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Abstract

Populations of physiologically vital mitochondrial DNA

(mtDNA) molecules evolve in cells under control from

the nucleus. The evolution of populations of mixed

mtDNA types is complicated and poorly understood,

and variability of these controlled admixtures plays a

central role in the inheritance and onset of genetic dis-

ease. Here, we develop a mathematical theory describ-

ing the evolution and variability in these stochastic pop-

ulations for any type of cellular control, showing that

cell-to-cell variability in mtDNA, and mutant load, in-

evitably increases with time, according to rates which we

derive and which are notably independent of the mecha-

nistic details of feedback signalling. We show with a set

of experimental case studies that this theory explains

disparate quantitative results from classical and mod-

ern experimental and computational studies on hetero-

plasmy variance in different species. We demonstrate

that our general model provides a host of specific in-

sights, including a modification of the often-used but

hard-to-interpret Wright formula to correspond directly

to biological observables, the ability to quantify selec-

tive and mutational pressure in mtDNA populations,

and the pronounced variability inevitably arising from

the action of possible mtDNA quality-control mecha-

nisms. Our general theoretical framework, supported

by existing experimental results, thus helps understand

and predict the evolution of stochastic mtDNA popula-

tions in cell biology.

Introduction

Molecules of mitochondrial DNA (mtDNA) form dy-

namic evolutionary populations within cells, replicating

and degrading according to cellular control signals.1, 2

MtDNA can vary due to mutation or artificial manip-

ulation;3 the proportion of mutant mtDNA in a cell is

referred to as heteroplasmy. MtDNA encodes vital as-

pects of the bioenergetic machinery of eukaroytic cells;

mtDNA variability can thus have dramatic cellular con-

sequences, including devastating genetic diseases and

numerous other conditions,3 making a theoretical un-

derstanding of this complex evolutionary system impor-

tant. Understanding the natural feedback control acting

on mtDNA populations is also a vital step in the de-

velopment of artificial approaches to control mitochon-

drial behaviour with genetic tools.4, 5 The population

variances of mtDNA types, and heteroplasmy variance,

are of particular importance, owing to their implica-

tions for maternal transmission of dangerous mutations6

and the manifestation of pathologies dependent on the

range of heteroplasmies present in a tissue,7 including

the demonstration that a very small proportion of cells

exceeding a heteroplasmy threshold can lead to patholo-

gies.8
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Stochasticity underlies cell biology; cellular processes

including gene expression,9–11 DNA replication,12 and

mitochondrial and mtDNA dynamics13–16 are subject

to fundamentally stochastic influences. Variability in

mitochondria can be a leading contributor to cell phys-

iological behaviour, making mitochondria an important

target for explanatory stochastic models.15 Existing

studies have included stochastic modelling and numer-

ical treatments of mitochondrial17 and mtDNA popu-

lations with the assumption of specific control mecha-

nisms.1, 14, 18–20 Other theoretical studies have drawn on

classical statistical genetics, notably including the well-

known Wright formula,21, 22 to produce a description of

partitioning at cell divisions, but the role of stochastic

mtDNA dynamics between cell divisions is largely omit-

ted. Although recent experimental studies are start-

ing to shed light on cellular control of mtDNA,14, 16 a

general theoretical framework is currently absent. Here

we address this open question by constructing a gen-

eral, bottom-up stochastic description of mtDNA popu-

lations subject to arbitrary cellular control mechanisms,

providing analytic results for the predicted behaviour

associated with any mtDNA control mechanism, and

adapting the classic Wright formula to account for and

interpret stochastic mtDNA dynamics. Notably, our ap-

proach and results hold independently of the details of

specific regulatory mechanisms underlying mtDNA feed-

back signalling, providing a general theoretical frame-

work for control of stochastic mtDNA populations across

different species and environments.

As we develop the theoretical framework to address

mtDNA dynamics below, we will consider a set of appli-

cations of the theory, linking with existing experimental

data from a variety of studies to validate our approach

and obtain quantitative results and predictions on the

processes governing mtDNA dynamics. We will focus on

two questions arising from the study of mtDNA diseases:

(a) how and at what rate does cell-to-cell heteroplasmy

variance increase; and (b) how does selective pressure

against a particular mtDNA mutation affect cellular

mtDNA populations. The single-cell measurements re-

quired to address these questions directly remain chal-

lenging: we aim to show that mathematical theory, ap-

propriately validated and refined with available data,

allows us to make quantitative progress understanding

this important behaviour. Fig. 1 summarises the cen-

tral biological messages arising from development and

analysis of our theory.

Methods

We will consider mtDNA populations in cells that are

heteroplasmic with two non-recombining haplotypes,

though this treatment can readily be extended to other

species. We write a state with w wildtype mtDNAs and

m mutant mtDNAs as {w,m}. We first consider the

class of systems where both haplotypes are subject to

the same degradation rate ν and the same replication

rate λ, both of which may be general functions of both

haplotype copy numbers. This model thus represents

the situation where no direct selective difference exists

between mutant and wildtype. This assumption only

holds for some biological cases (see Ref.23 and refer-

ences therein for a review of studies where mtDNA types

segregate unevenly) and will be relaxed later. We also

assume that cellular control is based only on the current

state of the cellular mtDNA population, and not its his-

tory. The dynamics governing the system then consist

of a set of Poisson processes:

{w,m} wλ(w,m)−−−−−−→ {w + 1,m} (1)

{w,m} mλ(w,m)−−−−−−→ {w,m+ 1} (2)

{w,m} wν(w,m)−−−−−−→ {w − 1,m} (3)

{w,m} mν(w,m)−−−−−−→ {w,m− 1} (4)

This formalism captures a wide range of models for

mtDNA dynamics (see below). We will begin with the
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assumption that the system does not undergo cell divi-

sions, and has a stationary state in the population mean

of both haplotype copy numbers, and will write this

steady state as {w̃, m̃}. This initial picture is more ap-

propriate for quiescent cell types or mtDNA ‘set points’

than for the pronounced changes in mtDNA copy num-

ber that occur during development.2, 14 We will later

generalise this picture to allow for arbitrary changes in

copy number.

We will first consider general results from this for-

malism, applicable to a wide variety of possible cellular

behaviours. We will then illustrate its application with a

range of previously proposed, and new, feedback mech-

anisms.

Results

Copy number variance with stable population

means

Any control mechanism of the form Eqns. 1-4 (including

manifestations of feedback control) can be represented

to linear order by a Taylor expansion of its rates about

{w̃, m̃} (the steady state exists by construction with our

previous assumption):

λ(w,m) ≃ β0 + βw(w − w̃) + βm(m− m̃), (5)

ν(w,m) ≃ δ0 + δw(w − w̃) + δm(m− m̃). (6)

It will readily be seen that to support a stable popula-

tion mean at {w̃, m̃}, δ0 = β0. Assuming that w and m

can be written as the sum of a deterministic and a fluc-

tuating component, we use Van Kampen’s system size

expansion to find a Fokker-Planck equation describing

the behaviour of w and m governed by Eqns. 5-6.24, 25

From this equation we extract expressions for the time

behaviour of the mean and variance of w and m (see SI

Sections 1-2).

We show in SI Section 4 that attempting to identify

a stable state for population variances and covariance

yields the condition:

2m̃(m̃+ w̃)β0

w̃
= 0; (7)

hence, any population mean state in which mutant

content m̃ is nonzero does not admit a stationary solu-

tion for variances, unless β0 = 0. If β0 = 0 then there

is no further change to the system once steady state

has been reached (no stochastic turnover occurs) and

the system remains frozen thereafter. In other words,

for a nonzero mutant population and nonzero mtDNA

turnover, the variance of at least one mtDNA popula-

tion will change with time.

The Fokker-Planck equation can be used to com-

pute the expected behaviours of hw2i (wildtype vari-

ance), hm2i (mutant variance), and hwmi (wildtype-

mutant covariance) for a given control mechanism. The

variance and covariance solutions display some tran-

sient behaviour, involving terms on the timescale t′ ≡
exp(((βm − δm)m̃ + (βw − δw)w̃)t). As, for stability,

βi are nonpositive and δi are nonnegative, t′ is either a

constant or an exponentially decaying function of time

t. The expressions thus subsequently converge to linear

trends for large t:

hw2i = F decay
1 (t′) + θ1t+ φ1 (8)

hwmi = F decay
2 (t′) + θ2t+ φ2 (9)

hm2i = F decay
3 (t′) + θ3t+ φ3 (10)

� �� �

transient
behaviour

� �� �

long-term linear

behaviour

The forms of the transient functions F decay
i , and the

constants θi and φi are given in SI Section 2 and are

functions only of the difference between replication and

degradation rates (βi − δi), steady-state copy numbers

m̃ and w̃, and mitophagy rate β0. Furthermore, the

structure of these expressions is such that for β0 6= 0

and nonzero w and m, at most one of the θi can be

zero, θ1 ≥ 0, and θ3 ≥ 0. Thus, around the mean

(w̃, m̃), either wildtype variance or mutant variance, or
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both, increase linearly with time (Fig. 1 I). As time

continues, the increasing variance means that extinction

of one mtDNA becomes increasingly likely: implications

of this behaviour are explored below.

The mathematical structure of the solutions only ever

involves the difference between replication and degrada-

tion rates (βi − δi), showing that control of (a) biogen-

esis rates and (b) degradation rates induce comparable

behaviour in the cellular mtDNA population (Fig. 1 III).

Heteroplasmy statistics

As shown in SI Section 5, a first order Taylor expansion

of a function of random variables gives an approximation

for the variance of h = m/(w +m):

hh2i = hwi2hm2i+ hmi2hw2i− 2hwmihwihmi
(hmi+ hwi)4 (11)

and we can then use previously obtained expressions

for hwi, hmi, hw2i, hm2i, hwmi to compute this approxi-

mate heteroplasmy variance. Neglecting transient terms

and using hwi = w̃ and hmi = m̃ in Eqn. 11, gives, after

some algebra,

hh2i = 2β0

n
h(1− h)t;

hh2i
hhi(1− hhi) ≡ hh2i′ = 2β0t

n
,

(12)

where n = w̃ + m̃, with w̃ = (1 − h)n and m̃ = hn:

thus h is (mean) heteroplasmy and n is (mean) total

copy number (recall that β0 = δ0 in steady state). In

Eqn. 12 we have used normalised heteroplasmy variance

hh2i′, accounting for the dependence of hh2i on the mag-

nitude of h; hh2i′ is the quantity most often reported in

experimental studies.

In other words, when the system size expansion is

valid (see below), for any control mechanism, hetero-

plasmy variance in the copy number steady state in-

creases linearly with time with a rate that depends only

on the copy numbers of the system and the timescale

of random turnover (Fig. 1 II) (Eqn. 12 is indepen-

dent of the β and δ terms in Eqns. 5-6). As we dis-

cuss later, this observation implies that many possible

mechanisms could be responsible for the same observed

trend in heteroplasmy variance, meaning that measure-

ments of heteroplasmy variance alone, even if repeated

at different time points, place only a limited mechanistic

constraint on mtDNA dynamics.14 In SI Section 7 we

discuss experimental strategies that can more efficiently

discriminate between different control mechanisms.

Transient behaviour and cell divisions, and va-

lidity of the expansion

To obtain analytic insight, we have thus far focussed

on modelling mtDNA behaviour using the system size

expansion when a steady-state assumption had already

been applied. Transient behaviour can also be explored

by employing the system size expansion directly on

the appropriate master equation, using the full expres-

sions for λ(w,m) and ν(w,m) (see SI Sections 2 & 6).

Relaxing the steady state assumption means that the

ODEs describing variance behaviour are analytically in-

tractable for many forms of λ(w,m), ν(w,m). However,

they can simply be solved numerically and, as shown

in subsequent sections, well match stochastic simula-

tion (which of course is numerically far more intensive).

This ODE approach fully accounts for non-equilibrium

behaviour – including transient relaxation, cycling, and

so on – while the system size expansion remains appro-

priate (see below).

This analysis can readily be used to characterise the

effect of partitioning mtDNAs at cell divisions. To com-

pute the time behaviour of variance where cell divisions

occur at arbitrary times, we invoke a linear noise as-

sumption,24, 25 first using the ODEs above to compute

the variance behaviour within one cell cycle. Partition-

ing rules for copy number statistics are then applied,

and the resulting post-partition statistics are used as

the initial condition for a next phase of ODE solution.

We here illustrate this process for binomial partition-

ing of mtDNAs to connect with recent studies in mice14
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and HeLa,15 although with an appropriate choice of par-

titioning rules, this approach can be used to address

any partitioning regime (for example, the sub-binomial

case recently reported in fission yeast16). In the case

of binomial partitioning, the appropriate partitioning

rules are hwi → hwi/2, hmi → hmi/2, hw2i → hw2i/4 +
hwi/4, hwmi → hwmi/4, hm2i → hm2i/4 + hmi/4, fol-
lowing straightforwardly from the variance of a bino-

mial distribution with p = 1/2 as n/4. We will see

below that this picture well describes the behaviour of

stochastic populations in dividing cells: hence, the to-

tal variance contributions of turnover between divisions

and partitioning at divisions can be modelled as a linear

sum, and the behaviour of mechanisms across cell cycles

is comparable to that within a cell cycle.

The results above hold for a nonzero mutant popu-

lation. As copy number variance increases, we expect

extinction of one mtDNA type to become increasingly

likely. To address this behaviour, we must consider

when the system size expansion itself, which is reliant

on the validity of the linear noise approximation, holds.

An important threat to this validity is a non-negligible

extinction probability for one mtDNA type, whereupon

a normal distribution no longer adequately models the

copy number distribution. Heuristically, this situation

arises when, for example,
�

hm2i ∼ hmi. Another chal-
lenge arises due to the fact that, when λ and ν are func-

tions of w and m, our linear theory is an approximation

to the nonlinear dynamics that result. Highly nonlin-

ear behaviour (for example, pronounced discrete steps

in rates occuring at critical copy numbers) will therefore

not be perfectly captured; but the ability of our theory

to reproduce simulation of the fully nonlinear dynam-

ics (in Figs. 2, 4, 6 and SI Section 3) suggests that

the linear theory provides valuable insight into a wide

range of biologically plausible behaviours. Treatments

of fully nonlinear cases represent a substantial technical

challenge which will be addressed in future work.

In these cases, the mean and variance of mtDNA pop-

ulations are likely to be underestimated by the preced-

ing analysis (see SI Section 3), and the heteroplasmy

variance is overestimated, with the increase in hh2i with
time gradually becoming sublinear. Fixation is also ne-

glected by the deterministic version of the mean equa-

tions of motion, which allow an asymptotic descent to

zero. Thus, the more general statement of our finding is

that (i) for the period when extinction of either type is

unlikely, variances and covariances change linearly (af-

ter transients); (ii) as extinction of one type becomes

more likely due to this increased variance, the increas-

ing trend continues but departs from those linear forms

(in particular, the increase of hh2i slows to become sub-

linear); (iii) when extinction of one type is almost cer-

tain, the system tends towards its behaviour if only one

type was present (ultimately stalling variance increase,

as if m̃ = 0 in Eqn. 7). The results we focus on in

this main text can be viewed as describing the ‘quasi-

stationary state’ where extinction is negligible; further

quantitative details can be derived using, for example,

adaptations of the system size expansion that address

extinction.26

Specific control mechanisms and comparison

with simulation

The previous results make no assumptions about the

specific form of control applied to the mtDNA popula-

tion, other than it depends only on current state and is

manifest through the rates of Poissonian replication and

degradation which are equal for both mtDNA species

(and can be described with the system size expansion,

as discussed above). We can exploit the generality of

the preceding formalism to obtain results for any given

(feedback) control mechanism, defined by a specific form

of λ(w,m) and ν(w,m) in Eqns. 1-4.

We first consider the well-known ‘relaxed replication’

model,1, 19 which involves stochastic mtDNA degrada-
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tion, coupled with mtDNA replication which is physi-

cally modelled as a deterministic process. We propose

that, if degradation is regarded as a stochastic process

(due to its microscopic reliance on complicated pro-

cesses and colocalisations in the cell), picturing repli-

cation (which also relies on complicated interactions on

the microscopic scale) as a stochastic process leads to a

consistent stochastic generalisation (see Appendix A1).

The corresponding model has exactly the same expres-

sions for rates as in Ref.1 (type A in Fig. 2 A), but repli-

cation rate is now interpreted as the rate of a stochastic,

rather than a deterministic, process.

We also introduce several other models for mtDNA

control, to consider a range of potential functional

forms, including differential and ratiometric control

based on a target wildtype copy number, an absence

of any feedback control, and others (types B-G in Fig.

2 A). The presence or absence of w and m in these ex-

pressions reflects what quantity is being sensed by the

cell (wildtype mtDNA alone, mutant mtDNA alone, or a

combination of the two). We further note that this gen-

eral formalism can also incorporate physical constraints

on the mtDNA population. For example, the hypothesis

that mitochondrial concentration is controlled between

cell divisions15 (recently confirmed in fission yeast16)

could correspond to wopt, the ‘target’ mtDNA number,

being a linear function of cell volume in the models

above; or could arise through passive birth-death dy-

namics (model D) with control implemented at the cell

division stage (see previous section). The interpreta-

tions of these control mechanisms in terms of cellular

sensing and the language of stochastic population pro-

cesses are given in SI Section 3.

Fig. 2 B illustrates the application of our analysis to

these example control mechanisms in the absence of cell

divisions. The close agreement between stochastic sim-

ulation and analytic results in steady state shows the

generality of our theory. The long-term linear increases

in one or both mtDNA variances are clear (Fig. 1 I),

and trajectories of hh2i with the same steady state and

turnover timescale are identical (Fig. 1 II). Fig. 2 C,

including cell divisions, demonstrates close agreement

between ODE solutions and stochastic simulation, fur-

ther showing that the linear noise treatment successfully

captures stochastic behaviour over cell divisions. The

close similarity of hh2i trajectories across divisions is a

consequence of their aforementioned identity in steady

state conditions with no cell divisions (Fig. 2 B); differ-

ences are due to the difference in mechanism behaviour

away from the steady state.

Applications I: Heteroplasmy variance increases

at constant mean copy number

The increase of heteroplasmy variance hh2i with time is

of profound importance in determining the inheritance

and onset of mtDNA diseases. Because disease symp-

toms often manifest only when heteroplasmy exceeds

a certain threshold,7 increasing heteroplasmy variance

with time can lead to pathologies even if mean hetero-

plasmy does not change (because a higher cell-to-cell

variance implies a greater probability of a given cell ex-

ceeding a threshold).14

We sought experimental evidence to support the lin-

ear increase of hh2i predicted by our theory. Time

course measurements of single-cell heteroplasmy val-

ues remain limited; we identified results from the

Drosophila germline27 and in the mouse germline for

the NZB/BALB model28, 29 and the HB model.14 For

these data, we compared the ability to fit the data of a

null model (H0 : hh2i′ = α + ǫ, where α is a constant),

and an alternative model (H1 : hh2i′ = α+βt+ǫ), where

hh2i′ changes linearly with time as our theory predicts

(Eqn. 12; Fig. 1 II). Using the Akaike information cri-

terion (AIC) and assuming normally-distributed noise

on mean hh2i′ (ǫ ∼ N (0,σ2), an assumption consistent

with our linear approximation, but which can be fur-
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ther refined as in Ref.29), we found that the alternative,

time-varying model was favoured in all cases, providing

support for our theory (Fig. 3A-C).

These results are quantitatively consistent with a pre-

vious study on the dynamics of heteroplasmy variance

during the mtDNA bottleneck in mice14 where a mech-

anism involving random mtDNA turnover and random

mtDNA partitioning at cell divisions was found to best

explain experimental observations. MtDNA in mice and

rats often has a half-life of 10-100 days.23 This corre-

sponds to β0 = δ0 = log 2/t1/2 = 0.03 − 0.003 days−1

and τ = t1/2/ log 2 = 5−50 days. In Fig. 2 we show the

patterns of copy number and heteroplasmy means and

variances for τ = 5 days and 103 mtDNA molecules per

cell under different specific control strategies. The in-

crease of hh2i from 0 to 10−3, corresponding for h = 0.1

to an increase in hh2i′ from 0 to 0.011, matches the scale

of change observed in the mtDNA bottleneck (though

the bottleneck is complicated by changing population

size n and compensatory changing turnover β0).
14 Pre-

vious work has shown that the case with no feedback (D

in Fig. 2 ) describes well the behaviour of mtDNA with

cell divisions in mouse development.14 In Appendix A1

we discuss further connections with previous theoretical

studies; experimental cell-to-cell measurements in more

quiescent cell types, while currently lacking, will provide

valuable further tests of our theory.

MtDNA turnover in the Wright formula

Powerful existing analyses of mtDNA population vari-

ance22, 29 with widespread influence3 have drawn upon a

classical theory byWright (and Kimura),21, 30 describing

stochastic sampling of a population of elements between

generations. The resulting expression for expected het-

eroplasmy variance is the well-known equation some-

times referred to as the ‘Wright formula’ (though other

equations also bear this name):3, 22

hh2i′ = 1−
�
1− (2ne)

−1
�g

, (13)

where ne is an effective population size and g is a num-

ber of generations. The mapping of this effective theory

to the complicated mtDNA system is valuable to develop

intuition but cannot capture the detailed dynamics of

individual mtDNA molecules, due to assumptions (see

Appendix A2) that mean the effective parameters of the

theory (ne and g) cannot generally be interpreted as bi-

ological observables,22, 31 preventing quantitative anal-

yses of mechanisms and dynamics.3 In particular, ne

does not generally correspond to a minimum mtDNA

copy number (see Appendix A2), and, being a genetic

rather than a physical parameter, ‘is unlikely ever to

correspond closely to the number of anything’.31

The Wright formula, however, does accurately de-

scribe the heteroplasmy variance due to binomial sam-

pling of 2ne real elements at cell divisions for an ob-

servable population size, and, as seen in the previous

section, the additional effect of mtDNA turnover based

on observable values can be included as an extra lin-

ear contribution. In general, this term will depend on

the dynamics controlling the mtDNA population and

can easily be calculated using the ODE approach above

(Fig. 2 ).

In the case where no systematic change in mtDNA

population size occurs with time, we can use the obser-

vation that hh2i trajectories are often comparable across

a variety of different possible cellular control mecha-

nisms (and identical in the steady state; Fig. 2 and Eqn.

12) to produce a simple approximate description linking

hh2i′ to observables. The simple steady state behaviour

is given by Eqn. 12. To construct an approximation we

use a simple estimate of mean population size over a cell

cycle, writing n′ = 3
2n, where n is the mtDNA popula-

tion size immediately after division, and n′ thus gives a

population size ‘average’ over the changes within a cell

cycle. Using the above analysis with w0 = (1 − hhi)n′,

m0 = hhin′ (representing the ‘average’ populations of

wildtype and mutant mtDNA), and β0 = 1/τ (so that

7



τ is the timescale of mtDNA degradation), the corre-

sponding expression in terms of h and n is then given

by a ‘turnover-adjusted’ Wright formula (see Appendix

A2):

hh2i′ = 1−
�
1− (2n)−1

�g
+ 4t/(3nτ), (14)

where g is the number of cell divisions that have oc-

curred and t is the amount of time that has expired since

an initial state with hh2i′ = 0. This expression is sub-

ject to the conditions for system size expansion validity

described above; thus, as fixation probability increases,

the increase of hh2i′ will drop below this prediction.

Fig. 4 illustrates the agreement between Eqn. 14

and stochastic simulation for the range of control mech-

anisms we consider under different population sizes and

heteroplasmies. It is worth reiterating that more ex-

act solutions for a given control mechanism can eas-

ily be computed using the preceding ODE approach,

and stochastic analysis can also be used to quantita-

tively describe the effects of more specific circumstances

(for example, the systematically varying population size

through the mtDNA bottleneck14). In the case of no

such systematic variation, and, crucially, if the Poisso-

nian model Eqns. 1-4 holds, then Eqn. 14, a modi-

fied Wright formula, represents a simpler, approximate

way to establish a quantitative link between observed

normalised heteroplasmy variance hh2i′ and observable

quantities (Fig. 1 IV) – n (mtDNA copy number imme-

diately after division), g (number of cell divisions), and

τ (timescale of mtDNA turnover).

Applications II: Linking physical and genetic

rates with the modified Wright formula

The Wright formula is traditionally used to compare a

heuristic, effective ‘bottleneck size’ across experimental

systems (for example, in studies of different organisms22

and of human disease32). In its uncorrected form this

‘bottleneck size’ can only be semi-quantitatively treated

– bottleneck sizes can be ranked, but absolute values and

differences cannot be straightforwardly interpreted. Our

adaptation allows us to use this formula to connect the

rates of physical subcellular processes with the resulting

rates of genetic change.

To illustrate this connection, we focus on a particu-

lar period during mouse development. Between 8.5 and

13.5 days post conception (dpc) in the developing mouse

germ line, cell divisions occur with a period of about 16

hours,33 giving g = 7 or 8 cell divisions in this period (of

length t = 5 days). Copy number measurements during

this period show that the mean total number of mtDNA

molecules per cell remains of the order of n = 2000 (Fig.

5 A).28, 34, 35 During this period, heteroplasmy variance

hh2i′ increases on average (but with substantial variabil-

ity) from around 0.01 to 0.02 (Fig. 5B).28, 36 Fig. 5 B)

shows a best-fit line to hh2i′ data, with slope 1.52×10−3

day−1 (5-95% confidence intervals (1.11− 1.92)× 10−3

day−1).

We can use these measurements in conjunction with

the turnover-adjusted Wright fomula (Eqn. 14) to ob-

tain estimates for the rate of mtDNA turnover during

this period. Using Eqn. 14 with the best-fit hh2i′ =

1.52 × 10−3 × 5 = 7.6 × 10−3, and g = 7 divisions,

n = 2000 mtDNA molecules, t = 5 days gives the result-

ing estimate τ ≃ 0.57 days (5-95% confidence intervals

0.43-0.88 days, using the same values for n, g, t) for the

characteristic timescale of mtDNA degradation. This

increase in mtDNA turnover (relative to the τ ≃ 5− 50

day timescale in differentiated tissues23) in the germline

during this developmental period matches quantitative

results from a more detailed study of the bottleneck re-

porting τ within the range 0.38-2.1 days (based on pos-

teriors for ν = 1/τ between 0.02-0.11 hr−1),14 and illus-

trates how a suitable mathematical model can be used

to estimate biological quantities that are challenging to

directly address with experiment.37
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Influence of mutations, replication errors, and

selective differences: quality control of replica-

tion errors

Our approach is easily generalised to include other pro-

cesses than those described by Eqn. 1-4: in SI Section

6 we demonstrate that adding and changing appropri-

ate processes allows us to analyse the effects on mtDNA

mean and variance due to de novo mutations, replication

errors, and multiple selective pressures. Our approach

can be thus used to characterise variability arising from

selection and mutation under any control mechanisms,

without requiring stochastic simulation.

We can use this ability to explore a particular sci-

entific question: if mtDNA replication errors occur

and the cell attempts to clear the resulting mutant

mtDNA through selective quality control, how do cel-

lular mtDNA populations change? To investigate this

question we introduce the process {w,m} µw−−→ {w,m +

1} (replication errors – leading to the production of a

new mutant mtDNA – occuring with rate µ) and repa-

rameterise Eqn. 4 as {w,m} (1+ǫ)mν(w,m)−−−−−−−−−→ {w,m − 1}
(a proportional increase of ǫ in mutant degradation com-

pared to wildtype degradation). We thus model the

situation where replication errors arise and the cell at-

tempts to clear them through quality control, while a

control strategy for mtDNA populations is also in place.

Fig. 6 illustrates the mean and variance of w and

m in two different cases, distinguished by the relative

magnitude of the selective difference (ǫ) and error rate

(µ). This ratio is crucial in determining whether mu-

tant mtDNA is cleared or increased: Fig. 6 A shows

that mutant is cleared when (1 + ǫν) ≫ µ (selection is

sufficiently strong to overcome errors), but when selec-

tive difference ǫ is insufficiently high, mutant mtDNA

mean and variance (and heteroplasmy) increase with

time. In both cases, we also observe substantial dif-

ferences in mtDNA behaviour depending on the control

model in place. Control models lacking an explicit tar-

get copy number (D (no feedback); F,G (immigration-

like)) experience substantial increases in wildtype vari-

ance while mutant is being removed. Models involving a

target wildtype copy number and weak or no coupling to

mutant mtDNA (B, C, E) admit an order-of-magnitude

lower increase in wildtype variance as mutant is cleared.

Relaxed replication (model A), which combines a target

copy number with a strong coupling between mutant

and wildtype mtDNA, displays an intermediate increase

on wildtype variance as mutant is cleared.

Theoretical approaches which only consider the mean

behaviour of mtDNA populations (Fig. 6 A) cannot

account for this cellular heterogeneity, and the impor-

tant fact that quality control acting to remove mutant

mtDNA can also induce variability in wildtype mtDNA

(Fig. 6 B). The action of quality control may there-

fore yield a subset of cells with wildtype mtDNA sub-

stantially lower than the mean value across cells – po-

tentially placing a physiological challenge on those cells

where wildtype mtDNA is decreased. In addition to the

important point that the simple presence of quality con-

trol does not guarantee the clearing or stabilisation of

mutant load, we thus find that quality control may have

substantial effects on wildtype as well as mutant mtDNA

if cellular control couples the two species (Fig. 1 V).

Applications III: Variance induced through mu-

tant clearing

The A > G mutation at position 3243 in human

mtDNA is the most common heteroplasmic pathologi-

cal mtDNA mutation, giving rise to MELAS (mitochon-

drial encephalomyopathy, lactic acidosis, and stroke-

like episodes), a multi-system disease. The dynamics

of 3243A > G heteroplasmy are complex and tissue-

dependent; its behaviour in blood has been charac-

terised in particular detail using a fluorescent PCR as-

say for heteroplasmy38 in a way that allows us to explore

our theoretical predictions about mtDNA statistics with

9



mutant clearing.

The authors of Ref.38 took two blood samples, sev-

eral years apart, from human patients, and quantified

3243A > G heteroplasmy (h) and mean mtDNA copy

number per cell for both samples. While single-cell data

is not presented in the publication, progress can be made

with the averaged quantities. A strong decrease in (h)

with time is observed for all patients, confirming that

mutant mtDNA is being cleared (Fig. 7 A). The be-

haviour of total mtDNA molecules per cell (w + m) is

less consistent, with a range of large increases and mod-

erate decreases in total number. As shown in Fig. 7

B-C, patient-to-patient variance in both w and m in-

creases with time in conjunction with h decreases.

Although the measurements in Ref.38 are averages

over groups of cells, an approximate quantitative com-

parison of these data with the predictions of our theory

can be made. In the spirit of ‘back-of-the-envelope’ cal-

culations,39 we estimate that each sample of cells giv-

ing rise to a measurement corresponds to approximately

103 cells (see SI Section 8). Then, using an estimate

of τ = 5 days (by comparison with other mammalian

species, as above), we find that a selective pressure of

ǫ8 ≃ 1.2 × 10−4 day−1 matches the observed decrease

in heteroplasmy, corresponding, for example, to a de-

crease from 0.15 to 0.14 over 8 years, as in Fig. 7 A.

Solving the ODEs resulting from this system, using con-

trol model D as the simplest case, predicts increases in

cell-to-cell copy number variance of approximate mag-

nitude hw2i ∼ 105 and hm2i ∼ 2 × 104 over 8 years.

We can translate these cell-to-cell values into the vari-

ance expected across samples of cells by dividing by the

number of samples (taken as 103 as above). The re-

sulting variance corresponds, for example, to expected

standard deviations in wildtype and mutant copy num-

ber after 8 years of 10.0 and 4.0 respectively for a sam-

ple with hwi = 85 and hmi = 15 (consistent with the

increasing spread of values in Fig. 7 B-C). We used the

Kolmogorov-Smirnov test respectively to test the alter-

native hypotheses that the experimentally-observed hwi
and hmi at the later time point differed from those pre-

dicted by our model; no test yielded p < 0.05 (see SI

Section 8). Of course, an absence of support for an al-

ternative hypothesis cannot be taken as support for a

null hypothesis, but shows that the existing experimen-

tal data is not incompatible with our model.

The observations in Fig. 7 support the predictions

made in Fig. 6, where mutant load is decreased but

variance in wildtype copy number (and mutant copy

number) increases. The bottom-left quadrant of Fig.

6 (ii) shows that different control mechanisms display

similar initial behaviour; follow-up studies on these pa-

tients could be used to distinguish possible mechanisms

for mtDNA control. For example, if the rate of wild-

type variance increase decreases over time, models B,

C, and E are more likely; if wildtype variance contin-

ues to increase, models A, D, F, and G and more likely.

More detailed model discrimination based on the time

behaviour of w and m variances are possible (Fig. 2),

and can be performed using statistical methods account-

ing for mean and variance behaviour.29, 40

Discussion

A general, bottom-up theory has been produced to

describe the time behaviour of cell-to-cell variance in

mtDNA populations subject to controlled biogenesis

and/or degradation, mutation, selection, and cell divi-

sions. This theory is based around the microscopic be-

haviour of mtDNA molecules, allowing a hitherto absent

connection between widely-used ‘effective’ statistical ge-

netics approaches (Eqn. 13) and measurable biological

quantities, and motivating experiments to further elu-

cidate the mechanisms acting to control mtDNA (de-

scribed in SI Section 7). We have shown that the predic-

tions of this theory agree with experimental observations

of mixed mtDNA populations, and that the application

10



of appropriately validated mathematical theory allows

us to make estimates of important biological quantities

that remain challenging to directly address with exper-

iments. Our theory describes the cell-to-cell variability

in mtDNA populations and thus provides a framework

with which to understand the inheritance and onset of

mtDNA diseases.6, 14

Our theoretical platform unifies several existing mod-

elling approaches that have driven advances in the study

of mtDNA populations. We have specifically demon-

strated that the ‘relaxed replication’ model1, 19, 34 (our

model A), simple birth-death models14, 20 (our model

D), and cellular controls based on homeostatic princi-

ples15, 16 (our models B, C, G) can naturally be rep-

resented within our framework. As a result, analytic

expressions for the expected behaviour of heteroplasmy

variance and other population statistics can readily be

extracted for these and other mtDNA models (see SI

Section 3), allowing the detailed characterisation of

mtDNA dynamics, including the probability of crossing

disease thresholds,7 which can be computed from het-

eroplasmy statistics.14 We have also used the theoretical

ideas developed herein to refine a widely-used model for

mtDNA populations of changing size (the Wright for-

mula), explicitly connecting it with cellular processes

and allowing a link between physical and genetic quan-

tities (Eqn. 14, Fig. 5 ).

Further, our theory also describes the dynamics of

heteroplasmy change with time in the presence of se-

lective pressure for one mtDNA type. Given an ini-

tial heteroplasmy h0 and a selective pressure β (posi-

tive β corresponding to positive selection for the mutant

mtDNA type), we find (see SI Section 5) that hetero-

plasmy evolves according to:

h =
1

1 + 1−h0

h0
e−βt

. (15)

This behaviour immediately motivates a transforma-

tion allowing the evolution of heteroplasmy to be com-

pared across different starting values h0:

Δh′ ≡ βt = log

�
h(h0 − 1)

h0(h− 1)

�

, (16)

allowing, as in our previous work,23 heteroplasmy re-

sults from different biological samples to be compared

together, accounting for different initial heteroplasmies

(in other words, the same selective pressure will produce

the same Δh′ regardless of h0).

It is likely that control mechanisms found in biology

have nonlinear forms (for example, sigmoidal response

curves are common in cellular signalling). We have

shown that a linearisation satisfactorily describes some

non-equilibrium behaviour (for example, in the case of

our cell division model) but further investigation of more

general nonlinear behaviour, and modulation of wider

cell behaviour by mtDNA populations (for example, by

influencing cell cycle progression15), are important fu-

ture developments. In SI Section 1 we discuss a linear

stability analysis of our expressions for mean mtDNA

behaviour, which highlights a link between the ‘sensing’

of an mtDNA species (in the sense that the presence of

that species modulates replication or degradation rates)

and the ability to control the mean level of that species.

The control of stochastic systems is a well established

field within control theory.41 Optimal control mecha-

nisms addressing the mean and variance of stochastic

processes have been derived in a variety of contexts (see,

for example,42 and citations therein), particularly in fi-

nancial applications,43 and often find tradeoffs between

controlling the mean and variance of a process. We ob-

serve a comparable tradeoff, that tight control on mo-

ments of one species leads to loose control on another.

We have focussed on providing a general theoretical for-

malism with which to treat any given control mecha-

nism; it is anticipated that the above treatment may

also be of value in describing heterogeneity in other sys-

tems where replication and/or death rates of individuals

depend on feedback from current numbers of individu-
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als (for example, through terms describing competition

for resources in ecology). Within the context of mtDNA

populations, we anticipate that this theoretical frame-

work will assist in understanding natural processes of

mtDNA inheritance and evolution within an organismal

lifetime (including segregation and increasing variance

with age),14, 23 and informing applied approaches to con-

trol mitochondrial behaviour with genetic tools.4, 5

Supplemental Data

Supplemental Data contains mathematical derivations

(8 sections), 2 figures, and 2 tables.

Appendix

A1. Interpretation of relaxed replication.

The relaxed replication model1, 19 describes a cellular

population of mtDNA molecules according to the follow-

ing algorithm. MtDNAs randomly degrade as a Poisson

process with rate 1/τ . Every timestep Δt, the value of

C(w,m), a deterministic function of w and m, is com-

puted, then ΔtC(w,m) mtDNAs are added to the pop-

ulation. The genetic properties of these added mtDNAs

are random – each is assigned a genetic type based on

a random sampling of the existing populations – but

their physical properties (i.e. the total copy number

added at each step) is deterministic. We argue that, as

both replication and degradation of mtDNAs depend on

complicated behaviour and thermal, microscopic inter-

actions, it makes more sense to model both processes as

stochastic. Thus, C(w,m) is interpreted as the rate of a

Poisson process describing replication, just as 1/τ is the

rate of a Poisson process describing degradation. This

interpretation reconciles the nature of the two processes.

Although this feature is less interesting than the un-

derlying scientific behaviour, the original algorithm also

raises a (not insurmountable) technical problem with

implementation. If a timestep Δt < 1/C(w,m) is cho-

sen, the algorithm will never add any mtDNA to the sys-

tem. But, in order to suitably characterise the stochas-

tic degradation without using the Gillespie algorithm,44

it is desirable to choose a timestep Δt as low as pos-

sible. There is therefore a risk that one or other of

the deterministic replication and stochastic degradation

processes is inadequately captured in a given simulation

protocol.

We have illustrated the excellent agreement between

our theoretical approaches and stochastic simulation

(for example, Fig. 2 ). To quantitatively connect with

previous analyses of specific control strategies, we con-

firm that the behaviour for model A (relaxed replica-

tion) matches that observed in previous simulation stud-

ies19 with a back-of-the-envelope calculation.39 The rate

of variance increase with time with τ = 5 (comparable

in magnitude to the (1− 10)× ln 2 days used in Ref.19)

and wopt = 1000 from Fig. 2 is roughly 40 day−1. Con-

sidering 50 years of evolution of this system, we expect

a standard deviation of roughly
√
40× 50× 365 ≃ 850

in mutant copy number. This value is consistent with

the simulations in Ref.19

We connect to an additional numerical result in Ref.1

In the absence of a mutant population, the variance

of the wildtype population was reported to be stable

at wopt/(2α), with the original model interpretation of

mtDNA replication as deterministic. Under the inter-

pretation of stochastic replication, an absent mutant

population (mss = 0) permits stability in the wildtype

population variance, which after a little algebra is calcu-

lated to be wopt/α. Intuitively, modelling both replica-

tion and degradation as stochastic does not affect mean

copy number but does increase variance.

A2. Interpretation of Wright formula for

mtDNA.

The Wright formula
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hh2i = hhi(1 − hhi)
�

1−
�

1− 1

ne

�g�

. (17)

has been proposed as a model for the time evolution

of heteroplasmy variance hh2i in a population with ef-

fective size ne subject to random partitioning at each

of g generations. This picture has been successfully em-

ployed to investigate heteroplasmy distributions in real

systems,22 with ne and g interpreted as parameters of

the theory without immediate biological interpretation.

The mapping of the original genetic system consid-

ered by Wright21 to cellular populations of mtDNA re-

quires some discussion. If ‘generations’ are interpreted

as cell divisions, the mechanism by which mtDNA copy

number is redoubled between divisions is assumed by

the model to be deterministic. Cell divisions will result

in a halving of the mtDNA population. Application

of the Wright model assumes that the original popula-

tion is thenceforth recovered with no increased variance

in the population. In other words, the mtDNA popu-

lation is assumed to exactly double between divisions

with no stochasticity in the process. As we underline

in the Main Text, the effects of (inevitable) stochastic-

ity due to mtDNA turnover are not explicitly captured

by the Wright formula. Other complications exist, as

described in,22 but play less important roles here. As a

result, the ‘bottleneck size’ ne cannot immediately be in-

terpreted as an observable minimum cellular copy num-

ber of mtDNA molecules (a quantity that is reported

by, for example, a qPCR experiment measuring cellu-

lar mtDNA content), but rather the size of an effective

‘founder’ population.
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