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We derive a closed form analytical expression for the non-adiabatic transition proba-

bility for a distribution of trajectories passing through a generic conical intersection

(CI), based on the Landau-Zener equation for the non-adiabatic transition proba-

bility for a single straight-line trajectory in the CI's vicinity. We investigate the

non-adiabatic transition probability's variation with topographical features and �nd,

for the same crossing velocity, no intrinsic di�erence in e�ciency at promoting non-

adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly

held view. Any increased e�ciency of peaked over sloped CIs are thus due to dynam-

ical e�ects rather than to any increased transition probability of topographical origin.

It is also shown that the transition probability depends in general on the direction of

approach to the CI, and that the coordinates' reduced mass can a�ect the transition

probability via its in�uence on the CI topography in mass-scaled coordinates. The

resulting predictions compare well with surface hopping simulation results.
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I. INTRODUCTION

Conical intersections (CIs) have been known for many years1,2 but only in the last several

decades has their central role been emphasized in photochemistry3�7, and for photochemical

reaction events occurring on the femtosecond time scale in particular. Their important role

in photochemistry of leading to the e�cient and rapid transition from excited to ground

electronic states has been compared to the role of transition states in thermal chemical

reactions8�11. In contrast to the situation for thermal chemical reactions where powerful an-

alytic theories such as transition state theory, and qualitative relations such as the Polanyi

rules12 systematize the rate of chemical reactions based the transition state properties, a

comparable theoretical arsenal for processes involving CIs which would assist the rational-

ization of results of both experiment and increasingly sophisticated and di�cult-to-interpret

computer simulations has not yet emerged11,13. One important illustration of this lack is

provided by the fact that while CI topography14 is often invoked to explain the outcome of

processes occurring at CIs15�21, the questions of the CI topography e�ect on the probability

or the rate of non-adiabatic transitions have been addressed in systematic fashion in only very

few, mostly computational, studies22,23. To be sure, it is generally understood that sloped

CIs are less e�cient than peaked CIs driving the decay from the excited state14,16,20�22, since

the topography of potential energy surfaces will drive the system's dynamics towards the

degeneracy in the latter case, and away from it in the former case. A further question �and

the one addressed in this work� is whether besides this more-or-less intuitive dynamical

e�ect, there is an e�ect of the CI topography on the e�ciency of the non-adiabatic process

itself. Alternatively expressed, is there an e�ect of the CI topography on the probability of

non-adiabatic transition?

In one of the �rst accounts concerning CIs2, Teller applied the Landau-Zener (LZ)

equation24�2728 to determine the probability of non-adiabatic decay in the vicinity of a circu-

lar vertical CI, a particular case of a peaked CI. This analytical approach of the LZ equation

application to the CI problem was pursued and extended by Nikitin29�33, and later applied

by the group of Lorquet in some interesting molecular scenarios34�36. These studies were also

focussed on the vertical CI case and thus did not address the issues of varying CI topogra-

phy. In this article, we show that the Teller approach2,37 can be applied to an arbitrary CI,

derive an analytical expression for the non-adiabatic decay probability in its vicinity, and
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assess how this probability varies with the CI topography.

The outline of the remainder of this article is as follows. In section II, we �rst derive a LZ-

based equation for the non-adiabatic transition probability for a single trajectory passing

in the vicinity of a generic CI; on the basis of this equation, we derive an equation for

the transition probability of a system described by a distribution of trajectories crossing

the CI region. Section III compares the predictions of the derived results with numerical

surface hopping simulations, illustrating how the transition probability varies with di�erent

topographical features of the CI. Section IV o�ers some concluding remarks.

II. AN EXPRESSION FOR NON-ADIABATIC TRANSITION

PROBABILITY AT A CI

In the absence of spin-orbit coupling38, a CI corresponds to a hypersurface of dimension

N − 2, where N is the number of the molecular system's internal coordinates, within which

the energies of two electronic adiabatic states of the same spin multiplicity are degenerate

(di�erent conditions apply when more than 2 electronic states are degenerate39, but this

case is not considered here). Such a hypersurface is called a CI seam. For any point on the

seam, the degeneracy is lifted linearly on a plane spanned by two internal coordinates. This

plane is termed the branching plane or the branching space, where the electronic energy

surfaces of the two states �which in the Born-Oppenheimer approximation correspond to

the potential energy surfaces for the nuclear motion� have the shape of a double cone. In

the vicinity of the CI in which a linear expansion of the electronic energy surfaces is valid,

these can generically be represented in cartesian form as14,40

V±(x, y) = Axx+ Ayy ±
√
Bxx2 +Byy2, (1)

where x and y are two appropriately mass-scaled coordinates in the branching space with

the origin at the CI point. For the purposes of this study, it proves more convenient to

rewrite eq. (1) in polar form, with ρ =
√
x2 + y2 and φ = arctan(y/x)

V±(ρ, φ) = Fρ

(
tan(αx) cos(φ) + tan(αy) sin(φ)±

√
cos2(φ) + e sin2(φ)

)
, (2)

where e is an eccentricity or ellipticity parameter measuring the elliptical character of the

double cone surface (for e = 1 the double cone is circular and has cylindrical symmetry),
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Figure 1. Potential energy surfaces V as a function of the branching space coordinates x and y in

the vicinity of di�erent topography CIs, as given by eqs. (1) and (2). The left panel corresponds to

a peaked CI with the tilt angle αx equal to 10◦. On the right panel αx = 50◦, and the CI is sloped.

(Figure taken from reference40.)

F is a generalized slope on the radial direction, and αx and αy are tilt angles of the planes

superimposed to the vertical conical surfaces de�ned by the radical term of eqs. (1) and

(2) (Ax in eq. (1) equals F tan(αx) in in eq. (2), with equivalent expressions along the y

axis). If both α angles are smaller than π/4, the CI is a local minimum of the excited state

potential energy surface within the branching space, and it is a peaked CI14. Conversely, if

any of the α angles is greater than π/4, the CI is sloped14 (see Figure 1). The parameters

{e, F, αx, αy} are speci�c to a given CI point, and in moving along the seam, although the

degeneracy is not lifted, these parameters can change.

A. Probability for a single trajectory

In order to derive an expression for the non-adiabatic transition probability, we adopt a

quasi-classical perspective in which the nuclear motion is described by a classical trajectory.

In addition, we consider the case where the system passes in a straight-line trajectory in the

vicinity of a generic CI where the potential energy surfaces' description via eq. (2) applies.

Along such a trajectory, the adiabatic energy pro�le of the two states which are degenerate

at the CI corresponds to a cut on the double cone surface by a vertical plane, and thus

corresponds to an hyperbola (see Fig. 2 and the Appendix).

The probability of a non-adiabatic transition for a system described by a classical tra-

jectory tracing an hyperbolic adiabatic energy pro�le in time �or equivalently with an
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Figure 2. The adiabatic energy pro�le for a straight line trajectory on the branching space for

potential energy surfaces given by eq. (1) (or equivalently by eq. (2)) is hyperbolic. The upper

panel represents the straight line trajectory in the branching plane in the vicinity of the CI, where

the contours denote the potential energy gap between the surfaces. The lower panel represents a

vertical cut on the double cone potential highlighting the hyperbolic pro�le.

hyperbolic pro�le in space under the condition of constant velocity� is given by the LZ

equation

P = exp

(
−π∆Vmin

2

2h̄∆Sv

)
, (3)

where ∆Vmin is the smallest adiabatic energy gap along the trajectory, ∆S is the slope dif-

ference of the two asymptotes de�ning the hyperbolic energy pro�le, and v is the magnitude

of the velocity (assumed constant in the derivation24,25) at which the CI region is traversed.

In the speci�c case of a straight line trajectory in the vicinity of the double cone given by

eq. (2), these parameters take the following form (see the Appendix for the derivation)

∆Vmin = 2Fr

√
e

sin2(θ) + e cos2(θ)
, (4)
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Figure 3. Representation of a straight-line trajectory (green dashed line) in the vicinity of a generic

CI at the center of the axis system. The contour lines correspond to the potential energy di�erence

for the surfaces given by eq. (1) (or eq. (2)) and eccentricity parameter e = 0.5. The coordinates r

and θ de�ne the trajectory's point of closest approach to the CI (see the text and the Appendix);

and although they do not specify the trajectory's orientation (from negative to positive y or vice

versa), this is unimportant since both trajectories would predict the same transition probability

according to the LZ equation (3) for the same velocity magnitude.

and

∆S = 2F
√

sin2(θ) + e cos2(θ), (5)

where, as illustrated in Fig. 3, r determines the distance of the closest point to the CI

along the trajectory, and θ determines the direction of the trajectory: θ = 0 corresponds

to a trajectory parallel to the y axis, while the trajectory in the upper panel of Fig. 2

corresponds to θ = 3π/2.

Inserting expressions eqs. (4) and (5) into the LZ eq. (3), we obtain the probability of

non-adiabatic transition for an individual trajectory as

P = exp

(
−πFr

2

h̄v
Θ(θ, e)

)
, (6)

with

Θ(θ, e) =
e(

sin2(θ) + e cos2(θ)
)3/2

. (7)
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Figure 4. Variation of the directional parameter Θ, de�ned in eq. (7), as a function of the values

of the angle θ and the ellipticity parameter e.

These equations depend on the trajectory's velocity v, distance of closest approach to the

CI apex r and the trajectory orientation θ, as well as the surfaces slope and ellipticity

parameters F and e. It is a crucial feature that the potential energy gap eq. (4) or the

di�erence in asymptote slope eq. (5) do not depend on the tilt angles αx and αy, with the

key result that the non-adiabatic transition probability eq. (6) is therefore also independent

of these quantities. Equation (6) is equivalent to Nikitin's result29,30 originally derived for

a vertical CI, but it has been here demonstrated via a geometrical argument to be valid for

a general CI. This independence on the tilt angles is a result of considerable signi�cance: it

indicates that �within the approximate treatment speci�ed� the non-adiabatic transition

probability of a straight-line trajectory in the vicinity of a CI does not depend on whether

the CI is sloped or peaked. This (perhaps surprising) result will be explored further in the

following sections.

The function Θ, de�ned in eq. (7) and represented in Fig. 4, determines the dependence

of the transition probability eq. (6) on the direction of the trajectory θ. When the parameter

e controlling the elliptical deformation of the surfaces equals unity, the potential energy gap

has cylindrical symmetry (see the top portion of Fig. 2), Θ is equal to one and there is no

dependence on the trajectory direction. For e values di�ering from unity, Θ is a function

with the period π in the angle θ.
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B. Probability for a distribution of trajectories

In the preceding section, we derived an expression for the non-adiabatic transition prob-

ability for a single trajectory passing in the vicinity of the CI. But in order to represent a

photochemical process, a single trajectory is obviously not representative and the behaviour

of a given population distribution must be considered. The details of such a population

distribution will depend on the characteristics of how the excited state is formed, and how

it evolves in time before reaching the CI region. Here we will derive an expression for the

transition probability in the case where the population distribution is driven towards the CI

keeping a relatively compact form, generically described by a gaussian distribution of the

form

%(xr, yr) =
1

2πσ‖σ⊥
e
− yr

2

2σ‖
2
e
− xr

2

2σ⊥2 , (8)

where xr and yr are new coordinates in a rotated cartesian system such that yr is aligned

with the direction of the propagation of the trajectories, xr is orthogonal to it (see Fig. 5),

and σ‖ and σ⊥ are the respective widths of the distribution in each of these directions.

We will consider the case where the trajectory distribution does not change shape as it

crosses the CI region. This implies trajectories have a uniform constant velocity v, and are

rectilinear with a uniform direction of approach θ41, aspects consistent with our previous

assumptions for an individual trajectory. In these circumstances, transition probabilities for

each trajectory are thus adequately described by eq. (6) and the non-adiabatic transition

probability of a distribution of trajectories can be expressed as a simple integration. The

width of the distribution along yr implies only that di�erent trajectories cross the CI region

in di�erent moments in time, and does not a�ect the transition probability of individual

trajectories given by eq. (6). The population distribution in eq. (8) can thus be integrated

along this coordinate to yield a one dimensional population distribution along the coordinate

xr independent of the width σ‖ (see Fig. 5). The axis xr de�nes the distance of closest

approach to the CI apex (compare Figs. 3 and 5), and the integral along this coordinate

can be decomposed into two integrals in r for θ and θ + π. Since Θ in eq. (7) has a period

of π in θ, we have P (θ) = P (θ + π), and the following simple integral is obtained

P̄ = 2

∫ ∞
0

P (r, θ, v)%(r)dr =
2√

2πσ⊥

∫ ∞
0

e−
πFr2

h̄v
Θ(θ,e)e

− r2

2σ⊥2 dr. (9)

8



xr

Θ

yr

x

y

Figure 5. Schematic representation of a gaussian distribution of trajectories travelling through a CI.

The contours correspond to the potential energy gap. The angle θ de�nes the direction of approach

of the distribution, and yr and xr are rotated cartesian coordinates in the direction of approach to

the CI and orthogonal to it respectively.

Finally, e�ecting the gaussian integral gives

P̄ =

√
1

1 + πξ̃Θ(θ, e)
, (10)

with the de�nition

ξ̃ =
2σ⊥

2F

h̄v
. (11)

The parameter ξ̃ depends on the ratio of the width squared and the velocity of the population

distribution. ξ̃ can be seen as an e�ective Massey parameter30,42,43, an interpretation that

follows from the features that σ⊥ is the average distance of closest approach of the trajectories

to the CI, 2σ⊥F is, from eq. (4), the distribution's average minimum energy gap for a circular

CI with the ellipticity e = 1 (or Θ = 1), and that 2F is, from eq. (5), the slope di�erence in

that case.

Equation (10) for the non-adiabatic transition probability is the main result of this contri-

bution. Figure 6 displays this probability's predicted variation as a function of the e�ective

Massey parameter ξ̃ and the directional parameter Θ for a distribution of trajectories pass-

ing through a CI. For any value of Θ, the transition probability will decrease with increasing
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Figure 6. Non-adiabatic transition probability eq. (10) for a distribution of trajectories as a function

of the parameters ξ̃ and Θ.

ξ̃, indicating that narrower distributions travelling faster over the CI will result in a higher

decay probability. This behaviour is expected, since a narrower distribution will result in

trajectories having on average a smaller minimum potential energy gap. An additional fea-

ture is that, when the velocity of the distribution tends to zero, the transition probability

tends to zero and a fully adiabatic behaviour is predicted; this applies even if there is a de-

generacy at the centre of the distribution, since a single degenerate point has a zero measure

with respect to the distribution width.

III. TRANSITION PROBABILITY DEPENDENCE ON THE CI AND

POPULATION DISTRIBUTION PROPERTIES

In this section we will analyze the variation of the non-adiabatic transition probability

predicted by eq. (10) as a function of the potential energy surfaces' characteristics at the

CI and the properties of a system described by an ensemble of classical trajectories, and

compare these results with surface hopping computer simulations. In these simulations

the electronic state of each trajectory is numerically propagated in time, while the nuclear

degrees of freedom move classically under the in�uence of the adiabatic potential surfaces,

in this case given by eq. (2), and thus are not restricted to the straight-line assumption

under which eq. (10) was derived.

The surface hopping simulations were performed according to the fewest switches

algorithm44�46 using 10000 independent trajectories. The dimensions of the branching
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space coordinates x and y determine the dimensions of all the parameters in eqs. (2), (10)

and (11). In order to study the topography of the potential energy surfaces, the use of

mass-weighted coordinates is most convenient, as it allows treating the two branching space

coordinates on equal footing from the dynamical point of view without worrying about

di�erent masses associated to di�erent degrees of freedom. For illustration purposes, we will

consider that x and y are linear mass-scaled coordinates with units of Å.g
1
2 .mol−

1
2 , and a

double cone slope F with the value 0.38 eV.Å−1.g−
1
2 .mol

1
2 , which is consistent with a force

acting on a stretching coordinate in an organic molecule with a relatively small distortion

from equilibrium. Further details about the initial conditions are given below.

A. Tilt angle independence

As we have emphasized, a key feature of eq. (10) is that it predicts a non-adiabatic

transition probability independent of the tilt angles αx and αy of the potential energy surfaces

eq. (2). This is equivalent to stating that, for the same population distribution velocity,

a sloped or peaked CI would result in the same non-adiabatic transition probability. This

prediction was tested by performing several surface hopping simulations for a wide range αx

angle values.

For these simulations, trajectories were started on the excited state surface with a positive

velocity along the x axis, θ = 3π/2 (see Fig. 3), with a delta distribution in the positions

along x, and with a randomly sampled gaussian distribution along y. Initial velocities, taken

to be the same for each trajectory, were chosen such that, for di�erent αx values, they would

result in the same velocity when reaching the CI point47. Several di�erent sets of initial

velocities and y position distribution widths were examined corresponding to di�erent ξ̃

values shown in Fig. 7. For all these cases, the ellipticity parameter e was set to one,

therefore the function Θ in eq. (10) is also equal to unity (the e�ect of the parameter e will

be studied in the next section).

Figure 7 shows that the transition probability resulting from surface hopping simulations

is largely independent of the CI tilt angle, in good agreement with our theoretical prediction.

There is a downward trend in the transition probability as the tilt angle increases in the

lowest ξ̃ cases. These cases correspond to the lowest kinetic energy and the widest population

distribution examined, respectively, blue on the left panel and green on the right panel of
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Figure 7. The non-adiabatic transition probability as a function of the tilt angle of the CI with

ellipticity parameter e = 1. For values of tilt angle αx < −45◦ the CI is sloped with trajectories

approaching the CI from the steep side of the excited state surface; for the tilt angle range −45◦ <

αx < 45◦ the CI is instead peaked; and for the tilt angle values αx > 45◦ the CI is again sloped,

with trajectories involving an uphill journey towards the CI. The lines correspond to the eq. (10)

prediction, while markers correspond to the fraction of excited state trajectories that transfers

to the ground state after one pass in the CI region in surface hopping simulations. On the left

hand panel the population distribution width is �xed at σ⊥=0.076 Å.g
1
2 .mol−

1
2 , with trajectories

distributions set up to reach the CI with di�erent velocities corresponding to ξ̃ = 0.057 (green),

ξ̃ = 0.063 (orange) and ξ̃ = 0.074 (blue). On the right panel the total energy of the trajectories is

�xed at 2 eV above the CI point, and the with of the population distribution was changed to yield

di�erent ξ̃ values: ξ̃ = 0.063 (orange), ξ̃ = 0.125 (blue) and ξ̃ = 0.256 (green).

Fig. 7. The higher values of transition probabilities at lower tilt angles can be explained

by the fact that the transition distribution does not conserve a constant width and narrows

as it approaches the CI (see Fig. 8). This e�ect is more prominent for negative tilt angle

values, where the trajectories start with a lower kinetic energy and accelerate to reach the

CI, and thus are more sensitive to the e�ect of the excited state potential energy surface

that distorts the distribution.

Of greater signi�cance than the slight decrease of transition probability with increase in

tilt angle in Fig. 7 is the systematic underestimation of this quantity by eq. (10) compared to

surface hopping simulations48. In fact, the LZ equation itself (eq. (3)) usually underestimates

the transition probability when compared to numerical quantum dynamics simulations49 and

surface hopping simulations50. But here it is seen to be nonetheless useful in reproducing the
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Figure 8. Probability distribution functions of the positions along the y axis for the case ξ̃ = 0.074

(blue on the left panel of Fig. 7), corresponding to a total trajectory energy of 1.5 eV above

the CI point and a population distribution width σ⊥=0.076 Å.g
1
2 .mol−

1
2 . In the left and right

panels the tilt angle is αx = −60◦ and αx = −75◦ respectively. The solid line corresponds to the

gaussian probability distribution in positions, the darker histograms correspond to the sampled

initial positions in the surface hopping simulations, while lighter histograms correspond to the

excited state distribution in positions just before the CI region is reached.

correct trends, in addition to importantly predicting the equivalence of peaked and sloped

CIs in terms of non-adiabatic transition probability.

B. Dependence on CI ellipticity and direction of approach

In addition to the dependence on the tilt angle just investigated, another important

topographical feature of the CI is the elliptical deformation of the surfaces determined by the

eccentricity parameter e. This parameter controls the potential energy surfaces' deviation

from cylindrical symmetry; it therefore determines the transition probability's dependence

on the direction of approach to the CI, which enters eq. (10) via the function Θ.

Figure 9 shows the di�erence in the transition probability of two population distributions

that approach the CI from di�erent directions but which are otherwise identical. A clear

dependence on the direction of approach correctly predicted by eq. (10) is seen: a higher

transition probability is observed for trajectories distributions approaching the CI along the

direction where the potential energy gap diminishes faster for the same velocity magnitude51.

In contrast to Fig. 7, no systematic shift is observed between eq. (10)'s predictions and
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Figure 9. The di�erence in the transition probability for two identical initial population distributions

approaching the CI from 2 di�erent directions (∆P̄ = P̄ (θ = 3π/2) − P̄ (θ = 0)) on elliptically

distorted potential surfaces (e 6= 1). For the values of e < 1 shown, θ = 3π/2 corresponds to a

direction where the potential energy gap varies more steeply in space, while θ = 0 corresponds to

an approach with the least steep energy gap variation (see eq. (2) and Fig. 3). The circles and the

solid line correspond to ξ̃ = 0.125, while the squares and the dashed line correspond to ξ̃ = 0.057.

the surface hopping simulation results, suggesting a likely uniform cancellation of errors

when taking the probability di�erence. For ellipticity e values between one and 0.6, eq.

(10) and the simulation results are in good quantitative agreement. On the other hand,

eq. (10) overestimates the probability dependence on the direction of approach for smaller e

values, arise from the feature that the simulations indicating a higher probability decay than

predicted in the case where θ = 0. This is due to a distortion of the population distribution

analogous to the one described in section IIIA: for such small e values, the potential energy

surfaces have a signi�cant elliptical distortion and become rather steep. This will result

in large forces acting on the tails of the population distribution of the surface hopping

trajectories with θ = 0, which leads to curved �rather than straight� trajectories and

narrower population distributions in the approach to the CI. This e�ect can be observed

in Fig. 10, where, for e = 0.3, the width of an incoming population distribution with

θ = 3π/2 remains relatively constant, while a distribution with θ = 0 becomes narrower

as it approaches the CI. It could be tempting to use eq. (10) with a smaller population

distribution width adjusted to describe such situation with a higher non-adiabatic transition

probability. However, the narrowing of the population distribution in the vicinity of the CI

is the result of curved trajectories in the vicinity of the CI, which violate the assumption of

14



-3 -2 -1 1 2 3
y/σ⊥

0.1

0.2

0.3

0.4

0.5

0.6

ϱ

θ= 3 π

2

-3 -2 -1 1 2 3
x/σ⊥

0.1

0.2

0.3

0.4

0.5

0.6

ϱ

θ=0

Figure 10. Probability distribution functions of the positions along the axis orthogonal to the direc-

tion of motion for the cases where θ = 3π/2 and θ = 0 on the left and right panels respectively. The

solid line corresponds to the gaussian probability distribution in positions, the darker histograms

correspond to the sampled initial positions in the surface hopping simulations, while the lighter

histograms correspond to the excited state distribution in positions just before the CI region is

reached at x = 0 in the �rst case and just before y = 0 in the latter case.

straight-line trajectories which underlies the equation itself.

The ellipticity parameter e indicates di�erences in potential energy gap slopes in di�erent

internal coordinate modes in the CI vicinity. Such di�erences in mass-weighted coordinates

(which we have used throughout our development), are in part due to the di�erences in

reduced mass associated with each mode; these latter di�erences can have an important e�ect

on the slope of the potential energy surfaces and in�uences on the relevant CI topography21.

Equation (10) predicts that, all other factors being equal, the system approaching the CI

via a mode with higher reduced mass will have a lower non-adiabatic transition probability.

This e�ect of the mass on the transition probability via the CI topography in mass-scaled

coordinates �more precisely, its ellipticity� should in general be considered along with the

more direct inertial e�ects on the dynamics that determine the time-scale of the approach

to the CI21,52.

IV. CONCLUDING REMARKS

Conical intersections (CIs) play a key role in non-adiabatic transitions in a photochemical

context. Because of the dimensionality of the branching space a CI is a zero measure manifold
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in the space of system coordinates, and virtually all trajectories attempting a transition

between electronic states will pass in close vicinity to, but not exactly through, the CI. In

this contribution we have derived a closed form expression eq. (10) �based on the single

trajectory Landau-Zener (LZ) equation� for the probability of non-adiabatic transitions for

a gaussian distribution of straight-line trajectories in the branching plane passing through a

CI. The transition probability depends both on the properties of the trajectory distribution

(decreasing with its width σ⊥, increasing with its velocity v, and depending on direction

of approach θ to the CI), as well as the topographical properties of the CI (the overall

slope of the potential energy surfaces measured by the parameter F in equation (2), and

the eccentricity parameter e). The probability depends most sensitively on the distribution

width σ⊥ (see eq. (11)), which represents the average minimum distance to the CI apex.

The most noteworthy feature of eq. (10) is that the transition probability shows no de-

pendence on the CI's tilt angles αx and αy (see section IIIA), which predicts that peaked and

sloped CIs have the same transition probability if all other variables are kept the same. This

result is in apparent contradiction with the commonly held view that peaked CIs are more

e�cient at promoting non-adiabatic decay than sloped CIs. But there is no contradiction

concerning which type of CI is more e�cient, rather it is in the reason for this di�erence in

e�ciency that our result brings a speci�c new insight: it is not because the probability of

decay is itself higher in peaked CIs due to a topographical dependence, but rather it is for

exclusively dynamical (and intuitively clear) reasons by which peaked CIs, corresponding to

local minima of the excited state potential energy surface, act as e�cient "funnels" to bring

the system towards the CI apex, while for sloped CIs the system is steered away from it (see

Fig. 1).

A second important result that follows from eq. (10) reveals an e�ect of the CI topo-

graphic characteristics on the transition probability. It is that in the presence of an elliptical

deformation of the surfaces �an eccentricity parameter e di�erent from unity� the transi-

tion probability depends on the direction of the approach to the CI, with a higher transition

probability being obtained along the direction along which the surfaces energy gap have a

steeper variation (see section III B). Since the mass scaling of the coordinates a�ects the value

of the e parameter, if all other variables are equal, an approach to the CI via a coordinate

with a smaller associated mass gives rise to a higher transition probability.

The conclusions just stated regarding the transition probability dependence on the CI
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Figure 11. Pro�le of the potential energy of two sloped CIs. On the left the Franck-Condon region

is much higher in energy than the CI and the system reaches it with a higher kinetic energy than

on the right-hand side.

topography, both regarding the tilt angles and elliptic deformation, assume the same velocity

of approach on the branching space coordinates. Although the local topography may have

some in�uence on the velocity of approach to the CI, this velocity will depend for the most

part on the dynamics of the system prior to reaching the CI region, in particular when the

Franck-Condon region is high in energy compared to the relevant point along the CI seam

and there is a signi�cant amount of kinetic energy on the branching space coordinates (see

Fig. 11). In these circumstances, peaked and sloped CIs should remain indistinguishable

from the point of view of the non-adiabatic transition probability. At lower kinetic energies

however, the local CI topography will have a greater e�ect on the velocity of the system,

with distinct forces acting on the system whether the CI is peaked or sloped and depending

on the direction of approach. Real photochemical problems obviously present a range of

possibilities. Often the CI is located at lower energy than the Franck-Condon-accessed site

on the excited state surface, and �provided that there is no barrier and that not too much

energy is transferred out of branching space coordinates� the relevant kinetic energy will

not be small. The opposite limit would be where activated barrier crossing is required for

the CI to be reached, so that minimal excess kinetic energy could be involved in the barrier

passage. Since the low kinetic energy regime is potentially the most problematic, we now

devote some further discussion of it.
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x

Figure 12. Schematic representation of wavefunction tunnelling for a sloped CI. The wavefunction

is represented in green and the pro�le of the potential energy in black. Note that due to quan-

tum mechanical tunnelling, not taken into account by eq. (10), the probability of non-adiabatic

transition is non-zero even if the energy of the system is below the energy of the CI.

In the low kinetic energy limit, when the velocity magnitude can no longer be considered

constant while crossing the CI region, the assumptions under which the LZ equation and

eq. (10) are derived break down. In such circumstances, a more sophisticated semi-classical

treatment of the nuclear degrees of freedom is necessary29,30,42, yielding for the peaked and

sloped cases two distinct equations for the transition probability. Such di�erence is associ-

ated with the quantum tunnelling e�ect between the two adiabatic states which can become

important for sloped CIs (see Fig. 12), thus predicting that sloped CI could indeed in some

situations induce a higher probability of non-adiabatic decay. Zhu and Nakamura49,53 have

derived distinct closed form expressions, applicable for the peaked and sloped case, which

take into account such e�ect and could be used in a re�ned treatment along the same lines

discussed in the present article. Still, the Zhu-Nakamura equations have the LZ equation as

a limiting case for high velocities, agreeing with the results presented here in this limit54.

In order to assess how the LZ equation predictions are a�ected at low kinetic energies, we

compare in Fig. 13 the non-adiabatic transition probability calculated by the LZ and Zhu-

Nakamura equations for a sloped CI for trajectories passing at di�erent distances from the

CI apex with di�erent kinetic energies. It is seen that the LZ equation produces satisfactory
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Figure 13. The gray area in the �gure represents combinations of trajectory kinetic energy and

the energy gap ∆V at the point of closest approach to the CI for which the LZ eq. (6) predicts a

transition probability with an error greater than 10% with respect to the appropriate Zhu-Nakamura

equation49,53. The case considered corresponds to tilt angles αx = 55◦, αy = 0◦, ellipticity e =

1, direction of approach θ = 3π/2 and a generalized sloped F value equal to that used in the

simulations shown in Sec. III.

predictions for kinetic energies above tenths of eV, especially in the center of the population

distribution, closer to the CI, which is the region that contributes the most for the total

transition probability.

The electron dynamics of the system is also a�ected by the decoherence e�ects40,55,56 by

which the o�-diagonal elements of the electronic density matrix tend to zero with time due to

dephasing and divergent wavepacket motions on di�erent electronic states. This is a quan-

tum e�ect not taken into account by either eq. (10) or the surface hopping algorithm used;

its neglect can lead to artifacts when several passages through regions of strong adiabatic

coupling are considered57,58. This is less of a concern in the present case of a single pas-

sage over the CI, with population transfer occuring coherently in a short time scale56,59,60.

However, for small values the generalized slope parameter F and very �at surfaces, elec-

tronic population transfer can occur in extended regions of space and time, decoherence

may become important, and the use of the LZ model may no longer be appropriate.

An additional quantum e�ect not taken into account by eq. (10) is the geometric phase

characteristic of the CI topology32,61�63. A previous study64 has however shown that methods
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that describe the nuclear motion classically, like the one described here, are able to reproduce

well the transition probabilities calculated by quantum mechanical methods that include

geometric phase.

A �nal observation concerns the full dimensionality of the system. We have focussed in

this article on the properties of the dynamics of the system in the two dimensions of the

branching space and on a speci�c CI point where all topographical parameters in eqs. (2)

and (10) have well de�ned values. One must however consider a population distribution in

the remaining degrees of freedom that constitute the intersection space, and that the system

traverses a section of the CI seam instead of a CI point. Due to the curvature of the CI

seam65, a distribution of parameters should be considered, and eq. (10) should be used with

suitable averaged values.

Despite the restrictions we have indicated, eq. (10) should nevertheless prove useful in

describing general trends in the major factors a�ecting the non-adiabatic transition probabil-

ities at CIs predicting the correct behaviour when the nuclear motion is described classically,

as shown in comparison of the predictions we have made with the simulations results in sec-

tion III.
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Appendix: Potential energy pro�le for a straight-line trajectory on a general

double cone potential

In this appendix we address the classical geometric problem of the intersection of a vertical

plane with a conical surface, showing that the intersection's shape is always an hyperbola.

This result's relevance is that any system with a rectilinear trajectory in the vicinity of a

conical intersection (CI) will have an hyperbolic potential energy pro�le, and thus is subject

to a probability of non-adiabatic decay which can be expressed by the Landau-Zener (LZ) eq.

(3) of the text. This result was �rst pointed out by Teller2 and later adopted by Nikitin29,30,
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but only demonstrated for the vertical cone case. Our demonstration is valid for any general

double cone. An expression for the asymptote's slope di�erence (text eq. (5)) and minimum

energy along a straight-line trajectory (text eq. (4)), which are both key parameters of the

LZ equation, are derived as a function of the geometric properties of the double cone.

A general conical surface with its apex at the reference frame's origin can, in polar

cylindrical coordinates (ρ, φ, V ), be given by text eq. (2). A plane can be de�ned by a

vector orthogonal to it, and by de�nition the vector formed by the point on the place closest

to the CI apex/frame origin and this same apex is orthogonal to the plane. We take this

point to be (r, θ, 0) in polar cylindrical coordinates, and note that the values r and θ de�ne

any arbitrary vertical plane (see Fig. 14). It is useful to de�ne a coordinate q along the

intersection of the vertical and horizontal V = 0 planes, measured from the point (r, θ, 0);

such a rectilinear coordinate q is de�ned along the trajectory path. It follows from Fig. 14

that any point on the vertical plane is de�ned by the following equations

r = ρ cos(φ− θ)
q

r
= tan(φ− θ)

⇔


ρ =

r

cos(φ− θ)

φ = arctan
(q
r

)
+ θ

, (A.1)

with q varying from minus in�nity to plus in�nity and (φ − θ) ∈
]
−π

2
, π

2

[
. This angular

restriction amounts to considering only the half of the double cone surfaces that intersect

the vertical plane and involves no loss of generality.

Upon substitution of the de�ning plane equations (A.1) into the equation of the conical

surfaces (2), an equation de�ning the cone-plane intersection is obtained as a function of

the coordinate q along the plane, the plane parameters r and θ, as well as the cone surface

parameters F , e, αx and αy

V = F
r

cos(arctan
(
q
r

)
)

(
±
√

cos2(arctan
(q
r

)
+ θ) + e sin2(arctan

(q
r

)
+ θ) +

tan(αx) cos(arctan
(q
r

)
+ θ) + tan(αy) sin(arctan

(q
r

)
+ θ)

)
=

= Fr

(
±
√

(cos2(θ) + e sin2(θ)) +
q

r
sin(2θ)(−1 + e) +

(q
r

)2

(sin2(θ) + e cos2(θ)) +

tan(αx) cos(θ) + tan(αy) sin(θ) +
q

r
(− tan(αx) sin(θ) + tan(αy) cos(θ))

)
.

(A.2)
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Figure 14. Schematic representation of a conical surface by a vertical plane. The contours represent

the potential energy di�erence for conical surfaces de�ned by text eq- (2) with the ellipticity pa-

rameter e 6= 1; the dashed green line is the intersection with the plane oriented along an arbitrary

rectilinear trajectory. The coordinates (ρ, φ, V ) de�ne a general point in space, and here we are

interested in the points at which the plane and the double cone surface intersect. The point with

polar cylindrical coordinates (r, θ, 0) corresponds to the point of closest approach of the plane with

the double cone apex, and together with the axis origin de�nes a vector orthogonal to the plane,

thus de�ning that plane. q is a rectilinear coordinate along the plane/trajectory, having the value

zero at the point of closest approach. Note that for the particular choice of (ρ, φ), from the contours

it is possible to see that the energy gap between conical surfaces at this point is smaller than at

the point of closest approach (r, θ).
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Rearrangement and squaring both sides of the equation yields

V 2 1

F 2r2
+

V q
2

Fr2
(tan(αx) sin(θ)− tan(αy) cos(θ))+

q2 1

r2

(
(tan(αx) sin(θ)− tan(αy) cos(θ))2 − (sin2(θ) + e cos2(θ))

)
−

V
2

Fr
(tan(αx) cos(θ) + tan(αy) sin(θ))+

q
1

r
(sin(2θ)(1− e)− 2(tan(αx) sin(θ)− tan(αy) cos(θ))(tan(αx) cos(θ) + tan(αy) sin(θ))) +

(tan(αx) cos(θ) + tan(αy) sin(θ))2 − (cos2(θ) + e sin2(θ)) = 0.

(A.3)

This quadratic equation in V and q is of the form AV 2 + BV q + Cq2 + DV + Eq + F = 0,

which de�nes a conic section66, and the type of conic (ellipse, parabola or hyperbola) is

determined66 by the equation's discriminant 4AC − B2, which in the present case takes the

form

− 4

F 2r4
(sin2(θ) + e cos2(θ)) < 0. (A.4)

Since the cone elliptical deformation parameter e is an always positive number, the discrim-

inant is always negative, and the double cone's intersection with a vertical plane is always

an hyperbola for all parameter values. A consequence of this result is that the non-adiabatic

transition probability for a system describing a straight-line trajectory in the vicinity of an

arbitrary CI is given by the LZ equation40 (within limits of applicability of that equation).

From the equations above, there are two parameters needed to use the LZ text eq. (3),

the minimum energy gap along the trajectory ∆Vmin, and the di�erence in the slopes ∆S of

the asymptotes that de�ne the hyperbolic potential pro�le along the trajectory. ∆Vmin can

be determined by di�erentiating with respect to q the energy gap between the two surfaces

obtained from eq. (A.2), and equating it to zero:

d∆V

dq
= 0, (A.5)

with the potential energy gap given by

∆V = 2Fr

√
(cos2(θ) + e sin2(θ)) +

q

r
sin(2θ)(−1 + e) +

(q
r

)2

(sin2(θ) + e cos2(θ)). (A.6)
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Alternatively, the position of the minimum can be obtained in simply geometrical terms

from the centre of the hyperbola which is determined by solving the system of equations67:
AV +

B
2
q +
D
2

= 0

B
2
V + Cq +

E
2

= 0

, (A.7)

with the terms de�ned by eq. (A.3) above. Either of these procedures gives for the position

of the minimum

qmin = r
(1− e) sin(θ) cos(θ)

sin2(θ) + e cos2(θ)
, (A.8)

and the minimum energy gap

∆Vmin = 2Fr

√
e

sin2(θ) + e cos2(θ)
, (A.9)

which is eq. (4) of the main text. In the more general case, for an elliptic distorted CI

where e 6= 1, the position of the minimum energy gap is not the same as the point of closest

approach to the CI q = 0 (see Figure 14).

The slopes of the asymptotes of the hyperbola can be obtained from the equation AV 2 +

BV q + Cq2 = 0 which is the equation of two lines parallel to asymptotes passing through

the point (q = 0, V = 0)66; each of these lines can be written in the form V = Sq where S is

the asymptote slope. Taking the de�nition of these terms form eq. (A.3), and determining

the slope di�erence one obtains

∆S = 2F
√

sin2(θ) + e cos2(θ), (A.10)

which is eq. (5) of the main text.
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