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A B S T R A C T

Nonequilibrium molecular dynamics (NEMD) simulations have been used to examine the structure and friction
of stearic acid films adsorbed on iron surfaces with nanoscale roughness. The effect of pressure, stearic acid
coverage, and level of surface roughness were investigated. The direct contact of asperities was prevented under
all of the conditions simulated due to strong adsorption, which prevented squeeze-out. An increased coverage
generally resulted in lower lateral (friction) forces due to reductions in both the friction coefficient and
Derjaguin offset. Rougher surfaces led to more liquidlike, disordered films; however, the friction coefficient and
Derjaguin offset were only slightly increased. This suggests that stearic acid films are almost as effective on
contact surfaces with nanoscale roughness as those which are atomically-smooth.

1. Introduction

The requirement to reduce the energy consumption and thus CO2

emissions from engineering systems has resulted in a general lowering
of lubricant viscosity in order to minimise hydrodynamic friction
losses. However, this means that an increasing number of engineering
components operate under boundary lubrication conditions, where
solid asperities come into direct contact, leading to high friction and
wear. As a result, lubricant additives which can reduce friction and
wear under boundary conditions, such as organic friction modifiers
(OFMs), are of increasing importance [1].

OFMs are amphiphilic molecules that contain both a polar head
group and a nonpolar hydrocarbon tail group. The most widely studied
OFM molecule in both experiments [2–6] and MD simulations [7–15]
is stearic acid; a carboxylic acid with a saturated, linear C18 alkyl chain.
The acid head group adsorbs to metal or ceramic surfaces and strong,
cumulative van der Waals forces between proximal nonpolar tails leads
to the formation of incompressible monolayers that prevent contact
between solid surfaces and reduce adhesion and friction [1,8].

In order to fully understand the performance of OFM additives, it is
necessary to obtain a detailed picture of: (i) the nanoscale structure of
their films and (ii) their tribological behavior [7,8]. Detailed structural
information on OFM films can be obtained from experimental techni-
ques such as sum frequency spectroscopy (SFS) [16], polarized neutron

reflectometry (PNR) [2], the surface force apparatus (SFA) [3], and in
situ atomic force microscopy (AFM) [4]. The tribological behavior of
OFM films can also be investigated using SFA [3] and AFM [4] as well
as dedicated boundary friction experiments [5,6] which employ low
sliding velocities (mm s−1) and high pressures (GPa) in order to
maintain boundary lubrication conditions [8].

Classical nonequilibrium molecular dynamics (NEMD) simulations
can be used to simultaneously probe the nanoscale structure and
friction of OFM films, making it a valuable complement to experiments
[8]. The use of accurate all-atom force fields enables the structure and
friction of large molecular systems to be reliably analysed over time [9].

The effect of surface roughness on the performance of OFMs is not
fully understood [1]. Most previous NEMD simulations of OFM films
on metal surfaces have utilised atomically-smooth slabs, with only
atomic corrugation [7–12], although the influence of artificial aspe-
rities placed on top of atomically smooth slabs have also been
considered [13–15]. The presence of nanoscale roughness has been
shown to significantly influence the adhesion of solid surfaces through
both MD simulations and AFM experiments [17]. The effect of 3D
nanoscale fractal roughness on the friction between sliding surfaces has
also been investigated for both dry sliding [18–20] and in the presence
of lubricant molecules [21–23] in large-scale NEMD simulations.
These previous simulations suggested that the friction coefficient
depends on how effectively the lubricant is able to prevent the direct
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contact of asperities on opposing surfaces [22]. Nonpolar lubricant
molecules can be easily squeezed-out from between asperities [24,25],
but strongly-adsorbed OFMs are expected to be more difficult to
remove, making them more effective in reducing asperity contact and
thus friction in the boundary lubrication regime [8]. Other NEMD
simulations of alkanes between amorphous and crystalline surfaces
showed that the layering of lubricant films was strongly suppressed on
rougher amorphous surfaces, resulting in a more liquidlike film [26].
This may have significant implications regarding the ability of OFM
films to separate opposing solid surfaces with nanoscale roughness.

The kinetic friction coefficient in nanotribological systems can be
obtained using the extended Amontons-Coulomb law: FL=μ FN+F0,
where FL and FN are, respectively, the average total lateral and normal
forces acting on the outermost layer of atoms in each of the slabs and
F0 is the Derjaguin offset, the friction force at vanishing load, which is
generally attributed to adhesive forces [7,15,27]. Recent SFA experi-
ments of palmitic acid OFMs in PAO base oil highlighted F0 as a
significant contribution to FL under relatively low applied pressures ( <
10 MPa) [27]. Previous NEMD simulations showed that the Derjaguin
offset increased with increasing surface roughness, decreased with
increasing stearic acid coverage, and became negligible when sufficient
lubricant was present to separate the stearic acid films [15]. In our
previous NEMD simulations, we demonstrated that the friction coeffi-
cient is reduced at high coverage of stearic acid, due to the formation of
solidlike monolayers which allow very little interdigitation and yield
slip planes between well-defined molecular layers [8]. In this study, we
will probe the effect of; (i) higher pressures (0.5–2.0 GPa), in order to
test the limits of operability of OFMs, and (ii) surfaces with different
levels of 3D root mean square (RMS) roughness (0.2, 0.5, 0.8 nm), in
order to assess the effect of nanoscale roughness on the structure and
tribological behavior of OFM films. The roughness added in this study
is expected to be similar to that found on experimental surfaces, since it
is added using a random midpoint displacement (RMD) algorithm,
which generates surfaces with a quantifiable RMS roughness [18].
Conversely, in previous confined NEMD simulations of stearic acid, the
roughness was varied by changing the size of artificial roughness
features [13–15].

The ‘smooth’ steel surfaces used in tribological experiments gen-
erally have a RMS roughness of approximately 10 nm [28,29], though
other surfaces, such as gold, can be produced with a RMS roughness
well below 1 nm [30]. Therefore, all of the RMS roughness values used
in this study represent an extremely smooth experimental surface;
however, accurate representation of larger RMS roughness values
would require prohibitively large simulation areas [26]. Moreover,
since the roughness features considered here are on the atomic scale,
they have the most potential to weaken OFM films by disrupting
intermolecular forces between neighbouring molecules. The current
simulations will highlight the effect of changes in the nanoscale
structure within the film due to changes in surface roughness on both
the friction coefficient and the Derjaguin offset. The results obtained
with stearic acid will also be directly compare to results for n-
hexadecane under similar conditions [22], in order to highlight the
reasons for the differences in their friction reduction performance in
the boundary lubrication regime [5,6].

2. Methodology

2.1. Simulation setup

A representative example of the systems simulated in this study is
shown in Fig. 1a. It consists of two stearic acid monolayers adsorbed on
α-iron slabs with 3D nanoscale RMS roughness (Fig. 1b). The α-iron
slabs are chosen as a model for steel, which is of significant academic
and industrial interest. Though α-iron oxide would be a more accurate
representation of a steel surface [8], no classical MD force-field is
currently available which can accurately model its deformation under

the high pressures applied in these simulations. Stearic acid was chosen
as a model OFM, an important class of boundary lubricant additive,
which has been used in numerous previous experiments [2–6] and MD
simulations [7–15]. Our previous NEMD study showed that whilst
there were significant variations in the structure and friction of stearic
acid films and those formed by other types of OFM (amides and
glycerides), all gave the same general trends [8]. Unlike in our previous
study [8], no lubricant molecules were added between the stearic acid
films. Preliminary squeeze-out simulations showed that only two
molecular layers of n-hexadecane remained between stearic acid films
at 0.5 GPa [8], and since higher pressures (0.5–2.0 GPa) were applied
in the current simulations, very few n-hexadecane molecules were
expected to remain between the asperities. A more complete under-
standing of lubricant squeeze-out in the presence of OFM films would
certainly be an interesting target of future MD simulations and AFM
experiments, but is beyond the scope of this current study. All
structures were constructed using the Materials and Processes
Simulations (MAPS) platform from Scienomics SARL.

Most surfaces have roughness on several length scales, including
the nanoscale, that can be described by a self-affine fractal scaling law
[18,32]. Here, the Hurst exponent and the root mean square (RMS)
roughness can be used to quantify the amount of roughness [19]. Using
the random midpoint displacement (RMD) algorithm, rough surfaces
can be generated which are periodic across their boundaries [19]. The
RMD algorithm, with a Hurst exponent of 0.8, was used to indepen-
dently generate the same RMS nanoscale roughness (0.2, 0.5 or
0.8 nm) in the top and bottom slabs [18,22]. In order to avoid
generating only a few large asperities, the RMD algorithm did not
start from the centre of only one square (entire slab), but rather four
smaller, equally sized squares [19]. The slabs themselves had approx-
imate x, y, z dimensions of 11, 11, 5 nm. Periodic boundary conditions
were applied in the x and y directions. The dimensions of the solid
surfaces confining the stearic acid films are much larger in the current
simulations than those used in many previous NEMD studies [7–9,13–
15], in order to provide a more faithful representation of the statistical
distribution of the heterogeneous surface morphology [26]. On experi-
mental surfaces, the typical height of a roughness feature is expected to
be approximately 2–3 orders of magnitude smaller than its lateral
dimensions [33]. To replicate this in NEMD simulations would require
a prohibitively large system size and hence the ‘steepness’ of the
roughness features in these and previous NEMD simulations [18,33] is
expected to be somewhat exaggerated. Nonetheless, the use of an RMD
algorithm provides a more realistic representation of nanoscale surface
roughness than harmonic [34] or other artificially introduced [15]
roughness features.

Stearic acid molecules were oriented perpendicular to, and initially
3 Å from, the interior surfaces of the two slabs (Fig. 1a). The surface
coverage, Γ, can be defined as the average number of stearic acid
molecules present in a given surface area (nm−2). Three coverages of
stearic acid were considered; a high surface coverage (Γ=4.56 nm−2)
close to the maximum theoretical value [35]; a medium coverage
(Γ=3.04 nm−2) approximately 2/3 of the maximum coverage; and a low
coverage (Γ=1.52 nm−2) around 1/3 of the maximum coverage
(Fig. 1b). Note that the Γ values assume an atomically smooth surface.
The high, medium and low coverages correspond to 600, 400, and 200
stearic acid molecules adsorbed on each of the 131.6 nm2 slabs
respectively. The highest coverage simulated has also been observed
experimentally [35]. Simulations with no stearic acid molecules
between the slabs were also conducted for comparison.

Classical MD simulations were performed using LAMMPS [36]. The
MD equations of motion were integrated using the velocity-
Verlet algorithm with an integration time-step of 1.0 fs. Fast-moving
bonds involving hydrogen atoms were constrained with the SHAKE
algorithm [37]. The stearic acid molecules were represented by the L-
OPLS-AA force-field [38]. This is an updated form of the OPLS-AA
force-field [39] which was explicitly parameterised for long-chain
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molecules. We have shown previously that the use of accurate all-atom
force-fields is critical to obtain accurate tribological behavior in
confined systems which include long-chain molecules [9]. Lennard-
Jones interactions were cut-off at 10 Å and ‘unlike’ interactions were
evaluated using the geometric mean mixing rules [39]. Electrostatic
interactions were evaluated using a slab implementation of the
particle-particle-particle-mesh (PPPM) algorithm [40] with a relative
accuracy in the forces of 1×10−5. Iron-stearic acid interactions were
represented by the Lennard-Jones potential; the parameters for iron
were developed by Savio et al. [34] for the adsorption of alkanes. The α-
iron slabs contain no partial charges so there is no electrostatic
interaction between the stearic acid molecules and the α-iron slab;
however, there is still preferential adsorption of the head groups due to
the stronger iron-oxygen interactions (ε≈0.06 eV) relative to the iron-
carbon interactions (ε≈0.01 eV) [15]. Iron-iron interactions within the
slabs are represented by the Embedded AtomModel (EAM) [41], which
can accurately model deformation of the slabs under the high pressures
applied [22]. Iron and steel surfaces quickly become oxidised when
exposed to air, which significantly reduces the adhesion force between
contact surfaces in experimental systems [22]. Therefore, a Lennard-
Jones potential was used for iron–iron interactions between atoms in
opposing slabs (Fig. 1a) in order to mimic the reduced adhesion
between oxidised surfaces [18]. The Lennard-Jones parameters,
ε=0.02045 eV and σ=0.321 nm, were used for this interaction, as have
been successfully utilised in previous NEMD simulations of tribological
systems [22,42].

2.2. Simulation procedure

The systems were initially energy minimized and then compressed
(FN=0.5, 1.0, 1.5, 2.0 GPa), thermostatted (300 K) in the directions
perpendicular to the compression (x and y), and allowed to equilibrate.
During the compression stage, the temperature is controlled using a
global Langevin thermostat [43], with a time relaxation constant of
0.1 ps. The pressure was controlled by applying a constant normal
force to the outermost layer of atoms in the upper slab, keeping the z-
coordinates of the outermost layer of atoms in the lower slab fixed
(Fig. 1a), as is common in confined NEMD simulations [13–15,21–23].
The slab separation initially varied in a damped harmonic manner, so
sliding was not applied until a constant average slab separation was
obtained and the hydrostatic pressure within the stearic acid film was
close to its target value. The compression simulations were approxi-
mately 0.5 ns in duration.

A velocity of +5 m s−1 was then added in the x direction to the
outermost layer of atoms in the top slab and −5 m s−1 to the bottom
slab (total sliding velocity=10 m s−1), as shown in Fig. 1a, and sliding
simulations were conducted for 2.0 ns. All simulations were run for
long enough to yield a sufficient sliding distance (20 nm) to obtain
representative values for the lateral (friction) forces (uncertainty <
10%). While lower sliding velocities are desirable to match those used
in boundary friction experiments (typically mm s−1), they are not yet
accessible using NEMD simulations of this scale [7,8].

During the sliding simulations, any heat generated by shearing of
the molecules was dissipated using a Langevin thermostat [43], with a
time relaxation constant of 0.1 ps, which acted only on the 10 Å of α-
iron slabs closest to the fixed layers (Fig. 1a), and was applied in the
direction perpendicular to both the sliding and compression (y). This is
known to be advantageous over direct thermostatting of the fluid,
which has been shown to significantly alter the behavior of confined
fluids under sliding conditions [44]. This boundary thermostatting
method is common in confined NEMD simulations [13–15,21–23] and
has been shown to be effective in controlling the temperature of similar
systems at the sliding velocity applied applied here (10 m s−1) [45]. At
the onset of sliding, an expansion due to the increase of temperature by
shear heating was expected, so it was ensured that steady state sliding
[7] had been attained before sampling of the lateral and normal forces
began (See Appendix A). The time taken to achieve steady state sliding
equated to approximately 0.5 ns (5 nm of sliding).

3. Results and discussion

Variations in the nanoscale structure within the films with nanos-
cale RMS roughness and stearic acid coverage were monitored through
visualised trajectories, atomic mass density profiles, velocity profiles,
and radial distribution functions. Thermal and mechanical equilibra-
tion were confirmed before sampling began (See Appendix A). The
tribological behavior of the stearic acid films were probed by examining
the change in lateral forces on the outer layer of atoms in the slabs, FL,
with normal force, FN. The forces are presented as pressures (force
divided by the contact area) in order to aid experimental comparisons.
A linear plot of FL against FN was then used to establish the Derjaguin
offset, F0, and the friction coefficient, µ, for each of the surface
roughness and coverages combinations simulated. The variation in F0

and µ with RMS surface roughness and coverage was then plotted in
order to establish the relative influence of each.

Fig. 1. Setup for compression and sliding simulations. (a) Shows a representative system (0.8 nm roughness, 4.56 nm−2 coverage) after compression (1.0 GPa), before sliding; periodic
boundary conditions (yellow dashed line) are applied in the x and y directions. (b) Shows only the bottom slab to demonstrate the different levels of RMS roughness; the head group
positions are highlighted to indicate the different surface coverages of stearic acid. Rendered using VMD [31]; Fe atoms are shown in pink, O in red, H in white, terminal C in yellow, and
the other C in cyan; H atoms in the tail groups are omitted for clarity.
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3.1. Structure

Fig. 2 shows the variation in the interface between the stearic acid
films on the top and bottom slabs with surface coverage and RMS
roughness. Even with the exaggerated steepness of the nanoscale
roughness features [33], and high pressures applied in these simula-
tions, the stearic acid films maintain separation of the asperities at all
coverages, which demonstrates the robustness of the films.

These results are in contrast to those obtained for similar coverages
of n-hexadecane, which allowed direct contact of asperities under the
same conditions [22]. At increasing stearic acid coverage, there is a
larger separation between the opposing slabs. Moreover, the terminal
carbon atoms, highlighted in yellow, form more ordered layers,
resulting in a smoother interface between the films adsorbed on the
upper and lower slabs. Increased RMS surface roughness seems to
supress this layering somewhat and leads to more disordered inter-
faces; however, these changes appear to be less significant than the
dependence on surface coverage.

Fig. 3 shows the change in the atomic mass density profiles for all
atoms in the stearic acid molecules in z, ρ(z), and x-velocity profile in z,
vx(z), with coverage at 0.2, 0.5 and 0.8 nm RMS roughness. The
velocity profiles at all levels of coverage and roughness show that there
is no slip at the surface, as expected for the strongly absorbed
carboxylic acid head groups [7,8]. The tail groups also move at equal
velocity to the slabs to which they are absorbed ( ± 5 m s−1), but only up
to the region where they become interdigitated with the other film, at
which point the atoms move slower as the interface is sheared [8]. In
common with results from atomically smooth slabs [8], there is a
decrease in the interdigitation between films adsorbed on opposing
slabs as the coverage of stearic acid is increased, as indicated by
reduced overlap of the mass density profiles. Therefore, the interface is
more ordered in the 4.56 nm−2 coverage systems, resulting in steeper
velocity profiles compared to those at lower coverage. This suggests the
presence of slip planes between the films adsorbed to the top and
bottom slabs, which leads to less shearing of the film and thus a lower
viscous contribution to the friction coefficient [8]. On slabs with greater
RMS surface roughness, there is more interdigitation between films
adsorbed on opposing slabs; although this effect is less significant than
the change with coverage. The velocity profiles are similar at all levels

of RMS surface roughness, though they are generally steeper at 0.2 nm,
suggesting a clearer slip plane due to a smoother interface. At 0.2 nm
RMS roughness, the mass density profiles are very similar to those
observed on atomically smooth α-iron oxide surfaces [8]; however, as
the surface roughness increases, the outermost head group peaks
(closest to the iron surface) become considerably less intense. This is
similar to what has been highlighted previously for linear alkanes,
where less ordered, more liquidlike films were observed on surfaces
with greater nanoscale roughness [26]. This is explored further for
stearic acid through the film radial distribution function (RDF) in
Fig. 4.

Fig. 4 shows the change in the radial distribution function (RDF)
for the carbonyl carbon and terminal carbon atoms with coverage at
0.2, 0.5 and 0.8 nm RMS roughness. In Fig. 4, the carbonyl carbon
shows long-range order for all levels of RMS roughness and coverages,
with the major peaks occurring at multiples of r=4 Å. This slightly
exceeds the unit-cell dimension of the α-iron surface (2.86 Å) [41],
suggesting that, while the surface structure determines the head group
packing of the stearic acid films on α-iron oxide [8], on α-iron, the
limiting head group area [35] is too large to occupy every lattice site.
The carbonyl peak at 4 Å is of similar intensity at all coverages;
however, at 4.56 nm−2, there are sharper, more intense peaks at 8
and 12 Å, indicating long-range ordering of the head groups and more
solidlike films. The terminal peaks at 4, 12 and 16 Å are most intense at
4.56 nm−2 coverage, suggesting that the tail groups remain solidlike at
the interface [8]. The change in the RDFs with coverage is similar at
0.2 nm RMS roughness as on atomically smooth α-iron oxide surfaces
[8]; however, there is much less variation on the RDFs with coverage at
0.8 nm RMS roughness. Films on surfaces with larger RMS roughness
generally have weaker carbonyl and terminal peaks, particularly at 8
and 12 Å, indicating less long-range order and more liquidlike films.

3.2. Friction

Fig. 5 shows the change in average total lateral (friction) force, FL,
with average total normal force, FN, for all of the roughness and
coverage combinations considered. The forces are presented as pres-
sures (force divided by the contact area) in order to aid experimental
comparisons. The normal and the lateral force on the outer layer of

Fig. 2. Images showing the interface between the stearic acid films on the top and bottom slabs at all levels of RMS roughness and coverages considered; after compression (1.0 GPa),
before sliding. Rendered using VMD [31]; Fe atoms are shown in pink, O in red, H in white, terminal C in yellow, and the other C in cyan; H atoms in the tail groups are omitted for
clarity.
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atoms in the slabs (Fig. 1a) are both time-averaged over the data
acquisition period (1.5 ns). This approach is commonplace in confined
NEMD simulations of tribological systems [7–9,13–15] and is similar
how these forces are measured experimentally [5,6]. All of the
combinations in Fig. 5 yield a linear increase in FL with FN and a
non-zero intercept, indicating that all of the systems follow the
extended Amontons-Coulomb friction law [15]. A steeper gradient in
Fig. 5 indicates a greater friction coefficient while a larger intercept
shows a larger Derjaguin offset, F0, which represents load-independent

adhesive forces [7].
Generally, as the surface coverage of stearic acid increases, there is

a reduction in lateral force through a reduction in both the gradient (µ)
and intercept (F0). Conversely, as the RMS surface roughness in-
creases, there is an increase in lateral forces due to an increase in both
gradient (µ) and intercept (F0). The variation in the F0 and µ values
(determined from Fig. 5) with surface coverage and RMS roughness are
presented in Figs. 6 and 7 respectively.

Fig. 6a shows that the variation of the friction coefficient, µ, with

Fig. 4. Radial distribution function (RDF) for the terminal (dashed line) and carbonyl (solid line) carbon atoms at: 1.0 GPa; 1.52, 3.04, 4.56 nm−2 coverage; (a) 0.2 nm (b) 0.5 nm (c)
0.8 nm RMS roughness. The carbonyl RDFs are shifted upward by 10 units for clarity. Magnified inset highlights the change in RDF with coverage and RMS roughness.

Fig. 3. Atomic mass density profiles in z (solid line), ρ(z), and x-velocity profile in z (dashed line), vx(z), at: 1.0 GPa; 1.52, 3.04, 4.56 nm−2 coverage; (a) 0.2 nm (b) 0.5 nm (c) 0.8 nm
RMS roughness. Atomic mass densities and velocities are computed for 0.5 Å spatial bins and averaged for the final 200 ps of the sliding phase. The profiles are shifted such that a z-
coordinate of zero is at the centre of the interface between the films adsorbed on the top and bottom slabs. Magnified inset highlights the change in velocity profile with coverage.
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coverage depends on the RMS surface roughness. At 0.2 nm RMS
roughness, the friction coefficient increases by 3% between 1.52 nm−2

and 3.04 nm−2 coverage and then decreases by 12% between 3.04 nm−2

and 4.56 nm−2 coverage. This is the same pattern observed in NEMD
simulations of stearic acid adsorbed on atomically smooth α-iron oxide
surfaces at high sliding velocity (10 m s−1) [8]. However, even with only
0.2 nm RMS roughness, the friction coefficient is higher, and is reduced
by less between low and high coverage, than on atomically smooth
surfaces [8]. The friction-coverage behavior changes at 0.5 nm RMS
roughness, where the friction coefficient at 1.52 nm−2 and 3.04 nm−2

are virtually identical, but there is still a decrease of 11% between
3.04 nm−2 and 4.56 nm−2 coverage. At 0.8 nm RMS roughness, there is
a continuous decrease in friction coefficient with increasing coverage,
by 5% between 1.52 nm−2 and 3.04 nm−2 and by 12% between
3.04 nm−2 and 4.56 nm−2. The general reduction in in friction coeffi-
cient with increasing coverage can be explained through the reduction
in interdigitation between stearic acid films on the upper and lower
slabs (Fig. 3). The reduction in interdigitation means that the stearic
acid molecules do not need to rearrange as much in order to facilitate
sliding of the surfaces, resulting in a reduction in lateral force [46]. The
increase in friction coefficient between 1.52 nm−2 and 3.04 nm−2 at
0.2 nm roughness is due to slower rearrangement of the more closely-
packed stearic acid molecules, which leads to a higher friction
coefficient at high sliding velocity (10 m s−1) [8]. At higher roughness,
the films generally become more liquidlike (Figs. 3 and 4) and hence

molecular rearrangement is faster, leading to a reduction in the friction
coefficient at 3.04 nm−2.

Fig. 6b shows that F0 decreases linearly with increasing surface
coverage to a similar degree at all levels of RMS surface roughness.
There is a decrease in F0 of approximately 40% between 1.52 nm−2 and
3.04 nm−2 as well as between 3.04 nm−2 and 4.56 nm−2. Previous
NEMD simulations [15] also observed a similar decrease in F0 with
increasing coverage on atomically smooth slabs; however, there was
much less change in F0 on slabs which contained nanoscale roughness
features. Analysis using the smooth particle method (SPM) showed that
F0 was exponentially related to the interface contact area between the
upper and lower films [15]. In the current simulations, the interdigita-
tion between the upper and lower films is reduced at increasing
coverage regardless of the RMS surface roughness (Fig. 3). This is
because the smoother interface (Fig. 2) results in a smaller contact area
and thus a lower F0. The discrepancy between the changes in F0 with
coverage at different levels of roughness may arise from differences in
the method used to impose the surface roughness, or perhaps even the
force-field applied; this is discussed further below.

Fig. 7 shows that both µ and F0 increase linearly with increasing
RMS surface roughness. From Fig. 2 and Fig. 3, as well as previous
SPM analysis [15], this can be attributed to an increase in interdigita-
tion, leading to increased interface contact area and thus increased
adhesion and resistance to sliding. It is not due to local breakdown of
the OFM film or solid-solid contact (Fig. 2). The gradients of the
increase in µ and F0 with RMS roughness are similar at all coverages.
The gradient for the change in F0 with RMS roughness suggests a value
of just 0.03 GPa at 4.56 nm−2 and 0.08 at 1.52 nm−2 coverage on
atomically smooth surfaces, which agrees well with previous NEMD
simulations [15]. However, reference [15] found that, at low coverage,
the change in µ and F0 were less dependent on roughness than at high
coverage. This was explained through the fact that, in solidlike, high
coverage films, roughness features below the film are almost perfectly
reproduced on top of it; whereas in liquidlike, low coverage films, the
stearic acid molecules have more freedom to rearrange themselves
according to the surface features of the slab, filling the troughs between
asperities and ensuring a more even sliding interface [15]. However,
Figs. 2 and 3 demonstrate that on these larger slabs, which provide a
more faithful representation of the statistical distribution of the
heterogeneous surface morphology [26], the interface is much smooth-
er at higher coverage, even at 0.8 nm RMS roughness. Another factor to
the differences between the current and previous results may be the
force-field used to represent the stearic acid molecules. Reference [15]
represented stearic acid with the OPLS-AA force-field [39], which has
been shown to yield elevated melting points for long-chain molecules
[9]. The use of OPLS-AA [39] may lead to more solidlike films than
when a more accurate force-fields for long-chain molecules, such as L-

Fig. 5. Variation in the average total lateral force, FL, with the total normal force, FN, on
the outer layer of atoms in the top and bottom slabs, at: 1.52, 3.04, 4.56 nm−2 coverage;
0.2 nm, 0.5 nm, 0.8 nm RMS roughness. The intercept of each line represents the
Derjaguin offset, F0, and gradient is the friction coefficient, µ. Error bars, calculated from
the standard deviation between the trajectory time-averages, are omitted for clarity, but
are of a similar size to the symbols.

Fig. 6. Variation in the friction coefficient, µ, (a) and Derjaguin offset, F0, (b) with coverage at: 0.2 nm, 0.5 nm, 0.8 nm RMS roughness. Error bars represent the variation between
approximate and exact solutions of the Amontons-Coulomb equation.
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OPLS-AA [38] are used (as they are in the current simulations).
Therefore, the use of OPLS-AA [39] may result in high coverage films
which are less deformable, leading to rougher interfaces and thus more
adhesion and resistance to interfacial sliding at high coverage than if L-
OPLS-AA [38] were employed.

From these simulations, it is clear that µ and F0 are generally
decreased with increasing stearic acid coverage and decreased by
increasing nanoscale RMS roughness. Generally, the gradients in
Fig. 7 are shallower than those in Fig. 6, suggesting that µ and F0 are
influenced more heavily by stearic acid coverage than nanoscale RMS
surface roughness. Moreover, comparing Fig. 6a to Fig. 7b and Fig. 6a
to Fig. 7b, it seems that F0 is more susceptible to changes in stearic acid
coverage and nanoscale RMS roughness than µ (note that the µ y-axis
is truncated).

Relating these simulations to experiments, the lateral (friction)
force measured in OFM-lubricated systems is likely to be heavily
influenced by F0 at lower FN, i.e. lower applied loads and thus contact
pressures ( < 0.5 GPa) [27]. However, in this case, there is likely to be a
significant number of lubricant molecules present which separate the
OFM films; and this has been shown to eliminate F0[8,15]. Conversely,
when FN is high, as in the boundary lubrication regime, the lateral force
experienced is more heavily influenced by changes in µ, and any
variation in F0 becomes less significant (Fig. 5). Therefore, the
extended Amonton-Coulomb law under the high load approximation
[7,8], µ≈FL/FN, should provide an accurate estimation of the friction
coefficient in OFM-lubricated systems in the boundary regime.

The µ value observed with no stearic acid molecules present
between the α-iron slabs decreases with increasing RMS roughness;
from 0.2 nm (µ=0.28), to 0.5 nm (µ=0.25) and 0.8 nm (µ=0.24), which
agrees well with previous NEMD simulations using the same α-iron
force-field and similar conditions [22]. This trend is due to the
reduction in solid-solid contact area at higher roughness. In these
previous simulations, slabs with 0.5 nm RMS roughness lubricated
with n-hexadecane reduced the friction coefficients by 10% at
1.48 nm−2 (µ=0.22) and 30% at 2.96 nm−2 (µ=0.17) compared to the
unlubricated case [22]. In the current simulations, at 0.5 nm RMS
roughness, a similar coverage of stearic acid yielded friction coefficients
reduced by 40% at 1.52 nm−2 (µ=0.149) and 47% at 4.56 nm−2

(µ=0.132) compared to the unlubricated case. The µ value obtained
with n-hexadecane is both higher and more sensitive to changing
coverage than when stearic acid is used. This is because when the rough
surface is lubricated with n-hexadecane, direct contact of asperities on
opposing surfaces occurs; however, this is avoided when the rough
surfaces are lubricated by stearic acid, even at low coverage. This can be
attributed to the strong adsorption of the carboxylic acid head group to
the α-iron surface, which prevents molecules being squeezed out from
between asperities [8,27].

In High Frequency Reciprocating Rig (HFRR) experiments [6], µ
has also been observed to decrease with an increasing concentration of
stearic acid. The concentration of OFMs in a lubricant is generally used
as the variable in tribology experiments rather than surface coverage,
because it is far easier to measure and control [8]; however, recent
depletion isotherm experiments have shown that stearic acid adsorp-
tion follows the Langmuir isotherm model [2]. In HFRR experiments
on steel surfaces, a reduction in µ with an increasing concentration of
stearic acid in n-hexadecane has been observed; from 0 mmol dm−3

(µ=0.25), to 0.1 mmol dm−3 (µ=0.18), to 1 mmol dm−3 (µ=0.12), and
10 mmol dm−3 (µ =0.10) [6]. These results agree well with the decrease
in µ with increasing coverage of stearic acid observed in these NEMD
simulations. The µ values from the simulations are somewhat higher
than those from the experiments due to the higher sliding velocities
employed (10 vs. 0.05 m s−1) [5], as predicted by stress-promoted
thermal activation theory [6,9].

There is much interest in the different friction behavior of saturated
OFMs and those with Z-unsaturation in their tail groups [2–5].
Mixtures of these are generally used collectively in commercial additive
formulations [1], which may affect their friction reduction performance
[5,8]. Our previous NEMD simulations [8] showed that, at a given
coverage, films of Z-unsaturated OFMs, such as oleic acid, actually had
very similar nanoscale structures as those formed by saturated OFMs,
such as stearic acid. However, by comparing the friction-velocity
behavior from NEMD simulations and experiments, it was suggested
that OFMs with Z-unsaturated tail groups yield lower coverage films
than saturated OFMs on steel surfaces [8]. Specifically, in the NEMD
simulations low coverage films gave higher friction coefficients which
were independent of sliding velocity [8], as experimentally observed for
oleic acid [5], whereas high coverage films yielded a low friction
coefficient which increased linearly with the logarithm of sliding
velocity [8], as experimentally observed for stearic acid [5]. This
postulation has recently been confirmed using depletion isotherm
experiments [2] which showed a much lower plateau coverage for oleic
acid (Γ≈2 nm−2) than stearic acid (Γ≈4 nm−2) on iron oxide from n-
hexadecane. Therefore, assuming a high experimental concentration,
the low coverage films in these simulations are representative of those
observed experimentally for oleic acid, whist the high coverage films
are comparable to stearic acid. The structure of the stearic acid films
varied less with coverage in the presence of nanoscale RMS roughness
(Figs. 3 and 4); however, the high coverage films gave lower lateral
forces (Fig. 5), through reductions in both µ and F0 (Figs. 6 and 7). This
suggests that OFMs with Z-unsaturation will be significantly less
effective in reducing friction than those with completely saturated tails
on surfaces with nanoscale RMS roughness as well as atomically
smooth ones.

Fig. 7. Variation in the friction coefficient, µ, (a) and Derjaguin offset, F0, (b) with RMS roughness at: 1.52, 3.04, 4.56 nm−2 coverage. Error bars represent the variation between
approximate and exact solutions of the Amontons-Coulomb equation.
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4. Conclusions

In this study, we have used large-scale nonequilibrium molecular
dynamics (NEMD) simulations to examine the nanoscale structure and
friction of stearic acid, a model organic friction modifier (OFM),
adsorbed on iron surfaces with 3D nanoscale RMS roughness. Three
different coverages of stearic acid (1.52, 3.04, 4.56 nm−2) were
adsorbed between iron slabs with three different levels of RMS rough-
ness (0.2, 0.5, 0.8 nm). High (0.5–2.0 GPa) pressures, as experienced
between asperities in the boundary lubrication regime, were simulated
in order to investigate the robustness of stearic acid monolayers under
these rather extreme conditions.

The stearic acid films were able to maintain separation of asperities
on opposing surfaces under even the highest RMS roughness (0.8 nm)
and lowest coverage (1.52 nm−2) systems simulated, due to strong
adsorption of the head groups which prevented squeeze-out. As a
result, the friction coefficient was reduced by more than 40% compared
to when no stearic acid molecules were present between the slabs.
Moreover, comparing the results of the current study to previous
NEMD simulations [22], the stearic acid films were found to be
significantly more effective than n-hexadecane in reducing friction on
surfaces with 0.5 nm RMS roughness. The decrease in friction coeffi-
cient moving from n-hexadecane to stearic acid is consistent with that
observed in boundary friction experiments.

The results of this study suggest that the lateral (friction) force
measured experimentally is likely to be heavily influenced by the
Derjaguin offset at lower pressure ( < 0.5 GPa). However, in this case,
there is likely to be lubricant present to separate the stearic acid films,
which eliminates the Derjaguin offset. Conversely, when the pressure is
high, as in the boundary lubrication regime, the lateral force experi-
enced is more heavily influenced by changes in the friction coefficient,
and any variation in the Derjaguin offset becomes less significant.

These simulations reiterate the key role of OFM coverage in the film
structure and boundary friction reduction. On surfaces with nanoscale
roughness, systems with a higher coverage of stearic acid generally
yielded lower lateral (friction) forces due to reductions in both the

friction coefficient and Derjaguin offset. This is due to the formation of
solidlike films, which allow little interdigitation with the opposing film,
resulting in smooth interfaces and low resistance to interfacial sliding.

Surfaces that have greater levels of nanoscale RMS roughness have
more disordered, liquidike stearic acid films; however, the friction
coefficients and Derjaguin offsets is only slightly increased, despite the
rather extreme steepness of the roughness features. Therefore, these
results suggest that OFMs are only slightly less effective in reducing
friction on surfaces with nanoscale roughness as those which are
atomically smooth.

This study showed no evidence of any collapse of stearic acid films
at asperity tips even at the highest contact pressures; the changes in
friction observed with pressure and coverage originated solely from
changes in the structure of the OFM films. Since the surface roughness
simulated was considerably steeper than the level expected in real
engineering components, this suggests that such OFM film collapse
between asperities is unlikely on engineering surfaces under the
conditions studied.
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Appendix A

Fig A1 shows the change in the average normal force, FN, and lateral force, FL, on the outer layer of atoms in the top and bottom slabs with
sliding distance. Each data point represents a 100 ps time average. Data are shown for representative examples (0.8 nm RMS roughness, 1.0 GPa).

Fig A1a shows that there is virtually no oscillation of FN during the course of the sliding simulation, as expected for a well-equilibrated system
after compression. Fig A1b shows that FL initially changes as sliding is applied but converges after approximately 5 nm of sliding (0.5 ns). Therefore,
the forces are only sampled after this point.

Fig A2 shows the change in the temperature profile with coverage. The average temperature is presented for the final 1 nm of sliding and is

Fig. A1. Variation in FN (a) and FL (b) with sliding distance. Data are shown for 0.8 nm RMS roughness; 1.52, 3.04 and 4.56 nm−2 coverage; 1.0 GPa.
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calculated in 0.5 Å spatial bins in the z direction. Data are shown for representative examples (0.8 nm RMS roughness, 1.0 GPa).
The temperature profiles at all coverages are consistent with what is expected for well-equilibrated boundary-thermostatted confined systems

subjected to relatively low sliding velocities [45,47]. The temperature is lower in the centre of the stearic acid films than in the slabs, suggesting that
the systems are in quasi-equilibrium at the sliding velocity employed here (10 m s−1) [45].
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