent from 0
◦
, the maximum response

takes place at a probe angle generally dependent on the
pitch. This causes the apparent dependence of Hinze’s

and Jørgensen’s coefficients on flow direction, as recorded
by some researchers in the past. Data clearly showing

such behaviour were published by Peña and Arts
27

.

This phenomenon can be studied by tracing the ampli-
tude of the response Q̇max and the probe angle θmax at
which it occurs as the displacement coefficient Cd and the
pitch angle α are varied. This study can be performed
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FIG. 7. The four probes used in this study. a: DANTEC
55P11, b: DANTEC 55P01, c: DANTEC 55P12, d : DAN-
TEC 55P02.

computing the variation of the solutions of the equation

1

`B

∂Q̇c

∂θ
= 0 (41)

as α and Cd are varied. The study is performed for
both models (33) and (36) with reference to slanted wire

probes of prong diameter-to-distance ratios ε = 2
−1

and

ε = 2
−2

. The results of the study are shown in Figures 5
and 6, respectively. In the absence of viscous effects, i.e.
Cd = 0, the response predicted by both equations (33)
and (36) is symmetric with respect to the plane contain-
ing the prongs. This places the maximum response of
the probe at θ = 90

◦
. This shows that the viscous contri-

bution from the flow around the prongs is a main factor
in the shape of the response of hot-wire probes. The
boundary layers and wakes of the prongs make the flow
asymmetric with respect to the plane containing the sen-
sor, thereby moving the maximum response away from
θ = 90

◦
at 0

◦
pitch by as much as 10

◦
, as seen in the

insets in Figures 5 and 6.
Aerodynamic interference also changes the amplitude

of the maximum response, on account of velocity compo-
nents orthogonal to the sensor associated with the flow
pattern between the prongs. The response functions pro-

posed by Fujita and Kovasznay
21

can reproduce this fea-
ture of the response, at least at 0

◦
pitch. The results

in figures 5 and 6 also show that the maximum response
moves further away from θ = 90

◦
the higher Cd at a given

pitch angle α. Furthermore, probes with more widely
spaced prongs exhibit smaller deviation from symmetry
and the linear/bilinear response in equation (36) pro-

vides a good approximation for their behaviour. Probes
with closer prongs show a higer sensitivity to the pitch
and larger deviations from a linear/bilinear response. In
practical terms, this means that probes with more widely
spaced prongs can be better represented by simpler cali-
bration laws based on Equations (6) or (7).

The response of four real probes is compared with the
response predicted by equations (33) and (36) in Figures
8-11. The probes used in this study are shown in Figure
7. The data in Figures 8 and 9 refer to straight wire
probes, Figures 10 and 11 refer to slanted wire probes,
The comparison is performed at yaw angles between 0

◦

and 180
◦

and pitch angles 0
◦

and ±30
◦

and at Reynolds
numbers based on prong diameter Red between 10 and
30. For all probes the response is modeled using κ = 0
and Cd = 0.5 and only the coefficients of B and n are
modified. The prong diameter-to-spacing ratio is approx-

imately ε = 2
−2

for the proebs b and d, and approxi-

mately ε = 2
−1

for the proebs a and c.

The graphs show the ability of the response equations
(33) and (36) to reproduce the behaviour of real probes
with only four parameters, κ, Cd, B and n, of which only
B and n are optimised for each probe. The value of Cd is
likely to change at Reynolds numbers outside the range
explored in the present study.

The response of straight wire probes is found to be
symmetric with respect to the probe orientation: the
maximum response is found at θ = 90

◦
independently

of α. This shows that for straight probes the effect of
interference on the angular response of the sensor can be
hidden in the calibration coefficients of a simple cooling
law.

The response of slanted wire probes is more complex
and exhibits a response sensitive to the pitch angle. Both
the response at 0

◦
yaw and the yaw angle at which the

maximum response take place depend on the pitch angle.
Both responses are represented correctly by the proposed
laws, except at yaw angles in the range 150

◦
-180

◦
. where

the short prong and the sensor are immersed in the wake
of the long prong.

Finally, some final observations are in order regarding
the computational cost of the proposed response equa-
tions. The evaluation of the effective cooling velocity for
a given probe orientation using the expressions in Buresti

and Di Cocco
24

and Stella et al.
28

require one three-by-
three matrix-vector product and one scalar product. The
evaluation of the effective cooling velocity via equation
(36) requires two three-by-three matrix-vector products
and two scalar products. Finally, equation (33) requires
M matrix-vector products and 2M scalar products if M
Gauss-Lobatto integration points are used. Considera-
tions of computational cost become important when pro-
cessing large amounts of data obtained, as an example,
by traversing in a plane or when computing flow statis-
ticis in statistically non-stationary flows.
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FIG. 8. Angular response of probe a: ε = 2
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lines: equation (33), dashed lines: (36). ◇: α = 0
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FIG. 9. Angular response of probe b: ε = 2
−2

, ϕ = 0
◦

(straight wire probe).κ = 0, Cd = 0.5, B = 0.45, n = 0.44. Solid lines:
equation (33), dashed lines: (36). ◇: α = 0

◦
, ○: α = 30

◦
, □: α = −30

◦
. Empty symbols: Red = 10, half-filled symbols:

Red = 20, filled symbols: Red = 30.

V. CONCLUSIONS

An accurate representation of the probe angular re-
sponse is an essental ingredient of measurements taken
with rotated slanted wires. The relationship between the
response and the flow direction is complicated by the flow
field around the prongs supporting the sensor, which al-
ters the direction and magnitude of the velocity in the
proximity of the sensor with respect to the direction and

magnitude of the far-field velocity. A large number of re-
sponse equations have been proposed over the years in an
attempt to describe the sensitivity of slant wire probes to
yaw and pitch angle. These relations are not satisfactory
in that they are valid over a limited range of yaw angles
and cannot reproduce the correct value of the angle of
maximum response θmax. As a result, the calibration of
hot-wire probes for rotated slanted wire anemometry has
to rely on the acquisition of a large amounts of data for
curve fitting.
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A new directional response model for slanted wire
probes has been presented here which is based on a de-
tailed description of the flow around the prongs of the
probe. For the first time in literature, quantitative and
detailed estimates of both the inviscid and viscous contri-
butions of the prongs to the flow field around the probe
are given. The model also accounts for the variability of
wire temperature and flow conditions along the wire. The
proposed model is embodied, in its most general form, by
equation (33). The model characterises the behaviour of

hot wire probes using only four adjustable parameters,
namely the King’s law parameters B and n, Hinze’s pa-
rameter κ and a displacement coefficient Cd.

The general response equation (33) can be approxi-
mated by a Taylor series in the prong diameter-to-spacing
ratio ε. The resulting approximate response law (36) is
very accurate even for minuature probes but is more eas-
ily handled than the full model for the purpose of data
processing.

Equation (36) is marginally more expensive than those
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proposed by Buresti and Di Cocco
24

and Stella et al.
28

but is more accurate and instructive, whilst being far
easier to handle than the full response equation (33).

From a practical point of view, the findings in this pa-
per allow the directional response of slanted wire probes
to be reduced to the determination of the standard King’s
law parameters B and n and a displacement coefficient
Cd. These quantities can be accessed with far fewer mea-
surements than those required for a traditional full direc-
tional response calibration.
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