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Abstract

The ‘retroaxonal hypothesis’ (Harris, 2008) posits a role for slow
retrograde signalling in learning. It is based on the intuition that
cells with strong output synapses tend to be those that encode useful
information; and that cells which encode useful information should
not modify their input synapses too readily. The hypothesis has
two parts: first, that the stronger a cell’s output synapses, the less
likely it is to change its input synapses; and second, that a cell is
more likely to revert changes to its input synapses when the changes
are followed by weakening of its output synapses. It is motivated in
part by analogy between a neural network and a market economy,
viewing neurons as ‘entrepreneurs’ who ‘sell’ spike trains to each
other. In this view, the slow retrograde signals which tell a neuron
that it has strong output synapses are ‘money’ and imply that what
it produces is useful.

This thesis constructs a mathematical model of learning, which
validates the intuition of the retroaxonal hypothesis. In this model,
we show that neurons can estimate their usefulness, or ‘worth’, from
the magnitude of their output weights. We also show that by making
each cell’s input synapses more or less plastic according to its worth,
the performance of a network can be improved.
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1 Preface

The basic biological idea in this thesis was first published in (Harris,
2008). The text of introductory sections 2 and 3 is adapted from
the introduction of a manuscript that Kenneth Harris and I wrote
together (Lewis and Harris, 2014). The parallel Metropolis-Hastings
algorithm in Chapter 4 was my idea and the work in Chapter 6 is
largely mine. The general mathematical framework of Chapter 5 we
worked out together; the proofs and simulations are mine.

Thanks to Kenneth for giving me a very nice hypothesis to work
with, and for many enthusiastic discussions. Thanks also to Claudia
(my co-supervisor), to my labmates who were great company, and
to my family and James for their loving support.

— Sarah Lewis, May 2016
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2 Introduction

The brain is made of billions of neurons, which together form the
world’s most powerful information-processing machine. Neurons are
complex devices, and are individually capable of more than was
once supposed. But what is most remarkable is their ability to
organize themselves into large networks that coherently guide the
behavior of an animal, and constantly learn and adapt to changing
circumstances.

Recordings of individual neurons show that their firing encodes
diverse types of information, from simple sensory stimuli (Hubel
and Wiesel, 1959) to representations of complex features such as
locations in space (O’Keefe and Dostrovsky, 1971). Each neuron
produces its firing pattern by building on the work of many oth-
ers. This occurs with no central point of control, suggesting that
local processes, carried out independently by single neurons, cause
the network to automatically organize into a coherent information
processing system.

In this thesis, we describe a new set of rules that could be involved
in the self-organisation of neurons into functional networks. This
is based on a proposal for a new form of communication between
neurons, that we term the ‘retroaxonal hypothesis’. The hypothesis
would represent a radical new process in neuronal physiology, but is
supported by substantial, if circumstantial, experimental evidence.

Before stating the hypothesis, we draw a motivating analogy with
another system: the global economy. Here, too, billions of individual
processing units self-organize into productive networks. The trans-
fer of money is key to this self-organization. Money flows in the
opposite direction to goods and can be conceived of as a signal that
indicates to a firm that its products are useful to others. By seek-
ing to maximize their intake of money, producers are approximately
maximizing their benefit to end-consumers.

Recursive passing of money up a supply chain, with competition
between suppliers at each stage, allows decisions to be decentralized
and taken at multiple levels. A car manufacturer, for example, re-
quires steel to produce a consumer product. By competing to sell
the types of steel the car manufacters require, steel firms indirectly
maximize their benefit to consumers. The car manufacturer does
not need to understand the steel-making process, but simply to se-
lect the steel that best suits its needs; the steel manufacturer does
not need to understand all details of car design. The market al-
lows individuals of limited processing power to form networks that
make products far more complex than any of them could produce
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individually.
The aim of this thesis is to suggest how a similar form of self-

organization could take place in the brain. We will loosely regard
neurons as ‘entrepreneurs’ who ‘sell’ spike trains to each other.
Analogies between the brain and market economy have been made
before (Kwee et al., 2001; Balduzzi, 2014). The key novelty of the
current theory is a hypothesised form of communication between
neurons. We hypothesise that chemical messages passing slowly
backward along axons play an analogous role to money in the econ-
omy, indicating to neurons how beneficial their output spike trains
are to the organism. Although rapid communication via action po-
tentials only occurs unidirectionally forward along axons, the fact
that slow chemical messages can flow in the opposite direction has
been established for many decades. In the development of the ner-
vous system, competition for such ‘retroaxonal’ signals determines
which neurons live and which die (Hamburger, 1992, 1993; Oppen-
heim, 1991; Buss et al., 2006). In the adult nervous system, neu-
ronal death is rare, but retroaxonal signals are still conveyed (DiS-
tefano et al., 1992; Zweifel et al., 2005). The present theory suggests
that these signals promote a different form of competition between
presynaptic neurons, to supply their targets with appropriate in-
formation in exchange for a ‘payment’ returned to them backward
along the axon. We argue that this form of competition — as with
competition for monetary returns in the economy — promotes the
self-organization of networks to allow sophisticated information pro-
cessing.

The retroaxonal hypothesis is not a learning rule on its own.
Rather, it is a rule for modulating the learning rates of other plas-
ticity rules. The retroaxonal hypothesis does not concern rapid
learning of associations beteween stimuli and responses. Instead, it
concerns how the brain selectively stabilises internal representations
of behaviourally relevant stimuli, allowing more and more complex
representations to be built up, and allowing behaviour to be tuned
to relevant stimuli. In machine learning language, the retroaxonal
hypothesis is about feature selection, not feature detection. The
form of learning proposed in the retroaxonal hypothesis does not
occur within seconds and minutes, but over days, weeks, and years.
We will suggest a mechanism by which neural representations that
are useful for behavior are gradually selected and consolidated, at
the expense of less useful representations.

8



2.1 Contents of the thesis

Chapter 3 introduces the retroaxonal hypothesis. We review biolog-
ical evidence that makes the retroaxonal hypothesis plausible, and
describe a candidate molecular mechanism. We describe some be-
havioural learning phenomena which could be examples of retroax-
onal learning. We also review the relationship of the retroaxonal
hypothesis to other mathematical theories of plasticity in neuronal
networks.

In Chapter 4 we consider any neural network (spiking or rate-
based, feedforward or recurrent) whose configuration is summarized
by a matrix of synaptic weights, and whose performance can be mea-
sured by a loss function. We introduce the notion of ‘worth’ of a cell,
which measures its contribution to the performance of the network.
We outline a novel learning scheme, ‘parallel Metropolis-Hastings’
(PMH), applicable to any such network, and define conditions for
the proposed learning scheme to function. PMH implements one of
the key parts of the retroaxonal hypothesis: that cells whose outputs
are useful should make their input synapses less plastic.

In Chapter 5 we present a model network where cells can measure
their usefulness, or ‘worth’, by monitoring the strengths of their
output weights. We implement PMH in this network, operating with
a standard unsupervised learning rule, and show that it is effective.

In Chapter 6 we discuss more complex networks with recurrent
connections between cells. We consider whether cells can use slow
retrograde message-passing to evaluate their usefulness, even where
that usefulness is rather indirect. In the examples studied, we
conclude that most cells can only compute only coarse, order-of-
magnitude estimates of their effect on network performance.
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3 The retroaxonal hypothesis

3.1 Introduction

In this chapter we will state the retroaxonal hypothesis and put it in
its biological context. We describe candidate molecular mechanisms
that could support the retroaxonal hypothesis, and we explain how
certain types of behaviour or learning could be explained by the
retroaxonal hypothesis. We also put the retroaxonal hypothesis in
context in the machine learning literature, explaining its relation to
other theories such as unsupervised learning, the backpropagation
algorithm, and reinforcement learning.

3.2 Outline of the hypothesis

This thesis describes a mathematical model for the role of retroax-
onal signals in adult learning, that we term the retroaxonal hypothe-
sis (Harris, 2008). The retroaxonal hypothesis posits that the state
of a neuron’s output synapses, through the passing of retroaxonal
messages, controls the stability of the same neuron’s inputs. The
hypothesis has two components:

1. Neurons with weak output synapses show unstable input
synapses. A neuron with no functional output synapses serves
no benefit to an organism, and such neurons do not survive
in early development. In adulthood, we suggest that neurons
with weak downstream synapses do not die, but rather exhibit
instability in their input synapses. This instability will cause
the firing correlates of the neuron to change, until it fires in a
manner that causes downstream synapses to strengthen. We
assume that a neuron’s downstream synapses strengthen specif-
ically when the neuron’s activity provides downstream cells
with useful information. If a neuron with weak outputs has
unstable inputs, its firing pattern will keep changing until finds
information useful for downstream cells, and thus for animal
behavior.

2. Strengthening of a neuron’s downstream synapses consolidates
recent changes in the same neuron’s inputs. By consolidat-
ing changes to its input synapses that are closely followed by a
strengthening of its outputs, and reverting other input changes,
a neuron will keep those specific changes that lead to it con-
veying more useful information.

10



In chapter 4 and 5 we will show that either (1) or (2) alone, or a
mixture of the two, can be computationally viable as a learning rule.

The two statements in italics in (1) and (2) above are descriptive:
they describe what you would expect to see correlated with what,
in a network that learns according to the retroaxonal hypothesis.
An alternative ‘normative’ statement of the retroaxonal hypothesis
might be as follows: that

1. The less useful a neuron’s firing pattern, the more plastic it
should make its input synapses (so that it can find a more
useful firing pattern).

2. A neuron may infer that it has a useful firing pattern if its
output synapses are strong.

The first, descriptive set of statements is the one that we focus
on in this chapter, asking whether there are molecular mechanisms
that could produce such phenomena.

The retroaxonal hypothesis is not, on its own, a learning scheme.
It proposes rules for determining when cells should change their
input weights, but not how. In machine learning language, it sets
rules for modulating learning rates. Retroaxonal learning cannot
exist except as a component of a learning scheme where some other
plasticity rules are also at play.

3.3 Candidate molecular mechanisms

The retroaxonal hypothesis represents a radical addition to the set
of mechanisms usually invoked in neuronal network models. We
argue for its biological plausibility by proposing candidate molecu-
lar mechanisms, while recognising that the specific mechanism we
propose here is just a working hypothesis.

The classical form of communication between neurons is the ac-
tion potential: an electrical impulse conducted rapidly along an
axon, resulting in neurotransmitter release at a synapse. In mam-
malian neurons in vivo, action potentials travel in a strictly unidi-
rectional manner from the presynaptic to postsynaptic cell.

Action potentials are, however, just one of many ways that neu-
rons can communicate with each other. Like cells throughout the
body, neurons release and receive many signaling molecules other
than classical neurotransmitters, and the release of these substances
can be controlled by intracellular events other than action poten-
tials. And although classical neurotransmitters signal unidirection-
ally from the presynaptic to postsynaptic cell, other signals may
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propagate retrogradely from postsynaptic to presynaptic (Harris,
2008).

The effects of such retrograde signals need not be restricted to the
synapse where they are received, but can be cell-wide, propagated
not by electrical conduction but by the (much slower) transport of
signaling molecules backward along the axon. Typically, the des-
tination of such messages is the soma and nucleus, where arriving
signals are integrated by complex molecular networks, and the re-
sults of the computation broadcast to the entire cell.

The retroaxonal hypothesis requires the following:

� Information about synaptic strength, and about recent changes
in synaptic strength, must be available at presynaptic termi-
nals.

� Signals conveying this information must pass retrogradely along
the axons of cells.

� These retrograde signals must cause the recipient cells to mod-
ulate the plasticity of their input synapses.

� Neurons must be able to revert recent changes to their input
synapses.

We examine these requirements, and show that each can be plausibly
met.

3.3.1 Retrosynaptic signals can communicate information about
synaptic strength

Our hypothesis holds that changes in the strength of a neurons out-
put synapses control the stability of the same neuron’s inputs. But
how can a cell know about the strength of its outputs, given that
the induction of synaptic plasticity is mostly believed to occur in
the postsynaptic cell? Hebbian plasticity, for example, requires co-
incident presynaptic firing and postsynaptic depolarization, which is
typically detected by NMDA receptors in postsynaptic spines. Nev-
ertheless, a great many molecules are released by the postsynap-
tic cell during plasticity induction, that have been shown capable
of signaling information about synaptic changes to the presynaptic
axon terminal. These ‘retrosynaptic’ signalling molecules include
lipids such as cannabinoids (Sjöström et al., 2003); small-molecule
gasses such as NO (Hardingham et al., 2013); and proteins, includ-
ing neurotrophins such as BDNF (Edelmann et al., 2014). In hip-
pocampus, BDNF secretion is increased by stimulation paradigms
that cause LTP, and decreased by stimulation paradigms that cause
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LTD (Aicardi et al., 2004). Together, the multiple molecules whose
release correlates with various forms of synaptic plasticity form a
‘population code’ that keeps the presynaptic terminal informed of
detailed changes in synaptic strength.

Experimental evidence suggests that retroaxonal messengers such
as neurotrophins are not only released by tonically strong synapses,
but released at particularly high rates when output synapses in-
crease in strength (Aicardi et al., 2004). Thus, the retroaxonal
flow of neurotrophins could encode both the strength of an output
synapse, and its temporal derivative.

A limitation of the evidence is that we do not know if these neu-
rotrophins are targetted to those specific cells whose output synapses
are potentiated. For example, in (Aicardi et al., 2004), concentra-
tions of BDNF were measured by ELISA of slice perfusion medium,
not in individual presynaptic cells. Nor is it clear what mechanism
would allow a cell with many inputs to send a different retrosynap-
tic signal from each of its dendrites, corresponding to the weight
of each individual synapse. A clue could come from the ‘synaptic
tagging’ theory of LTP, where late LTP is believed to depend on
interaction of signals from the soma with a synapse-specific ‘tag’
(Frey and Morris, 1997). In that theory, the same signal, sent ret-
rogradely from the soma to every dendrite, is differently acted on at
each input synapse.

3.3.2 Signals can propagate retroaxonally

‘Retroaxonal’ signals are signals passing from the axon terminals of
a cell, back to the soma. Retroaxonal signals play an essential role in
neuronal development, where they are carried by molecules known
as neurotrophic factors, including the neurotrophin family. In the de-
veloping nervous system, neurons die if they do not receive sufficient
retroaxonal neurotrophic signals (Purves, 1988). In adults, neuronal
death is rare, but retroaxonal communication through molecules
such as neurotrophins continues (DiStefano et al., 1992).

Compared to action potentials, retroaxonal signals travel slowly,
and use different mechanisms. This has been best studied for sig-
nals induced by neurotrophins, which initiate retroaxonal transport
of a ‘signaling endosome’ — a small vesicle that carries the neu-
rotrophin molecule, the activated receptor and other associated sig-
naling molecules (Zweifel et al., 2005). The signaling endosome is
conveyed back to the soma, where it influences gene expression, for
example by activating the transcription factor CREB (cyclic AMP
response element binding protein), which during development is crit-
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ical for promoting neuronal survival (Riccio et al., 1999, 1997; Wat-
son et al., 2001).

3.3.3 Retroaxonal signals can influence plasticity of a neuron’s input
synapses

Retroaxonal signals do not only affect cell survival, but can also
control the plasticity of a neuron’s input synapses (Du and Poo,
2004; Fitzsimonds et al., 1997; Tao et al., 2000; Du et al., 2009).
Furthermore, trafficking of signaling endosomes does not stop at
the soma, and they can be conveyed directly into neuronal dendrites,
where they are able to directly modulate input synapses (Sharma
et al., 2010).

3.3.4 Changes to synaptic strengths can be transient

The second part of the retroaxonal hypothesis in 3.2 says that
changes to a cell’s input synapses should tend to revert if they are
followed by weakening of the same cell’s output synapses. This re-
quires that cells are able to revert changes to their input synapses,
and that a retroaxonal signal communicating the change in down-
stream weights can propagate fast enough to regulate this process.

In vitro experiments suggest that changes in synaptic strength
are often transient. Long-term potentiation (LTP) evoked in vitro
typically lasts only a few hours, before decaying and leaving synapses
in their prior state; this transient form of plasticity is referred to
as ‘early LTP’. Early LTP does not require protein synthesis, and
relies instead on changes such as the phosphorylation and trafficking
of AMPA receptors (Frey and Morris, 1997; Malinow and Malenka,
2002).

Early LTP can be consolidated into a permanent ‘late LTP’, by
various cellular signals which typically require phosphorylation of
the transcription factor CREB and subsequent protein synthesis
(Silva et al., 1998; Barco et al., 2005). This consolidation only hap-
pens to synapses that have experienced early LTP, which exhibit a
‘synaptic tag’; untagged synapses are unaffected by consolidation.
If the consolidation signal is not received, tagged synapses revert
to their prior state, while untagged synapses are again unaffected.
A conclusion of these results is that synapses undergoing plasticity
retain a memory of their previous state. If early LTP is not consoli-
dated, synaptic strengths return after a few hours to the same value
they had before potentiation began.

Recent research shows that the synaptic tag may not correspond
not to any single molecule, but to a coordinated set of changes in-
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cluding phosphorylation of CaM-kinase II and restructuring of the
actin cytoskeleton inside a spine (Redondo and Morris, 2011; Roger-
son et al., 2014). The consolidation of early LTP into late LTP oc-
curs because tagged synapses are able to capture ‘plasticity related
products’ (PRPs) expressed on a cell-wide basis. The capture of
PRPs leads to a permanent increase in synaptic strength in tagged
synapses. Several molecules may play the role of PRPs, including
protein kinase M zeta, the scaffolding molecule Homer1a, and the
neurotrophin BDNF (Redondo and Morris, 2011; Barco et al., 2005).

It is known that the conversion of early to late LTP can depend
on dopamine signalling: selective inhibition of certain dopamine re-
ceptors in hippocampal slices can prevent late LTP without effect on
early LTP (Frey and Morris, 1998). However, the timescales make
it plausible that retroaxonal signals could also be involved in consol-
idation of synaptic tags. Recent experiments show tags lasting for
5 hours under the correct conditions in vitro (Li et al., 2014): long
enough for a retroaxonal signal to propagate. We hypothesise that
a retroaxonal signal could elicit release of PRPs from the soma.

Part of the retroaxonal hypothesis is that ‘strengthening of a neu-
ron’s downstream synapses consolidates recent changes in the same
neuron’s inputs’. This imposes a timing requirement not just on
retrograde messages, but also on synaptic plasticity in downstream
cells. It proposes that one cell (the ‘upstream’ cell) converts early
to late LTP at its input synapses with a probability that depends on
whether its output synapses were strengthened following the early
LTP. Thus, each downstream cell must make relevant changes to its
input synapses within the upstream cell’s ‘decision window’ (the pe-
riod from induction of early LTP to consolidation). Either the down-
stream cell has a shorter decision window, or the decision whether
to consolidate changes in the upstream cell is based on early LTP
downstream, that may or may not be consolidated. We do not go
into detail about either of these scenarios. However, our model of
retroaxonal learning in section 4.8 is flexible enough to allow switch-
ing off this part of the retroaxonal hypothesis, while still letting it
be the case that neurons with weak output synapses show unstable
input synapses.

3.3.5 Candidate mechanism

The data reviewed above suggest a specific candidate mechanism for
the retroaxonal hypothesis:

� Neurons release BDNF retrosynaptically across synapses which
are strong, or which have been recently strengthened.
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� The receipt of BDNF at an axon terminal leads to retroaxonal
transport of signaling endosomes.

� These signaling endosomes have effects both at the soma, and
at the dendrites.

� At the dendrites, they cause consolidation of early LTP to late
LTP in tagged synapses, and suppress early LTP.

� Signaling endosomes arriving retroaxonally to the nucleus trig-
ger gene expression of BDNF and other PRPs. These amplify
the retroaxonal signal and allow consolidation of early to late
LTP throughout the dentritic tree of the neuron.

� The signal can be passed on to the neuron’s own presynaptic
partners, forming a recursive chain that ensures that upstream
activity is also stable.

� A neuron with only weak outputs receives and synthesizes little
BDNF, making its inputs permanently unstable. (Consistent
with this idea, a recent study showed that cell-specific knock-
down of BDNF causes cells to have smaller spines, a signature
of unstable synaptic inputs (English et al., 2012)).

We emphasize that this proposed mechanism remains a hypothesis,
that has not been directly tested experimentally. Yet, it should at
least serve to show that the phenomena we require for the retroax-
onal hypothesis are within the demonstrated physiological capabili-
ties of neurons.

3.4 Where the buck stops: ‘end-consumers’

In the economic analogy, we think of neurons as producers of an
information product which they ‘sell’ to downstream cells. But who
is the final consumer? And how do these ‘consumer’ cells judge
what information they need from producers, in order to usefully
guide animal behavior?

In our framework, a consumer neuron is any cell that receives a
training signal — i.e. a synaptically conveyed signal that rapidly
and directly guides the plasticity of its other input synapses, in a
manner that leads to the learning of appropriate behaviors. We refer
to neurons that receive no direct training input as ‘producers’: in
the theory, the role of these cells is to produce information required
by the consumer cells.

The precise form of plasticity employed by consumer cells is not
critical for the retroaxonal hypothesis, provided one condition holds:
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that consumer neurons only strengthen input synapses that provide
them with useful information. In the economic analogy, one could
say that the end consumers ‘buy only what they need’. Within
this constraint, the retroaxonal hypothesis is agnostic about how
consumers learn: dopamine-guided reinforcement learning (Schultz
et al., 1997), or classical conditioning via Hebbian plasticity, are
both compatible with the retroaxonal hypothesis.

Consistent with a partition of cells into ‘producers’ and ‘con-
sumers’, training signals do target specific neuronal populations: for
example, while the basal ganglia receive extremely strong dopamin-
ergic innervation, the hippocampus and neocortex (particularly sen-
sory cortex), receive far less (Bentivoglio and Morelli, 2005). We
might regard the cells in basal ganglia that receive the dopaminer-
gic training signal as ‘consumers’, and the neocortical neurons that
provide their inputs as ‘producers’.

3.5 Two possible examples of retroaxonal learning

To clarify how the neural marketplace theory would operate in actual
brain circuits, we now consider two examples: classical fear condi-
tioning, and reinforcement learning. In each of these examples, the
retroaxonal hypothesis describes how behaviourally relevant firing
patterns can be selectively stabilised.

3.5.1 Fear conditioning

Our first example is classical fear conditioning, where we suggest
that retroaxonal signals could contribute to stabilizing representa-
tions of a ‘conditioned stimulus’ associated with fear memory.

In classical fear condition, pairing of an aversive unconditioned
stimulus (US) with a conditioned stimulus (CS) leads to the CS
evoking fear-related behaviors such as freezing. Animals can rapidly
learn to fear multiple forms of CS, from simple sensory stimuli such
as a previously neutral tone (auditory fear conditioning), to com-
plex cue combinations such as those indicating particular spatial
locations (contextual fear conditioniong). A considerable body of
evidence suggests that fear conditioning occurs through Hebbian
synaptic plasticity in the amygdala: coincident firing of a strong
input signaling the US, together with initially weak synaptic inputs
signaling a CS, leads to strengthening of the synapses carrying the
CS, so that later the CS can drive a response alone (Pape and Pare,
2010). In our theory we would class the amygdalar cells exhibiting
this Hebbian plasticity as ‘consumers’, with the strong input en-
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coding the US as their training signal. Information about the CS
can come from many different structures including the auditory cor-
tex and thalamus (for auditory fear conditioning) and hippocampus
(for contextual conditioning to a particular location in space). We
regard cells in those areas as ‘producers’.

According to the retroaxonal hypothesis, after fear conditioning
has strengthened synapses carrying the CS to the amygdala, a slow
retroaxonal signal will pass to the subset of presynaptic neurons
whose outputs signal the CS, ensuring that the representation of the
CS in these upstream areas remains stable, while representations of
other, irrelevant, features are less stable. Thus, we might expect
synaptic consolidation in different areas depending on the type of
CS: in auditory areas when the CS is a sound, in hippocampal place
cells when the CS is a location in space, and so on.

Results of contextual and auditory fear conditioning experiments
are consistent with this expectation. When an animal visits a new lo-
cation, place representations by hippocampal neurons form rapidly
(Frank et al., 2004), but are often unstable (Kentros et al., 2004;
Agnihotri et al., 2004; Kentros et al., 1998). After contextual fear
conditioning, synapses from neurons representing the conditioned
location onto neurons mediating fear behavior in the amygdala be-
come strengthened (Anagnostaras et al., 2001). We suggest that this
strengthening causes a retroaxonal signal to pass from the amyg-
dala to those precise hippocampal cells encoding the conditioned
location, which will stabilize their place fields and ensure that the
representation of this location is retained over the long term. In-
deed, a wave of CREB phosphorylation (a signature of synaptic
consolidation) is found in the hippocampus several hours after con-
textual fear conditioning (Trifilieff et al., 2006). This delayed CREB
phosphorylation is what would be expected from a slow retroaxonal
signal from amygdala to hippocampus. Moreover, this wave of hip-
pocampal CREB phosphorylation is not seen after auditory fear
conditioning (Trifilieff et al., 2006), which suggests that it follows
specifically from potentiation of inputs from the hippocampus to the
amygdala.

In auditory fear conditioning, the CS is a sound, and again
the pattern of plasticity is consistent with a reinforcing, retrograde
signal, passing from the amygdala to the population of cells sig-
nalling the CS. Some information about the CS arrives at the amyg-
dala from the thalamus, specifically the medial geniculate nucleus
(MGN), and strengthening of synapses between MGN and amyg-
dala is believed to underlie auditory fear conditioning (Pape and
Pare, 2010). The MGN projects directly to the basolateral amyg-
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dala (BLA) but not vice versa. During auditory fear conditioning
in rats, there is plasticity in both BLA and MGN (Maren et al.,
2001). Despite the lack of direct anterograde connections from BLA
to MGN, the plasticity in MGN is suppressed if BLA is silenced
during training using muscimol. We suggest that retroaxonal sig-
nals from BLA to MGN, dependent on the strength of synapses from
MGN onto BLA, contribute to this process.

3.5.2 Reinforcement learning

Our second possible example of the retroaxonal hypothesis in ac-
tion involves reinforcement learning and corticostriatal projections.
The ‘law of effect’ (Thorndike, 1898a,b) states that if an animal
performs a particular action in a particular situation, and this is
followed by a rewarding outcome, then the probability the action
will be performed in this situation increases. It is believed that
dopamine signaling is fundamental to this process, with dopamine
release indicating increases in expected future reward (Schultz et al.,
1997). In the retroaxonal hypothesis, we regard the recipients of this
dopamine signal as ‘consumers’, and cells providing their inputs (but
receiving no dopamine signal) as ‘producers’.

The basal ganglia are believed to be central to reinforcement
learning (Ito and Doya, 2011), and are heavily innervated by
dopamine (Bentivoglio and Morelli, 2005), whereas dopamine inner-
vation of sensory cortex is weak. Although the exact mechanisms
of reinforcement learning are still debated, most current hypothe-
ses center on plasticity of the corticostriatal synapse (Costa, 2007;
Wickens, 2009; Fee, 2014). It is well established that dopamine
controls corticostriatal plasticity (Lovinger, 2010), and theoretical
models have suggested how dopamine-gated plasticity might enable
reinforcement learning to occur (Wickens, 2009; Fee, 2014; Ito and
Doya, 2011; Frank, 2011). It is widely held that corticostriatal pro-
jection neurons encode sensory and contextual factors; that firing of
specific striatal neurons causes production of specific behaviors; and
that strengthening of corticostriatal synapses thereby increases the
probability that a specific behavior will be performed in a specific
circumstance. In the present theory, we would consider the striatal
cells, which receive a dopaminergic training signal, as ‘consumers’;
corticostriatal projection neurons would be classed as ‘producers’.
Despite their lack of a direct training signal, we hypothesise that
corticostriatal neurons would receive indirect, slow reinforcement,
in the form of retroaxonal signals from the striatum. According
to the hypothesis, strengthening of a corticostriatal synapse would
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cause a retroaxonal signal to pass to the cortical neuron, stabilizing
representations of those cortical neurons that encode behaviourally
relevant features. Meanwhile, other cortical neurons would continue
to change their input synapses until they found a behaviorally rele-
vant variable to encode.

3.6 Unsupervised learning and the retroaxonal hypothesis

In section 3.5, we hypothesised that areas such as cortex and hip-
pocampus contain populations of ‘producer’ neurons, whose plastic-
ity is not strongly controlled by training signals such as dopamine.
Instead, these producers continue to experiment with different input
weights until they produce a signal that is used by the ‘consumer’
neurons.

How might producers select candidate input weights? For the
retroaxonal learning scheme to work efficiently, a producer neuron
should seek representations of its inputs that are a priori likely to
be useful. This task — finding salient features in high-dimensional
data without a direct training signal — is precisely what unsuper-
vised learning algorithms are designed to accomplish. We expect
the retroaxonal hypothesis to work as a modulator of learning rates
for unsupervised learning rules. Unsupervised learning rules find
features in data, and the retroaxonal hypothesis gives a way to se-
lectively stabilise representations of behaviourally relevant features.

Unsupervised learning is frequently used in machine learning to
form low-dimensional representations of complex data sets. Artifi-
cial unsupervised algorithms include principal component analysis,
independent component analysis, and cluster analysis, all of which
can be implemented neurally as Hebbian learning rules (Hinton and
Sejnowski, 1999). Unsupervised learning has long been suggested as
a key computational function of the cortex (Marr, 1970), and sev-
eral details of cortical synaptic plasticity rules, chiefly STDP, appear
consistent with a role in unsupervised learning (Cooper et al., 2004;
Clopath et al., 2010; Yger and Harris, 2013; Caporale and Dan,
2008). Implementation of synaptic plasticity rules consistent with
the physiology and molecular mechanisms of cortical synaptic plas-
ticity can allow simulated recurrent networks to form unsupervised
representations of speech sounds (Yger and Harris, 2013).

3.6.1 Unsupervised learning by hippocampal place cells

We now return to the example of contextual fear conditioning (sec-
tion 3.5.1). We note that recent data on rat hippocampal place
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cells suggest one way that unsupervised learning might operate in
vivo, and we describe how this could interact with the retroaxonal
hypothesis.

When a rat is introduced into a new spatial environment, place
fields representing locations in this environment appear essentially
instantaneously (Hill, 1978; Wilson and McNaughton, 1993; Frank
et al., 2004). These place fields are initially coarse but over a period
of minutes, they grow smaller, tighter, and more reliable (Wilson
and McNaughton, 1993; Frank et al., 2004).

The initial appearance of place fields appears to result from a
reduction of synaptic inhibition. When a rat is introduced to a
novel environment, the firing rate of putative fast-spiking interneu-
rons drops rapidly (Wilson and McNaughton, 1993; Nitz and Mc-
Naughton, 2004; Frank et al., 2004), but returns to baseline during
subsequent exploration sessions. By allowing previously subthresh-
old inputs to drive spiking, this decrease in inhibition may allow
the cell to fire with some degree of spatial specificity when an an-
imal first visits a new environment, even before any synaptic plas-
ticity has taken place. This possibility is supported by computa-
tional models, which show that a hippocampal neuron with even a
randomly-weighted combination of inputs from entorhinal grid cells
would show some spatial specificity (de Almeida et al., 2009), and
is further supported by the observation that injecting depolarizing
current reveals spatially specific firing even in hippocampal neurons
that showed prior no place-related activity (Lee et al., 2012). It
seems likely that the refinement of place fields happens via Heb-
bian LTP of each place cell’s input synapses (Solstad et al., 2006;
Franzius et al., 2007).

Thus, it appears that a coarse place field generated by random
initial connectivity can form a ‘seed’ from which Hebbian plasticity
sculpts a coherent place field. This unsupervised learning strategy,
requiring no explicit training signal, enables ‘producer’ place cells of
the hippocampus to form representations of space that are poten-
tially useful.

Of relevance to the retroaxonal hypothesis, place fields are some-
times stable from one day to the next, and sometimes not (Kentros
et al., 2004). The retroaxonal hypothesis suggests that useful place
fields could be selectively stabilised by retroaxonal signals: cells with
useful place fields form strong synapses onto downstream consumer
cells and receive retroaxonal ‘payment’ in return, which causes them
to stabilise their input synapses. In support of this idea, most of
the novel place fields formed after exposure to a novel environment
disappear after one or two days; furthermore, the place fields that
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remain tend to be those that encode the most spatial information
(Karlsson and Frank, 2008).

3.6.2 Identifying ‘free memory’ and preventing ‘overwriting’

The retroaxonal hypothesis is not the only hypothesis that exists
concerning the modulation of plasticity rates in the brain.

While the sensory cortices and hippocampus receive far less
dopamine innervation than the striatum, they are strongly inner-
vated by cholinergic fibers (Frotscher and Léránth, 1985; Eckenstein
et al., 1988), which are active at times of high alertness, and lead to
increased synaptic plasticity (Hasselmo, 2006). Stimuli occurring at
times of high alertness are more likely to be behaviorally relevant,
so these cues may allow producer cells to guess that a representation
of their current inputs may be useful in future to their downstream
targets. However, uniform plasticity of all neurons receiving cholin-
ergic signals could cause the loss of existing, useful representations
that are already encoded in their synaptic weights. The retroaxonal
hypothesis could explain how it is that we can learn, without for-
getting important things. Retroaxonal signals could dictate which
cells become plastic in response to this cholinergic signal, protecting
old, useful representations, yet allowing new representations to be
formed. Computationally, we may think of retroaxonal signals as
identifying free memory and preventing overwriting of useful infor-
mation.

3.7 Relation to other theories of network plasticity

It should be clear by now that the retroaxonal hypothesis is not
the same as the backpropagation algorithm, nor is it the same as
reinforcement learning with a spatially diffuse reward signal received
by all neurons. We now explain in more detail the relationship of
the retroaxonal hypothesis to backprop, to reinforcement learning,
and to theories involving feedback connections.

3.7.1 A ‘retroaxonal rule’ does nothing on its own

The retroaxonal hypothesis says that neurons with strong output
synapses should tend to have less plastic input synapses. We call this
a ‘retroaxonal rule’. As already emphasised, on its own, a retroax-
onal rule is not a learning scheme: it just modulates the learning
rates of other plasticity rules.

In the neural marketplace hypothesis, rapid plasticity occurs
through conventional mechanisms, such as Hebbian unsupervised
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learning, supervised learning, and reinforcement learning. The nov-
elty is a second, slower, ‘consolidation’ process, which lowers the
learning rates of cells with strong output synapses, and so (we hy-
pothesise) selectively stabilises the more useful results of those con-
ventional learning mechanisms. The retroaxonal hypothesis is not
a model of how we learn new information in minutes or hours, but
rather for how skills might be built up over days, weeks, months or
years.

3.7.2 Reinforcement learning

Retroaxonal learning should not be confused with reinforcement
learning that uses a spatially diffuse reward signal. In reinforce-
ment learning, synaptic plasticity is typically modulated by a single
reward signal for the whole network. By contrast, in retroaxonal
learning, cells use their output synaptic weights as cell-specific re-
ward signals.

Reinforcement learning can suffer from a ‘credit assignment’
problem: if a large number of neurons or synapses make changes, it
can be unclear which change was responsible for the improvement in
performance. A number of solutions have been proposed (Friedrich
et al., 2011; Urbanczik and Senn, 2009; Vasilaki et al., 2009; Izhike-
vich, 2007; Fremaux et al., 2010; Florian, 2007), which typically
involve modulation of local synaptic plasticity by a global reinforce-
ment signal, biologically assumed to correspond to dopamine. While
this global reinforcement signal is not cell-specific, it can be fast,
i.e. time-specific: immediate rewards can modulate plasticity of
synapses that were recently active. If changes to different synaptic
weights are separated in time, this can solve the credit assignment
problem.

The present theory proposes a complementary mechanism. We
show that in retroaxonal learning, retrograde signals can act as slow
but cell-specific reward signals, telling each producer how important
it is to the consumers. This theory may be particularly appropriate
for areas such as sensory cortex, which receive little direct dopamine
innervation or any other apparent training signal, but where repre-
sentations develop that appear tailored to an animal’s behavioral
requirements (Sigala and Logothetis, 2002; Kuhl et al., 1992).

3.7.3 The backpropagation algorithm

The artificial neural network algorithm that has seen most use in
real-world applications, does involve retrograde signals. This algo-
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rithm is known as ‘error backpropagation’ or ‘backprop’ (Rumelhart
et al., 1986). In the backprop net, the firing of activity of neurons is
determined by classical anterograde transmission. However, synap-
tic plasticity in this network requires a training signal to flow back-
wards along the same connections, so that each neuron integrates a
training signal from precisely those cells to which it sends axons.

In common with backprop, the retroaxonal hypothesis posits
that each cell should integrate retrograde signals from its output
synapses. However, the timescale and the effect of the retrograde
signals is different. For a retroaxonal rule, the retrograde signals
can be slow, and they do not instruct a cell whether to potentiate or
depress any particular synapse. By contrast, in backprop, the retro-
grade signals must be fast, and they instruct cells how to strengthen
or weaken each synapse to improve the network’s response to the
current input.

Simple versions of backprop train a layered, feedforward network
with a single ‘output node’ in the final layer. The output node
receives, as a training signal, a target output y(t), while its actual
output is ŷ(t). Backpropagating signals allow each upstream neuron
to measure the partial derivative of y(t)− ŷ(t) with respect to each
of its input synaptic weights, and thus to do gradient descent of the
mean-square loss function (y(t)− ŷ(t))2.

While the backprop algorithm rapidly saw success in real-world
applications, it was immediately recognized it was unlikely to be a
model for neuronal plasticity in the brain (Crick, 1989). Although
neurons are certainly capable of carrying retroaxonal signals, the
retroaxonal signals found in real neurons are simply too slow. In the
backprop algorithm, weight changes are based on the instantaneous
correlation of presynaptic activity and the retroaxonal training sig-
nal, requiring that the training signal arrives while the input pattern
is still being presented. This requires conduction in a matter of mil-
liseconds, rather than the minutes or hours required for physical
transport of retroaxonal chemical signals (Zweifel et al., 2005).

In the neural marketplace theory, retroaxonal signals are selec-
tive, not instructive: they tell each neuron how useful it is, rather
than how to be more useful. To measure usefulness, we hypoth-
esise that retroaxonal signals need only to encode the strength of
downstream synapses, and not an instant evaluation of current firing
patterns. Such selective retroaxonal signals need not be conveyed
in milliseconds, but could take minutes, hours, or more, consistent
with known biology of retroaxonal signals.

The difference between the retroaxonal hypothesis and the back-
propagation algorithm can be illustrated using the economic anal-
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ogy. In a market economy, consumers choose which products to
buy; but it is rare for a consumer to explain to the supplier what
changes in the manufacturing process would make a product more
attractive. It is up to the producer to experiment, and discover
what sells. Similarly, the retroaxonal hypothesis posits that a ‘pro-
ducer’ cell can experiment autonomously with changes to its input
synapses, and retain configurations that result in its output being
‘bought’ by downstream neurons.

3.7.4 Theories involving feedback connections

We have suggested that cell-specific reinforcement is conveyed to
neurons by retroaxonal feedback. Could this reinforcement come
instead through conventional anterograde transmission of action po-
tentials along separate feedback pathways? There are several diffi-
culties with this proposal. First, for some of the pathways along
which we hypothesise retroaxonal signals flow — such as the corti-
costriatal pathway — there are no direct feedback connections. An-
terograde passage of information from striatum to the sensory cortex
involves an indirect, polysynaptic pathway involving multiple steps
in basal ganglia, thalamus, and other cortical regions (the sensory
cortex is not innervated by those thalamic regions that receive basal
ganglia input). Second, even in cases where feedback connections
are direct (such as from motor cortex to sensory cortex (Petreanu
et al., 2012)), the feedforward and feedback projections are both
highly divergent and highly convergent. Thus, if a consumer cell
in motor cortex fires action potentials to signal to sensory cortex
that a recent change in input provided useful information, it is en-
tirely unclear how it would target the particular neuron in sensory
cortex that made the change. Third, in cases where a role for top-
down projections have been experimentally established, they appear
not to be specifically involved in learning, but rather in cognitive
control processes such as attention (Moore and Armstrong, 2003;
Harris, 2013).

3.8 Conclusion

In this chapter we introduced the retroaxonal hypothesis (3.2), and
put it in context. We explained that on its own, a retroaxonal
learning rule does nothing: it is a way of modulating learning rates
of other learning rules.

In (3.3), we argued that the retroaxonal hypothesis does not re-
quire any biologically implausible signalling, and presented candi-

25



date molecular mechanisms. We reviewed biological evidence that
retrosynaptic signals can communicate information about synaptic
strength; that signals can propagate retroaxonally; that retroaxonal
signals can affect the plasticity of a neuron’s input synapses; and
that sometimes changes to synaptic strengths are transient. We pre-
sented a candidate molecular mechanism that could support retroax-
onal learning.

In (3.4) we introduced the idea of a ‘consumer’ cell which receives
a direct training signal and selects inputs from other cells. In the
retroaxonal hypothesis, the retrograde signals all originate at con-
sumers, though they may be passed on recursively from producer to
producer.

In (3.5) we discussed two well-studied learning paradigms in an-
imals, which could be examples of retroaxonal learning: fear condi-
tioning and reinforcement learning.

In (3.6) we discussed the relationship of the retroaxonal hypoth-
esis to unsupervised learning and explained how retroaxonal learn-
ing could interact with unsupervised learning of hippocampal place
fields, selectively stabilising those which are useful.

In (3.7) we explained the relationship of retroaxonal learning to
backprop, to reinforcement learning with a global reinforcement sig-
nal, and to theories involving feedback connections.
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4 Learning using ‘worth’ in an arbitrary net-
work

4.1 Introduction

In this chapter, we begin to turn the retroaxonal hypothesis into a
mathematical model.

We begin with the second version of the hypothesis that was
given in (3.2):

Claim 1 The less useful a cell’s firing pattern, the more plastic its input
synapses should be.

Claim 2 By measuring the strengths of its output weights, a cell can tell
how useful its current firing pattern is. The stronger its output
weights, the more useful its firing pattern probably is.

In this chapter, we consider claim 1 without regard to claim 2. We
define a kind of learning scheme which encapsulates claim 1 — that
cells should modulate their learning rates according to their useful-
ness — and we define conditions for this kind of learning scheme to
successfully improve network performance.

In chapter 5 we will consider claim 2, and demonstrate that in
a specific model network, the strength of a cell’s output synapses
does indeed predict its usefulness. Together, claims 1 and 2 and
these two corroborating chapters complete a computational model
of retroaxonal learning in a simple network, and in 5.8 we show a
retroaxonal rule working in a simulation.

4.2 Related theories: budget perceptrons and optimal
brain damage

Computationally, the retroaxonal hypothesis is a new approach to an
old problem of attaining good performance with a limited number of
neurons. This is a biologically relevant problem since maintaining a
neuron costs space and energy. It is also relevant to artificial neural
networks used in machine learning: networks with more nodes and
more connections take longer to train and simulate, and require
more RAM.

The algorithm we propose, PMH, works by systematically stabil-
ising parts of a network that are useful, while allowing others to be
plastic. To put it in context, we mention a number of other schemes
which, like ours, aim to make good use of a limited pool of neurons.
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The first set of algorithms are variations on the perceptron
(Rosenblatt, 1958). The perceptron is an algorithm for learn-
ing a binary classification from a series of examples. We write
(x1, y1), (x2, y2), . . . for the stream of examples, where x1,x2, . . . are
stimuli and y1, y2, . . . are labels, yt ∈ {1,−1}. The perceptron re-
tains a list of past examples, used to classify each new stimulus as
it arrives. When a stimulus is misclassified it is added to this list of
reference examples.

The class of stimulus t is predicted to be sign (
∑

i αiyiK(xi,xt))
where K is some kernel function and αi are weights computed on-
line, differently for each variant of the algorithm. K(xi,xt) is a mea-
sure of similarity between the ‘template’ xi and the current stimulus
xt; in the original perceptron, K was the standard dot product.

The perceptron can be implemented with a neural network where
in one layer, each neuron computes K(xt,xi) for a different i, and a
readout node then computes a weighted sum of these values. This
neural network implementation requires one kernel-computing neu-
ron for each member of the ‘active set’ {i : αi 6= 0}.

A problem is that the size of the active set (hence, the number of
neurons used) can grow without limit. Biologically, this is unrealis-
tic; in a simulation, it can mean the algorithm grinds to a halt or
runs out of memory. A number of variants of the perceptron algo-
rithm aim to solve the problem and constrain the size of the active
set. These include

� The ‘budget perceptron’ (Crammer et al., 2004). An example
may be removed from the active set if it is correctly classified
by the current classifier with a large margin.

� The ‘randomised budget perceptron’ (Cesa-Bianchi and Gen-
tile, 2006; Cavallanti et al., 2007): before adding a new item
to the active set, an old example is selected at random and
discarded.

� The ‘forgetron’ (Dekel et al., 2008): on each iteration, the
weight αi of each example i in the active set is shrunk, and
each time a new example is added to the active set, the oldest
example is removed. The shrinkage means that the oldest ex-
ample has a tiny weight, and its removal has little effect on the
current classifier.

Computationally, changing a neuron’s synaptic weights is the same
as removing the neuron and replacing it with another that has dif-
ferent synaptic weights. Thus, one can view the randomised budget
perceptron and forgetron as rules for modifying the synapses of a
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fixed set of neurons, rather than adding and removing neurons. In
this chapter, we propose another way of selecting which neurons
to change: we make the chance of changing a cell’s input weights
an explicit function of the usefulness of its current output. We are
agnostic as to how the new weights should be selected.

Also relevant is the work of LeCun et al. (1989) on ‘optimal brain
damage’ (OBD). In OBD the usefulness, or ‘saliency’, of individual
parameters, is computed, and used to decide which parameters can
safely be deleted. Because it is also relevant to chapter 5, we delay
further discussion of OBD to section 5.10.

4.3 Worth

The retroaxonal hypothesis involves a notion of the ‘usefulness’ of a
cell. To construct relevant models we need to make a mathematical
definition of ‘usefulness’. We choose the most natural definition in
the machine learning context: if a network is trying to optimise
some loss function L then the usefulness, or ‘worth’, of a cell, is the
increase in L that would result if it fell silent. The worth of a set
of cells I is the increase in L that would result if all of the cells in I
fell silent.

By ‘silencing cells’ we mean setting their firing rates to 0 (in a
firing-rate network) or making them never spike (in a spiking net-
work). Whether silencing cells like this is biologically plausible is
moot (though TTX might do it), since our learning scheme will
not involve actually silencing any cell. Rather, ‘if these cells were
silenced’ is just a convenient baseline against which to define the
usefulness of their current firing pattern.

Our definition of ‘worth’ is much like ‘saliency’ in the theory of
optimal brain damage (LeCun et al., 1989), although that work deals
mostly with saliency of parameters, not of neurons. However, we use
the term ‘worth’ to avoid confusion with other meanings of ‘saliency’
in the computational neuroscience literature (a feature is ‘salient’ if
it ‘jumps out’ at the observer, but may be useless to observe). The
word ‘worth’ is chosen for its meaning of ‘usefulness’ or ‘merit’ —
not the technical accounting sense of a sum of assets and liabilities.

In this chapter we show that if one cell changes its input synapses
and its worth goes up, the network performance improves. We show
that if neurons can independently estimate their worths, then letting
each individual neuron use a running estimate of its worth as a
reinforcement signal can improve performance of the network as
a whole. We propose a scheme where a neuron is more likely to
experiment with changes to its input synapses if its worth is low,
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and where a neuron tends to revert changes that reduce its worth.
In chapter 5 we will show that in specific model networks, neu-

rons can estimate their worths by passage of slow retroaxonal sig-
nals. Specifically, we show that the worth of a cell is large if it has
strong output synapses onto a supervised output layer. In these
models, cells can use retroaxonal messages to estimate their worth
continuously without actually being silenced.

4.4 Notation

In this chapter we consider a very general network, whose free pa-
rameters are its synaptic weight matrix W. The network could
consist of either spiking or rate neurons, and could have a recurrent
or feedforward architecture.

The quality of the network output is measured by some loss func-
tion L. L is a function only of the network activity, but since the
network’s only free parameters are its synaptic weight matrix W,
the loss L can be considered a function of the weights, L(W).

Constraints on W, such as sparsity or Dale’s law, are to be en-
coded in a second function p0(W). p0 can encode soft preferences
as well as hard constraints, for example p0 can encode a tendency
to prefer small synaptic weights.

We defined the ‘worth’ of a cell (or set of cells) as the change
in L that would arise if that cell (or those cells) were to fall silent.
We introduce the special notation ∅I for silencing cells I. Thus,
L(W;∅I) is the value the loss function takes after cells I are silenced
We write

$I ≡ L(W;∅I)− L(W)

for the worth of cells I, and

$i ≡ L(W;∅i)− L(W)

for the worth of a single cell i.
The synaptic weight matrix W has elements Wij, where Wij rep-

resents the strength of a synapse from cell j to cell i. For this chapter
we define wi to be the vector of input weights to cell i.

4.5 Cells should aim to increase their worth

This is a very simple idea, and crucial to PMH: if a set of cells
change their input synapses, then the change in their worth matches
the change in the network loss function. Explicitly, writing I = {i :
wi 6= w′i}, we note

L(W)− L(W′) = $I(W
′)− $I(W) (1)
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This is because by definition,

$I(W) = L(W;∅I)− L(W) (2)

$I(W
′) = L(W′;∅I)− L(W′) (3)

Clearly if cells I have been silenced, then it does not matter what
their input weights were, so

L(W;∅I) ≡ L(W′;∅I)

Therefore, subtracting (2) from (3) gives equation (1).

4.6 Learning in ‘plasticity’ and ‘consolidation’ phases

The retroaxonal hypothesis posits that cells experiment with
changes to their input synapses, sometimes reverting changes that
prove to be unhelpful. We model this by iteration of two phases:
a ‘plasticity’ and a ‘consolidation’ phase. Biologically, the plastic-
ity phase corresponds to early LTP, and the consolidation phase
corresponds to the (selective) conversion of early LTP to late LTP
(Redondo and Morris, 2011; Rogerson et al., 2014). In our model,
in the plasticity phase, a subset of cells I make changes to their
input synapses; in the consolidation phase, each cell in I has the
opportunity to revert its changes.

The relation between two algorithm parameters α, β will dictate
at what stage worth is taken into account. At one extreme pa-
rameter setting, worth has no effect on whether a cell will propose a
change, but the decision to accept/reject a proposed change depends
on how the change affected the cell’s worth. At the other extreme, a
cell uses its worth to decide whether to propose a change, but never
rejects a change. These two extremes correspond to the two halves
of the retroaxonal hypothesis as stated in 3.2.

4.7 The Metropolis-Hastings algorithm

Based on the above, we propose a model of retroaxonal learning that
is closely related to the standard Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm (Metropolis et al., 1953;
MacKay, 2003) is at the heart of stochastic optimization schemes
like simulated annealing (Kirkpatrick et al., 1983). Like our pro-
posed learning scheme, the generic Metropolis-Hastings algorithm
cycles through two steps: ‘proposing’ a new value (in our case, new
synaptic weights) and then ‘accepting’ or ‘rejecting’ this change. In
general, given some ‘target distribution’ p(W), the algorithm can
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generate a random sequence of values W(1),W(2), . . . such that as
n→∞, the probability distribution of W(n) tends to p.

Generic Metropolis-Hastings. The algorithm, PMH, which we will
later describe is not exactly a Metropolis-Hastings algorithm, but
a variant. However, by way of introduction we describe the basic
Metropolis-Hastings algorithm. The standard Metropolis-Hastings
algorithm is as follows. W is initialised at some value W(0). In the
nth iteration, we sample a value W′ from a proposal distribution
q which may depend on W(n). Then we compute

a = min

(
1,

p(W′)q(W(n)|W′)

p(W(n))q(W′|W(n))

)
With probability a we ‘accept’ W′, setting W(n+ 1) = W′; other-
wise we ‘reject’ the proposal and set W(n+1) = W(n). The aim of
learning is to lower the loss L(W) while satisfying some constraints
encoded in p0(W). Therefore, we consider a target distribution

pβ(W) ∝ po(W) exp(−βL(W))

where β is some positive number. MacKay’s ‘practical Bayesian
framework for backprop networks’ works with probability distribu-
tions of this form (MacKay, 1992). Sampling from pβ will stochas-
tically explore different values of W, preferring values that make
L small. With this choice of target distribution, the ‘acceptance
probability’ a becomes

a(W′; W) = min

(
1,
p0(W′)q(W|W′)

p0(W)q(W′|W)
eβ(L(W)−L(W′))

)
The factor eβ(L(W)−L(W′)) favours proposals that improve the net-

work’s output. The factor p0(W′)q(W|W′)
p0(W)q(W′|W)

adjusts for bias in q: if q

satisfies detailed balance for p0 then the acceptance probability can
become simply

a(W′; W) = min
(

1, eβ(L(W)−L(W′))
)

If q already satisfies detailed balance for p0, then just sampling W′

from q(W) at each timestep would generate samples from p0 in
the long run. Metropolis-Hastings takes this scheme that generates
samples from p0, and converts it to one that samples from pβ, i.e.,
a scheme that has a greater tendency to make L small.

The Metropolis-Hastings algorithm does not prescribe what the
proposal distribution q should be, but the rate of convergence de-
pends on selecting a good q. In the next section we will see that a
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good proposal distribution q in Metropolis-Hastings corresponds to
a good unsupervised learning rule in PMH.

In Metropolis-Hastings, the parameter β is known as ‘inverse
temperature’. When β is large, the algorithm becomes a greedy op-
timisation of L, whereas with β = 0 it will sample from p0, ignoring
L. The choice of β also dictates a trade-off between speed of learn-
ing and the quality of the eventual solution: as a rule of thumb, the
time taken for the distribution of W(n) to converge to pβ increases
as β increases (MacKay, 2003).

What is the advantage of a stochastic scheme over deterministic
optimisation of L? First, even if we did want to simply minimise
L, we might do it by first sampling from pβ. This is a standard ap-
proach: the process of running the Metropolis-Hastings algorithm
while progressively raising β, known as simulated annealing, is com-
monly used to find global optima of analytically intractable func-
tions (where simple greedy optimisation would likely get stuck in
local optima). Second, W may represent one of many modules in
the brain attempting to meet the same requirement, and it may be
difficult to measure L exactly. A degree of diversity can improve the
odds that at least some modules will succeed.

One can imagine a way for simple Metropolis-Hastings to be used
for learning — but we do not suggest it. To apply simple Metropolis-
Hastings, an animal experiments with a change to the weights of
the synapses of multiple neurons, proposing new weights W′ drawn
from q(W′|W). Then by attempting to perform a behavioral task,
the animal determines whether the loss function L has increased
or decreased. If loss has decreased, all the changes are retained,
but if loss has increased the weights are likely to revert to W. A
‘consolidation signal’ could be encoded by global dopamine release,
occurring with probability aβ(W′; W). Such a scheme would be
compatible with numerous aspects of known neurophysiology: the
‘synaptic tagging’ literature shows that changes to synaptic weights
are usually transient unless consolidated by a second signal; and
dopamine is one of several signals able to cause this consolidation
(Huang and Kandel, 1995; Sajikumar and Frey, 2004; Kentros et al.,
2004).

That scheme would theoretically, eventually, converge to the de-
sired probability distribution pβ(W), but suffers from a credit as-
signment problem. When changes are proposed to multiple cells,
these are accepted or rejected wholesale, even if some cells changed
for the better and some for the worse.
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4.8 Parallel Metropolis-Hastings (PMH)

We dub our proposed model of retroaxonal learning ‘parallel
Metropolis-Hastings’ (PMH). In PMH, individual cells decide in
parallel whether to propose, accept, or reject changes to their in-
put synapses. Now, in a plasticity phase, each neuron may make an
experimental change to its input synapses (‘propose a change’), and
in the subsequent consolidation phase, each neuron may decide to
revert its changes (‘reject’) or keep them (‘accept’). Because neurons
decide in parallel whether to propose/accept/reject changes to their
input synapses, we call this ‘parallel Metropolis-Hastings’ or ‘PMH’.
This is no longer strictly a Metropolis-Hastings algorithm, because
W(n + 1) may be neither W(n) nor the proposed W′ (containing
all the changes proposed by all cells), but a chimera.

For PMH, we assume we already have some unsupervised learn-
ing rule which gives rise to a reversible Markov process on W, with
stationary distribution p0. The unsupervised learning rule corre-
sponds to a proposal distribution for each cell: qi(wi; W) is the
distribution of input weight vectors wi at which cell i may arrive
by running the unsupervised rule for some specified length of time.
Randomness in qi may arise because the unsupervised learning rule
itself is stochastic, or because the unsupervised learning is driven by
unpredictable stimuli.

PMH controls when the unsupervised learning rule runs, in a way
that causes the loss L to be reduced over time. This is achieved by
selectively stabilising the input weights of those cells whose outputs
are useful. The unsupervised rule (which implies qi) is responsible
for finding salient features in inputs; PMH stabilises representations
of useful features. By selectively stabilising useful features we match
the experimental observation that more behaviourally relevant fea-
tures are represented more stably and by larger numbers of cells,
even when they are just as salient as irrelevant features (Sigala and
Logothetis, 2002; Kentros et al., 2004). Just as the performance of
Metropolis-Hastings depends on the proposal distribution, the per-
formance of PMH depends on the choice of unsupervised learning
rule. Convergence will be fastest when the unsupervised rule gener-
ates synaptic weight vectors that are likely to improve performance,
and does so quickly.

At each step of the PMH algorithm the synaptic weight matrix
W(n) is updated to a new value W(n+ 1), via three stages:

1. Each neuron decides independently whether to propose a
change to its input weights. Cells of low worth propose changes
more readily: neuron i will propose a change with probaility
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κe−α$i(W(n)) (κ, α are parameters).

2. Each neuron i that is proposing a change selects new input
weights w′i from a proposal distribution qi, which may depend
on W.

3. Each neuron i that proposed a change measures the change
in its worth $i(W

′) − $i(W(n)). Cells should tend to re-
tain changes that increase their worth: a cell consolidates
the change (sets wi(n + 1) = w′i) with probability ai =
min

(
1, e(β−α)($i(W

′)−$i(W))
)
, and otherwise rejects the change

(set wi(n+ 1) = wi(n)).

We use the parameter α ∈ [0, β] to dictate how strongly the chance of
proposing a change depends on the worth $i (neurons of higher worth
being more reluctant to propose changes), and use the parameter
κ > 0 to control the total number of cells proposing changes.

Apart from the obvious intuition that a change is more likely to
be beneficial to a useless cell (with low worth) than to a useful one
(with high worth), there are other, subtler reasons for setting α > 0
and making the chance of a proposal dependent on worth:

� The Metropolis-Hastings algorithm makes no guarantee as to
the distribution of proposed values W′, merely the station-
ary distribution of accepted values W(n). In a neural network
implementing the scheme, proposed new weights are actually
used for a short time (in order to measure their effect on perfor-
mance), even if they then revert. Thus, we are likely to incur
a transient penalty while evaluating changes to cells of high
worth.

� There is an ‘opportunity cost’ to experimenting with a cell
that is unlikely to improve. We will see in section 4.9 that
PMH will likely fail to converge if too many cells experiment
with changes at once. The limited set that do experiment with
changes should include a preponderance of cells that are likely
to improve, i.e., cells of low worth.

� In our implementations of PMH (section 5.8), worths are esti-
mated rather than measured exactly, and they are estimated
using slow retrograde signals, so it takes some time to arrive at
a good estimate. A cell which has not changed for a long time
may know its worth $i fairly accurately. When it proposes new
weights, it has only a limited time to evaluate its new worth
$′i before deciding whether to consolidate the changes. By in-
creasing α and decreasing β we transfer emphasis from the

35



accept/reject decision (based on a hasty estimate of change in
worth) to the proposal/no-proposal decision (based on a more
considered estimate of worth).

Since PMH selectively destabilises cells with small worth, we
might predict that as it runs, cells’ worths become less diverse and
converge around a common value. Indeed, that is what happens in
the simulations in section 5.8.

4.9 Convergence of PMH

The generic Metropolis-Hastings algorithm converges because it gen-
erates a Markov chain on W that satisfies detailed balance for the
target distribution p, that is

∀W,W′ : p(W)P (W→W′) = p(W′)P (W′ →W) (4)

In general, PMH does not satisfy equation (4) for p = pβ and we
have no guarantee that it will converge to pβ. In this section we
discuss conditions that would give an analytical guarantee for PMH
to satisfy equation (4) for pβ, and therefore to converge. We note
that these conditions will not be met exactly in most simulated
networks, let alone a real neural network. Nonetheless in chapter
5 we will show a way that the conditions for convergence can be
approximately met, and in section 5.8 we show that the scheme
works in simulations.

For reference, let us look at the transition probabilities of stan-
dard Metropolis-Hastings and how they satisfy detailed balance. In
generic Metropolis-Hastings for pβ, the transition probabilities are

P (W→W′) = q(W′|W)a(W′; W)

where

a(W′; W) = min

(
1,
p0(W′)q(W|W′)

p0(W)q(W′|W)
eβ(L(W)−L(W′))

)
This choice of a guarantees

a(W′; W)

a(W′; W)
=
p0(W′)q(W|W′)

p0(W)q(W′|W)
eβ(L(W)−L(W′))

so that the ratio of forward and back probabilities is given by

P (W→W′)

P (W′ →W)
=
p0(W′)e−βL(W′)

p0(W)e−βL(W)
=
pβ(W′)

pβ(W)
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That is, detailed balance for pβ is satisfied. To show when the same
would be true in PMH, so that PMH obtains detailed balance for
pβ, we first define ‘additivity’ of worths. We say a set of neurons I
is an additive set if for all J ⊆ I and for all possible wI,

$J(W) =
∑
j∈J

$j(W) (5)

If set I is additive, then the worths of cells within I are not interde-
pendent: for any I ⊃ J, additive or not, we can write

$I(W) = L(W;∅I)− L(W)

= L(W;∅I)− L(W;∅J) + L(W;∅J)− L(W)

= L(W;∅I)− L(W;∅J) + $J(W)

If I is additive then we can also write

$I(W) =
∑
i∈I

$j(W) = $J(W) + $I\J(W)

Comparing the two we have that $I\J(W) = L(W;∅I)−L(W;∅J).
The right hand side clearly does not depend on input weights to cells
J, hence the claim that worths are independent within an additive
set.

It should not be a surprise that PMH, which is motivated by
considering the usefulness of individual cells, requires additivity of
worths. Additivity of worths is a necessary condition for ‘credit
assignment’, or the ‘usefulness of a single cell’, to make sense. If the
worth of one cell i ∈ I depends on the configuration of other cells
in I, then it does not make sense to assign worth to individual cells
within the set I.

To show how additivity of worths would let PMH satisfy de-
tailed balance for pβ we first write down the transition probabilities
P (W→W′) ,P (W′ →W) for PMH. We introduce the notation
∆(W′,W) for the set of cells whose input weights differ between
W and W′:

∆(W′,W) = {i : wi 6= w′i}
For the transition W → W′ to occur, first some weights W′′

have to be proposed with w′′i = w′i for each i ∈ J. We will write
J = ∆(W′,W) for the set of cells that propose and accept changes,
K = ∆(W′′; W) \ J for the set of cells that propose but reject
changes, and L for the set of cells that do not propose changes.

The probability P (W→W′) is a product of three factors:
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� the chance of proposing changes w′j to cells J:∏
j∈J

κe−α$j(W)qj(w
′
j|W)

� the chance of also proposing changes to cells K and no others:∑
K⊂Jc

∏
k∈K

κe−α$k(W)
∏
i/∈J∪K

(1− κe−α$i(W))

� the chance of accepting changes to cells J and rejecting changes
to cells K, integrated over values of w′′K:∫

w′′K

(∏
k∈K

qk(w
′′
k|W)

(
1− ak(w′J,w′′K,wL; W)

))

×

(∏
j∈J

aj(w
′
J,w

′′
K,wL; W)

)

Multiplying these gives:

P (W→W′) =
∏
j∈J

κe−α$j(W)qj(w
′
j|W)

×
∑
K⊂Jc

∏
k∈K

κe−α$k(W)
∏
i/∈J∪K

(1− κe−α$i(W))

×
∫
w′′K

(∏
k∈K

qk(w
′′
k|W)

(
1− ak(w′J,w′′K,wL; W)

))

×

(∏
j∈J

aj(w
′
J,w

′′
K,wL; W)

)
The reverse transition probability is similarly

P (W′ →W) =
∏
j∈J

κe−α$j(W
′)qj(wj|W′)

×
∑
K⊂Jc

∏
k∈K

κe−α$k(W′)
∏
i/∈J∪K

(1− κe−α$i(W
′))

×
∫
w′′K

(∏
k∈K

qk(w
′′
k|W′) (1− ak(wJ,w

′′
K,wL; W′))

)

×

(∏
j∈J

aj(wJ,w
′′
K,wL; W′)

)
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For the transition ratio P(W→W′)
P(W′→W)

to simplify neatly for PMH as it

does for Metropolis-Hastings, we would require the following, rather
strong conditions:

1. Whenever changes are proposed to cells J ∪ K, the set J ∪ K
should be additive. Then for k ∈ K, the changes to J do not
affect ak:

ak(wJ,w
′′
K,wL; W′) ≡ ak(w

′
J,w

′′
K,wL; W)

and for j ∈ J, the changes to K do not affect aj:

aj(wJ,w
′′
K,wL; W′) ≡ aj(wJ,wK,wL; W′) = aj(W; W′)

aj(w
′
J,w

′′
K,wL; W) ≡ aj(w

′
J,wK,wL; W) = aj(W

′; W)

Furthermore, additivity of J implies that the product∏
j∈J aj(W; W′) satisfies∏

j∈J aj(W; W′)∏
j∈J aj(W

′; W)
= e(β−α)(L(W)−L(W))

2. For k /∈ J the chance of proposing the specific changes w′′k
should be the same from W as from W′:

qk(w
′′
k|W′) ≡ qk(w

′′
k|W)

3. For j ∈ J the qj satisfy detailed balance for p0, in the sense
that ∏

j∈J

qj(w
′
j; W)

qj(wj; W′)
=
p0(W′)

p0(W)

If all these conditions are met then P(W→W′)
P(W′→W)

becomes exactly
pβ(W′)

pβ(W)
.

None of the conditions is likely to be met in a real neural network,
or even most artificial neural networks, but we show in chapter 5
that they can be approximately met and in section 5.8 we show this
is enough to make a version of PMH work in a simulation.

Why won’t these conditions be met exactly?

1. PMH lets each cell decide independently whether to propose
a change, with nonzero probability. Therefore it is possible,
with miniscule probability, that all cells could propose changes
at once, and the additivity condition is equivalent to a ‘global
additivity’ condition, that every set of cells, including the set of
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all cells in the network, is additive. This global additivity tends
to fail for any network where cells build on each others’ outputs,
or where multiple cells represent the same feature. However, in
practice we can choose values of κ, α so that the proposing set
is small. In chapter 5 we show that in some simple cases, every
sufficiently small set of cells is approximately additive, and this
is enough to make PMH work.

2. The only obvious way to satisfy condition 2 exactly is when
q(w′i; W) ≡ q(w′i; wi), that is, the synaptic weights proposed
by cell i do not depend on anything other than the current con-
figuration of the input weights to cell i. This condition is likely
to be violated whenever cell i operates an activity-dependent
learning rule to generate proposals w′i, and is downstream of
other plastic cells. In the feedforward networks of chapter 5
only a single layer of cells run PMH, and this condition holds
exactly. In more complex networks, it is harder to guarantee.

3. This is true more or less by definition — we motivated PMH
as a way to enhance a q that already generates samples from
p0. However, it assumes that the transition probabilities given
by qi generate a reversible Markov chain on W.

The fact that the conditions for precise convergence of PMH to pβ
are so rarely met, and the difficulty of analysing what happens when
the conditions are only approximately met (section 4.10), means that
the only way to find out if it works is to implement and simulate
it. In section 5.8 we find that PMH does indeed work in a simple
feedforward network, and that it greatly reduces the number of cells
needed to reach a given performance level, compared to using an un-
supervised rule alone. However, in chapter 6 we find a fundamental
difficulty in implementing PMH in recurrent networks, that is not
touched on in this chapter: cells cannot accurately measure their
worths in a biologically plausible way.

4.10 Does approximate PMH approximately converge?

In practice, we only approximately meet the conditions required to
guarantee that our implementation of PMH converges to pβ. Sim-
ulations in section 5.8 show that nonetheless, PMH can work well.
For the interested reader, we record some abortive attempts to prove
this is not a fluke. To the uninterested reader, apologies.

First, what should we try to prove? Write P for the transition
probabilities on W that perfect PMH (satisfying all three conditions
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on page 39) would give. In practice the transition probabilities are

P̃ ≈ P, with discrepancies arising because, for example, we do not
measure worth accurately. We write π = pβ for the stationary dis-

tribution of P and π̃ for the stationary distribution of P̃.
We wish to prove that in some sense “P̃ ≈ P⇒ π̃ ≈ pβ”. At least

one natural interpretation of this informal statement is false: given
any ε > 0 and an arbitrary pair of probability distributions π, π̃ we
can find P, P̃ with Pπ = π, P̃π̃ = π̃, and maxi,j |Pij − P̃ij| < ε[1].
Some bounds are collected in (Haviv and Heyden, 1984), but it is
hard to see how to apply them to our problem.

Much of the literature deals with finite Markov chains, so we
might try to proceed by discretising our state-space. Specifically we
index values of W by i, choosing a partition such that p0 is uniform,
and affinely transform L so that πi = e−Li corresponds to pβ.

A useful result would be that Eπ̃ (L) ≈ Eπ (L). To that end we
tried studying |EPπ̃ (L) − Eπ̃ (L) |, hoping to find an upper bound

in terms of the similarity between P̃ and P, and a lower bound in
terms of |Eπ̃ (L)− Eπ (L)|. Detailed balance of P implies for any p
that

EPp (L)− Ep (L) =
1

2

∑
i,j

(Li − Lj)Pijπj
(
pj
πj
− pi
πi

)
Here we stumble: the terms could have mixed signs, so it is hard
to find useful lower bounds for |EPp (L)− Ep (L)|. (Penrose, 1970)
suggests another option, replacing EPp (L)−Ep (L) with some other
Φ(Pp)− Φ(p) and using the following theorem.

Theorem 1 (Free energy goes down). Let P be any reversible tran-
sition matrix, π its stationary distribution and φ any convex func-
tion (i.e., φ′′ ≥ 0 everywhere). Let p be any probability distribution.
Define

Φ(p) :=
∑
i

πiφ

(
pi
πi

)
Then Φ decreases under P, i.e. Φ(p) ≥ Φ(Pp). Moreover, we have
an exact expression for Φ(Pp)− Φ(p). Define

pi = (Pp)i, xi =
pi
πi
, xj =

pj
πj

[1]Take any P, P̃ with stationary distributions π, π̃ and keep taking square roots of P, P̃.
Both converge towards I without their stationary distributions changing.
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Then

Φ(p)− Φ(Pp) =
∑
i,j

πBPij (φ(xi)− φ(xj)− (xi − xj)φ′(xj)) (6)

=
∑
i,j

πjPij

(
1

2
(xi − xj)2φ′′(xij)

)
(7)

where xij lies in the interval between xi and xj.

Proof. See (Penrose, 1970).

In particular if φ(x) = −x log x then φ′′(x) = 1
x

and

Φ(p)− Φ(Pp) =
∑
i,j

πjPij(xi − xj)2

2xij
≥
∑
i,j

πjPij(xi − xj)2

2 max(xi, xj)
(8)

for some xij between xi and xj. This looks more promising, but so
far did not bear fruit.

4.11 Conclusion

In this chapter we began to convert the retroaxonal hypothesis to a
mathematical model. We started with two statements from section
3.2: that cells which are less useful should make their input synapses
more plastic; and second, that cells can infer their usefulness from
the strength of their output synapses. This chapter deals with the
first of those claims; the next two chapters deal with the other.

Viewed this way, the retroaxonal hypothesis is a way of making
good use of a limited number of neurons. In section 4.2 we reviewed
some other strategies for pruning networks or getting good perfor-
mance from a network of limited size, and explained how retroaxonal
learning differs from these.

We introduced the idea of ‘worth’ in section 4.3, a mathematical
definition of what it means for a cell to be useful.

In section 4.5 we gave a very basic argument that each individual
cell should aim to maximise its worth given the configuration of the
other cells. This is because when one cell changes its input synapses,
the change in network performance matches the change in that cell’s
worth. This motivates us to model retroaxonal learning as a process
where cells use their worth to decide whether to make changes to
their input synapses.

In section 4.6 we brought in the notion that some changes to
synaptic weights are transient, and revert, while others become per-
manent. After proposing a change to its input synaptic weights,
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we suggested that a cell could use the effect on its worth to decide
whether to revert or keep the change.

We formalised this as a variation on the standard Metropolis-
Hastings rule. In standard Metropolis-Hastings, described in section
4.7, changes to a variable are proposed, sometimes kept and some-
times rejected. In section 4.8 we introduced the ‘parallel Metropolis-
Hastings’ algorithm which is our variant of Metropolis-Hastings and
model of retroaxonal learning. In this scheme, individual cells are
more likely to propose changes to their input synapses if they have
low worth, and more likely to retain the changes if the change in-
creases their worth. PMH is a means of taking an unsupervised
learning rule, and modulating the learning rate cell-by-cell to im-
prove the performance of the network as a whole.

In section 4.9 we explained when the algorithm of section 4.8 is
analytically guaranteed to converge to its intended target distribu-
tion pβ. The conditions are strict and in practice, are not met, in
simulations or in real neural networks. We will show in chapter 5
that they can be approximately met in a simple feedforward network
and that this is enough to make the scheme work in a simulation
(section 5.8).

As well as the convergence conditions in 4.9, the PMH algorithm
requires cells to be able to estimate their worths. For this to be
biologically plausible, it must be achievable using only slow retroax-
onal signals or locally available information. In chapter 5 we show
this is possible in a shallow feedforward network, and demonstrate
using simulations that this enables PMH-based learning. In chapter
6 we consider whether cells can estimate their worths accurately in
recurrent networks, for the specific case of random connectivity.

43



5 Worth from output weights in a feedforward
network

5.1 Introduction

In Chapter 4 we considered a generic network whose performance is
measured by some loss function L and we defined a learning scheme,
PMH, which might work if cells can measure their individual con-
tributions to reducing L, that is, their ‘worths’. We now describe a
type of network and loss function for which this can work, and in
section 5.8 present a simulation using PMH. In our simulation, cells
estimate their worths from their output weights, so each cell can es-
timate its worth without actually being silenced and without a need
to transmit fast retrograde signals. The simulation is an implemen-
tation of the kind of learning scheme proposed by the retroaxonal
hypothesis.

In this chapter and chapter 6, we will consider pools of ‘producer’
cells receiving inputs from some external source and offering their
outputs as input to a layer of ‘consumer’ cells. Cartoons of these
networks are in figure 1 (page 59). The loss L is a function of the
activity only of the consumer cells and their input weights V, and
we assume these input weights are learned by a supervised learning
scheme. We assume the supervised learning scheme is effective, so
that the consumers choose optimal weights given the output the
producers provide. Thus, the performance is really just a function
of the configuration of the producers: L = L(W), as in chapter 4
(PMH allows constraints on W to be introduced separately via p0).
The producers do not receive any direct training input. Section 3.5
gives examples of neural populations in the brain to which these
producers and consumers might correspond.

Networks with a large pool of unsupervised (sometimes not even
plastic) cells and a supervised output layer, abound in the machine
learning literature. They include the liquid state machine (Maass
et al., 2002), the FORCE network (Sussillo and Abbott, 2009), and
networks that combine a pool of untrained or unsupervised feature-
extracting neurons with a support vector machine to classify stimuli
(Lazebnik et al., 2006; Henaff et al., 2011).

The innovation here is that we show how, at least in a simple case,
the producers can learn using PMH: each producer will modulate its
unsupervised learning rate according to its worth, and we will show
that each producer can estimate its worth from its output weights
to consumers.
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5.2 Model network and loss function

To begin with we consider a single layer of producers offering their
output to some consumers, as in the lower panel of figure 1.

Producer i has output xi(t) and consumer j has output ŷj(t) =∑
i Vjixi(t). The loss function for the network is the simple penalised

least squares one,

LV :=
1

2

∑
j

(
yj(t)−

∑
i

Vjixi(t)

)2

+
λ

2

∑
i

V 2
ij

Here, (yj(t)−
∑

i Vjixi(t))
2 means a time-average of

(yj(t)−
∑

i Vjixi(t))
2.

Each consumer receives a training signal, for example a copy of its
ideal output yj(t), which enables it to find the optimal Vji given the
available xi(t). The producers receive no such direct training signals,
though they may adapt their input synapses using unsupervised
learning rules.

We assume p producers and N samples/timesteps. We write X ∈
RN×p for the ‘data matrix’ with Xti = xi(t). Thus xi ∈ RN is the ith

column of X and represents the output of cell i. We write vj ∈ Rp

for the vector of input weights to consumer j, ŷj = Xvj ∈ RN for the
output of consumer j, and yj for the target output for consumer j.
We assume that the data set is large enough to make LV equivalent
to the finite-sample loss function

LV =
∑
j

1

2N
|yj − ŷj|2 +

λ

2

∑
j

|vj|2 (9)

We define the loss for the pool of producers as

L(X) = min
V

LV(X) (10)

This loss function L measures the performance that we will get
for a given pool of producers, subject to the assumption that each
consumer does the best it can with the products available.

The worth of a set of producers in this feedforward network is
defined as

$I = L(X̃)− L(X)

where X̃ is the matrix X with the columns xi for i ∈ I replaced
by zeroes. Thus, the worth of producer cell i is the change in loss
that will arise if cell i falls silent, and then each consumer adjusts its
input weights to make best use of the remaining producers’ outputs.
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In this chapter we will show that the worth of a cell in the feedfor-
ward network of Figure 1 is estimated by $j ≈ λ

2

∑
i V

2
ij . In Chapter

6 we will study more complicated networks where there are connec-
tions between producers, and only a subset I of producers are ‘visi-
ble’ to the consumers, meaning that the consumers must choose V
subject to the constraint that ∀i /∈ I,∀j : Vji = 0. When there are
connections between producers, the worth estimate $j ≈ λ

2

∑
i V

2
ij

does not apply, but the analysis of this chapter is still relevant: it
tells us the effect on performance of hiding a cell from the consumers.
The quadratic weight penalty in L will always induce a consumer to
set Vij = 0 if xj ≡ 0, whatever the connectivity between producers.
Therefore, hiding a cell j has the same effect on performance as re-
placing its output xj with all zeros in the data matrix (x1| . . . |xp)
seen by the consumer (leaving all other xi unchanged). This will be
useful in chapter 6.

5.3 Choice of weight penalty

The retroaxonal hypothesis is motivated by the idea that having a
synapse, especially a strong synapse, is costly, and that if a synapse
is present, it must be because there is something to be gained by it.
Almost any neural network model includes some cost function on
synaptic weights, not only because of the biological fact that space
is often a tight constraint, but also because in machine learning,
a cost function on synaptic weights prevents overfitting to training
data.

The quadratic cost function we have chosen does not promote
sparsity of connections, but our models do provide other ways of
restricting the number of non-zero input weights both to producers
and from producers to consumers. First, the probability density p0

in PMH (chapter 4) can force sparsity of input weights to producers.
Second, through the idea of ‘hidden’ and ‘visible’ producer cells we
can enforce sparsity of connections from producers to consumers:
we restrict the set of producers which are allowed to project to each
consumer, and use the quadratic cost function for the remaining
possible synapses.

In section 3.5 we suggested that producers and consumers could
correspond to cortical cells (producers) that project to the striatum
(consumers). For these projections, the space cost of adding an-
other projecting axon from cortex to striatum is large compared to
the space cost of adding more synapses to an existing projection.
To model this, it makes sense to restrict the set of producers that
project to consumers, rather than using a synapse-by-synapse cost
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function to promote sparsity.
How do we choose the number of producers supplying input to

each consumer, and how do we choose the weight penalty parameter
λ in our quadratic cost function? It is estimated (Kincaid et al.,
1998) that within the dendritic tree of a single striatal spiny cell,
one cortical cell axon makes a maximum of 40 synapses, and that
in the same volume there are approximately 2840 spiny cell bodies
and 15 million corticostriatal synapses, which means that on average
each striatal cell receives inputs from hundreds if not thousands of
different cortical cells. In our simulations we let each consumer
select input from 1000 producers.

Individual corticostriatal synapses are weak, and each striatal
MSN requires a large number of excitatory inputs to fire (Carter
et al., 2007). In keeping with this we choose λ so that each individual
synaptic weight is� 1. In our model, the weight from producer cell i

to consumer j is 1
λ

rTj xi

N
, where rj(t) = yj−

∑
i Vjixi(t) is the residual

error for consumer j (so |r| ≤ |y|). To make our cost function
dimensionally correct, λ should have units of firing rate squared
and to guarantee every weight is � 1 we need λ � |x||y|/N . We
will choose units so that typical firing rates are O(1), so we choose
λ� 1.

If we used a different cost function on synaptic weights, would any
of the theory here still work? The specific form of the approximation
for worth in terms of output weights will depend on the choice of cost
function. However, the motivating intuition is very generally appli-
cable, save a few pathological cases. If a producer has no output
weights, it has no effect on performance, and no worth. Conversely
if a producer has large output weights, it will usually have positive
worth: if a consumer sets a nonzero input weight from a given pro-
ducer, the implication is that a nonzero input weight gives better
performance than zero input weight, and therefore better than the
consumer could do if that producer was silenced. This argument
fails in degenerate cases when multiple input weight vectors to the
consumer give equivalent performance. An example is when mul-
tiple producers have identical firing patterns and the cost function
for synaptic weights is a sparsity-promoting Lp norm with p < 1.
In that case, a consumer will arbitrarily choose one of the identi-
cal producers from which to have nonzero input weight. As long as
there are at least two producers with identical output, each individ-
ual producer has zero worth: if it is silenced the consumer can just
select input from one of its clones, with no effect on performance. If
we imagine taking the pool of identical producers and silencing the
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unused ones one at a time, then at the instant we silence the last
unused producer, the worth of the single producer whose output is
being used jumps from zero to something positive, while its output
weight to the consumer is unchanged. In this scenario, the output
weight would not be a reliable indicator of worth. In most standard
models, output weight will tell us something about the worth of a
cell, but the quadratic cost function we work with here gives rise to
an unusually tidy relationship between output weight and worth.

5.4 Ridge regression formulae

We gather here some standard formulae in the theory of ridge re-
gression. For more details see for example (Shawe-Taylor and Cris-
tianini, 2004; Hastie et al., 2009; Anderson, 1958). We will later
use these formulae to derive equations and approximations for the
worths of cells.

For simplicity of notation we consider a single consumer and sim-
ply write v, rather than vj, for its vector of input weights.

The optimal v must satisfy

∇vLv = (y − ŷ)TX +NλvT = 0

⇒ vT =
XT (y − ŷ)

Nλ
(11)

By substituting the definition ŷ = Xv into (11), we obtain a formula
for optimal weights:

v = (XTX +NλI)−1XTy (12)

In simulations, these weights may be learned approximately using a
delta rule, i.e. stochastic gradient descent.

Substituting (11) into (9) shows that L = minv Lv is proportional
to the mean product of the training signal y with the residual y− ŷ:

L =
1

2N
|y − ŷ|2 +

λ

2
vT

XT (y − ŷ)

Nλ

=
1

2N
(y − ŷ + Xv)T (y − ŷ)

=
1

2N
yT (y − ŷ) (13)

We will make use of the kernel matrix K, the hat matrix H, and the
residual matrix R, which all are real symmetric N × N matrices,
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defined as follows:

K := XXT =
∑
i

xix
T
i

H := X(XTX +NλI)−1XT

R := I−H =

(
K

Nλ
+ I

)−1

H is called the ‘hat matrix’ because it maps the target signal y to
the consumer neuron’s actual output ‘y hat’: when the weights v
take their optimal value, ŷ = Hy. Similarly, the matrix R maps y
to the residual: y − ŷ = Ry.

Note that H and R depend only on X and not on y; they there-
fore summarize how well a given pattern of producer cell activity X
prepares the consumer cell to learn any target pattern y. R can be
considered as a quadratic form that predicts the loss function for
any given target: from (13) we have that

L =
1

2N
yTRy =

1

2N
yT
(

XXT

Nλ
+ I

)−1

y (14)

5.5 Estimating worth from output weights

We use the equations of 5.4 to show that in the feedforward network
of figure 1, each producer cell can estimate its worth as

$i ≈
λ

2

∑
j

V 2
ji (15)

This approximation holds provided JxiK
2 � λ, where J..K denotes

the root mean square over time. The quantity
∑

j V
2
ji is one which

a cell i could reasonably compute using slow retrograde signals.
Moreover, we will show that for small sets I of producers, their

worth is approximately additive:

$I ≈
∑
i∈I

$i ≈
λ

2

∑
i∈I,j

V 2
ji (16)

Here a ‘small set’ is one with maxk∈I |xk|
∑

j∈I |xj| � Nλ, satisfied

for example if each JxiK
2 = 1 and |I| � λ.

The following theorem makes the approximation (15) precise, and
theorem 3 will make the approximation 16 precise.

These results are useful because they let us know which pa-
rameter regimes PMH can work in, with worths estimated from
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output weights. As long as we choose parameters so that
maxk∈I |xk|

∑
j∈I |xj| � Nλ for the proposing set, then the worth

estimate (15) is valid. If each cell has root mean square firing rate
of order 1, this means we require λ� the number of cells proposing
changes at any one time.

Theorem 2 (Output weight predicts worth). The worth $i of neu-
ron i to a single consumer is given by

$i =
λ

2
v2
i

(
λ

λ− xTi Rxi
N

)

Corollary With multiple consumers, the worth $i of neuron i is
given by

$i =
λ

2

(
λ

λ− xTi Rxi
N

)∑
j

V 2
ji

The residual matrix R is a contraction, so |xTi Rxi| ≤ |xi|2 and
the approximation (15) follows when |xi|2 � Nλ, i.e., when JxK2 �
λ.

Proof. Recall from (14) that, with a single consumer,

L =
1

2N
yTRy

and therefore, when X changes in any way (and then v is updated),
the change in loss is

∆L =
1

2N
yT (∆R)y

We write R for the residual matrix when cell i is present and R′ =
R + ∆R for the residual matrix after that cell is removed. Recall
that R =

(
K
Nλ

+ I
)−1

, where K =
∑

j xjx
T
j , is the kernel matrix.

We can therefore use the Woodbury matrix identity to compute ∆R.
The identity is:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

We use this with A = R−1,U = x = VT ,C = − 1
Nλ

to obtain

R′ =

(
R−1 − xix

T
i

Nλ

)−1

= R +
Rxix

T
i R

Nλ− xTi Rxi
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so that

∆R =
Rxix

T
i R

Nλ− xTi Rxi

As L = 1
2N

yTRy, the change in L from removing cell i is

∆L =
1

2N
yT (∆R) y = yT

Rxix
T
i R

2N2(λ− xTi Rxi
N

)
y =

|yTRxi|2

2N2(λ− xTi Rxi
N

)

Recall also that the output weight of cell i before it is silenced is

vi = yTRxi
Nλ

. Thus,

$i = ∆L =
λ2v2

i

2
(
λ− xTi Rxi

N

) =
λ

2
v2
i

(
λ

λ− xTi Rxi
N

)

Next we show that for small sets of cells, worth is approximately
additive.

Theorem 3 (Worth is approximately additive). Let I be a set of
producer cells. Then the worth $I of set I satisfies

λ

2

∑
i∈I

v2
i ≤ $I ≤

(
1 +

maxk∈I |xk|
∑

j∈I |xj|
Nλ

)(
λ

2

∑
i∈I

v2
i

)

In particular, this means that if maxk∈I |xk|
∑

j∈I |xj| � Nλ then

$I ≈
1

2

∑
i∈I

v2
i ≈

∑
i∈I

$i

Thus, worth in the feedforward network of Figure 1 is approximately
additive for sufficiently small sets of cells.

Proof. Again, we will use

∆L =
1

2N
yT (∆R)y

Split the producer cells into two disjoint sets I, J = Ic. Write XI ∈
RN×|I| for the matrix of data from cells I, XJ for the matrix of data
from cells J. Correspondingly define

RJ =

(
XJX

T
J

Nλ
+ I

)−1
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RI∪J =

(
XI∪JX

T
I∪J

Nλ
+ I

)−1

=

(
XIX

T
I

Nλ
+

XJX
T
J

Nλ
+ I

)−1

so RJ is the residual matrix when only cells J are available. Using
the Woodbury matrix identity again with A = R−1

J and U = V T =

XI, C = 1
Nλ

, we have

RJ −RI∪J = RJXI
(
Nλ+ XT

I RJXI
)−1

XT
I RJ (17)

It will prove convenient to define

B := XT
I RJXI = BT

and rewrite (17) as

RJ −RI∪J = RJXI (Nλ+ B)−1 XT
I RJ (18)

Therefore, the change in loss is

$I = LJ − LI∪J =
1

2N
yT (RJ −RI∪J)y

=
1

2N
yTRJXI (NλI + B)−1 XT

I RJy

By definition the worth is $I = LJ − LI∪J so this means that

$I = yTRJXI

(
1

2N2λ

(
I +

1

Nλ
B

)−1
)

XT
I RJy

We wish to compare the worths of cells in I to their weights. From
(11) we have

(Nλ)2
∑
i∈I

v2
i =

∣∣XT
I RI∪Jy

∣∣2
and using (17) we have

RI∪JXI = RJXI −RJXI (NλI + B)−1 XT
I RJXI

= RJXI
(
I− (NλI + B)−1 B

)
= RJXI (NλI + B)−1 (NλI + B−B)

= RJXI

(
I +

1

Nλ
B

)−1

Therefore,

λ

2

∑
i∈I

v2
i = yTRJXI

(
1

2N2λ

(
I +

1

Nλ
B

)−2
)

XT
I RJy
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B is real, symmetric and positive-semidefinite, so it has a full basis
of orthogonal eigenvectors ui and corresponding real, nonnegative

eigenvalues µi. Multiplying any vector by
(
I + 1

Nλ
B
)−1

scales the

ui component by factor 1
1+

µi
Nλ

and so it follows that

λ

2

∑
i∈I

v2
i ≤ $I ≤

(
1 +

maxi∈I µi
Nλ

) λ
2

∑
i∈I

v2
i

Gershgorin’s theorem bounds the µi: they must lie within the
union of the ‘Gershgorin discs’

D

(
Bii,

∑
i 6=j

|Bij|

)
which have centers Bii and radiuses

∑
j 6=i |Bij|. Now |Bij| =

|xTi RJxj| ≤ |xi||xj|, so this implies that each µi satisfies

µi ∈ [0,max
k∈I
|xk|

∑
j∈I

|xj|]

The upper bound in theorem 3 is tight: we can construct an
example which hits it. Suppose we have p identical cells each out-
putting xi = y, |y|2 = N . Then the weights vi satisfy

vi =
1

λN
(y − ŷ)Tx =

1

λ
(1− pvi)⇒ (λ+ p)vi = 1

and the loss is

L =
1

2N
|y − ŷ|2 +

λ

2
pv2

1 =
(1− pv1)2

2
+
pλv2

1

2
=
λ2v2

1 + pλv2
1

2

If all cells had their output weights set to zero, then the loss would
be 1

2N
|y|2 = 1

2
. Thus, the worth of the set {1, . . . , p} is

${1,...,p} =
1

2
− (1− pv1)2

2
− pλv2

1

2

=
2pv1 − p2v2

1 − pλv2
1

2

=
λ+ p

2
pv2

1

=
pv1

2

This is equal to the upper bound in theorem 3:

λ+ |{1, . . . , p}|
λ

(
λ

2
|v{1,...,p}|2

)
=
λ+ p

λ

(
λ

2
pv2

1

)
=
pv1

2
= ${1,...,p}
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5.6 PMH makes the most of a small pool of producers

By selectively stabilising producers with useful outputs, PMH
should cause pools of producers to concentrate on useful features,
and make it possible to get equivalent performance using smaller
numbers of producers.

We get a best-case estimate for the reduction in number of pro-
ducers needed, by comparing two extremes: a pool of producers with
completely random input weights, versus a pool of producers whose
output is perfectly matched to the target y.

We do this for the feedforward network in Figure 1, supposing
that the input consists of n uncorrelated signals and that the target
y is a random combination of the same n orthogonal signals with
|y|2 = N . Initially the producers have random input weights, with
the constraint (which can be encoded in p0) that |x1|2 = . . . =
|xp|2 = N .

After running PMH for a long time, producers will tend to have
outputs highly correlated (or anticorrelated) with the target y. We
argue that at best, this will reduce the number of producers needed
for a given L by a factor of n.

In the best case, when every producer outputs an exact copy of
the target y (or −y) then you can show using (12) and (14) that
the loss is λ

2(λ+p)
.

In the ‘no learning’ case when the input weights to the producers
are random, then for large enough p, the Marchenko-Pastur theorem
implies the non-zero eigenvalues of XTX will be close to pN

n
[2]. If we

write s2
1, . . . , s

2
N for the eigenvalues of K, ui for the corresponding

eigenvectors, and write y =
∑

i αiui, then we find that

L =
1

2

N∑
i=1

α2
i

Nλ

Nλ+ s2
i

(19)

Thus, the loss in this case is approximately λ
2(λ+p/n)

. To achieve

the same performance as when all producers output perfect copies
of the target, we need approximately n times as many cells. In
figure 2 we show that indeed, PMH substantially reduces the number
of cells needed to attain a given performance L. In the example

[2]We have
∑
i s

2
i = TraceXTX = pN and there can be only n nonzero eigenvalues. To find

the interval they lie in, write X = SW where S ∈ RN×n is the matrix of n uncorrelated signals
and W ∈ Rn×p is the random weight matrix whose entries have mean 0 and variance 1

n
. Then

XTX ≈ NWTW. The Marchenko-Pastur law implies that, in the limit where n, p→∞ and

n/p is fixed, the non-zero eigenvalues of nWTW lie between
(√
p−
√
n
)2

and
(√
p+
√
n
)2

.

Thus, the non-zero eigenvalues of XTX are in the range N
n

(√
p±
√
n
)2

= pN
n

(
1±

√
n
p

)2

.
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simulated the stimuli to producers consist of random mixtures of 15
independent component signals, of which only 3 are of interest to
consumers. Using PMH in this example reduces the number of cells
needed for equivalent performance by about a factor of 5.

5.7 An implementation of PMH

We showed in theorems 2 and 3 that the worth of a cell i is ap-
proximately λ

2

∑
j V

2
ji and that the worth of a small set of cells is

approximately additive. This lets us implement PMH for the feed-
forward network in Figure 1.

In this implementation of PMH, each consumer j continually ad-
justs its input weights Vji using a supervised learning rule, and pro-
ducers generate new candidate input weights by an unsupervised
learning rule. In the example we simulate in the next section, the
supervised rule is a delta rule and the unsupervised rule does inde-
pendent component analysis.

The supervised learning of the consumer input weights applies all
the time, while the unsupervised learning rule only applies during a
short ‘proposal window’ each time a cell decides to propose a change;
this happens at different times for different producers.

Each producer continually monitors the strength of its output
weights and uses that to infer its worth. If a producer has low
worth it is more likely to change its input weights: at time t producer

i proposes a change with probability proportional to e−
λ
2
α
∑
j V

2
ji(t).

The algorithm has a parameter tdecide which is the length of time that
passes between deciding to propose a change, and deciding whether
to accept it. If cell i decides at time t to propose a change, then
from time t to time t+ tdecide, it runs an unsupervised learning rule
to update its input weights, while its output weights to consumers
continue to be subject to adjustment by the consumers.

To propose a change, a producer may transiently raise the learn-
ing rate of its unsupervised rule very high — beyond the limit of
stability of the unsupervised learning rule — then reduce the learn-
ing rate, with the aim of allowing the unsupervised rule to approxi-
mately converge on a new fixed point by t+ tdecide.

At time t+tdecide cell i measures
∑

j V
2
ji again and decides whether

to accept or reject the change. It accepts with probability

min

(
1, exp

(
λ

2
(β − α)

∑
j

(
V 2
ji(t+ tdecide)− V 2

ji(t)
)))

and otherwise reverts its input weights to values remembered from
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time t.

5.8 Simulation: PMH with independent component anal-
ysis

We test the algorithm described above on a form of ‘cocktail party
problem’ (figure 3). The inputs that producers will see are linear
combinations sj =

∑
j Aijbj of independent signals b1,b2, . . . with

random weights Aij. In this simulation there are 10 consumers, and
the target outputs for the consumers depend only on a small subset
of those hidden, independent signals — the others being distractors.
This is a ‘cocktail party problem’ in the sense that the independent
signals are like voices of many individuals, while the mixed signals
s1, s2, . . . are picked up by microphones in various places. We know
the consumers need to listen only to a few of these voices, but we do
not know in advance which voices these will be. Each consumer j
receives its ideal output yj(t) as a training signal. The loss function
for the whole network is

L =
∑
j

t

yj −
∑
i

Vjixi

|2

+
λ

2
|vj|2

Here, again, J..K means the root mean square.
This simulation shows how the neural marketplace framework

can be used to tackle such a problem:

� Each producer uses an unsupervised learning rule to perform
independent component analysis (ICA) and recover a single
source bi. Because ICA will find a source at random, most
producers will represent distractor sources.

� Each consumer j uses a delta rule to find weights vj that min-
imise its contribution to L, namely

Lj =

t

yj −
∑
i

vjixi

|2

+
λ

2
|vj|2

� Each producer i infers from the sum of squares of its output
weights,

∑
j V

2
ji, whether the source it recovered is relevant for

the consumers. A small
∑

j V
2
ji indicates irrelevance, prompting

producer i to change its input weights and seek a different voice
to present to the consumers.

In this simulation, each producer runs an unsupervised learning
rule to perform ICA and find an independent component in the
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signals it receives. When a producer decides to propose a change
to its input weights, it temporarily raises the learning rate of the
ICA rule very high, beyond its limit of stability, so that when the
learning rate reverts to the usual small value, the neuron may settle
on a different independent component.

When a producer i decides to propose a radical change, it starts a
countdown timer, and remembers what its estimated worth λ

2

∑
j V

2
ji

was before it proposed the change, as well as its input weights wi

before proposing the change. When the countdown timer expires,
the producer calculates its new estimated worth using the new values
of Vji, and it decides whether to keep the change, retaining the
change with probability a = min(1, exp((β−α)∆$i) as described in
Chapter 4.

Stimulus and target. The stimuli in this simulation are random lin-
ear combinations of 15 independent signals b1, . . . , b15. Each bi(t) is
independent and identically distributed, with bi + 1 drawn from an
exponential distribution with parameter 1 so that bi(t) = 0, bi(t)2 =
1. These independent signals are passed through a random orthonor-
mal mixing matrix A before presentation to the network. The stim-
ulus vector seen by the producers at time t is s(t) = Ab(t).

The target for consumer j is

yj(t) = αj1b1(t) + αj8b8(t) + αj15b15(t)

with independently drawn random α:

αj1 ∼ N(0,
1

21
), αj8 ∼ N(0,

4

21
), αj15 ∼ N(0,

16

21
)

Thus, sources 1, 8, and 15 are useful to the consumers (source 15
very important, source 1 less important), while the other 12 sources
are purely distractors.

Unsupervised independent component analysis. The producers
have linear activation so xi(t) = wi.s(t). Each producer uses a
Hebbian learning rule to perform ICA, specifically

d

dt
wi ∝

wi + µ tanh(xi)s

|wi + µ tanh(xi)s|
−wi

This rule was described by (Hyvärinen and Oja, 1998) and works
by extremising the kurtosis of x. Its fixed points are values of w
which make x ≡ bi for some i (in fact one can perform ICA by
extremising arbitrary combinations of high-order cumulants). For
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the first iteration after deciding to propose a change, a neuron runs
the rule with infinite learning rate µ, which means setting wi =
s
|s| , and thereafter it uses a small positive learning rate µ. This

simulates ‘learning by memorisation’ followed by refinement of the
input weights wi using Hebbian learning.

Delta rule for consumer input weights. Each consumer neuron re-
ceives a copy of its target y(t) as a training signal and uses a delta
rule to seek appropriate input weights vj:

d

dt
Vji ∝ −λVji + xi(yj − ŷj)

Epochs of the simulation. So that we can separate the effect of
retroaxonal learning from the effect of ICA alone, and the effect of
the delta rule, we run the simulation in several stages. Initially,
the input weights wi to each consumer i are chosen uniformly at
random from the unit hypersphere |wi| = 1. For the first 2000
iterations only the consumer weights V are plastic, and are learned
using the delta rule. After 2000 iterations we switch on ICA with
small positive learning rate µ. After another 2000 iterations, at the
4000th iteration, we switch on PMH, so producer neurons begin to
occasionally propose radical changes to their input weights, with
a probability that depends on the sum of squares of their output
weights.

Figure 4 shows the learning scheme operated by producer cells
once the retroaxonal rule is switched on.

Parameters. The parameters used in the simulation are as follows.
‘Decision time’ is the number of timesteps that elapse between a
producer deciding to propose a change, and deciding whether to
accept or revert the change.

Parameter Value

β 2× 104

α β/2
κ 0.2

Number of unsupervised cells 1000
Number of supervised cells 10

Number of independent components 15
Decision time 3× 104 timesteps

ICA learning rate µ 3× 10−4

Delta rule learning rate 3× 10−5

58



Producers

Consumers

�: input weights to 

producers

�: input weights to 

consumers

�: input weights to 

consumers

Producers

External 

stimulus

Consumers

�: input 

weights to 

producers

Figure 1: Pools of producers providing input to several consumers. The produc-
ers’ input weights W are to be learned using PMH, while the consumer’s input
weights V will be learned using a standard supervised learning rule such as the
delta rule. In chapter 5 we deal only with the feedforward network; in chapter
6 we discuss extension to the recurrently connected network.
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Figure 2: Performance using different numbers of producers, and ICA but no
PMH, on the task of section 5.8. Parameters are the same as in section 5.8,
except for the delta rule learning rate which, to avoid instability, scales with
1
p for p > 1000. The red horizontal line shows performance attained using
1000 cells with PMH, as in figure 6. Similar performance without PMH is not
attained until there are over 5000 producers.
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Figure 3: The ‘cocktail party’ problem used to test the PMH algorithm. The
inputs available to the producers are generated by summing independent non-
Gaussian sources (left), with dense, random weights A. Target outputs for the
consumers are generated as linear combinations of a small subset of the sources.

61



Estimate worth $� from 

output weights

$� ≈
�
2
�����
�

Sample a random number 

uniformly from [0,1]

Is it less than ����$�?

Estimate new worth $� from 

new output weights

Yes

No

At each time step until the countdown 

timer expires, keep updating 

�� ←
�� + � tanh �� 	
�� + � tanh �� 	  

Record $�
���

= $	,�	


��
= �	

Set �� ←


�

Start countdown timer

Sample a random number 

uniformly from [0,1]

Is it less than 

� ��� $��$�
���

?

YesNo

Revert the change: set 
� ← 
�
���

Keep the change (do nothing)

Figure 4: The version of PMH used by a single producer cell i in the simulation
of section 5.8. The consumers run a delta rule continually, so that the output
weights V adapt to the new activity of cell i when it proposes a change.
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5.8.1 Results

The overall results of the algorithm are illustrated in figure 5.

PMH causes producers to concentrate on relevant features. Figure
5a illustrates the representations found by producer cells during the
simulation. These are pseudocolour plots of the matrix WA at
three different stages: at the beginning of the simulation, when the
weights W are completely random; after ICA alone (iteration 4000);
and after applying the retroaxonal rule (iteration 14000). Looking
at WA is a way of visualising which of the independent components
s contributes to the output of each producer cell. The output of
producer i is xi(t) =

∑
j[WA]ijbj(t). If the jth row of WA is a

row of all zeros except for ±1 in position i then cell j outputs a
pure copy of the independent component bi(t). Figure 5a shows
that initially, each neuron outputs a mixture of sources. After ICA
each producer neuron outputs a copy of an individual source, but
with no bias towards the useful sources. After retroaxonal learning,
the majority of neurons output copies of useful sources. Figure 7a
shows the same thing in a different way.

PMH improves network performance. Figure 5b shows how the loss
function evolves with learning. Since the consumer weights V are
learned using a delta rule, they are not exactly optimal. Figure
5b shows a comparison of the actual network performance Lv (blue
line) with the best possible loss L = minv Lv given the current
configuration of the producers (red dots, computed analytically from
W and α). The two are very similar, except for a short period
just after the retroaxonal rule is switched on. Here the two diverge
because a large number of producers propose changes at once, and
it takes some time for the consumer weights V to adapt.

Figure 5b shows that initially, switching on the ICA rule leads
to a decrease in network performance, indicating the representation
found by Hebbian unsupervised learning alone is actually worse than
a random projection. After iteration 4000, when the retroaxonal rule
is switched on, there is an improvement in performance, to a level
better than was achieved before switching on ICA.

PMH allows continuing plasticity. The amount of plasticity goes down

as the network learns. Figure 5c shows the number of cells perform-
ing a radical change in input weights on each iteration. A large spike
occurs immediately after the retroaxonal rule is switched on. At this
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Figure 5: PMH improves the performance of a network on the cocktail party
task by causing producers to focus on those independent components which are
relevant to the consumers. For full explanation of this figure see section 5.8.1. a.
Pseudocolour plot of representations found by the producer cells before learning
(left); after ICA alone (middle); and after both ICA and retroaxonal learning
(right). b. Loss function vs. iteration number (blue curve); red dots indicate the
minimum loss function possible for the current producer weights W, computed
by analytically calculating the optimal V. c. Number of cells experimenting
with large changes to input weights at each iteration.

time a majority of producers had very little worth. The number of
cells proposing changes per iteration decreases as more and more
cells arrive at useful representations of their inputs; note however
that the asymptotic value of this is not zero, indicating that neu-
rons continue to occasionally change their representations even after
performance has become good.

Output weights of a producer predict its worth, and worths are ap-

proximately additive for small sets of producers. Figure 6 tests the
worth approximation $I ≈ λ

2

∑
j

∑
i∈I V

2
ji. The approximation holds

with good accuracy for sets of up to 100 neurons, except for just
after the retroaxonal rule is switched on. This deviation occurs be-
cause when the retroaxonal rule is first switched on, a large number
of producers change their input weights and the consumer weights
V take some time to adapt. The worth of cell i is defined as the
change in minv LV if cell i fell silent. We showed in theorem 2 that
the worth of each producer can be estimated from the optimal values
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Figure 6: The approximation $I ≈ λ
2

∑
j

∑
i∈I V

2
ji holds with good accuracy

during simulations of the PMH algorithm. For further discussion of this figure
see section 5.8.1. Each panel shows a scatter plot of actual worth of a set of
neurons (computed by calculating L with and without the set) vs. its approx-
imated value λ

2

∑
j

∑
i∈I V

2
ji. Blue dots indicate the approximation computed

from the current weights V learned by the delta rule; red circles indicate the
values predicted from the optimal V derived analytically. Each column of pan-
els shows results for a different size of set of cells, with each point representing
a randomly-drawn set of this many cells. Each row of panels corresponds to a
different time point in the simulation: early in running of ICA alone; shortly
before the retroaxonal rule is switched on; shortly after the retroaxonal rule is
switched on; and substantially after it is switched on. The diagonal line in each
plot is equality.

of the weights V. The deviation of the blue dots from the diagonal
line for single cells at iteration 4100 shows that when the consumer
weights V are far from optimal, estimating worth from V can fail.
We can compute the optimal weights analytically to check the result
of theorem 2: the red circles on the same plot, showing worths es-
timated from these optimal weights, lie close to the line of equality,
as we expect.

PMH makes worths converge around a common value. PMH sys-
tematically destabilises cells with low worth. It also tends to reduce
the worths of the highest-worth cells, as more and more cells be-
gin to provide the same thing they offer. Figure 7 shows how the
distribution of producers’ worths evolves over time.

We define the ‘dominant source’ for a cell i as

argmaxj|[WA]ij|
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Figure 7a shows how the distribution of dominant sources changes
during the simulation. Initially, with random weights, and after
running ICA alone, the distribution of dominant sources is fairly
uniform. After running the retroaxonal rule for a long time, the vast
majority of producers’ outputs are dominated by useful sources.

Figure 7b shows the estimated worth of each producer cell as a
function of time. Lines are coloured by dominant source of the cell.
After ICA is switched on, the worth of some cells increases. The cells
whose worths increase are those whose activity is dominated by im-
portant sources. After the retroaxonal rule is switched on, the worth
of each individual cell representing source 15 drops dramatically, the
network performance improves, and the number of cells represent-
ing source 15 increases. Thus, network performance increases while
certain cells’ worths decrease. This is predicted by the maths of
ridge regression: when p neurons represent source 15, their output
weights will scale as 1

λ+p
and individual worths scale approximately

as 1
(λ+p)2

. Thus, when large numbers of cells represent source 15,

each one’s worth will be lower, while network performance is overall
higher.

Figure 7c shows another representation of how the distribution
of worths changes over time. Since PMH systematically destabilises
cells whose worths are low, over time the majority of cells’ worths
converge around a common value.
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Figure 7: Increased network performance does not correspond to increased
worth of individual producer cells. Instead, PMH causes all cells’ worths to
converge around a common value. See section 5.8.1 for further explanation of
this figure. a. Histogram of the number of cells dominated by each source at
different iterations. The retroaxonal rule causes the majority of producer cells
to represent useful sources b. Each curve shows the estimated worth of a sin-
gle producer cell as a function of iteration number; curves are colour coded by
dominant sources. c. Unnormalised cumulative distribution of worths, with
cells classified by dominant source (colour code as in b.). After ICA alone, cells
with useful dominant sources have higher worth, but are no more numerous
than, those with useless dominant sources. PMH selectively destabilises cells
with low worth, with the effect that by iteration 14000, most cells represent
useful sources and their worths are tightly clustered around a common value.
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5.9 Simultaneous perturbations to many producers’ out-
puts

In Chapter 6 we study the worths of cells in recurrently connected
pools of producers. In those networks, silencing a single cell can
have effects on many other producers’ activities. We will therefore
find it useful to have an expression for the general ‘perturbation
penalty’. This is the effect on L of adding a perturbation ∆xi to
the activity of each cell i, and then letting each consumer relearn
its input weights, so that the consumer input weights are optimal
given the new activities of the producers.

The approximation, whose error is small whenever ρ(∆K)� Nλ,
is

∆L = − 1

2N2λ

∑
i

2Nλvi(∆xTi r) + |rT∆xi|2

+O

(
1

N

(
|r|ρ(∆K)

Nλ

)2
)

(20)

This approximation will be used in chapter 6 where we estimate the
worths of producers in recurrently connected networks. To estimate
the worth of cell i, we will let ∆xj be the perturbation to xj that
arises if cell i is silenced and ∆xi = −xi. In the networks of chapter
6, apart from the cell i that is silenced, other cells j have their
outputs changed by only a small amount ∆xj, and (20) simplifies
to

$i = ∆L ≈ λ

2
v2
i +

∑
j 6=i

vj
∆xTj r

N

To check this approximation is applicable we will need to
check the spectral radius of ∆K. One can show that ρ(∆K) ≤∑

i 2|xTi ∆xi|+ |∆xi|2 so it suffices to show
∑

i 2|xTi ∆xi|+ |∆xi|2 �
Nλ. To show ρ(∆K) ≤

∑
i 2|xTi ∆xi| + |∆xi|2, recall that ∆K is a

sum over cells i:
∆K =

∑
i

∆(xix
T
i )

The triangle inequality for operator norms implies that

ρ(∆K) ≤
∑
i

ρ(∆(xix
T
i ))

≤
∑
i

2ρ(∆xix
T
i ) + ρ(∆xix

T
i )

≤
∑
i

2|xTi ∆xi|+ |∆xi|2
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Suppose we know that ρ(∆K) < Nλ. To derive the approxima-
tion (20), recall that

L =
1

2N
yTRy (21)

If X changes to X + ∆X and the consequent change to R is ∆R,
then

∆L =
1

2N
yT∆Ry

We can represent ∆R as a power series in terms of y,∆K, and R:

R + ∆R =

(
I +

K

Nλ
+

∆K

Nλ

)−1

=

({
I +

K

Nλ

}{
I +

(
I +

K

Nλ

)−1
∆K

Nλ

})−1

=

(
I + R

∆K

Nλ

)−1

R

=
∞∑
k=0

(
−R

∆K

Nλ

)k
R

Since R∆K is symmetric, it has operator norm equal to its spectral
radius, so this power series expansion is valid provided the spec-
tral radius ρ

(
−R∆K

Nλ

)
is less than 1. In fact, since R is always a

contraction, we need simply that ρ(∆K) < Nλ, which we have by
assumption. Using the power series expansion of R + ∆R in (21),
we have

∆L =
1

2N
yT

∞∑
k=1

(
−R

∆K

Nλ

)k
Ry (22)

Putting r = Ry for the residual, we can write

∆L = − 1

2N2λ
rT∆Kr

+O

(
1

N

(
|r|ρ(∆K)

Nλ

)2
)

(23)

The leading term is additive over cells i since K =
∑

i xix
T
i . To

expand it we use

∆K =
∑
i

(xi + ∆xi)(x
T
i + ∆xTi )− xix

T
i
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and recall that the output weight of cell i to the consumer is given

by vi =
xTi r

Nλ
, so that

rT∆Kr =
∑
i

2Nλvi(∆xTi r) + |rT∆xi|2 (24)

Note that when one cell i is silenced, i.e. ∆xi = −xi, the above
simplifies to −(Nλvi)

2 and inserting this in (23) we recover the old
estimate $i ≈ λ

2
v2
i for simple feedforward networks. More generally,

putting (24) into (23) we get the required result (20).

5.10 Optimal brain damage (OBD) and worth

We noted already that our notion of ‘worth’ bears some relation to
‘saliency’ in another theory, Optimal Brain Damage (OBD) (LeCun
et al., 1989). LeCun et al. (1989) showed how to estimate ‘saliencies’
of synaptic weights in a feedforward network that has been trained
using backprop. In their work, the saliency of a synaptic weight
is an estimate of how the loss function will go up if that synaptic
weight is set to zero. The method is useful in artificial neural net-
works: it allows pruning, leaving a simpler network which takes less
computing power to simulate and may generalise better.

Our worth calculation differs from the OBD calculation of
saliency in that we allowed for our ‘consumer’ cells to relearn their
input weights after a cell is deleted. By carefully defining the loss
function for OBD to take this into account, and making a fairly
straightforward transformation of our network, we could make our
‘worth’ equivalent to ‘saliency’ of a special dummy ‘repeater’ weight
in the transformed network. The required transformation of the net-
work is shown in Figure 8. If the loss function for OBD is defined
appropriately, so that it takes into account the effect of a consumer
relearning its weights, then the change in the worth of cell i in the
original network is the saliency of its repeater weight in the trans-
formed network.

The OBD calculation of saliency is applied by LeCun to multi-
layer feedforward networks, and at first sight it looks like it could
enable us to calculate worths of cells in deeper networks. However,
we run into multiple problems:

1. The calculation of saliency in OBD cannot be done using slow,
rather than fast, retrograde signals. Like backprop, the calcu-
lation depends on measuring the correlation between a cell’s
input, and a (second-order) partial derivative which is calcu-
lated using retrograde signals.
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2. OBD depends on every downstream weight being at a locally
optimal value, achieved for example by pretraining the network
using backprop.

3. OBD works for feedforward, steady-state networks, not dynam-
ical networks with recurrent connections.

In Chapter 6 we demonstrate an alternative and also very fast way
to estimate worths of cells in simulation. Like OBD, it still uses
fast retrograde signals, but it does not require downstream weights
to be pretrained, it operates in dynamical networks, and it does
not require the network to have feedforward structure. We also
demonstrate a method using slow retrograde signals to make very
rough estimates of worth in the same networks.

5.11 Conclusion

In this chapter we presented a type of network in which cells can
estimate their worths from their output weights. We introduced a
network architecture and standard loss function (section 5.2). We
reviewed standard results on how to find the consumer’s optimal
weights given this loss function.

In section 5.5 we showed that in this type of network, the worth
of a producer is approximated by the sum of its squared output
weights to consumers, multiplied by the weight penalty parameter:
$i ≈ λ

2

∑
i V

2
ij . We gave a bound for the error in that approximation.

PMH is designed to make good use of a limited pool of producers.
In section 5.6 we made a rough prediction about relative numbers
of producers needed to get the same performance with and without
PMH, for a toy problem.

In section 5.7 we wrote out explicitly how the PMH algorithm
would work for this specific network. In this scheme producers use an
unsupervised learning rule to generate new candidate input weights,
and they use their output weights to calculate running estimates of
their worth. If a producer has small output weights to consumers,
it deduces it has low worth and increases its unsupervised learning
rate.

In section 5.8 we implemented this algorithm and showed that
indeed, PMH improves the performance of the network over using
the unsupervised learning rule alone. We also showed that to get
the same performance using the unsupervised learning rule, without
PMH, we need several times as many cells.

In section 5.9 we used some of the machinery developed to derive
an estimate for the effect on performance when many producers
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have their activities simultaneously perturbed. This will be crucial
in the next chapter, where we try to estimate worths of producers
in recurrently connected, random networks.

In section 5.10 we discussed the relationship of this work to the
theory of ‘optimal brain damage’ (OBD). ‘Saliency’ in OBD and
‘worth’ here are related, but not identical. We identified limitations
in the applicability of the OBD strategy to calculating worths of cells
in neural networks that may be recurrently connected and where
there are no fast retrograde signals, and in the next chapter we will
try to overcome these.

The conclusion of this chapter is that there is at least one simple
model network where PMH works, where cells can estimate their
worths using slow retrograde messages — specifically by monitor-
ing their output weights — and where the kind of learning scheme
proposed by the retroaxonal hypothesis does indeed improve the
performance of the network.
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Figure 8: Transforming a network so that OBD ‘saliency’ becomes our ‘worth’.
To construct the bottom network from the top one, each producer cell (blue) is
replaced by two cells. The first of the two new cells has the old cell’s inputs and
a unit ‘repeater’ weight (orange) to the second cell, while the second cell has
the output synapses of the old cell. The time-averaged saliency of a repeater
weight in the transformed network is the worth of the corresponding cell in the
original network, provided the loss function used in OBD allows for relearning
of the consumer weights when a producer changes its activity.
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6 Message-passing to estimate indirect worth

6.1 Introduction

In chapter 5 we showed that when a single layer of producer cells
offer their outputs to some supervised consumer cells, each unsuper-
vised producer cell can estimate its worth from its output weights
to the consumers. As described in chapter 3, in biological neural
networks, consolidation of synaptic weight change may depend on
retrograde signalling. Therefore, in that simple feedforward config-
uration, a cell can estimate its worth using retrograde signals that
pass at a biologically realistic speed.

What if the synaptic weights downstream of one producer cell
have not been perfectly learned, and what if there are recurrent
connections? Is it true, for example, that if a producer provides
strong input to cells of high worth, it probably has high worth itself?

To answer this we now look at recurrently connected pools of
producers with random synaptic weights. Actual weight matrices in
the cortex do not appear to be random (Song et al., 2005). How-
ever, modelling them as random allows us to use approximations and
assumptions that make the calculations more tractable. This anal-
ysis therefore offers a first step towards a theoretical understanding
of whether retroaxonal signals could be used to guide plasticity in
recurrent cortical networks.

We will see that in these networks, it is easy to compute accu-
rate estimates of worth using unbiological, fast retrograde signals.
We also derive and test coarser estimates that can be calculated
using slow retrograde signals. To do this, we suppose that cells
pass retroaxonal signals encoding certain information e.g. synap-
tic weights, or estimated worths of downstream cells; and we study
the ‘belief’ a cell might have about its worth given the retroaxonal
messages it receives. ‘Belief about worth’ is used here to mean the
conditional distribution of a cell’s worth, over random weight ma-
trices, given the retroaxonally transmitted information. By making
various approximations, we derive estimates for the mean and vari-
ance of this conditional distribution, and we verify these estimates
in simulation. Over the population of cells in a network, we find that
the conditional coefficient of variation (CV) of worth is smaller for
cells of large expected worth and larger for cells of small expected
worth. Often, especially for cells with small expected worth, we find
the coefficient of variation is much greater than 1, and a cell cannot
reliably predict whether its worth is positive or negative. In these
cases, the conditional distribution of a cell’s worth given retrograde
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signals provides little more than probabilistic bounds for the abso-
lute value of the worth. Section 6.6 shows that if we abandon the
attempt to compute signed estimates of worth using slow retrograde
signals, there is a simpler way of using slow retrograde signals to
compute symmetric probabilistic bounds.

6.2 Model networks

In this chapter, we continue to study networks of producers and
consumers, with the same loss function we introduced in chapter 5.

Hidden and visible producer cells. We consider model networks
where connections from producers to consumers are sparse. For
simplicity there is no structural plasticity, so certain weights from
producers to consumers are constrained always to be zero. We do
this by making a minority of producer cells ‘visible’ and the rest
‘hidden’. Hiding cell j means constraining each consumer i to have
zero input from cell j, Vij = 0. A cartoon of the network is shown
in figure 9. One could think of this situation as analogous to the
projections from neocortex to subcortical motor output structures
such as striatum, superior colliculus or brainstem nuclei, which arise
from a small subset of cortical neurons (Harris and Shepherd, 2015).
The architecture could be considered a variant of the ‘liquid state
machine’ (Maass et al., 2002).

Direct and indirect worth. In section 6.5.2 we will show how to
decompose a cell’s worth into ‘direct’ worth that comes from its di-
rect output to consumers, and ‘indirect’ worth via connections to
other producers. We will make use of this to derive estimates of a
cell’s worth given information that may be transmitted retroaxon-
ally. Hidden cells have no direct worth, only indirect worth. Visible
cells may have both direct and indirect worth. Indirect worth can
be negative: for example, a hidden producer’s output may degrade
visible producers’ outputs. In the marketplace analogy, this hidden
producer with negative worth is like a supplier of faulty components
that end up in consumer goods.

Neighbours. We will use ‘neighbour of cell j’ to mean any cell i
connected to cell j by a synapse — in either direction. Cell i is
a ‘downstream neighbour’ if cell j provides input to cell i and an
‘upstream neighbour’ if cell i provides input to cell j.
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Figure 9: Recurrently connected producers serving a number of consumers.
The producers in orange are ‘visible’ and they are the only ones from which the
consumers are allowed to have nonzero input weights.

Firing rate dynamics. We model a pool of producers having con-
tinuously time-varying firing rates xi(t), obeying linear dynamics:

dx

dt
=

1

τ
(W − I)x + s (25)

xi(t) is the firing rate of cell i at time t, Wij is the synaptic weight
from cell j to cell i, τ is a time constant and si is the external
stimulus to cell i. x = x(t) is a vector with one element per cell
(this is not the same as the earlier notation where xi was a vector
of outputs for one cell i, with one element per time step). I is the
identity matrix.

Random weights. In the brain, synaptic weights are not random
in the way that we model them here (Song et al., 2005). However,
we do not know the true details of learning rules used in biological
neural networks, and so in this chapter we use random networks
as a tractable test-case for recurrent networks. To check that the
approximations we make are broadly valid, we will simulate and
check them using three rather different kinds of random weight ma-
trix. Precisely how these random weight matrices are generated is
not important for the first few parts of this chapter, so the form of
the random weight matrices will only be explicitly defined in sec-
tion 6.4. For now, we note that our random weight matrices will
have some structure, namely a diversity of ‘cell types’. A ‘cell type’
is defined by a distribution of output weights: each Wij is drawn
independently at random from a distribution that depends on the
presynaptic cell j. An ‘excitatory cell’ has all non-negative output
weights; an ‘inhibitory cell’ has all non-positive output weights. No
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cost function on W is explicitly included, but the distribution of
Wij for each cell type controls the strength and number of synapses.
Sparse connectivity can be obtained by selecting distributions for
Wij with a large point mass at 0.

6.3 Estimating worth with fast retrograde signals

Before considering whether a cell can estimate its worth using only
slow retrograde signals, we show how to efficiently estimate the
worth of a cell in a simulation. We show that it is easy to accu-
rately estimate the worths of cells without actually silencing them,
by passing fast retrograde signals (too fast to occur in biological
networks). This works in recurrent networks provided they are not
too ‘loopy’, a term to be defined later.

This estimate of worth using fast retrograde signals is useful in
two ways. First, in machine learning, it is sometimes helpful to
prune a network: we have already discussed precedents such as op-
timal brain damage and budget perceptrons (sections 4.2, 5.10).
Second, and more relevant to our core aim of evaluating the biologi-
cal plausibility of the retroaxonal hypothesis for recurrent networks,
we can use these fast, accurate estimates of worth to check the es-
timates of worth that we later compute using methods that avoid
fast retrograde signalling.

The brute-force way to measure the worth of a cell in a simulated
network is to remove the cell from the simulated network, then re-
evaluate the network performance. This is slow: if it takes time t to
evaluate the performance of the network, then to measure the worth
of n cells takes time O(nt). We show that it is possible to accurately
estimate the worths of all the cells at once in time O(t). Part of
the calculation is related to a previously-described method called
‘backpropagation through time’ (BPTT) (Werbos, 1990), which we
discuss in 6.3.3.

All the networks in this thesis are artificial, but networks that do
this calculation of worth using fast retrograde signals are especially
artificial: they will play back activity reversed in time and pass fast
retrograde messages. Rather than being abstractions or simplifica-
tions of real neural networks, these networks have features with no
counterpart in biology.

6.3.1 Worth in terms of perturbations to visible cells’ outputs

When one cell in a recurrently connected network is silenced, many
other cells’ firing patterns are affected. This means that to estimate
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the worth of a cell in a recurrently connected network of produc-
ers, we need to know how the loss L is affected by simultaneous
perturbation of the outputs of multiple cells.

In this section we show how to write down the effect on L of
simultaneous perturbations to many of the xi, while accounting for
the fact that the consumers may relearn their input weights after
the producers’ activities change. A simple linear approximation us-
ing partial derivatives does not suffice, since that only handles small
perturbations to cells’ outputs, but when a cell is silenced, the per-
turbation to that cell’s output is large. In sections 6.3.2 and 6.3.4
we show, using the results of this section (6.3.1), how to compute
accurate estimates of worth using fast retrograde signals.

Notation. We will use the notation 〈x, y〉 to denote the time-
average of xy, so it is the inner product corresponding to the RMS
norm JxK. We write rj(t) = yj(t) − ŷj(t) for the residual error of
consumer cell j.

In chapter 5 we showed that when the outputs of the set I of
visible cells are perturbed by a small amount to xi(t) + ∆xi(t), the
effect on performance is

∆L ≈
∑
j

∑
i∈I

〈∆xi,−Vjirj〉 −
1

2λ
〈∆xi, rj〉2 (26)

Here Vji is the synaptic weight from producer i to consumer j, which
we assume is optimal given the xi.

The worth of cell i is, by definition, the increase in L when cell
i is silenced. In our recurrent network, silencing one cell i has a
drastic effect on the output of cell i and a small effect on other cells’
outputs. Therefore, we approximate the worth of cell i by

$i ≈
∑
j

(
−λ

2
V 2
ji +

∑
k

〈∆xk,−Vjkrj〉

)
(27)

where ∆xk is the perturbation to the output of cell k when cell i is
silenced. We do not need to restrict the sum to visible cells k ∈ I,
because for hidden cells, Vjk ≡ 0.

We can rewrite (27) by defining

bi = −
∑
j

Vjirj

The signal bi is something like a partial derivative of L with respect
to the activity of cell i, but assuming that the consumer learns new
optimal input weights as cell i changes its activity.
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Using the notation bi in (27) gives

$i ≈
∑
k

〈∆xk, bk〉 −
λ

2

∑
j

V 2
ji (28)

Rewriting the approximation (27) in this way will be useful in sec-
tions 6.3.2 and 6.3.4 where we show how to estimate worth from b
by passing fast retrograde signals.

The sign of the second sum −λ
2

∑
j V

2
ji in (28) looks surprising at

first: cell i should have high worth if it has large output weights to
consumers. However, for cell i the term 〈∆xk, bk〉 is λ

∑
j V

2
ji and so

the total contribution to (28) from cell i is λ
2
V 2
ji. The term −λ

2

∑
j V

2
ji

is a quadratic-order adjustment to the linear approximation, needed
only for the silenced cell i whose perturbation is large.

The equation (28) is specific to the loss function of chapter 5,
but we could extend to other loss functions that have locally linear
approximations by using different bi. For example we could add a
term to L which penalises large |xi|, setting L′ = L + λ̃

∑
i JxiK

2,

and b′i = bi − λ̃xi.

Linworth. For convenience we define ‘linworth’ as follows. If ∆xk
are the perturbations that arise from silencing cell i, then

$
(lin)
i =

∑
k

〈∆xk, bk〉

is the ‘linworth’ of cell i.
The expression in (28) approximates the worth of cell i as its

linworth, plus a function of its output synaptic weights, −λ
2

∑
j V

2
ji.

In the next sections we show that linworth can be estimated using
fast retrograde messages, simultaneously for all cells, and without
actually silencing any cell. This will enable us to estimate the worth
of every cell in an efficient way.

6.3.2 Using fast retrograde messages to compute the effect on loss
of perturbing the stimulus

As a step towards computing the linworths of cells, we first show
how to compute a partial derivative ai of

∑
k 〈xk, bk〉 with respect

to each cell’s external stimulus, si. In section 6.3.4 we show how to
compute a stimulus perturbation, i.e. a ∆si, which approximately
silences cell i. For this special stimulus perturbation which we will

call ζi, we will find that $
(lin)
i ≈ 〈ai, ζi〉.
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Suppose that the stimulus is perturbed to s + ∆s and write ∆x
for the resulting change to x. One can show that, for general real-
valued W, β, s, if α satisfies

dα(−t)
dt

=
1

τ
(WT − I)α(−t) + β(−t) (29)

and x satisfies
dx

dt
=

1

τ
(W − I)x(t) + s(t)

then ∑
i

〈∆xi, βi〉 ≡
∑
j

〈∆sj, αj〉 (30)

Here, α, β without subscripts represent vectors over cells. We will
eventually use (30) to compute worth by setting βi = bi.

An easy way to prove (30) is to look at the network dynamics
in the frequency domain (note that the eventual method we derive
to estimate worth in simulation does not require any Fourier trans-
form).

Network dynamics in the frequency domain. Taking the Fourier
transform of (25), we obtain

x̃(ω) = g(ω)Wx̃ + τg(ω)s̃(ω)⇒ x̃(ω) = G(ω)s̃(ω) (31)

Here the chosen convention for Fourier transforms is

f(t) =

∫
f̃(ω)e2πiωtdω

x̃ is, like x, a vector with one entry per cell. The frequency-
dependent ‘transfer matrix’ G is defined by

G(ω) := τg(ω) (I− g(ω)W)−1 , g(ω) :=
1

1 + 2πiτω
(32)

Series expansion of G, valid at all frequencies since the spectral ra-
dius ρ(W) < 1, has a natural interpretation. Equation (31) becomes

x̃(ω) = τg(ω)
(
I + g(ω)W + g2(ω)W2 + . . .

)
s̃(ω)

The term τg [gnWn]ij gives the effect on cell i of a direct stimulus
to cell j, via all paths of length n.

The frequency domain representation of the network dynamics
quickly leads to a proof of (30): equation (29) implies

x̃(ω) = G(ω)s̃(ω), ã(−ω) = GT (ω)b̃(−ω)

80



so that

x̃T (ω)β̃(−ω) = s̃T (ω)GT (ω)β̃(−ω) = s̃T (ω)α̃(−ω)

We now apply Parseval’s theorem, remembering that α, β,x, s are
real-valued, so their Fourier transforms are Hermitian functions.

We call αj the β-weighted influence of cell j. We will select βi
to be bi, that is, the partial derivative of L with respect to activity
xi which we found in the previous section. We define ai to be the
corresponding αi. This means aj is a partial derivative of L with
respect to stimulus sj — all assuming that each time the producers
change their activities xi, the consumers learn new optimal input
weights V.

Comparing (29) with the equation (25) defining the dynamics
of our network, we see that — ignoring run-in time — a(−t) is
what the cell’s activity would be if the network had all synapses
reversed, and was driven by stimulus b(−t). A biological neural
network cannot do this calculation of a from b since it depends on
fast retrograde signalling and on playing back a time-reversed signal.
However, we can do this in a simulation. In section 6.3.4 we show
how to estimate worth from ai, and in the simulations in section 6.4
we test the estimate of worth.

6.3.3 Related theory: backpropagation through time

Before proceeding to show how knowing ai lets us estimate worths
of cells, we note a relationship between our strategy for computing
ai from bi and part of the backpropagation through time (BPTT)
algorithm (Werbos, 1990).

The aim of BPTT is to compute partial derivatives of a loss func-
tion with respect to synaptic weights, and so facilitate supervised
learning of the weights. BPTT deals with networks whose state at
time t ∈ N depends on the state at a finite number of past timesteps,

with different weights W
(n)
ij specified for each time lag n:

xi(t) = f

(
nmax∑
n=0

W
(n)
ij xj(t− n)

)
(33)

The function f is an activation function. For comparison, with
infinitesimal dt, our network dynamics are given by

x(t+ dt) = x(t) + dt

(
1

τ
(W − I)x(t) + s(t)

)
and so we could approximate the dynamics of our network in the
form (33), with f an identity function.
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BPTT takes a loss function L =
∑

t L(t), defined as a function of
a subset of network activities xi. When f is an identity function then
— though Werbos does not present it this way — BPTT works, as
our scheme does, by taking a copy of the network with each synapse
reversed, and stimulating the reversed network with a time-reversed
∂L(t)
∂xi(t)

, as we stimulate the reversed network with bi. In BPTT the

resulting activities are used to calculate the gradient of loss L with
respect to each weight; in contrast, we use them to calculate the

worths of cells. We also had to work harder to calculate ∂L(t)
∂xi(t)

:

our xi are being offered as inputs to consumers which adapt their
weights to make best use of the available xi, whereas in BPTT the
loss function is a function directly of the xi.

6.3.4 Finding a silencing perturbation

We now return to the task of estimating worth using fast retrograde
signals.

In 6.3.1 we showed how to approximate the worth of cell i

as its ‘linworth’, $
(lin)
i =

∑
k 〈∆xk, bk〉, plus a locally computable

quadratic-order correction −λ
2

∑
j V

2
ji. Here, the ∆xk are the per-

turbations to all cells’ activities — including cell i itself — when cell
i is silenced.

In section 6.3.2 we showed how, for general bi, one can compute
the partial derivative ai of

∑
k 〈xk, bk〉, with respect to the stimulus

si to a single cell. That is, if the stimulus perturbations ∆si cause
activity perturbations ∆xk, then

∑
k 〈∆xk, bk〉 =

∑
i 〈∆si, ai〉.

We now show that an appropriately chosen stimulus perturba-
tion ∆si has exactly the effect of silencing cell i. For that special
‘silencing perturbation’, the linworth of cell j is

$
(lin)
j =

∑
k

〈∆xk, bk〉 = 〈∆sj, aj〉

so that the worth of cell j can be written as

$j ≈ 〈∆sj, aj〉 −
λ

2

∑
i

V 2
ij (34)

How can we compute a silencing perturbation? Is it even guaranteed
that a silencing perturbation exists? This is not entirely trivial. In
a feedforward network, it is straightforward enough: the negative
of the existing input to cell j is a silencing perturbation, and we
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denote this ζj, that is

ζj := −

(
1

τ

∑
k

Wjkxk + sj

)
However, when there are recurrent connections via cell j, the per-
turbation ζj fails to silence cell j: consider, for example, a single
cell with an excitatory autapse, or a pair of cells with mutual exci-
tatory connections and input to one of the two. How, then, can we
find a silencing perturbation in a recurrent network? We will show
how to find an exact silencing perturbation, and we will argue that
ζj acts as an approximate silencing perturbation under reasonable
conditions of small ‘loopiness’, a term to be defined later.

We first show that in a recurrent network, there does exist an
exact silencing perturbation for each cell. Specifically, cell j can be
exactly silenced by the stimulus perturbation

∆s̃j = − 1

1 +
ηj
τ

(
1

τ

∑
k

Wjix̃k + s̃j

)
(35)

where ηj = ηj(ω) := (GW)jj. We call ηj the (frequency-dependent)
‘loopiness’, for reasons that will be explained later. In section 6.3.6
we show that in random networks with sensible parameters, loopi-
ness is small (ηj � 1), so that using ∆sj = ζj in equation 34 gives
a good approximation to the worth of cell j.

To show that the perturbation in equation 35 would silence cell
j, first define W\j as W with the output weights of cell j set to 0:

[W\j]ik =

{
Wik k 6= j

0 k = j

We define G\j as the corresponding transfer matrix:

G\j = τg(I− gW\j)
−1

We write w for the vector of output weights from cell j and e for
the unit vector with ej = 1. The Woodbury matrix identity implies
that

G\j = G−
1
τ
GweT

1 +
ηj
τ

G

=
1

1 +
ηj
τ

(
I +

ηj
τ
− 1

τ
GweT

)
G
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Equivalently,

(G\j)ik =
1

1 +
ηj
τ

(
Gik +

ηj
τ
Gik −

1

τ
(Gw)iGjk

)
(36)

=
1

1 +
ηj
τ

(
Gik +

ηj
τ
Gik −

1

τ
(GW)ijGjk

)
(37)

and in particular

(G\j)jk =
1

1 +
ηj
τ

Gjk

Since x̃ = Gs̃, it follows that removing the output synapses of cell
j scales the ω frequency component x̃j(ω) of its activity by a factor

1

1+
ηj
τ

. This means that

� Cutting the output synapses of a cell cannot silence it if it was
not already silent.

� After cutting the output synapses of cell j, we can then silence
cell j by adding the perturbation in (35) to its input.

� Therefore, adding the same perturbation ∆sj, even without
cutting the outputs of cell j, has the effect of silencing cell j.

This completes the proof that if ∆sj has Fourier transform satisfying

∆s̃j = − 1

1 +
ηj
τ

(
1

τ

∑
k

Wjix̃k + s̃j

)
(38)

then ∆sj is a silencing perturbation for cell j.
In section 6.3.6 we will argue that the loopiness ηj is typically

small for sensible choices of parameters. Therefore, ζj is a good
approximation to a silencing perturbation.

6.3.5 ‘Backwards net’ recipe for estimating worth using fast retro-
grade messages

Combining the results above, we now have a way to estimate worths
in simulated networks, using fast retrograde signals, and without
actually silencing any cell. We summarise the recipe as follows:

1. Run the network on a representative set of stimuli to compute
activities x, consumer weights V, the negative of the input to
each cell ζj, and the residual r
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2. Calculate the partial derivative of loss with respect to each cell’s
output, bi = −

∑
j Vjirj. This bi allows for the consumers re-

learning their input weights after the activities xi have changed.

3. Run a network — the ‘backwards net’ — with stimulus b(−t)
and weights WT . Record the activities a(−t). ai tells us some-
thing about how the input to cell i affects performance, in-
cluding the knock-on effects cell i has on other producer cells’
activities, and the way that consumers can adapt their input
weights V following changes to producer outputs.

4. Use ai together with the approximate silencing perturbation ζj
to estimate the worth of cell j as $j ≈ $

(lin)
j − λ

2

∑
i V

2
ij

The recipe here is only valid if the network is dynamically stable, and
can be run for a time much longer than τ , so that initial conditions
are not too important. It also requires that the ‘loopinesses’ ηj be
small, so that the silencer ζi is a good approximation to the pertur-
bation required to silence cell i. In the next section we check that we
can construct networks with reasonable parameters that meet these
requirements. Later, in section 6.4, we check this approximation of
worth and find that it holds with very good accuracy.

6.3.6 Random weight matrices for which the fast worth estimate
should work

Before jumping into simulations of the fast worth estimate derived
above, we consider whether the required conditions can be met.

For our fast worth estimate to work, we noted that we require a
network that is dynamically stable, and where ‘loopiness’ is small,
that is, the numbers ηj are small. Dynamical stability is not just
a mathematical convenience for the current application: it allows a
network to respond robustly to noisy inputs. Small loopiness is not
so intrinsically desirable — but we show that with sensible param-
eters, we get it, and that proves to be mathematically convenient.

In our models, each cell type is characterised by a distribution of
output weights. Having fixed the distribution for each cell, we draw
its output weights independently at random from that distribution.
Finally, we make two small adjustments: first we disallow autapses
so ∀i : Wii = 0, and second for each cell, we add or subtract a small
number from every input weight so that ∀i :

∑
jWij = 0. We call

the condition ∀i :
∑

jWij = 0 ‘strict input balance’ (‘weak input
balance’ would mean that the average over randomly sampled W
of
∑

jWij is zero, but the condition might not hold for individual
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instances of W). Strict input balance helps to prevent the network
from behaving unstably.

The key parameters controlling stability and loopiness are the
mean wi and variance σ2

i of the output weights from each cell
i. To understand the dependence we start with the result of Ra-
jan and Abbott (2006). They showed that in a network similar
to ours, the eigenvalues of W are restricted to a spectral radius
ρ(W) ≈

√∑
i σ

2
i , independent of the mean output weights per cell

wi. Strict input balance is required to enforce this. Their networks
differ from ours in two ways: first, they allow autapses, so Wii has
the same distribution as Wji and can be nonzero, and second, they
use networks with only two cell types — one excitatory and one in-
hibitory. In our network we allow multiple cell types and we remove
autapses: at the stage where they subtract 1

p

∑
kWik from each Wij,

instead, we set Wii = 0 and then subtract 1
p−1

∑
kWik from each

remaining Wij.

Stability. The spectral radius ρ(W), which is the largest absolute
value of any eigenvalue of W, controls the dynamical stability of
a linear firing-rate network. To see how, consider two copies of a
network with different initial conditions x(0),x′(0) and the same
ongoing input. We have

d

dt
(x′ − x) =

1

τ
(W − I) (x′ − x)

It follows that if W has eigenvalues with real part greater than 1,
then the magnitude of x′ − x can grow exponentially — and the
magnitude of x or x′ is also growing exponentially. Conversely, if
every eigenvalue of W has real part less than 1, then the trajectories
x,x′ must converge. The limit on ρ(W) is still relevant in nonlinear
networks with a saturating activation function: there, activity tends
to become chaotic when synaptic weights are large (Sussillo and
Abbott, 2009).

By pruning autapses, we modify the spectral radius of W. We
are effectively taking a network like Rajan and Abbott (2006) and
adding a diagonal matrix with entries close to −wi; we expect there-
fore to find ρ(W) approximately bounded by maxi |wi| +

√∑
i σ

2
i .

Simulations in figure 10 match this prediction. Thus, we find in
simulations that setting

∑
i σ

2
i < 1 −maxi |wi| gives a dynamically

stable network.
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Figure 10: Spectral radius of W versus the prediction
√∑

i σ
2
i + maxi |wi|, for

a range of sets of values of σi and wi. Each of the 100 points in this graph
represents an individual random network with different parameters, and we
check the spectral radius of each network’s weight matrix. Each network has a
different value of

∑
i σ

2
i , and these values are equally spaced between 0 and 1.

Each network has a random number of cells between 200 and 1200. For each
network we pick a hyperparameter which specifies the standard deviation of the
wi, drawing this variance from an exponential distribution, and then sample
w1, . . . , wp independently from a Gaussian distribution with the given variance.
Next we sample independent exponentially distributed values σi and then scale
the σi uniformly so that

∑
i σ

2
i has the right value. Finally we generate a random

weight matrix with Wij − wj having Gaussian distribution.

Loopiness. The accuracy of our fast worth estimate depends on
the frequency-dependent quantities ηj, which we called ‘loopiness’.
ηj measures the strength of recurrent connections from cell j to
itself, and it dictates how close the perturbation ∆sj = ζj comes to
silencing cell j.

We call ηj ‘loopiness’, because it comes from loops starting and
ending at cell j. This is clear from the series expansion:

ηj = (GW)jj = τg(W + gW2 + g2W3 + . . .)jj

The term [Wn]jj is contributed by loops of length n starting and
ending at cell j. For a feedforward network, ηj ≡ 0. Loopiness is
small at high frequencies, where the gain g is small: this is to be
expected, since in our model, each cell low-pass-filters its input.
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How are the parameters wi, σi related to loopiness? For sim-
plicity, suppose that the values of |w1|, . . . , |wp| are all of similar
magnitude, say |wi| = O(w) for all cells in a given network, and
also that each σi = O(σ). We predict that ηj should grow roughly

in proportion with

√
σ2+w2

1−
√∑

i σ
2
i

. This estimate comes from defining

Tij = Wij − wj for i 6= j and Tii = 0, and rewriting ηj in terms of
T as far as possible. Because we enforced ∀i :

∑
jWij = 0, we have

by induction on n that

Wn = WTn−1

and hence (also using the fact that G and W commute),

GW = τgW (I− gT)−1

The factor (I − gT)−1 is unrelated to w1, . . . , wp so the magnitude
of ηj depends at most linearly on the parameters w1, . . . , wj. For

the estimate ηj ∼
√
σ2+w2

1−
√∑

i σ
2
i

, we use the fact the spectral radius of

T is approximately
√∑

i σ
2
i , so that (I− gT)−1 has spectral radius

approximately 1

1−
√∑

i σ
2
i

. The entries of W, meanwhile, are of order
√
σ2 + w2. We make the assumption that multiplying a random

vector with entries of order O(w) by a random matrix with spectral
radius ρ gives a vector with entries of order O(ρw). Hence, we
estimate the entries of GW — and in particular ηj = (GW)jj —

will be of order

√
σ2+w2

1−
√∑

i σ
2
i

.

This gives a relationship between loopiness and the parameters
σ,w, but what are the relevant values of w, σ? Sensible choices
of w should be similar to or smaller than σ: otherwise, we get a
rather redundant network where every cell has similar input and
therefore similar activity. To see this, note the input to cell i from
other cells,

∑
jWijxj, can be written as

∑
j wjxj +

∑
j Tijxj. The

expected square of the first sum — which is identical for every cell —
scales with

∑
j w

2
j and the expected square of the second scales with∑

j σ
2
j , so if w > σ the first one dominates. Therefore, it is sensible

to restrict w = O(σ). On making that restriction, the estimate for

ηj simplifies to ηj = O

(
σ

1−
√∑

i σ
2
i

)
. If we have

√∑
i σ

2
i = ρ, say,

then this gives ηi = O
(

ρ√
p(1−ρ)

)
: the loopiness goes to zero in the

limit of a large number of cells.
In Figure 11 we check that the analysis here predicts correctly

how ηj should scale with σ or w, in some simulated networks. As we
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Figure 11: Root mean square over cells of the ‘loopiness’ ηj for a range of
values of wj , σj , ω. a. Dependence on σ. The multiple lines for each frequency
correspond to different scalings of wi in b.. b. Dependence on w. The multiple
lines for each frequency correspond to the different values of σj in a.. c. Part of
the weight matrix. This is a dense network of p = 1000 cells of which 20% are
‘inhibitory’ (with negative output weights, blue) and the rest are ‘excitatory’
(positive output weights, pink and red). The absolute values of each cell’s output
weights are exponentially distributed with an offset.

expect, when w is large then ηj scales approximately linearly with
w and when

∑
σ2
i comes close to 1 then ηj scales approximately

linearly with 1

1−
√∑

i σ
2
i

. Also, since η contains a factor of g, it is

smaller for higher frequency components. These simulations show
that loopiness can still be small in networks at least as strongly
connected as those we simulate in section 6.4.

In section 6.4 we will simulate networks with ρ ≈ 0.8 and
p = 1000 so that ηi is of order 0.1 for DC signals, and smaller
for higher frequency components. If loopiness is too large then our
worth estimate is expected to break down because ζj is no longer
a good approximation to a silencing perturbation for cell j. There-
fore, as an extra check in those simulations, we test for each cell i
in a random sample, that the approximate silencing perturbation ζi
really does almost silence cell i.

6.4 Simulations: estimating worth with fast retrograde
signals

We have derived a way of estimating worth using fast retrograde
signals. In this section we use simulations of three different types
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of network to check how well this method works, and to test the
approximations that were made in deriving it.

Construction of the networks. The networks we study are all of the
architecture shown in Figure 9, but with only a single consumer.
We study three kinds of network, each with p = 1000 producers,
and with differently constructed weight matrices:

1. A network of 80% excitatory and 20% inhibitory cells. Each
wi takes one of two values, wexc = 0.0065 > 0 (for excitatory
cells) and winh = −4wexc. Excitatory cells have sparse out-
put weights: 10% of their output weights are nonzero and the
weights are exponentially distributed with parameter 10wexc
when non-zero. Inhibitory cells have uniform negative output
weight to every other cell. This gives

√∑
iw

2
i ≈ 1

2

√∑
i σ

2
i

which fits with the criterion of 6.3.6, that to avoid cells being
highly synchronised, we should have

∑
iw

2
i of order

∑
i σ

2
i or

smaller.

2. A densely connected network of cells, where some have much
stronger output synapses than others. The output weights of
each individual cell are exponentially distributed, with an offset
added so that the mean output weight of each cell is 0. The
variance of each cell’s output weights is itself drawn from an
exponential distribution with mean 0.82

p
, so that

√∑
i σ

2
i = 0.8.

3. A sparsely connected network, with 5% connection density.
Nonzero weights are all chosen from the same exponential dis-

tribution with variance 0.82×20
p

and an offset −
√

0.82×20
p

added

so that ∀i : wi = 0.

In each case the standard deviations σi of weights from individual
cells satisfy

∑
i σ

2
i = 0.82 so that the spectral radius of the weight

matrix is approximately 0.8. This is a compromise between allowing
a network to have reasonably long-timescale responses to transient
input, and avoiding instability which can arise if the spectral radius
is greater than 1, as we mentioned in section 6.3.6.

Why these particular random networks? The first network, with
20% inhibitory cells that connect promiscuously and 80% excita-
tory cells with sparse output weights, is meant to represent a cor-
tical network (Wolf et al., 2014). The second network is not meant
to represent a biological network, but a mathematical extreme: in
this network, we deliberately make some cells far more influential
than others, and therefore we expect worths to be highly diverse.

90



In such a network, we hypothesise that coarse estimates of worth
could be particularly informative, as even a large error in estimated
worth could be small compared to the population variation in worth.
The third network is an alternative representation of a cortical net-
work. Inhibitory interneurons tend to have faster time constant than
principal cells (Jonas et al., 2004). The third network represents a
network of sparsely interconnected excitatory cells, which all con-
nect bidirectionally to a single inhibitory interneuron whose time
constant is much faster than that of the excitatory cells, and whose
activity can therefore be integrated out to produce an equivalent
network where each cell has zero mean output weight.

Figure 12 shows pseudocolour plots of the three networks’ recur-
rent weight matrices. We will later use the same three networks to
test other strategies that do not employ fast retrograde signals.

Stimulus, activity, and target. To create a stimulus, we generate
three independent random signals each with the same power spec-
trum. The stimulus to each cell is a random combination of these
signals, and the target for the consumer is another combination of
the same signals. Since cells low-pass-filter their inputs, no cell ex-
actly repeats the signal it receives and the target signal cannot be
represented exactly as a linear function of network activities.

Figure 13 shows the activities of a few cells, their stimuli, and the
target for the consumer. The activities look qualitatively similar in
all three networks, so only one network (the excitatory/inhibitory
one) is shown. However, Figure 14 shows that having wi 6= 0 for
some cells makes a difference to the correlation structure of the
network activity, as we predicted at the end of (6.3.6): in the ex-
citatory/inhibitory network there is positive correlation on average
between the activities of different cells. In section 6.3.6 we said that
we would expect the correlating part of cells’ activities to become
the dominant component when

∑
iw

2
i >

∑
i σ

2
i . Here, the excita-

tory/inhibitory network has
∑

iw
2
i ≈ 1

4

∑
i σ

2
i , so cells’ activities are

not too synchronised.

Silencing cells with a stimulus perturbation. Our strategey for com-
puting the worths of cells using fast retrograde signals depends on
finding a ‘silencing perturbation’ to the stimulus of each cell. We
estimated that the stimulus perturbation

∆sj = ζj = −

(
1

τ

∑
k

Wjkxk + sj

)
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would suffice to approximately silence a cell j, provided that the
loopiness ηj is small at each frequency. In Figure 15 we check that
adding the silencing perturbation ζj to one cell’s stimulus sj, really
does almost silence that cell. We use the same stimulus to run the
network forwards in time, recording xi(t). Then for each one in
turn of 50 randomly chosen cells i, we re-run each network replacing
si(t) with si(t)+ζi(t). Figure 15 shows that the magnitude of output
from a cell is reduced by a factor of 100 or more by this treatment
(right hand panel). For reference, we also show that the magnitude
of output is far less drastically changed by simply removing the
stimulus, i.e., setting si(t) ≡ 0: that indicates that each cell gets a
substantial proportion of its input from other cells and not as direct
stimulus.

Estimating worth with fast retrograde signals. Having satisfied our-
selves that ζi would roughly silence cell i, which was a key part of
the derivation of the recipe in section 6.3.5, we now check that the
recipe works, i.e. we can estimate worth using fast retrograde sig-
nals. In Figure 16 we show that the estimate computed using the
recipe of section 6.3.5 is accurate. We estimate the worth of every
cell using that recipe, and then for each of 50 randomly chosen cells
i, we check the estimate. To check the estimate for a given cell i, we
re-run the simulation setting ∀j : Wij = Wji = 0; this silences cell
i. We record the activites xj(t) in the absence of cell i, recompute
optimal consumer weights V given these new xj(t), and measure the
new loss. The increase in loss relative to the baseline when no cells
are silenced is, by definition, the worth of cell i. Figure 16 shows
a plot of the actual worth versus the estimate. Our strategy with
fast retrograde signals provides an extremely accurate estimate of
worth, whether the cell in question is hidden or visible. The esti-
mate is much quicker to compute than the exact measurement made
by excising one cell at a time: the estimate is computed simultane-
ously for every cell in the network, in the same time it takes to
measure the exact worth of one single cell. Since this estimate of
worth is accurate and fast to compute, we will use it later to check
the performance of other more realistic schemes, that do not use
fast retrograde signals.
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Figure 12: Weight matrices for three different networks. Pairwise weights be-
tween a random subset of 100 neurons are shown. Left: a network with ex-
citatory and inhibitory cells. Excitatory cells have sparse weights which are
exponentially distributed when non-zero, excitatory connection density 0.1. In-
hibitory cells have output connection density 1 and uniform negative output
weight to every other cell. Middle: densely connected network with a gradation
from ‘strong’ to ‘weak’ cells, strong cells having larger output weights. The
output weights of each cell are exponentially distributed, with an offset added
so that the mean output weight of each cell is 0. Right: sparse network, with
connection density 0.05. Nonzero weights are chosen from the same exponential
distribution for every cell and an offset added so that the mean output weight
is 0.

Figure 13: Stimulus, activities and target in one of our simulated networks. The
stimulus to each cell is a sum of the three ICs shown in the top panel. A few
producer activities are shown in the middle panel. The bottom panel shows
the target for the consumer and the actual activity of the consumer when it
has optimal input weights. This is for the excitatory/inhibitory network. In
the other two networks, activities of individual cells look similar but the mean
correlation between pairs of cells is smaller, as shown in 14.
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Figure 14: Histograms of correlations between activities of different cells for the
three networks shown in figure 12. Titles give the mean and standard deviation
of 〈xi, xj〉 for all pairs of cells i, j. As predicted the non-balanced network
(left), with excitatory and inhibitory cells, has a positive correlation on average
between activities of pairs of cells.
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Figure 15: Adding the silencing perturbation ζi almost silences cell i, or at least
reduces its mean square firing rate by orders of magnitude. The three plots
correspond to the three networks in Figure 12 and section 6.4. In each plot
there is one dot for each of a random sample of 50 cells. On the horizontal axis,
JxiK is root mean square over time of the firing rate of cell i. On the vertical axis,
Jx′iK is the root mean square of the firing rate of the same cell after replacing
si with si + ζi where ζi is the silencing perturbation computed in section 6.3,
then re-running the network with all other stimuli unchanged. x′i is typically
several orders of magnitude smaller than xi. This works because our networks
have small ‘loopiness’.
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Figure 16: Checking the estimate of worth using ‘backwards network’ recipe
of section 6.3 for the three networks of figure 12. The horizontal axis is the
estimate using that recipe, while the vertical axis is the actual worth of each cell
measured by removing the cell from the network and reevaluating the network
performance. Each network has p = 1000 cells; a random selection of 50 cells
are shown here.

96



6.5 Estimating worth with slow retrograde signals

6.5.1 Introduction

We have shown that using fast retrograde signals, we can accurately
estimate the worths of cells in a recurrently connected, random net-
work. To what extent is it possible to estimate worths without fast
retrograde signalling? We consider two cases — either using in-
tracellular retrograde signalling only (so a cell can ‘see’ its output
weights but nothing else about its downstream neighbours), or us-
ing a recursive scheme in which ech cell gains information not only
about the strength of its output synapses, but also about the worths
of its downstream neighbours.

Intuitively it seems like estimating worth using slow retrograde
signals could be possible, even in recurrent networks. A cell with
no output weights, or which never fires, has zero worth, so we can
infer something about worth from a cell’s output weights and firing
rate alone. Recursive message-passing also seems promising: if your
downstream neighbours have high worth, perhaps that is because
you supplied them with useful information, and you can deduce
that you yourself also have high worth. We might try to propagate
estimates of worth using slow, recursive, retrograde signals, with
each cell reporting its worth to its upstream neighbours.

The aim of this section is to see how these intuitive ideas convert
to mathematical claims, and test them. The strategy will be to
assume that cell j has some information, and work out what it can
then infer about its own worth. We consider two cases:

Case 1: Cell j knows information only about itself, Θ
(cell)
j :

� its own output synaptic weights, to other producers and to
consumers

� its mean square firing rate JxjK
2

Case 2: Cell j knows Θ
(cell)
j and also knows some things about its down-

stream neighbours

� an estimate of the linworth of each downstream neighbour

� for each downstream neighbour i, the quantity

Fij =
1
τ2
W 2
ij JxjK

2

JζiK
2

which measures what proportion of the input to cell i comes
from cell j.
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We write Θ
(rec)
j for the information available to cell j in Case

2, which includes Θ
(cell)
j .

For case 1 and case 2, we will try to characterise the ‘belief’ of a
cell about its worth, given the information it gets. We will estimate
the mean and variance of the conditional distribution of one cell’s
worth, over random weight matrices W, given Θ

(rec)
j or Θ

(cell)
j .

We can make some basic claims without doing any algebra:

� If cell j provides the only input to cell i, then all the worth
of cell i is attributable to cell j. We expect to see a clear
relationship between $j on $i.

� Conversely if a single downstream cell i has a large number of
similarly weighted inputs, then there is no clear way to assign
different credit to each input (figure 17 shows a cartoon of such
a network). We do not expect $i to provide much information
about $j.

It is less obvious what to expect when there are many-to-many or
recurrent connections. With many-to-many connections, each indi-
vidual output gives little information about the worth of cell j, but
adding up the estimated contributions from each output may give
something with small percentage error if these errors are uncorre-
lated.

In this section we estimate the mean and variance of worth given

the retrogradely transmitted information Θ
(rec)
j or Θ

(cell)
j , up to some

constants of proportionality. The calculation uses constants of pro-
portionality which we have to find in simulations. The results in-
dicate that the variance and the expected value of indirect worth
are linearly related. Therefore, the coefficient of variation (CV) of
indirect worth scales with the inverse square root of the expected
indirect worth. For total worth — including both direct and indirect
worth — the variance and expected value again appear, in simula-
tions, to be linearly related. Cells of low expected worth have a high
coefficient of variation, making it impossible to determine the sign
of their actual worth. For cells with high expected worth, the ex-
pected worth is a (relatively) more accurate estimate of their actual
worth.

In sections 6.5.4 and 6.5.6 we use simulations to check the form
of these estimates, and to find the constants of proportionality. The
networks simulated are the same as in 6.4. We find that for the
types of network simulated, these constants of proportionality take
values which make for a large coefficient of variation (CV) in the
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𝐕: input weights to 
consumers

Visible layer of 
producers

External 
stimulus

Consumers

Hidden layer of 
producers

𝐖: input weights to producers

Figure 17: A network in which many hidden cells provide input to each visible
producer. If the Wij all have similar magnitude, there is no way to use worths
of visible cells and Wij to assign different credit to each hidden cell

conditional belief about worth given Θj or Θ
(cell)
j , except for cells of

high expected worth. Thus, while a high expected worth indicates
that a cell probably has positive worth, a low expected worth does
not indicate whether the true worth is positive or negative.

We also find that when every cell has a large number of input
synapses, uncertainty about the worth of cell j is similar given Θj or

Θ
(cell)
j : knowing the linworths of its downstream neighbours does not

help a cell much in estimating its own worth. This is analytically
predicted and then confirmed in the simulations.

6.5.2 Direct and indirect worth

We now show how to decompose the worth of a cell into ‘direct
worth’ (from direct connections to consumers) and ‘indirect worth’
(via connections to other producers). Making this decomposition
will help us to understand what information about the worth of cell

j can be inferred from Θ
(rec)
j or Θ

(cell)
j .

First, note that we can write the linworth $
(lin)
j in terms of a sum

over downstream cells. To do this we use Parseval’s theorem and

99



ζ̃j = 1
τg
x̃j:

$
(lin)
j =

∫
ζ̃j ãjdω =

∫
ζ̃j

(∑
i

gWij ãi + τgb̃j

)
dω

= −
∫

1

τg
x̃j

(∑
i

gWij ãi + τgb̃j

)
dω

= −1

τ

〈
xj,
∑
i

Wijai

〉
− 〈xj, bj〉 (39)

= −
∑
i

〈
1

τ
Wijxj, ai

〉
+ λ

∑
i

V 2
ij (40)

Recall ai was a partial derivative of loss with respect to the input
to cell i, and 1

τ
Wijxj is the input cell i gets from cell j. Since

$j ≈ $
(lin)
j − λ

2

∑
k V

2
kj it follows that

$j ≈
∑
i

ℵij +
λ

2

∑
k

V 2
kj (41)

where we define ℵij to be the ‘worth of cell j via cell i’:

ℵij := −
〈

1

τ
Wijxj, ai

〉
In the decomposition (41),

$
(indirect)
j :=

∑
i

ℵij

is considered to be the indirect worth of cell j, via other producers,
and

$
(direct)
j :=

λ

2

∑
k

V 2
kj

is the direct worth, measuring direct utility to consumers. From

chapter 5 we know that this direct worth $
(direct)
j approximates the

change in performance that would result if we hid cell j from the
consumers, leaving all other producers’ outputs unchanged.

6.5.3 Estimating worth from cellular information

We asked what cell j can infer about its worth from its own root

mean square activity and output weights, Θ
(cell)
j . As explained pre-

viously in 6.5.1, our approach is to consider the belief of a cell j
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about its worth given this information, meaning the conditional dis-

tribution of its worth over random W given Θ
(cell)
j . In symbols, we

are trying to estimate

EW

(
$

(lin)
i |Θ(cell)

j

)
where |Θ(cell)

j ) denotes conditionality on Θ
(cell)
j and EW (..) denotes

expectation over random W.
We also estimate

VarW

(
ℵij|Θ(cell)

j

)
which will become useful in the next section.

These estimates are hard to make analytically, so our approach
is to derive estimates via a heuristic argument, and then use sim-
ulations to test what we deduce. The key approximations are that

we treat each ℵij as having Gaussian distribution given Θ
(cell)
j , and

we assume that each cell has a large number of inputs, which are
approximately pairwise uncorrelated.

Recall that the cellular information Θ
(cell)
j includes JxjK and the

output weights of cell j, both to other producers and to consumers.
The direct worth is easy to compute from the output weights to

consumers Vij as $
(direct)
j = λ

2

∑
i V

2
ij ; the indirect worth is more

difficult. What about indirect worth? Although Θ
(cell)
j does not

include any explicit information about the indirect worth of cell j,
the two are not statistically independent. For example, if cell j sends
no output to producer i then it can have no indirect worth via i:

Wij JxjK = 0⇒ ℵij = 0

If cell i has no activity, it has no worth, and indeed no direct worth,
indirect worth, or linworth:

JxiK = 0⇒ $i = $
(lin)
i = $

(indirect)
i = $

(direct)
i = 0

We will argue that given our assumptions and approximations,
more generally, the expected indirect worth of cell j given cellular

information Θ
(cell)
j is proportional to

∑
i JWijxjK

2:

EW

(
$

(indirect)
j |Θ(cell)

j

)
∝
∑
i

JWijxjK
2

We also argue that the variance of the worth via a given downstream
neighbour, ℵij, scales with the mean square output to that neigh-

bour: VarW

(
ℵij|Θ(cell)

j

)
∝ JWijxjK

2. The justification for these
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is as follows. We approximate the conditional distribution of each

ℵij given Θ
(cell)
j as Gaussian. The cellular information Θ

(cell)
j fixes

JWijxjK, and we assume that JWijxjK is all that is relevant to ℵij in

Θ
(cell)
j .

Conditional expectation of worth via a neighbour given cellular infor-

mation. For the conditional expectation of ℵij we note that since
ℵij =

〈
ai,− 1

τ
Wijxj

〉
, we have

E (ℵij|Wijxj) =

〈
−1

τ
Wijxj,E (ai|Wijxj)

〉
Recall that in the frequency domain,

ãi = g
∑
j

Wjiãj + τgb̃i

Since bi = 1
λ

∑
j 〈xi, rj〉 rj, where rj is the residual error for consumer

j, the signal bi for each cell depends approximately linearly on the
activity of the same cell, xi. Therefore, ai has a component that
depends linearly on the activity of cell i, and therefore also linearly
on the input to cell i. Hence, we estimate EW (ai|Wijxj) ∝ Wijxj
and deduce

EW (ℵij|Wijxj) ∝ JWijxjK
2

This means we expect there is some constant of proportionality km
— dependent on the distribution from which W is drawn — for
which we can approximate

EW

(
ℵij|Θ(cell)

j

)
= EW (ℵij| JWijxjK) ≈

km
τ 2

JWijxjK
2 (42)

Conditional variance of worth via a neighbour given cellular infor-

mation. For the conditional variance of ℵij, we note that in signal
space, ℵij := −

〈
1
τ
Wijxj, ai

〉
takes the projection of ai in the direc-

tion of xj and scales it by Wij JxjK. Therefore, we expect to find
approximately that

VarW

(
ℵij|Θ(cell)

j

)
= VarW (ℵij|Wij JxjK) ∝ JWijxjK

2

That is, there is some other constant of proportionality kσ with

VarW

(
ℵij|Θ(cell)

j

)
≈ k2

σ

τ 2
JWijxjK

2 (43)
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Conditional coefficient of variation (CV) of worth via a neighbour

given cellular information. One prediction from (42) and (43) is

that the conditional CV of ℵij given Θ
(cell)
j is large when Wijxj is

small:
StdW

(
ℵij|Θ(cell)

j

)
EW

(
ℵij|Θ(cell)

j

) ≈ kστ

km JWijxjK

If we use the expected value km
τ2

JWijxjK
2 as an estimate of ℵij, then

the percentage error should get smaller as JWijxjK increases.

Estimating the constants of proportionality. Analytically estimat-
ing the constants of proportionality km, kσ is hard: they are expected
magnitudes of correlations between random signals, and we do not
know what the distribution of these signals is like. Instead, we esti-
mate km, kσ in simulations:

� We estimate km by least squares linear regression of
ℵij

1
τ

JWijxjK

against 1
τ
JWijxjK. The division by 1

τ
JWijxjK is to transform

the regression problem to a homoscedastic one. The choice
of least squares regression implicitly uses the assumption that

ℵij|Θ(cell)
j is Gaussian.

� We take kσ to be the standard deviation of
ℵij− kmτ2 JWijxjK2

1
τ

JWijxjK
. kσ

will not be used here, but in the next section 6.5.5.

Does this let neurons estimate their worth? The answer depends on
km, kσ. If these are stable parameters, then conceivably they could
be known and used by each cell to approximate a belief about its

worth given the information Θ
(cell)
j . Then, each cell could estimate

its indirect worth using the expected value

EW

(
$

(indirect)
j |Θ(cell)

j

)
≈ km JxjK

2
∑
i

1

τ 2
W 2
ij (44)

and then estimate its worth as

EW

(
$j|Θ(cell)

j

)
≈ km JxjK

2
∑
i

1

τ 2
W 2
ij +

λ

2

∑
i

V 2
ij

However, if kσ is not sufficiently small compared to km, then the
difference between this expected value and the actual worth is ex-
pected to be large. These are cases where the coefficient of variation
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in $j given Θ
(cell)
j is large, meaning that a cell receiving information

Θ
(cell)
j still has a very uncertain belief about its worth.
In sections 6.5.4 and 6.5.6 we calculate values of km, kσ in a variety

of simulated networks and compute the CV of indirect worth given

Θ
(cell)
j . For the examples simulated, we find that the two constants

of proportionality km, kσ have similar order of magnitude, and JxiK
is of order 1, with the effect that the conditional CV of $j given

Θ
(cell)
j is of order 1

|Wij | , i.e.
√
p. This means that EW

(
ℵij|Θ(cell)

j

)
would be a very inaccurate estimate of ℵij, with an error of order
√
p times the estimate. The coefficient of variation of $

(indirect)
j given

Θ
(cell)
j is found to be O(1) in the same examples (smaller, since errors

in the individual ℵij cancel out). This means that if the expression

in (44) were used as an estimate of $
(indirect)
j , the errors would be of

the same order of magnitude as the estimate itself.

6.5.4 Simulations: estimating worth from cellular information

In section 6.5.3 we discussed what a cell can infer about its worth us-
ing only the cellular information Θ

(cell)
j , namely its root mean square

activity JxjK and its output weights W1j, . . . ,Wpj. We now test the
predictions and estimates made in section 6.5.3, by simulating mul-
tiple instances of three different types of random recurrent network.
The network types are the same ones introduced in the simulations
of section 6.4.

Section 6.5.3 made use of the decomposition of worth into direct
worth plus indirect worth via each downstream neighbour, which we
derived in section 6.5.2:

$i ≈
λ

2

∑
i

V 2
ij +

∑
j

ℵij

where

ℵij =

〈
1

τ
Wijxj, ai

〉
measures the indirect worth of cell j via cell j. We studied the

conditional distribution of ℵij given the cellular information Θ
(cell)
j ,

over random weight matrices W: this conditional distribution is the
belief of cell j about its worth via each neighbour if it gets infor-

mation Θ
(cell)
j . We predicted that the conditional mean of indirect

worth given Θ
(cell)
j would be linear in

∑
i JxjK

2W 2
ij. We also pre-

dicted that each constituent ℵij of that indirect worth would have
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conditional variance linear in the corresponding JxjK
2W 2

ij, so that,
barring strong correlation effects between the different ℵij for a given

cell j, the conditional variance of indirect worth given Θ
(cell)
j would

be, like the conditional expectation, linear in
∑

i JxjKW
2
ij.

Obtaining ‘true’ values of $
(lin)
j , etc. We used the fast retrograde

messaging scheme to obtain accurate estimates of ℵij, $j, $(lin)
j , etc.

in each network. We know from simulations in section 6.4 that
this gives accurate estimates, and it does so without incurring the
enormous computational cost of actually silencing each individual
cell and measuring the effect on performance.

Estimating km. We used the simulations to calculate the constant
of proportionality km defined in (42). To estimate km we use the

linear coefficient from least squares regression of
ℵij

J 1
τ
WijxjK against

q
1
τ
Wijxj

y
, dividing ℵij and the predictor

q
1
τ
Wijxj

y2
by

q
1
τ
Wijxj

y

to make the regression problem homescedastic. The values of km we
obtained are given in Table 1 (page 116).

Expected worth and indirect worth given cellular information. We
computed values for the conditional expected worth and indirect

worth given cellular information Θ
(cell)
j , using

EW

(
$

(indirect)
j |Θ(cell)

j

)
≈ km

τ 2
JxjK

2
∑
i

W 2
ij

and

EW

(
$j|Θ(cell)

j

)
≈ km

τ 2
JxjK

2
∑
i

W 2
ij +

λ

2

∑
i

V 2
ij

Results: worth. Figure 18 summarises the relationship between

EW

(
$j|Θ(cell)

j

)
computed this way, and the actual values of $j. Data

are aggregated over 10 instances of each type of network. We sort
the values of expected worth into bins with approximately 5% of
cells in each bin, and for each bin we calculate a conditional mean,
standard error on the mean, and variance, of the corresponding true
values of worth. The top row verifies our estimated expected value

for worth given Θ
(cell)
j . The bottom row shows that the conditional

variance of worth given Θ
(cell)
j is approximately linearly related to

the expected value.
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Results: indirect worth. Figure 19 shows a similar analysis to 18,
but for indirect worth, that is, excluding direct worth. This figure
shows that the fit in Figure 18 is not purely down to good estimation
of direct worth from output weights to consumers: the expected in-
direct worth, calculated from output weights to other producers, is
also meaningful. We predicted that the conditional variance of each
component ℵij (the worth of j via i) would be linear in Wij JxjK

2

so that barring strong correlations between the ℵij given Θ
(cell)
j , we

could also expect a linear relationship between the conditional vari-
ance of indirect worth and

∑
i JWijxjK

2. The bottom row of figure
19 matches this prediction.

Results: worth and indirect worth for a single instance of each net-

work. Figure 20 shows data for a single instance of each type of

network. This shows that within a single network, Θ
(cell)
j helps to

predict which cells are likely to have high worth and which cells are
likely to have low worth. Table 2 shows Spearman rank correlation
coefficients between expected and actual worth of cells in individ-
ual networks, and supports the same conclusion: the correlation
coefficients range from 0.22 to 0.32 for the three types of network
simulated, and the rank correlations are highly significant for all
three networks.
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Figure 18: Conditional distribution of worth given cellular information Θ
(cell)
j .

The three columns are for the three types of network in figure 12. Data are
aggregated over 10 instances of each type of network. For each cell in each
network we have an actual worth and the expected value of worth given cellular
information. We sort the expected values into bins with approximately 5% of
data points in each bin, and then calculate the actual mean worth, standard
error on the mean, and standard devaition of worth for each of those bins.
Top. Mean of actual worth for each bin. The error bars are standard error on
the mean and blue lines are equality. There is a clear correspondence between
our predicted mean worth and measured mean worth in each bin. Bottom.
Variance of actual worth in each bin versus expected value of worth given cellular
information. The variance rises linearly with the expected value. This matches
our prediction that the conditional coefficient of variation in worth is smallest
when the expected value of worth is large.
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Figure 19: Conditional distribution of indirect worth given cellular information

Θ
(cell)
j , and specifically as a function of the total output from a cell,

∑
iW

2
ij JxjK

2
.

The three columns are for the three types of network in figure 12. Data are
aggregated over 10 instances of each type of network. For each cell in each
network we have an actual indirect worth and the value

∑
iW

2
ij JxjK

2
; we predict

that both the conditional mean and conditional variance of indirect worth should
be linear in

∑
iW

2
ij JxjK

2
. Values of

∑
iW

2
ij JxjK

2
are sorted into bins and

summary statistics computed for each bin as in figure 18. Top. Mean indirect
worth is linearly related to

∑
iW

2
ij JxjK

2
. Bottom. Variance of indirect worth

is linearly related to
∑
iW

2
ij JxjK

2
, so the conditional coefficient of variation in

indirect worth is smallest when the expected value of indirect worth is large.
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Figure 20: Expected worth and indirect worth, given cellular information Θ
(cell)
j ,

in individual networks. The expected value is compared to the actual value for
each cell. Each scatter plot has one point per cell for a single instance of each of
the three random networks in figure 12. Top. Worth $j in the three networks,

versus the expected value EW

(
$j |Θ(cell)

j

)
. For the overlaid lines, expected

values are sorted into bins, with approximately 5% of cells in each bin, and
statistics of the corresponding values of true worth $j computed in each bin.
The lines show the mean (green) and standard deviation (red error bars) of
the actual worth in each bin, as well as the standard error on the mean (green
error bars). The expected values are approximately correct but the spread of
true values around the expected values is large. Bottom. Same, but showing
indirect worth instead of worth.
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Results: worth via a single neighbour. Finally in Figure 21, we
check our prediction that the conditional expected value of ℵij and

its variance should be linear in JWijxjK
2. We note that the condi-

tional coefficient of variation of worth via a single neighbour, ℵij,
given the amount of output sent to that neighbour, JxjK

2W 2
ij, is

much greater than that of indirect worth given
∑

i JxjWijK
2. The

conditional CV of ℵij given Θ
(cell)
j is of order 100 in each bin. This

means that if we used EW

(
ℵij|Θ(cell)

j

)
as an estimate of ℵij we could

expect to get errors a hundred times the size of the estimate itself.

The smaller conditional CV for indirect worth given Θ
(cell)
j depends

on the fact it aggregates data from many downstream neighbours.
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Figure 21: Worth via each individual neighbour, versus the magnitude of output
to that neighbour. Values of JWijxjK

2
are binned and statistics computed for

each bin as in figures 18 and 19. Top. Conditional mean of via each neighbour
ℵij given the amount of output to that neighbour JWijxjK. Error bars show
standard error on the mean for each bin. The straight lines are the prediction
km
τ2 JWijxjK

2
. As discussed, the CV of worth via a neighbour given Θ

(cell)
j is

large, so that these lines are a poor fit, except for the middle network which was
constructed specially to have cells of very diverse influence. Bottom. Condi-

tional variance of ℵij given Θ
(cell)
j scales linearly with JWijxjK

2
.

6.5.5 Estimating worth with slow recursive retrograde signals

In section 6.5.3 we estimated the expected value and conditional

variance of a cell’s worth $j given cellular information Θ
(cell)
j . We

derived what the form of the expected value and variance should be

as a function of Θ
(cell)
j but left a parameter km to be measured in

simulations. In section 6.5.4 we checked this estimate and measured
km for three types of random recurrent network. We found that

the conditional coefficient of variation in worth given Θ
(cell)
j can be

large, meaning that a cell in one of these networks cannot use cellular
information alone to accurately and reliably estimate its worth.

We now ask whether cells can obtain much more precise infor-
mation about their worth by passing recursive slow retrograde mes-
sages. These could be supported by chemical retroaxonal messages
in the brain (see section 3.3). Motivated by the idea that a cell
whose downstream neighbours have high worths, probably has high
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worth itself, we consider a message-passing scheme where each cell
receives an estimate of each downstream neighbour’s linworth. If one

cell can accurately deduce its linworth $
(lin)
j given its neighbours’ lin-

worths, then this scheme could let neurons propagate estimates of
worth using slow recursive retrograde message-passing.

We will write Θ
(rec)
j for the augmented information cell j receives

in this scheme. Θ
(rec)
j includes Θ

(cell)
j , plus, for each downstream

neighbour i:

� an estimate Ωi of the linworth of cell i, which will be defined

recursively as EW

(
$

(lin)
i |Θ(rec)

i

)
� the quantity Fij =

1
τ2
W 2
ijJxjK

2

JζiK2
for each downstream neighbour i.

Note Fij measures the proportion of input to cell i that comes from
cell j, since −ζi =

(
1
τ

∑
kWjkxk + sj

)
is the total input to cell i.

Computing Fij does not introduce a requirement for fast retrograde

signalling: JζiK
2 and JWijxjK

2 are time-averaged, local quantities.

From Θ
(rec)
j , cell j will compute an estimate Ωj of its own lin-

worth, namely Ωj = EW

(
$

(lin)
j |Θ(rec)

j

)
, and pass this on to upstream

cells. We can implement this recursive estimate by initialising each

Ωj at EW

(
$

(lin)
j |Θ(cell)

j

)
(as estimated in section 6.5.3) and then

repeatedly updating Ωj using the current value Ωi from each down-
stream neighbour i. We will see that for the examples studied, this
procedure converges to a unique set of estimates Ω.

Deductions using exact values of neighbours’ linworths. To work out

EW

(
$

(lin)
j |Θ(rec)

j

)
we start by considering what is known about $

(lin)
j

when each downstream neighbour’s linworth is known exactly. We

write Θj for Θ
(rec)
j with each downstream neighbour’s Ωi replaced by

an exact measurement of $
(lin)
i . Our philosophy, as before, is to con-

sider the belief cell j about its worth given Θj i.e. the conditional

distribution of $
(lin)
j over random weight matrices W, given Θj. To

estimate the mean and variance of this conditional distribution, we

start with the belief of cell j given Θ
(cell)
j and then update that be-

lief in the light of the downstream neighbours’ linworths and the
Fij. We will see that knowing Θj does not reduce uncertainty much

compared to having only cellular information Θ
(cell)
j . Therefore, re-

cursive message-passing of this type does not tell cells much more
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about their worth than they could deduce from cellular information
alone.

To update the belief about $
(lin)
j given Θ

(cell)
j to a belief given

Θj, we first show that one can write each downstream neighbour’s

linworth $
(lin)
i as ℵij (the worth of j via i), plus some other terms.

Hence, $
(lin)
i can be used as a noisy measurement of ℵij. To do this

we use −ζi = 1
τ

∑
jWijxj + si and take the sum outside the inner

product in $
(lin)
i = 〈ζi, ai〉:

$
(lin)
i := 〈ζi, ai〉 = −

〈
1

τ

∑
j

Wijxj + si, ai

〉

= −1

τ

∑
j

Wij 〈xj, ai〉 − 〈si, ai〉

=
∑
j

ℵij − 〈si, ai〉

We regard $
(lin)
i as providing a noisy measurement of ℵij, and we

assume that all the dependence between $j and $
(lin)
i is via ℵij. The

‘error’ $
(lin)
i − ℵij is the correlation with ai of all the input cell i

gets from sources other than cell j. If cell i gets all of its input

from cell j, then $
(lin)
i = ℵij: all the worth of cell i is due to cell j,

matching the common-sense prediction we made at the beginning of
6.3, without doing any algebra.

How can we use these noisy measurements to update beliefs about
worth via each neighbour? Let X, Y be random variables whose

distributions are the conditional distributions of ℵij, $(lin)
i −ℵij given

Θ
(cell)
j . The joint distribution of X,X + Y expresses belief of cell j

about ℵij, $(lin)
i given cellular information Θ

(cell)
j . We now want to

update the belief about ℵij = X using a measurement of $
(lin)
i =

X+Y . In section 6.5.3 we approximated the conditional distribution

of ℵij given Θ
(cell)
j as Gaussian. We now also approximate X, Y

as being independent and Gaussian, so we can use the following
standard formulae:

Var (X|X + Y ) =

(
1

Var (X)
+

1

Var (Y )

)−1

=
Var (X) Var (Y )

Var (X + Y )
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and

E (X − E (X) |X + Y = z + E (X + Y )) =
zVar (X)

Var (X + Y )

For our X and Y , we have

E (ℵij|Θj) = E (X|X + Y )

and
Var (ℵij|Θj) = Var (X|X + Y )

To use the above we need an estimate of Var(X)
Var(X+Y )

. We know

X,X + Y are the correlations of two different signals − 1
τ
Wijxj, ζi

with the same ai. Therefore, we estimate Var(X)
Var(X+Y )

to be the ratio

of squared magnitudes of 1
τ
Wijxj and ζi, which we called Fij:

Fij :=
1
τ2
W 2
ij JxjK

2

JζiK
2 ≈ Var (X)

Var (X + Y )

We can now write

VarW (ℵij|Θj) ≈ (1− Fij)Var (X) (45)

EW

(
ℵij −

km
τ 2

JWijxjK
2 |Θj

)
≈ Fij

(
$

(lin)
i −m

)
(46)

where m = E (X + Y ) is the average linworth of a cell, and
km
τ2

JWijxjK
2 is, as in section 6.5.3, the expected value of ℵij given

Θ
(cell)
j . As with km, the parameter m will be estimated by simulating

a number of random networks with weights drawn from the same
distribution.

Summing (46) over downstream neighbours i for a single cell j
gives

E
(

$
(lin)
j |Θj

)
≈
∑
i

Fij($
(lin)
i −m)+λ

∑
k

V 2
kj+km JxjK

2
∑
i

W 2
ij

τ 2
(47)

Recursive estimate. The estimated expected value on the left of
(47) is linear in each downstream linworth on the right, so (47) con-
verts directly to a rule for propagating values of expected linworth.
If each downstream neighbour i discloses its estimated expected lin-
worth Ωi, then cell j’s expected linworth is approximated by

Ωj =
∑
i

Fij(Ωi −m) + λ
∑
i

V 2
ij + km JxjK

2
∑
i

W 2
ij

τ 2
(48)
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Provided F is a contraction, we can arrive at a unique solution of
(48) by repeatedly assigning

Ωj ←
∑
i

Fij(Ωi −m) + λ
∑
i

V 2
ij + km JxjK

2
∑
i

W 2
ij

τ 2
(49)

We can efficiently initialise each Ωj at EW

(
$

(lin)
j |Θ(cell)

j

)
, and the

repeated update will converge on the unique solution Ω1
...

Ωp

 = (I− FT )−1

×

−FT

 m
...
m

+ λ


∑

i V
2
i1

...∑
i V

2
ip

+
km
τ 2

 Jx1K
2∑

iW
2
i1

...

JxpK
2∑

iW
2
ip




(50)

Remaining uncertainty about linworth given recursive retrograde

messages. When each cell gets a large number of inputs, Ωj is not
much more precise as an estimate of linworth than the expected

value of linworth given cellular information alone, EW

(
$

(lin)
j |Θ(cell)

j

)
.

This conclusion comes from (45) and (46). There, the coefficients
Fij measure what proportion of the input to cell i comes from cell
j. If each cell receives p′ � 1 inputs all of similar magnitude, then
Fij is approximately 1

p′
� 1. In that case,

� (45) says that

VarW

(
ℵij|Θ(cell)

j

)
≈ VarW (ℵij|Θj)

i.e., knowing the linworth of its downstream neighbour i does
not greatly reduce uncertainty of cell j about ℵij

� (46) says that the difference between mij = E
(
ℵij|Θ(cell)

j

)
and

E (ℵij|Θj) is small.

Thus (46) and (45) quantify the statement that if cell i gets most
of its input from sources other than j, then the worth of cell i does
not tell us much about the worth of cell j.

In conclusion, we have a way to propagate estimates of expected
linworth using recursive retrograde message-passing, with each cell
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calculating an expected linworth from downstream neigbour’s ex-
pected linworths. However, this may not give much advantage over

using only the cellular information Θ
(cell)
j . Comparing the simula-

tions in sections 6.5.4 and 6.5.6 confirms this conclusion.

6.5.6 Simulations: estimating worth with slow recursive retrograde
signals

In this section we check the predictions of section 6.5.5.
In section 6.5.5 we derived a scheme using slow recursive retro-

grade messages to estimate an expected linworth for each cell in
a network, using the expected linworth of each downstream neigh-
bour. We built up the recursive message-passing scheme by taking

the belief of cell j about its worth given cellular information Θ
(cell)
j

— derived in section 6.5.3 and validated in simulations in section
6.5.4 — and then updating the belief using estimates of downstream
neighbours’ linworths. However, we predicted that in the networks
we study, where each cell gets a large number of inputs, this be-
lief is similar to the belief given Θ(cell) only, and we predicted that

the residual uncertainty about $
(lin)
j given the recursive retrograde

messages is similar to the residual uncertainty given only cellular

information Θ
(cell)
j .

Estimating m, the mean linworth of a cell. As well as the parameter
km derived and used in 6.5.3 and 6.5.4 we also need to estimate the
parameter m, which is the mean linworth of a cell. To estimate
m we simulate ten instances of each type of network, use the fast
retrograde scheme to accurately estimate the linworth of every cell,
and take the mean m over all cells and all instances for each network
type. The parameters found are in table 1.

Network type Mean linworth m km
1 6.9× 10−5 1.3× 10−4

2 6.1× 10−5 2.3× 10−4

3 7.2× 10−5 2.0× 10−4

Table 1: Values of km,m found for the three networks of figure 12

Expected linworth using recursive retrograde messages. We use the
values found for km,m, together with equation 50, to compute an
expected value Ωj for the linworth of each cell j. This Ωj is the
expected value of the linworth of cell j given slow recursive ret-
rograde signals that communicate each cell’s expected linworth to
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its upstream neighbours. Ωj − $
(direct)
j ,Ωj − 2$

(direct)
j approximate

the expected value of a cell’s worth and indirect worth respectively,
given the same information. We predicted that these would give

correct mean values for $j, $
(indirect)
j , but that variance of $j, $

(indirect)
j

given the recursive messages would be similar to the variance of

$j, $
(indirect)
j given cellular information only.

Results: worth. Figure 22 summarises how the expected worth

given recursive retrograde messages, Ωj − λ
2
$

(direct)
j , relates to ac-

tual values of worth. Data are aggregated over 10 instances of each

type of network. We sort values of Ωj − $
(direct)
j into bins with ap-

proximately 5% of data in each bin, and compute statistics of the
corresponding actual values of $j for each bin: a mean, variance,
and standard error on the mean. The mean values of $j are shown

to approximately match the prediction Ωj−$
(direct)
j . However, as we

also predicted, the variances in $j given Ωj − $
(direct)
j are large (as

they were given Θ
(cell)
j ). This means that like Θ

(cell)
j , Ωj − $

(direct)
j

has limited value as an estimate of $j when the estimated worth is
small. Since both mean and variance of indirect worth are linear
in Ωj − $

(direct)
j , the CV goes down as the expected value goes up.

Practically this means that if a cell believes its worth to be small,
it has a large percentage uncertainty in that estimate, and has little
confidence in even correctly estimating the sign of its worth. For
larger values of expected worth the percentage error is smaller, but
even for the largest values of expected worth in these simulations,
the CV remains above 1.

Results: indirect worth. Figure 23 is like Figure 22 but shows indi-

rect worth only. Again, the mean values Ωj − 2$
(direct)
j are shown to

be approximately correct, but the remaining uncertainty in indirect
worth given the recursive retrograde messages is large. The condi-
tional variance in indirect worth scales approximately linearly with
the expected value.

Results: worth and indirect worth in individual networks Figure
24 shows results for individual instances of each type of network.
The top row compares actual worth to expected worth given slow
recursive retrograde signals, and the bottom row shows the same
analysis for indirect worth only. The plots show one dot per cell.
Expected values are sorted into bins, and for the actual values in
each bin, we compute a mean (green line), standard deviation (red
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error bars), an standard error on the mean (green error bars). This
shows that the results in Figures 22 and 23 are relevant to individual
networks, and not just statistics aggregated over multiple networks.
Even within a single network, slow recursive retrograde signals give
some information as to which cells are likely to have high worth and
which cells are not.

Results: correlation between expected and actual worth. Table 2
compares expected worth given recursive slow retrograde messages,

Ωj − $
(direct)
j , with expected worth given only cellular information,

EW

(
$j|Θ(cell)

j

)
, as predictors of actual worth. The table shows cor-

relation coefficients of actual worth with the two expected values.
Since we predicted the CV of worth given its expected value will be
large for cells of small expected worth, we also separately compute
the correlation coefficients for cells of low expected worth and cells
of high expected worth. As expected, the correlation coefficients are
larger for cells of high expected worth. Table 3 compares the Spear-
man correlation coefficient between expected and actual worth for
the two different estimation methods — using cellular information
alone, and using recursive slow retrograde messages. For cells of low
expected worth the recursive message-passing scheme does not do
significantly better than the cellular one, in any of the three types
of network. In network type 3 the recursive scheme has statisti-
cally significant advantage over the cellular one, and it seems this
advantage is all to do with cells of higher expected worth.
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Network 1 Network 2 Network 3

Using
Θ

(cell)
j

all 0.25 (p = 1.86 ×
10−15)

0.32 (p < 10−307) 0.22 (p = 4.02 ×
10−12)

high 0.36 (p = 1.00 ×
10−16)

0.36 (p = 4.32 ×
10−17)

0.28 (p = 1.80 ×
10−10)

low 0.07 (p = 1.04 ×
10−01)

0.16 (p = 4.19 ×
10−04)

0.04 (p = 3.44 ×
10−01)

Using
Θ

(rec)
j

all 0.25 (p = 4.53 ×
10−15)

0.32 (p < 10−307) 0.27 (p = 1.75 ×
10−17)

high 0.43 (p < 10−307) 0.38 (p < 10−307) 0.37 (p < 10−307)
low −0.01 (p = 8.54×

10−01)
0.14 (p = 1.79 ×
10−03)

0.04 (p = 3.19 ×
10−01)

Table 2: Spearman rank correlation coefficient of actual worth versus the ex-
pected value given cellular information (top) or the expected value given re-

cursive slow retrograde messages (bottom), which is Ωj − $
(direct)
j . Correlation

coefficients and p-values are computed for a single instance of each type of net-
work, treating each cell’s data as an independent sample. ‘All’ includes all the
cells in the network, ‘high’ means the cells with 50% highest expected worths,
and ‘low’ means the cells with 50% lowest expected worths. The rank correla-
tion appears to be mostly due to cells of high expected worth, consistent with
the fact that the conditional CV of worth given expected worth is smaller for
cells with large expected worth.

Network 1 Network 2 Network 3

all 0.121(0.197, 0.227) 0.678(0.295, 0.299) 0.045(0.243, 0.279)
high 0.140(0.280, 0.330) 0.473(0.371, 0.380) 0.000(0.304, 0.380)
low 0.140(0.024,−0.008) 0.791(0.027, 0.022) 0.186(0.027,−0.003)

Table 3: Rank-sum test of the null hypothesis that recursive messages, and
cellular information alone, give the same median Spearman correlation coeffi-
cient between expected and actual worth. The three columns correspond to the
three kinds of network in Figure 12. This analysis uses 10 instances of each
type of network. Each table entry gives a p value, and in brackets, the mean
Spearman correlation coefficient between expected and actual worth, first given
cellular information, then given recursive slow retrograde signals. ‘All’ includes
all cells; ‘low’ includes only cells whose expected worth is below the median
expected worth of cells of in the same network, and ‘high’ includes only cells
whose expected worth is above the median.

119



Figure 22: Conditional mean and variance of worth given recursive retrograde
messages. The three columns correspond to the three networks in Figure 12.
Data are aggregated over 10 instances of each network type. Values of expected
worth are sorted into bins with approximately 5% of data in each bin, and
statistics computed for corresponding actual values of worth in each bin. Top
Actual mean (crosses) and standard error on the mean (error bars) for each bin.
The blue line is equality. This shows the expected value to be approximately
correct. Bottom Variance in actual worth for each bin. The variance is largest
when the expected worth is large. For positive values of expected worth, variance
is approximately linearly related to the expected worth.
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Figure 23: Conditional mean and variance of indirect worth given recursive
retrograde messages. Data are aggregated over ten instances of each type of
network. The three columns correspond to the networks in Figure 12. We sort
the expected values into bins with approximately 5% of data in each bin, and
compute statistics for the actual indirect worth in each bin. Top Actual mean

indirect worth for each bin, versus the expected value Ωj−2$
(indirect)
j , computed

using slow recursive retrograde messages. The error bars are standard error on
the mean for each bin and the blue line is equality. The expected value is
shown to be a good predictor of the actual mean indirect worth in each bin.
Bottom Variance of actual indirect worth versus the same expected values.
Note (bottom left, bottom right) that the conditional variance of indirect worth
given expected indirect worth is large for large negative expected values, as well
as large positive expected values. Cells with large negative expected indirect
worth are cells with strong output weights to downstream neighbours of lower-
than-average worth; these cells have a large effect on downstream activity, but
cannot be sure whether the effect is good or bad.
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Figure 24: Actual versus expected worth and indirect worth in a single instance
of each type of network. The expected values are computed using slow recursive
retrograde messages, passing the expected linworth of each cell to each of its
upstream neighbours. Each scatter plot has one point per cell for a single in-
stance of each of the three random networks in figure 12. Blue lines are equality.
Top Worth in the three networks, versus the expected value. Expected values
are sorted into bins, and statistics of the corresponding values of true worth $j
computed in each bin. The lines show the mean (green) and standard deviation
(red error bars) of the actual worth in each bin, as well as the standard error on
the mean (green error bars). The expected values are approximately correct but
the spread of true values around the expected values is large. Bottom Same,
but with indirect worth instead of worth: not such a close fit, as it excludes the
easy-to-estimate direct worth. 122



6.6 Rough bounds for worth using slow retrograde signals

In the previous section we considered how accurately a cell can esti-
mate its worth using certain slow retrograde signalling schemes. We
found that each cell could compute a conditional expected value and
variance for its worth given the information it would receive from
such signals, but that the coefficient of variation would typically
remain greater than 1, so that few cells could confidently predict
even whether their worth is positive or negative. One might ar-
gue that these schemes provide each cell with not much more than
roughly symmetric, probabilistic bounds on its worth; and that such
coarse symmetric bounds could be obtained more simply. Here we
show a simpler way to get symmetric probabilistic bounds for each
cell’s worth. This simpler scheme still uses recursive retrograde mes-
sages, but without requiring the precalculation step to estimate the
parameter km, and without depending so heavily on assumptions of
Gaussianity and approximately zero mean output weights from each
cell.

The linworth of cell i, $
(lin)
i = 〈ζi, ai〉, depends on the correlation

of one signal, ai, with another, ζi. Components of ai orthogonal to
ζi do not contribute to this correlation, but could still contribute to
the worth of an upstream cell j. Therefore, instead of propagating
bounds for $(lin) directly, we first propagate estimates for |ai| and
then use this to bound linworth. A bound for ai implies a bound

for linworth via the Cauchy-Schwartz inequality: $
(lin)
i

2
= 〈ζi, ai〉2 ≤

JaiK
2 JζiK

2.
We will not use any Fourier transform in the scheme we derive,

but to derive it we start with the frequency-domain description:

ã = gWT ã + τgb̃

We will use this to work out how to propagate estimates of |ai|2.
To see how the mean output weight of each cell affects the cal-

culation, we decompose W into Wij = wi + Tij, so the Tij are
independent random variables with zero mean. In this notation

ãj = g
∑
i

Wij ãi + τgb̃j = gwj
∑
i

ãi +
∑
i

Tij ãi + τgb̃j

Taking a sum over j on each side and using
∑

jWij = 0 we have

that
∑

j ãj = τgb̃j and so
∑

j ãj = τg
∑

j b̃j is a function of b̃j alone.
Therefore we can define

C̃ =
∑
j

ãj = τg
∑
j

b̃j
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and write
ãj = gwjC̃ + g

∑
i

Tij ãi + τgb̃j (51)

The Tij are uncorrelated, therefore the expected value of |ãj|2
given knowledge of |ãi|2,Tij,|τgb̃j + gwjC̃| is approximately

E
(
|ãj|2

)
≈
∣∣∣τgb̃j + gwjC̃

∣∣∣2 +
∑
i

|g|2T 2
ij |ãi|

2

If each downstream neighbour i were able to report the expected
value Ã2

i of its |ãi|2 given information it receives, then cell j could
compute an expected value Ã2

j of its own |ãj|2 using

Ã2
j = |τgb̃j + gwjC̃|2 +

∑
i

|g|2T 2
ijÃ

2
i

This would eventually converge on Ã2
1

...

Ã2
p

 = (I− |g|2(T ◦T)T )−1

 |τgb̃1 + gw1C̃|2
...

|τgb̃p + gwpC̃|2

 (52)

This needs simplification, since to directly implement a message-
passing scheme where cells compute and relay messages about Ã2

i ,

each cell would have to compute a power spectrum of τgb̃i, and
separately transmit messages about each frequency band. However,
we can simplify. The synaptic gain |g| ≤ 1 at all frequencies, and
the Hadamard product (T ◦T) has all positive entries and spectral
radius less than 1, so that if A2

1
...
A2
p

 = (I− (T ◦T)T )−1

 |τb1 + w1C|2
...

|τbp + wpC|2

 (53)

then for each i, we have ∫
ω

Ãi(ω)2 ≤ A2
i (54)

The A2
i in (53) can be computed by recursive retrograde message-

passing if each cell repeatedly updates

A2
j ←

∑
i

T 2
ijA

2
i + |τbj + wjC|2 (55)
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The inequality (54) lets us attach meaning to the resulting values
Ai. Recall that JaiK measures the magnitude of effect a tweak to cell
i’s input can have on the performance of the network as a whole,
once consumer cells have relearned their input weights, and we can

estimate worth of a cell i as 〈ai, ζi〉 − $
(direct)
i . In (54),

∫
ω
Ãi(ω)2 is

the expected value of JaiK
2 =

∫
ω
|ãi(ω)|2 that cell i would compute

if each cell could compute a power spectrum of b and pass separate
estimates of power in a at each frequency. A2

i is an upper bound
for that expected value of JaiK

2, and can be computed without do-
ing any spectrum analysis, using the recursive update (55). With
Chebyshev’s theorem, A2

i gives bounds on the probability that the
mean square of ai will exceed any particular value:

∀k > 0 : P
(
JaiK

2 > k2A2
i

)
≤ 1

k
(56)

From the probabilistic bounds for JaiK in (56), Cauchy’s inequality

lets us derive probabilistic bounds for linworth $
(lin)
i = 〈ai, ζi〉:

∀k > 0 : P
(

$
(lin)
i

2
> k2A2

i JζiK
2
)
≤ 1

k

We now have a way to calculate probabilistic bounds for linworth,
using a simpler recursive retrograde message-passing scheme (55)
than the one in 6.5.5.

Figure 25 compares the probabilistic bound A2
i JζiK

2 to the actual
value of linworth squared, for the same three simulated networks
as in sections 6.4, 6.5.4 and 6.5.6. We introduced slack at several
stages in deriving A2

i — for example, g can be much smaller than 1
— so it is not surprising to find that in our simulations the linworth
squared never exceeds A2

i JζiK
2. Figure 25 also shows that A2

i JζiK
2

significantly discriminates between cells of large worth and cells of
small worth. The Spearman rank correlation coefficients between

A2
i JζiK

2 and $
(lin)
i

2
are given in table 4. These are all positive and

highly statistically significant.
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Network 1 Network 2 Network 3

all 0.45(p < 10−307) 0.76(p < 10−307) 0.48(p < 10−307)
high 0.45(p < 10−307) 0.59(p < 10−307) 0.49(p < 10−307)
low 0.20(p = 6.62 ×

10−6)
0.54(p < 10−307) 0.21(p = 2.48 ×

10−6)

Table 4: Spearman rank correlation coefficient between $
(lin)
i

2
and A2

i JζiK
2
.

The three networks are the three types of network in Figure 12 and data are
shown for a single instance of each type of network. ‘All’ means all cells, ‘low’
means cells with below-median values of A2

i JζiK
2
, and ‘high’ means cells with

above-median values of A2
i JζiK

2
. All correlations are highly significant.
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Figure 25: Checking the probabilistic bounds for JaiK and $
(lin)
i computed using

the equations in section 6.6. The three columns are for the three networks
shown in Figure 12. The top panels show the actual values of JaiK

2
versus the

probabilistic bound A2
i . The bottom panels show the actual values of linworth,

$
(lin)
i = 〈ζi, ai〉, versus the probabilistic bounds Ai JζiK which follow from the

bound on ai by Cauchy’s inequality. The straight lines are equality. In all cases
the actual values are well below the probabilistic bound, and a relationship can
be seen between the bound and the actual value.
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6.7 Conclusion

In this chapter we asked what a cell can infer about its own worth
if it lies in a random, recurrently connected network of producers.

First we found a way to accurately estimate worths of cells in
a simulated network (6.3). We used simulations of three different
types of random network to test the method. The method is fast to
simulate and gives accurate estimates of worth (6.4), but biologically
implausible because it depends on fast retrograde signalling.

We then asked (6.5) what can be inferred by a cell about its
worth using slow retrograde signals. We considered two scenarios:
one where cells attempt to estimate their worth using cellular infor-
mation alone, and another where cells pass recursive slow retrograde
messages to estimate worth. In the recursive case, the retrograde
signals tell each cell an estimated linworth for each of its downstream
neighbours. We tried to approximate ‘the belief of cell j about its
worth’ given the available information in each case. The work in
(6.3) using fast retrograde signals was useful in two ways: as a
benchmark against which to measure the accuracy of these other es-
timates, and as a starting point for the mathematical analysis. We
derived strategies for estimating worth given cellular information,
or using recursive slow retrograde messages. We implemented the
strategies in simulations in sections 6.5.4 and 6.5.6 and we showed
that, consistent with the analysis, they give correct expected values
for worth, but leave large uncertainty about the worth of each cell.
The uncertainty about a cell’s worth is similar whether we use cellu-
lar information alone, or whether we use recursive retrograde signals
that report to each cell the expected linworths of all its downstream
neighbours. For cells with high expected worth, the estimates are
more informative than for cells with low worth: the conditional co-
efficient of variation in actual worth is largest when the expected
worth is small.

Finally in section 6.6 we looked at a simpler way of getting prob-
abilistic, symmetric bounds for cells’ worths, still using slow recur-
sive retrograde messages. In this simpler scheme, we do not even
attempt to estimate the sign of each cell’s worth. In simulations
we found this gave a reliable bound on the absolute value of each
cell’s worth, and that the bounds were significantly correlated with
the absolute values of cells’ true worths. In a real, biological neural
network that is well adapted to its task, and with a loss function
that really corresponds to reproductive success, there should not
be many cells with large negative worths: these are cells which not
only serve no purpose, but are actually harmful. It might be ar-
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gued, therefore, that bounding the absolute value of a cell’s worth
and assuming the worth is nonnegative gives a good signed esitmate
of worth. However, the analysis of section 6.6 assumed independent
random synaptic weights and a rather specific form of loss function,
so we cannot deduce that without further analysis.

The conclusion of this chapter is that, in random networks where
each cell has a large number of inputs, it is hard to accurately es-
timate the indirect worths of cells using slow retrograde signals.
However, it is possible to arrive at probablistic bounds or an order-
of-magnitude estimate. Adding recursive retrograde signalling — so
that each cell can monitor the worths of downstream cells to which it
provides input — may offer marginally better worth estimates than
simply letting each cell monitor the strengths of its output weights.

A question not addressed in this analysis is how accurate an es-
timate of worth needs to be to support PMH, or to support some
other learning scheme where learning rates are modulated according
to a cell’s worth. If we start with a random network, use expected
worth given slow retrograde messages as an estimate of worth, and
modulate learning rates according to that estimate, can we expect
to make the network perform better? The fact that there is signifi-
cant correlation between expected and actual worth — especially for
cells of high worth — makes this plausible, but it is not trivial to im-
plement. We found that simple implementations (not shown here)
quickly led to unstable networks, probably because in the model
studied, the expected worth of a cell increases as its root mean
square firing rate increases. Some kind of homeostasis, or a cost
function that penalises large firing rates, is probably required, both
for computational efficacy and for biological relevance.

The analysis in this chapter was confined to networks with inde-
pendent, random synaptic weights. As soon as any ‘learning’ hap-
pens, the weights cease to be independent random variables. This
includes ‘learning’ that consists of selectively destabilising the in-
put synaptic weights of cells with small expected worth. Having
independent, random weights was a key assumption in our analysis
of how to compute expected worths from slow retrograde signals.
The troubling conclusion is that as soon as we use these estimates
of worth to guide learning, the estimates themselves may become
invalid. However, it still seems plausible that a learning rule using
estimated worth, computed from slow retrograde signals, could work
to improve network performance.
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7 Discussion

This thesis develops an intuitive, biological idea — the retroaxonal
hypothesis — into a mathematical framework — parallel Metropolis-
Hastings, using estimation of ‘worth’ by passage of slow retroaxonal
signals. The intention is to show that the retroaxonal hypothesis
corresponds to a class of learning algorithms which should, and do,
work, and also to explain some limitations. We use mathematical
models that are necessarily reductive and abstract, but aim not to
violate the constraints of biological systems.

We began in chapter 3 by stating the retroaxonal hypothesis and
reviewing the biological evidence. This evidence is circumstantial,
but shows that the hypothesis does not demand anything biologi-
cally implausible. Rather, the retroaxonal hypothesis offers a coher-
ent explanation for disparate experimental observations: reversibil-
ity of synaptic changes; over-representation of behaviourally relevant
information; and the existence of slow retrograde signals which can
modulate synaptic plasticity. Still, the retroaxonal hypothesis lacks
direct experimental evidence.

In chapter 4, we converted the retroaxonal hypothesis to a math-
ematical model. The retroaxonal hypothesis hinges on the idea of
cells’ output spike trains being more or less useful, so we made a pre-
cise mathematical definition of the ‘worth’ of a cell, in a very general
model neural network. The retroaxonal hypothesis is reminiscent of
the standard Metropolis-Hastings algorithm, often used for stochas-
tic optimisation. We showed that the retroaxonal hypothesis can
be translated into a varation on Metropolis-Hastings which we call
‘parallel Metropolis-Hastings’, or PMH.

We described conditions that would analytically guarantee con-
vergence of PMH. These will not be met exactly in any reasonably
sophisticated simulation, let alone a real neural network, but in
chapter 5 we showed that they can be approximately met in a sim-
ple feedforward network with a quadratic cost function. In chapter 5
we also showed that in this kind of network, cells can estimate their
worths from their output weights. We implemented PMH, with
cells estimating their worths from their output weights and mak-
ing their rates of plasticity dependent on their worth. Here, PMH
was effective in making a population of cells concentrate on useful
features, and it improved performance of the network on the given
task. Chapters 4 and 5 together validate the two key intuitions of
the retroaxonal hypothesis: that cells with strong output synapses
tend to be those that encode something useful, and that useful cells
should not change their input synapses too readily. However, this
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validation was in a very simple feedforward network. The algorithm
was successfully deployed on a toy ‘cocktail party’ problem.

PMH, and the retroaxonal hypothesis, depend crucially on cells
being able to estimate how useful their output is by measuring their
output synaptic weights. Chapter 5 showed this is possible in a
simple feedforward network. In Chapter 6 we explored how this
may extend to recurrently connected networks, and investigated the
use of slow retrograde signals to estimate worth in these networks.
We considered networks with independent random synaptic weights,
and we studied the belief of a cell about its worth given information
it might receive via retrograde signals. We derived strategies for
estimating worth with slow retrograde signals, and simulated them.

Consistent with the analysis in Chapter 6, we found that — as-
suming a netowrk with independent, random synaptic weights —
when using slow retroaxonal signals to estimate worth, the con-
ditional coefficient of variation in worth is large for cells of small
expected worth, and greater than 1 even for cells with the largest
expected worths. Using slow retrograde signals, cells can learn about
the absolute values of their worths, but few cells (especially not those
with small estimated worth) can tell whether their worth is positive
or negative.

7.1 What does it mean for the brain?

In this thesis we set out to formalise the retroaxaonal hypothesis
mathematically, and to show that it corresponds to some kind of
computationally useful learning rule.

Chapters 4 and 5 suggest that for feedforward structures,
‘retroaxonal learning’ as proposed by the retroaxonal hypothesis is
computationally sound. Thus, the retroaxonal hypothesis might be
a model for how hippocampal cells in CA1 that project to the subicu-
lum — and which do not have many excitatory connections to each
other — could modulate the plasticity rate of their input synapses.

In recurrent networks, the results are less clear. The argument of
Chapter 4 still applies: if cells could discover their worths, then cells
of low worth should make their input synapses more plastic than
cells of high worth. However, Chapter 6 shows that in a recurrently
connected network, it becomes difficult to accurately estimate the
worths of cells in a biologically plausible way.

The analysis in Chapter 6 was of networks with independent ran-
dom synaptic weights, which is obviously a poor approximation to
the brain, but allows some initial calculations to be done. In those
networks there are some cells of negative worth, corresponding to
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cells that are not only unhelpful but actively hinder the survival
of the host. All of the slow retroaxonal messaging schemes we in-
vestigated leave a large proportion of cells highly uncertain as to
whether their worth is positive or negative. However, we did find
that cells with large estimated worth were relatively less uncertain
about their worth, so that some highly useful cells are correctly iden-
tified as such. Even without the stochasticity of the PMH algorithm,
it seems that if a learning scheme uses slow retrograde messages to
estimate worth and, say, selectively change the input synapses of
cells that have negative worth, it is bound to also change some cells
that have positive worth. It is possible that in a network that is
already well adapted, there are fewer cells of negative worth, and
therefore estimating the magnitude of each cell’s worth is as good
as estimating the signed worth. Then, learning rates modulated by
worth, with worth estimated by slow retrograde signals, could be-
come a better proposition. However, since we only studied ways of
estimating worth in recurrent networks with random weights, we do
not know if this is the case.

The difficulty of estimating a neuron’s worth from its output
weights brings us back to the economic analogy that motivated the
retroaxonal hypothesis. Thinking about this analogy makes it un-
suprising that it is hard to estimate a cell’s worth from its output
weights in a random recurrent network. In the retroaxonal hypothe-
sis, each cell is considered as an entrepreneur, ‘selling’ spike trains to
other cells. For example, the random recurrent networks of chapter
6, with supervised output layer, correspond to a strange dystopia
where end-consumers make intelligent buying decisions, while all
the suppliers randomly mix and match components from each other.
The retroaxonal hypothesis says that if a cell has many strong out-
put weights, we may infer that what it produces is probably useful.
This is like assuming that if producer X sells many items, what
it makes is probably good i.e. that end-consumers are better off
than they would be if producer X did not exist or ceased produc-
tion. It is only a good assumption if something forces the recipi-
ents of producer X’s output to make buying decisions that benefit
end-consumers: for example, every consumer must know what will
benefit himself or herself. This is not reality. Guessing, from the
revenue of a manufacturer, how much worse off people would be if it
disappeared, will always be unreliable. By analogy it is not surpris-
ing that it is hard to guess from the ‘revenue’ of a neuron how much
worse off the ‘end-consumers’ of the network would be if that neuron
fell silent. The message-passing scheme of 6.5.5 estimates the indi-
rect worth of a cell to be large if it provides a lot of input to other
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cells that have above-average worth, but with large uncertainty. In
the economic analogy, a producer whose output is frequently used in
more-popular-than-average products, probably makes a good thing
— but we cannot be too sure.

To convincingly prove or disprove the retroaxonal hypothesis, bi-
ological experiments are required. To prove the retroaxonal hypoth-
esis, an experiment (or experiments) would need to do two things.
First, it must show not just that strong output weights tend to co-
incide with low input synaptic plasticity, but that strong output
synaptic weights cause a reduction in input synaptic plasticity. Sec-
ond, it must show that strong output weights indicate high utility
to the host.

To show that strong (or weak) output weights cause reduced
(or increased) input synaptic plasticity, Kenneth Harris has sug-
gested disabling the output synapses of a subset of pyramidal cells
by knocking out the vesicular glutamate transporter VGLUT1 in
those cells. This would prevent them from releasing neurotrans-
mitter at their output synapses, but should not affect their elec-
trical properties and should not directly affect plasticity of their
input synapses. However, it will prevent postsynaptically initiated,
activity-dependent plasticity of their output synapses; and accord-
ing to the retroaxonal hypothesis it should increase plasticity of the
same cells’ input synapses. The experiment was attempted in vitro,
using glutamate uncaging to measure synaptic weights, but failed
because of problems with the viral vector; it seems worth another
try.

The second experimental task involves measuring utility of a neu-
ron to its host organism, which is another interesting problem. Usu-
ally this is done not directly, by measuring the behavioural effect of
killing or silencing cells, but by measuring the activity of neurons
while the host performs some behavioural task, guided by sensory
stimuli. If doing the task depends on recognising some particular
sensory stimulus, and a neuron is found to be selectively responsive
to that stimulus, then we guess that the neuron is useful in perfor-
mance of that task. This is supported by (Sigala and Logothetis,
2002) which shows in a vision experiment that after learning, more
behaviourally relevant features are represented by larger numbers of
cells. If we accept this method of estabilishing utility of a cell, then
‘all’ we have to do is measure each cell’s responsiveness to a variety
of stimuli while doing a behavioural task and while also measuring
the same cells’ output weights, or the plasticity rates of their input
synapses. It may be possible to test for input plasticity not electro-
physiologically, but histologically, by staining for some long-lasting
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byproduct of input synaptic plasticity. None of this is impossible
with modern techniques, but the number of variables involved may
make it hard to get adequate statistical power. A totally different
approach would be to try to selectively kill or silence populations
of cells with strong output synapses, or cells whose input synapses
are undergoing plasticity, and measure the effect on behaviour. The
retroaxonal hypothesis would predict that the cells with plastic in-
put synapses or weak output synapses tend to be useless cells, and
can be silenced without great detriment to the host, while others
are less dispensable.
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