
Imperial College London

Department of Computing

Importance Sampling for Stochastic Programming

Quang Kha Tran

supervised by

Dr. Panos Parpas
Prof. Berç Rustem

Submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Computing of Imperial

College and the Diploma of Imperial College, 2016

DECLARATION OF ORIGINALITY

I, Quang Kha Tran, confirm that this thesis is my own work and that any
additional sources of information have been referenced appropriately.

COPYRIGHT DECLARATION

The copyright of this thesis rests with the author and is made available
under a Creative Commons Attribution Non-Commercial No Derivatives li-
cence. Researchers are free to copy, distribute or transmit the thesis on the
condition that they attribute it, that they do not use it for commercial pur-
poses and that they do not alter, transform or build upon it. For any reuse
or redistribution, researchers must make clear to others the licence terms of
this work.

Abstract

Stochastic programming models are large-scale optimization problems that
are used to facilitate decision-making under uncertainty. Optimization al-
gorithms for such problems need to evaluate the exptected future costs of
current decisions, often referred to as the recourse function. In practice,
this calculation is computationally difficult as it requires the evaluation of
a multidimensional integral whose integrand is an optimization problem. In
turn, the recourse function has to be estimated using techniques such as sce-
nario trees or Monte Carlo methods, both of which require numerous function
evaluations to produce accurate results for large-scale problems with multiple
periods and high-dimensional uncertainty. In this thesis, we introduce an Im-
portance Sampling framework for stochastic programming that can produce
accurate estimates of the recourse function using a small number of sam-
ples. Previous approaches for importance sampling in stochastic program-
ming were limited to problems where the uncertainty was modelled using dis-
crete random variables, and the recourse function was additively separable in
the uncertain dimensions. Our framework avoids these restrictions by pairing
Markov Chain Monte Carlo methods with Kernel Density Estimation algo-
rithms to build a non-parametric Importance Sampling distribution, which
can then be used to produce a low-variance estimate of the recourse func-
tion. We demonstrate the increased accuracy and efficiency of our approach
using variants of well-known multistage stochastic programming problems.
Our numerical results show that our framework produces more accurate es-
timates of the optimal value of stochastic programming models, especially
for problems with moderate-to-high variance distributions or rare-event dis-
tributions. For example, in some applications, we found that if the random
variables are drawn from a rare-event distribution, our proposed algorithm
can achieve four times reduction in the mean square error and variance given
by other existing methods (e.g.: SDDP with Crude Monte Carlo or SDDP
with Quasi Monte Carlo method) for the same number of samples. Or when
the random variables are drawn from the high variance distribution, our pro-
posed algorithm can reduce the variance averagely by two times compared

i

to the results obtained by other methods for approximately the same level
of mean square error and a fixed number of samples.

We use our proposed algorithm to solve a capacity expansion planning
problem in the electric power industry. The model includes the unit com-
mitment problem and maintenance scheduling. It allows the investors to
make optimal decisions on the capacity and the type of generators to build
in order to minimize the capital cost and operating cost over a long period of
time. Our model computes the optimal schedule for each of the generators
while meeting the demand and respecting the engineering constraints of each
generator. We use an aggregation method to group generators of similar fea-
tures, in order to reduce the problem size. The numerical experiment shows
that by clustering the generators of the same technology with similar size
together and apply the SDDP algorithm with our proposed sampling frame-
work on this simplified formulation, we are able to solve the problem using
only one fourth the amount of time to solve the original problem by conven-
tional algorithms. The speed-up is achieved without a significant reduction
in the quality of the solution.

ii

Acknowledgement

I owe my deepest gratitude to Professor Berç Rustem and Dr. Panos Parpas
at Imperial College London for their invaluable suggestions and advice for
my Ph.D. thesis. Their commitments to excellence are inspiring and their
enthusiasms for optimization are exceptional. Also, I would like to express
my sincere gratitude to Professor Mort Webster in the Pennsylvania State
University and my colleague Berk Ustun at Massachusetts Institute of Tech-
nology for many useful discussions and hours of programming.

I am deeply indebted to my family for all their unconditional love, support
and encouragements.

Last but not least, I would like to thank all of the members in the Computa-
tional Optimisation Group at Imperial College London: Professor Daniel
Kuhn, Dr. Wolfram Wiesemann, Dr. Ruth Misener, Dr. Duy Luong,
Dr. Grani Adiwena Hanasusanto, Dr. Vladimir Roitch, Chin Pang Ho,
Sei Howe, Vahan Hovhannisyan, Juan Campos Salazar, Georgia Kouyialis,
Radu Baltean-Lugojan.

iii

iv

Contents

1 Introduction to Linear Stochastic Programming and thesis
overview 1

1.1 Overview of the thesis . 1

1.2 Linear Stochastic Programming 2

1.3 Computational Challenges . 4

1.4 Existing algorithms . 5

1.5 Proposed Methodology . 6

1.6 Thesis outline . 9

1.7 Contributions . 10

2 Background 13

2.1 Bender’s decomposition . 13

2.2 Regularized decomposition . 16

2.3 Dantzig-Wolfe decomposition 18

2.4 Basic Lagrangian Dual Ascent and Augmented Lagrangian . . 19

2.5 Progressive Hedging . 20

2.6 Stochastic Dual Dynamic Programming 20

2.6.1 Deterministic Dual Dynamic Programming 21

2.6.2 Stochastic Dual Dynamic Programming 24

2.7 The perils of sampling in decomposition algorithms 26

2.7.1 Description of the newsvendor problem 26

2.7.2 Sampling error in decomposition algorithms 28

2.8 Variance-Reduction Methods 30

2.8.1 Antithetic Variates . 30

2.8.2 Latin Hypercube Sampling 31

2.8.3 Quasi-Monte Carlo . 32

2.8.4 Importance Sampling 32

2.9 Summary . 34

v

3 Importance Sampling for Stochastic Programming algorithms 37
3.1 Markov chain Monte Carlo: Sampling from the optimal IS

distribution for the recourse function’s approximation 39
3.1.1 Basic theory of Metropolis-Hastings algorithm 39
3.1.2 Metropolis-Hastings for Stochastic Programming algo-

rithms . 41
3.2 Kernel Density Estimation: 1/ Constructing the optimal Im-

portance Sampling distribution 2/ Correcting the bias in the
estimator . 42
3.2.1 Basic theory of Kernel Density Estimation 43
3.2.2 Kernel Density Estimation in SP algorithms 50

4 Convergence of the MCMC-IS algorithm 54
4.1 Convergence of Markov Chain Monte Carlo in the MCMC-IS

algorithm . 54
4.2 Convergence of Kernel Density Estimation in the MCMC-IS

algorithm . 59
4.2.1 Additional properties of Markov chain 59
4.2.2 Convergence of Kernel Density Estimation for a Harris-

recurrent Markov chain 61
4.3 Convergence of Stochastic Dual Dynamic Programming with

MCMC-IS algorithm . 63

5 Numerical experiments 66
5.1 Practical guidelines for MCMC-IS 66
5.2 Numerical results with the Newsvendor problem 67

5.2.1 Details on experimental setup and reported results . . 68
5.2.2 The effect of the number of MCMC samples and the

KDE bandwidth parameter 70
5.2.3 Adaptive sampling of the important regions 70
5.2.4 Dependence of the sampling distribution on the previous-

stage decision . 72
5.2.5 Comparison with other sampling algorithms 73
5.2.6 Multimodal distributions and rare-event simulation . . 75
5.2.7 Accuracy and variance of MCMC-IS estimations from

a decomposition algorithm 77
5.3 Numerical results on a collection of test problems 78

5.3.1 Overview of the test problems 78
5.3.2 Details on the numerical experiments 80
5.3.3 Accuracy and variance of the estimations 81

5.4 When to use MCMC-IS in Stochastic Program 82

vi

6 Application: The capacity expansion planning in the electric
power industry 86
6.1 Formulation . 92

6.1.1 Unit commitment problem 92
6.1.2 Scaling time . 94
6.1.3 Maintenance scheduling problem 95
6.1.4 Carbon Dioxide emission, renewable energy integra-

tion, non-served energy penalty 96
6.1.5 Capacity expansion problem 97

6.2 Clustered formulation . 98
6.3 Numerical results . 103

6.3.1 Low variance case . 105
6.3.2 High variance case . 110
6.3.3 The optimal capacity expansion decisions 115

6.4 Summary . 119

7 Conclusions 120

8 Appendix 122

viii

List of Figures

1.1 Different approaches to solve a stochastic program. (a) Com-
pact formulation: Decomposition Method (b) Split-view for-
mulation (c) Generating constraints to make the solutions of
subproblems consistent after split-view 5

2.1 In 2.1(a) the sampled cut is valid; assuming that only valid
cuts are generated in subsequent iterations, a decomposition
algorithm will produce accurate estimates of x∗ and z∗. In
2.1(b) the sampled cut is invalid; even if all the other cuts
produced by the algorithm are valid, the true optimal solution
at x∗ will remain infeasible, and a decomposition algorithm
will produce high-error estimates for the optimal value and
solution. 29

3.1 Different types of kernel functions used to calculate the density
estimation . 45

3.2 Principles of Kernel Density Estimation. Data are drawn from
the Bimodal distribution which is the mixture of two Normal
distributions. They are N(2, 1) and N(8, 1). 45

3.3 The effects of varied bandwidth on the quality of Kernel Den-
sity Estimation. Data are drawn from the Bimodal distribu-
tion which is the mixture of two Normal distributions. They
are N(2, 1) and N(8, 1). 46

3.4 Trade-off between the bias and variance in the Kernel Density
Estimation. When the bandwidth is large, the variance of
estimations is small; The bias is large since their shapes do
not follow the true density. 47

3.5 Trade-off between the bias and variance in the Kernel Density
Estimation. When the bandwidth is small, the bias of estima-
tions is small because their shapes follow the true density; the
variance, however, is large. 47

ix

3.6 Different types of kernel functions can be used in the Kernel
Density Estimation. There are little differences in the estima-
tions. 49

5.1 (a) The majority of the gains in variance reduction and accu-
racy can be achieved for a small value of M . Note that the
axis for MSE(ĝM) is on the right, and the scale for MSE(Q̂)
is on the left. (b) Contours of g∗. (c)-(e) Contours of ĝM
for different values of M ; the bandwidth parameter for these
distributions is estimated using a one-dimensional likelihood-
based search. (f) ĝ10000 with a bandwidth that is 20% smaller
for each dimension. The resulting mean square error is lower
but the variance is higher for the density in (f) 71

5.2 Comparison of points generated with the standard CMC ap-
proach, and MCMC-IS. Left: using MC sampling; Right: us-
ing importance sampling. 72

5.3 The absolute difference between an approximate zero-variance
distribution constructed at x̂r = 50 and two other approximate
zero-variance distributions constructed at x̂1 = 10 (left) and
x̂2 = 100 (right). 73

5.4 Top: Comparison of the accuracy and variance of estimates
produced by different methods for a moderate-variance prob-
lem with σ = 1. Bottom: Comparison of the accuracy
and variance of estimates produced by different methods for
a higher-variance problem with σ = 2. Note that we omit the
results for the IDG method when σ = 2 for clarity. The nor-
malized values of SQ̂ and MSE(Q̂) for DGI are around 20%
and 40% respectively. 74

5.5 Top: Contours of a multimodal model. Samples generated us-
ing CMC are shown on the left and the samples from MCMC-
IS are shown on the right. Bottom: Error and variance of
estimates produced by different methods. 76

5.6 Error and variance of estimates for a newsvendor problem
where the uncertainty in demand and sales price is modeled us-
ing a lower-variance lognormal distribution with σ = 1 (5.6(a)
- 5.6(b)), a higher-variance lognormal distribution with σ =
2 (5.6(c) - 5.6(d)), and multimodal rare-event distribution
(5.6(e) - 5.6(f)) . 79

x

5.7 Median results with the Collection of Test Problems. (a)
MSE(z̃) for models with lower-variance distributions (b) MSE(z̃)
for models with higher-variance distributions (c) MSE(z̃) for
models with rare-event distribution. The error bars indicate
the standard error associated with the solution obtained. (d)
Error (%) × CPU Time (mins); for this plot we averaged the
low variance, moderate variance and rare event results. 85

6.1 The unit commitment, maintenance scheduling and capac-
ity expansion models are integrated into a single framework.
Some typical questions addressed in each model are shown
in the corresponding box. The overlapped box presents the
interaction between models. 87

6.2 Multiscale explanation . 95
6.3 The CPU time of different methods for a number of seasons

when the demand and wind output are drawn from the log-
normal distribution with the standard deviation of one 106

6.4 The % error of the objective cost for different methods for
a number of seasons when the demand and wind output are
drawn from the lognormal distribution with the standard de-
viation of one . 108

6.5 The “Relative Efficiency” of different methods over a number
of seasons when the demand and wind output are drawn from
the lognormal distribution with the standard deviation of one 109

6.6 The CPU time of different methods for a number of seasons
when the demand and wind output are drawn from the log-
normal distribution with the standard deviation of two 110

6.7 The % error of the objective cost for different methods when
the demand and wind output are drawn from the lognormal
distribution with standard deviation of two 112

6.8 The efficiency of six methods when the demand and wind out-
put are drawn from the Normal distribution with high stan-
dard deviation . 112

6.9 The % error of the optimal decision variables for different
methods over a number of seasons when the demand and wind
output are drawn form the lognormal distribution with the
standard deviation of one . 114

6.10 The % error of the optimal decision variables for different
methods over a number of seasons when the demand and wind
output are drawn from the lognormal distribution with the
standard deviation of two . 114

xi

6.11 Optimal decision variables for the “Clustered-by-Tech” method 115
6.12 Optimal decision variables for the “Clustered-by-Tech-and-

Size” method . 116
6.13 Optimal decision variables for the “Clustered-by-Tech” method

when the variance increases 116
6.14 Optimal decision variables for the “Clustered-by-Tech-and-

Size” method when the variance increases 117
6.15 Difference between the MSE of the optimal decision variables

and the “true” solution given by the “Unclustered with MCMC-
IS” method . 118

6.16 Difference between the MSE of the optimal decision variables
and the “true” solution given by the “Unclustered with MCMC-
IS” method . 119

xii

List of Tables

5.1 Overview of the Test Problems from Ariyawansa and Felt (2004) 80

5.2 Computational overhead and variance reduction trade offs for
MCMC-IS. 83

6.1 Four types of technology and their main features 91

6.2 Numerical results when the demand and fuel cost are drawn
from the lognormal distribution with σ = 1. The running time
is rounded to minutes. 105

6.3 The order of the CPU time of different methods over a number
of seasons (increasing order) 106

6.4 The order of the % error of the objective cost for different
methods over a number of seasons (increasing order) 107

6.5 The order of the “Relative Efficiency” of different methods
over a number of seasons. 1 = the best method. 6 = the
worst method . 109

6.6 Numerical results when the demand and fuel cost are drawn
from the lognormal distribution with σ = 2. The running time
is rounded to minutes. 110

6.7 The order of the CPU time of different methods for a number
of seasons (increasing order) 111

6.8 The order of the CPU time of different methods for a number
of seasons (increasing order) 113

6.9 The % error of the optimal decision variables for different
methods over a number of seasons (increasing order) 113

8.1 Comparison of performance of MC, QMC and the proposed al-
gorithm (MCMC) when the random variables are drawn from
the distribution with standard deviation of 1 129

8.2 Comparison of performance of MC, QMC and the proposed al-
gorithm (MCMC) when the random variables are drawn from
the distribution with standard deviation of 2 133

xiii

8.3 Comparison of performance of MC, QMC and the proposed al-
gorithm (MCMC) when the random variables are drawn from
the rare-event distribution . 136

8.4 Average number of rejections when generating 3000 samples
(Mr) . 139

xiv

Chapter 1

Introduction to Linear
Stochastic Programming and
thesis overview

1.1 Overview of the thesis

Stochastic programming (SP) is a framework for modelling large-scale opti-
mization problems that involve uncertainty. It has been applied effectively
to solve many real-life problems in energy, finance and engineering. Solv-
ing a stochastic program, however, is usually very difficult because it re-
quires the computation of the recourse function, which is usually a very
high-dimenisonal integral, where each integrand is an optimization problem.
The ultimate aim of this thesis is to develop an efficient and robust optimiza-
tion algorithm for solving SP problems. We focus on large scale multistage
linear stochastic programs because of their many applications but some of
the proposed methodology can be extended to other classes of stochastic pro-
grams. Our proposed algorithm addresses the issue of efficient uncertainty
sampling for stochastic programs. The benefits of the proposed algorithm
will be demonstrated by solving a large number of benchmark test problems
with various sizes, structures, time periods and nature of uncertainty. After
that, we provide the theoretical convergence proof for the algorithm. Finally,
the proposed algorithm is used to solve a very large-scale optimization prob-
lem in the eletric power industry, in which the unit commitment problem,
maintenance scheduling and capacity expansion planning are integrated into
a single model to allow the utilities investors make optimal decisions on the
capacity expansion for different type of generators. The thesis consists of
three main chapters:

1

1. In Chapter 3, we propose a new sampling algorithm, integrate it into an
optimization algorithm and test it on several benchmark test problems

2. In Chapter 4, we provide a convergence proof for the proposed algo-
rithm

3. In Chapter 6, we apply the new algorithm on a large-scale optimization
problem in the power industry.

In the next section, we will introduce the SP framework. We will explain
the computational challenges for solving this kind of problems and review
some existing methods. After that, we propose an algorithm for solving SP
problems with an increased efficiency and accuracy.

1.2 Linear Stochastic Programming

In this section, we will first introduce the SP framework. We will start with
a two-stage stochastic linear program and then extend it to the multistage
problem.

The two-stage stochastic linear program with fixed recourse was first in-
troduced by Dantzig (1955) and Beale (1955) and it has the following form:

min cTx+ Eξ{min q(w)Ty(w)}
s.t. Ax = b

T (w)x+Wy(w) = h(w)

x ≥ 0, y(w) ≥ 0

(1.1)

Where x ∈ R
n1 represents the first-stage decisions; c ∈ R

n1 is the vector
associated with the first-stage objective function. A ∈ R

m1×n1 , b ∈ R
m1 are

matrix and vector associated with the first-stage constraints. At the second
stage, there are a number of random events happening. Each random event
is denoted as w ∈ Ω. For a given realization w, we obtain the matrices q(w),
h(w) and T (w), where q(w) ∈ R

n2×1, h(w) ∈ R
m2×1 and T (w) ∈ R

m2×n1 . The
stochastic components of the problem are then grouped into ξT (w), where
ξT (w) := (q(w)T , h(w)T , T1(w), . . . , Tm2(w)) and Ti(w) is the ith row of the
matrix T (w). Thus ξT (w) has N = n2 + m2 + (m2 × n1) components. For
ease of exposition, we will use ξ and ξ(w) interchangeably in this thesis. We
assume that ξ has its support over Ξ ⊂ R

N such that P (Ξ) = 1. The vector
y(w) ∈ R

n2 represents the second-stage recourse decision. The notation y(w)
shows that the value of y(w) will change with respect to each realization of
w. The matrix W is called the recourse matrix and assumed to be fixed

2

so that the feasibility set of the problem can be computed in a convenient
manner. Eξ is the mathematical expectation with respect to the probability
distribution of ξ.

The Deterministic Equivalent Program (DEP) is defined as:

min cTx+Q(x)
s.t. Ax = b

x ≥ 0

(1.2)

Where,

Q(x) = Eξ{Q(x, ξ(w))} (1.3)

Q(x, ξ(w)) = min
y
{q(w)Ty(w)}

s.t. Wy(w) = h(w)− T (w)x

y(w) ≥ 0

(1.4)

Equation (1.2) is known as the first-stage problem. Notice that the for-
mulation (1.1)-(1.4) can be applied to both discrete and continuous random
variables. Q(x) is known as the recourse function, which is the expected
value of all second-stage (future cost) functions Q(x, ξ(w)).

In many practical situations, decision makers have to make decisions over
a long period of time (more than two time-periods). In this case, equation
(1.1) is extended to the multistage problem as follows:

min c1
Tx1 + Eξ2{min c2(w)

Tx2(w2) + . . .+ EξH{min cH(w)
TxH(wH)}}

s.t. W1x1 = h1

T1(w)x1 +W2x2(w2) = h2(w)

...

TH−1(w)xH−1(wH−1) +WHxH(wH) = hH(w)

x1 ≥ 0, xt(wt) ≥ 0, t = 2, . . . , H
(1.5)

Where c1 ∈ R
n1 , W1 ∈ R

m1×n1 , h1 ∈ R
m1 are deterministic vectors. Wt ∈

R
mt×nt is a known matrix and ct(w), ht(w), Tt(w) are grouped into ξt(w)

such that ξt(w)
T := (ct(w)

T , ht(w)
T , T t−1

1 (w), . . . , T t−1
mt

(w)). H is the total
number of stages (time-periods). The decisions x depend on the history up
to time t, which is indicated by wt. We suppose that Ξt is the support of ξt.

The multistage problem (1.5) can be formulated as a Dynamic Program

3

(DP). In this case, the problem at the terminal stage is given as:

QH(xH−1, ξH(w)) =min cH(w)
TxH(w)

s.t. WHxH(w) = hH(w)− TH−1(w)xH−1

xH(w) ≥ 0

(1.6)

Let Qt+1(xt) = Eξt+1{Qt+1(xt, ξt+1(w))} for all t. The recursive problem at
stage t = H − 1, H − 2, . . . , 2:

Qt(xt−1, ξt(w)) =min ct(w)
Txt(w) +Qt+1(xt)

s.t. Wtxt(w) = ht(w)− Tt−1(w)xt−1

xt(w) ≥ 0

(1.7)

Where xt is the state of the system. The value that we aim to compute is:

min c1
Tx1 +Q(x1)

s.t. W1x1 = h1

x1 ≥ 0

(1.8)

Which has the same form of the two-stage stochastic linear programming
problem (1.1). In the next section, we are going to explain some challenges
of solving the multistage SP problems described above.

1.3 Computational Challenges

Multistage SP problems usually have thousands or millions of variables at
every stage, corresponding to thousands or millions of random events that
can occur at different points in time. This problem is known as the “curse of
dimensionality”. The curse of dimensionality means that the computational
effort required to solve a stochastic program grows exponentially with the
number of dimensions of the stochastic program. As a result, many people
are naturally inclined to solve simpler versions. For example, all random
variables are replaced with their expected value, so the problem is trans-
lated back to a deterministic form that can be easily solved. However, this
approach may give us a wrong decision due to the fact that the nature of
random variables cannot be fully represented by only a single value. Another
approach for solving SP is by using scenario analysis introduced by Raiffa
and Schalaifer (1961). In this approach, uncertainty is modelled through a
number of scenarios and each scenario corresponds to a deterministic opti-
mization problem. The optimal solution is the expected value of all scenarios’

4

2 3

4 5 6

1

7

(a)

1 1 1 1

2 2 3 3

4 5 6 7

(b)

1 1 1 1

2 2 3 3

4 5 6 7

(c)

Figure 1.1: Different approaches to solve a stochastic program. (a) Compact
formulation: Decomposition Method (b) Split-view formulation (c) Generat-
ing constraints to make the solutions of subproblems consistent after split-
view

objective values. This is called the wait-and-see solution. Wait-and-see so-
lution, however, cannot be implemented in practice because it assumes that
decision makers can predict the future. Therefore, the ultimate aim is to use
SP with some special algorithms that can exploit the structure of SP models,
to make the calculation more efficient and tractable.

1.4 Existing algorithms

There are several approaches for solving SP problems (Parpas and Rustem
(2007)). The first approach is to use the compact (recursive) formulation.
With this approach, the formulation can be mapped directly onto a tree
structure known as scenario tree (Figure 1.1(a)). The root of tree represents
the current state of the world. Each subsequent level represents a future
time period. At each time period, there are different nodes representing the
different events that may occur. The path from the root to a leaf node is
called a scenario. The multistage SP problem is then solved by a nested lin-
ear program using decomposition algorithms such as Bender’s decomposition
(L-shaped method). In Benders decomposition, the large-scale problem is
decomposed into several subproblems, each representing a node in the tree.

The second approach for solving SP problems is to use the split-view
formulation (Figure 1.1(b)). With this approach, a large-scale problem is
split into n subproblems, where n is the number of scenarios. Because each
subproblem is solved separately, new constraints that are commonly known
as the non-anticipative constraints are introduced to make the solutions con-
sistent across different subproblems (Figure 1.1(c)). Some examples of the
split-view formulation are the Augmented Lagrangian method, first intro-

5

duced by Hestenes (1969) and Powell (1969) and the Progressive Hedging
algorithm, first introduced by Rockafellar and Wets (1991).

The drawbacks of these approaches are that they require the construction
of a scenario tree. Constructing a scenario tree can become a very compli-
cated task as the complexity of the scenario tree grows exponentially with
the number of stages and random variables. Therefore, only a small scenario
tree tends to be used. With a small number of scenarios, it is possible that
we cannot obtain the true optimal solution. This problem occurs not only in
the situation when continuous random variables are discretized via sampling,
but also in the situation when there are so many discrete random variables
(possible scenarios) that we need to perform some sampling.

Another approach for solving multistage SP problems is to use the Linear
Decision Rules method (Kuhn et al. (2011)). A great advantage of the Lin-
ear Decision Rules method is it can reduce significantly the computational
complexity. The decisions that are desired to obtain, however, have to follow
the linear relationship with the data. This leads to a considerable loss of
accuracy and limits the applicability of the Linear Decision Rules method in
many situations.

SP problems can also be solved by sampling algorithms such as the Sample
Average Approximation (SAA) method Kleywegt et al. (2001). It is shown
that SAA can solve a two-stage linear SP very efficiently using the Monte
Carlo sampling technique. The obtained results are the approximation to the
true solutions with a reasonable accuracy. It is, however, shown that SAA
cannot solve a multi-stage SP due to the “curse of dimensionality” (Shapiro
and Nemirovski (2005)).

As a result, the primary aim of this thesis is to devise an efficient and
accurate algorithm for multistage SP problems. In the next section, we will
explain the plan for achieving it.

1.5 Proposed Methodology

Our primary aim in this thesis is to devise an efficient and accurate algorithm
for multistage SP problems. In order to achieve this aim, we start with the
analysis of one of the state-of-the-art algorithms for solving multistage SP
problems. The algorithm is called the Stochastic Dual Dynamic Program-
ming (SDDP) method, first introduced by Pereira and Pinto (1991). SDDP
is essentially the combination of SAA and Benders decomposition. SDDP
has many attractive features. Firstly, it does not require the construction of
scenario trees; secondly, by exploiting the piecewise linear approximation of
the recourse function, it constructs valid lower and upper bounds, which can

6

be used as the stopping criterion. One common drawback of sampling algo-
rithms is that we need to take a lot of samples in order to achieve reasonably
accurate results. Generating more samples, in practice, is a very expensive
approach as each sample requires the solution of a Linear Program (LP).
Therefore, our aim is to achieve a good approximation without increasing
the number of samples. This is exactly the purpose of using Variance Reduc-
tion (VR) methods. Some commonly used VR methods are Control Variates,
Antithetic Variates, Stratification and Importance Sampling.

Control Variates compute the approximate error of a known function
(Control Variate) and use it to reduce the error of the unknown function.
It is, however, not easy to find a suitable Control Variate that has a large
correlated coefficient (as close to one as possible) with the unknown function.
In practice, one can try to make the Control Variate depend on the unknown
function as much as possible but this is still a very difficult approach to
generalize.

Antithetic Variates reduce the estimation error by generating negatively
correlated samples with the obtained samples. The new generated samples,
hence, form with the obtained samples to become a pair with negative cor-
relation. Because of this negative coefficient, the overall variance can be
reduced. However, there are not many realistic examples in which the vari-
ance reduction obtained by Antithetic Sampling is dramatic. Also, with this
approach, we still have to take additional samples, which is not our aim.

Stratification reduces the estimation error by dividing the set of sam-
ples into several homogeneous subset of samples, called Strata. A common
strategy of Stratification is proportional allocation, in which the size of each
Strata should be proportional to the standard deviation of the distribution of
the variables. Larger samples are taken in the stratum with the greatest vari-
ability to generate the least possible sampling variance. The disadvantage
of Stratification is that the samples used in SP problems cannot be parti-
tioned into disjoint subgroups and it is not possible to know the variance (or
standard deviation) at each region in the sample space.

Importance Sampling (IS) reduces the estimation error by modifying the
sampling distribution such that most of the samples are generated in the
region that contribute the most to the function that is desired to calculate.
Because the samples are generated in such a biased way, if we use this biased
distribution directly in the simulation, the estimator will become biased. In
order to correct this bias, the simulation output is weighted according to the
likelihood ratio. This likelihood ratio is basically the ratio between the true
underlying distribution with respect to the biased distribution. Therefore, by
multiplying this ratio with the biased output, we are able to translate back to
the original distribution and obtain an unbiased estimator. The fundamental

7

issue of IS is the choice of the biased distribution that biases the sampling
towards the important regions. Choosing a good distribution can save a great
amount of computational effort and make the approximation much more ac-
curate by reducing the variance. In the context of SP problems, it reduces
the number of LP problems needed to solve while the decreased variance in
the approximate future cost function allows the optimization algorithm to
improve its convergence rate and the solutions’ accuracy. We will demon-
strate an example of how a conventional Monte-Carlo sampling method with
a high variance and small number of samples can give wrong solutions for
an optimization problem in Section 2.7. Furthermore, IS is relatively easy to
implement once we know the importance sampling distribution.

Importance Sampling has been applied to SP problems by Dantzig and
Glynn (1990) and Infanger (1992). The method has shown a great advantage
in reducing the variance of the recourse function approximation (Infanger
(1992) Higle (1998)). Furthermore, it can capture rare events (e.g.: a power
outage or a surge in demand in the electric power industry) much more effec-
tive than those using the crude Monte Carlo (see Infanger (1992) and Chapter
6 of this thesis). However, there are some strict assumptions associated with
the methods proposed in the existing literature. For example, the random
variables in the model can only be drawn from a discrete distribution. To
our knowledge, the method has not been extended to the continuous case
yet. Another important assumption is that the recourse function has to be
additively separable with respect to the random variables. It has been shown
that these assumptions have made the algorithm difficult to use in practice,
and in some situations the variance of the obtained estimator is increased
more than the crude Monte Carlo methods (Homem-de Mello and Bayrak-
san (2014) Higle (1998) Parpas et al. (2014)). In this thesis, we are going
to propose an IS method that can be used to solve multistage SP problems
without making any of the assumptions above.

The proposed IS exploits a well-known theory in the IS literature that
there exists an optimal IS distribution that can give a zero-variance estimator
(Asmussen and Glynn (2007)). Althouth this optimal IS distribution cannot
be used in practice due to the Curse of Circularity 1, it shows that the optimal
IS distribution is known up to a normalizing constant. We therefore propose
to use Markov chain Monte Carlo (MCMC) to generate a sequence of samples
(an ergodic Markov chain) such that after a sufficient long run, the samples
generated by MCMC will converge to a stationary distribution that is very
close to the optimal IS distribution for computing the recourse function of the

1It is possible to find an optimal sample (and therefore zero variance) but the optimal
solution needs to be known!

8

SP problems. After that, we propose to use the Kernel Density Estimation
(KDE) to reconstruct the approximately optimal IS distribution. This step
is important for two reasons. Firstly, more samples can be generated from
the obtained optimal IS distribution with little marginal computational cost
while offering a better approximation. Secondly, the obtained optimal IS
density is used to calculate the likelihood ratio, which then corrects the bias
in the IS estimator.

The advantages of the proposed IS framework will be demonstrated through-
out the thesis. Here are its main features. Firstly, it can work well with many
different types of MCMC and KDE algorithms. The continuous advancement
of MCMC or KDE will, to some extent, lead to the improvement of the pro-
posed IS. Secondly, the proposed IS method shares the same benefit with
many other existing IS methods such that it can give robust and reason-
able results for the probability distributions that are difficult to work with.
Finally, it is well-suited for SP optimization algorithms because it obtains
lower-variance estimates of the recourse function that eventually helps to
solve the models more accurately.

The proposed IS framework is a sampling method and it has to be paired
with an optimization algorithm to solve SP problems. The optimization al-
gorithm that we use in this thesis is called the Stochastic Dual Dynamic
Programming (SDDP) method (Pereira and Pinto (1991)) because of many
attractive features mentioned at the beginning of this section. The SDDP
algorithm will be explained in Section 2.6. On the other hand, we expect that
the proposed IS framework is flexible and simple enough for it to work with
many other stochastic optimization algorithms such as the SAA (Shapiro
et al. (2009)), Progressive Hedging (Rockafellar and Wets (1991)), Stochas-
tic Decomposition (Higle and Sen (1991)), Augmented Lagrangian methods
(Parpas and Rustem (2007)), Approximate Dynamic Programming (Powell
(2007)) and some variants of Benders’ decomposition methods (Birge and
Louveaux (2011)).

1.6 Thesis outline

In Chapter 2, we will explain the principles of different methods for solving
multistage stochastic programming problems, including the Bender’s decom-
position method and the Stochastic Dual Dynamic Programming method.
We will show the error associated with sampling methods, and then review
different approaches that have been used to solve this problem.

In Chapter 3, we will propose an efficient and accurate algorithm to solve
multistage stochastic programming problems. The proposed sampling al-

9

gorithm is based on the theory of Importance Sampling while using the
techniques of Markov chain Monte Carlo and Kernel Density Estimation.
Therefore, we will review each technique first before explaining the way to
apply them for stochastic programming problems. The proposed sampling
algorithm is then paired with a stochastic optimization algorithm such as
Stochastic Dual Dynamic Programming, Sample Average Approximation,
and so on, in order to solve multistage stochastic programming problems.

In Chapter 4, we will prove the convergence of the proposed algorithm.
To do so, we need to show the convergence of the Markov Chain Monte
Carlo that we use in the proposed algorithm. After that, we show the con-
vergence of the Kernel Density Estimation for the generated Markov chain.
Finally, we show the convergence of the stochastic optimization algorithm
(e.g.: Stochastic Dual Dynamic Programming) when it uses the proposed
sampling algorithm.

In Chapter 5, we will firstly test the proposed algorithm on the Newsven-
dor problem in order to understand the properties of the algorithm. Then, we
use the proposed algorithm to solve a wide range of applications, which are
the benchmark stochastic programming test problems found in Ariyawansa
and Felt (2004). We compare the results obtained by the proposed algorithm
with some existing methods such as the Crude Monte Carlo, Quasi Monte
Carlo and the Importance Sampling method proposed by Infanger (1992).

In Chapter 6, we introduce the capacity expansion planning model in
the electric power industry. The model also includes the unit commitment
problem and maintenance scheduling and it is well-known to be a very large
scale optimization problem. We propose different formulations to reduce the
problem size and make the problem scale more efficiently with the number
of time periods. Then we use the proposed algorithm to solve these formu-
lations. The obtained results are compared with the ones obtained by the
Stochastic Dual Dynamic Programming method.

In Chapter 7, we present our conclusions and describe some possible fu-
ture work.

1.7 Contributions

The contents of Chapter 3 were presented in the International Conference on
Stochastic Programming, Bergamo, Italy in 2013. The resulting paper en-
titled: Importance Sampling in Stochastic Programming: A Markov Chain
Monte Carlo Approach, has been accepted for publication in INFORMS Jour-
nal of Computing. The main contribution of this work is the development
of an efficient and accurate algorithm for solving multistage stochastic pro-

10

gramming problems.
The contents of Chapter 6 are in preparation for the European Journal of

Operational Research. The main contribution of this work is the development
of the stochastic capacity expansion planning model for the electric power
industry and using the proposed algorithm in Chapter 3 to solve it efficiently
and accurately.

11

12

Chapter 2

Background

In this chapter, we are going to study different methods for solving mul-
tistage stochastic programming problems. The methods include Bender’s
decomposition (L-shaped method), Regularized decomposition, Basic Fac-
torization, Interior Point methods, Dantzig-Wolfe decomposition (Inner Lin-
earization approach), Basic Lagrangian Dual Ascent, Progressive Hedging
and the Stochastic Dual Dynamic Programming algorithm. We then show
the approximation error associated with these sampling algorithms. After
that, we investigate different ways to solve this problem.

2.1 Bender’s decomposition

Bender’s decomposition (L-shaped method) is an algorithm that exploits the
special structure in SP problems in order to solve them efficiently Benders
(1962). The basic idea of Bender’s decomposition is that it splits the original
two-stage stochastic linear program into a master problem and many inde-
pendent subproblems. Each subproblem corresponds to a scenario w ∈ Ω.
By solving the master problem, the first-stage decisions x is obtained. Given
x, the subproblems are solved to generate a supporting hyperplane, which is
well-known as a cut. This cut is used to approximate the recourse function
and it is added to the master problem. Then solving the master problem
gives us another trial decision. The algorithm repeats until the optimality
criterion is satisfied. In this section, we will derive the main steps of Bender’s
decomposition algorithm for a two-stage stochastic LP problem.

Assume that the random vector ξ has finite support. Let k = 1, . . . , K
be the index of all possible realizations and pk be their probabilities. Under
this assumption, the second-stage decisions yk is associated with a realiza-
tion ξk(w), i.e. to each realization of qk(w), hk(w) and Tk(w). As a result,

13

equation (1.1) can be rewritten in the extensive form as follows:

min
x,yk(w)

cTx+
K∑

k=1

pkqk(w)
Tyk(w)

s.t. Ax = b

Tk(w)x+Wyk(w) = hk(w), k = 1, . . . , K

x ≥ 0, yk(w) ≥ 0, k = 1, . . . , K

(2.1)

The projected problem of Equation (2.1) is given as:

min
x∈V

cTx+
K∑

k=1

pkvk(x) (2.2)

Where

V = {x ∈ X|Ax = b, ∃yk(w) ∈ Y, Tk(w)x+Wyk(w) = hk(w)}
and

vk(x) = min
yk(w)

qk(w)
Tyk(w)

s.t. Wyk(w) = hk(w)− Tk(w)x
(2.3)

Therefore, an equivalent formulation to Equation (2.2) is given as:

min
x∈V

cTx+ θ

s.t. θ ≥
K∑

k=1

pkvk(x)
(2.4)

In addition, the dual of Equation (2.3) is given by:

vk(x) =max
πk(w)

πk(w)
T{hk(w)− Tk(w)x}

s.t. W Tπk(w) ≤ qk(w)
(2.5)

Assumed that vk(x) is differentiable, and since vk(x) is convex in x, the
subgradient inequality can be described as:

vk(x) ≥ vk(xs) + dTk (x− xs) (2.6)

Where dk ∈ ∂vk(xs) and vk(xs) is the subgradient of vk at xs. Substituting
equation (2.6) into equation (2.4),

min
x∈V

cTx+ θ

s.t. θ ≥
K∑

k=1

pk{vk(xs) + Ovk(xs)
T (x− xs)}

(2.7)

14

From equation (2.5), the subgradient Ovk(xs) is given as:

Ovk(xs) = −πk(w)
TTk(w) (2.8)

Where
πk(w) ∈ arg max

WT πk(w)≤qk(w)
πk(w)

T (hk(w)− Tk(w)x)

Substituting (2.5), (2.8) back into equation (2.7), one obtains:

min
x∈V

cTx+ θ

s.t. θ ≥
K∑

k=1

pk{πk(w)
T (hk(w)− Tk(w)xs)− πk(w)

TTk(w)(x− xs)}

≥
K∑

k=1

pk{πk(w)
Thk(w)− πk(w)

TTk(w)x}

(2.9)
This is known as the optimality cut of Bender’s decomposition.

So far, it has been assumed that the subproblem (2.3) always has feasible
solutions for every x and w. This is not always the case. In general, one needs
to check the feasibility of subproblem by solving the following problem:

Ik(x) =min eT z+ + eT z−

s.t. Wyk(w) + Iz+ + Iz− = hk(w)− Tk(w)x

yk(w) ≥ 0, z+ ≥ 0, z− ≥ 0

(2.10)

Where eT = [1, . . . , 1] and I is the identity matrix.
If x is feasible, Ik(x) = 0; otherwise, Ik(x) > 0. The dual of equation

(2.10) is given as:

Ik(x) =max
πk(w)

πk(w)
T (hk(w)− Tk(w)x)

s.t. W Tπk(w) ≤ 0

− 1 ≤ πk(w) ≤ 1

(2.11)

Let π∗ be the vector solution of (2.5). Then, by adding the following con-
straint

π∗T (hk(w)− Tk(w)x) ≤ 0 (2.12)

to the master problem, it removes all infeasible solutions while keeping fea-
sible solutions. This is because: for any infeasible xinfeas, π∗T (hk(w) −
Tk(w)xinfeas) = Ik(xinfeas) > 0; and for any feasible xfeas, π

∗T (hk(w)−Tk(w)xfeas) ≤
Ik(xinf) = 0. Equation (2.12) is known as the feasibility cut.

15

The algorithm of Bender’s decomposition is summarized in Algorithm 1.
Bender’s decomposition can be easily extended to multistage problems. At
each stage, the algorithm solves subproblems for every realization of w, and
add optimality or feasibility cuts to the previous-stage problem. The algo-
rithm repeats until we can find the optimal first-stage decisions. An advan-
tage of Bender’s decomposition is that it can be used in parallel computing.
The drawback of Bender’s decomposition is that it requires the construction
of scenario tree. The complexity of scenario tree grows exponentially with
the number of random variables (samples) and number of stages (time peri-
ods). This is known as the Curse of Dimensionality. To avoid this problem,
a small scenario tree tends to be used. However, with only a small number of
samples, we sometimes cannot obtain the true optimal solution. This prob-
lem not only occurs in the situation when continuous random variables are
discretized by sampling algorithms, but also in discrete cases, when there are
so many discrete values that we need to perform some sampling. In any cases,
constructing a scenario tree is cumbersome. In Section 2.6, we will explain a
methodology called Stochastic Dual Dynamic Programming (SDDP), which
allows us to bypass the scenario tree requirement and provide an efficient
approach of solving multistage SP problems while maintaining the parallel
computing possibilities.

2.2 Regularized decomposition

Regularized decomposition was first introduced by Ruszczynski (1986). It
includes a quadratic regularizing term in the objective function, which allows
the algorithm to leverage good starting points. Moreover, it generates a cut
for each realization, as opposed to solving all of the subproblems for all
realizations in order to generate only a cut as in Bender’s decomposition.
The benefit of adding more cuts at each iteration is the algorithm may take
fewer iterations to converge. On the other hand, the problem now has a
larger number of constraints so the computational cost for each iteration
increases, which may cancel out the advantage of having fewer iterations.
As a result, the successful use of regularized decomposition depends on the
problem (Birge and Louveaux (1988)) and (Gassman (1990)). The rule-of-
thumb is that the multicut approach is expected to be more effective when
the number of realizations are not much larger than the number of first-stage
constraints.

16

Algorithm 1 Bender’s decomposition Algorithm

1. Initialize. Set nfeas = 0, nopt = 0, i = 0 (where nfeas is the number of
feasibility cuts, nopt is the number of optimality cuts, i is the number of
iterations).
2. Solve the master problem

min cTx+ θ

s.t. Ax = b

dl −Dlx ≤ 0, l = 1, . . . , nfeas (feasibility cuts as in Equation (2.12))

θ ≥ el − Elx, l = 1, . . . , nopt (optimality cuts as in Equation (2.9))

x ≥ 0
(2.13)

Let (xi, θi) be the optimal solution at i-th iteration. If there is no optimality
cuts, θi is simply not considered and set to −∞.
If the solutions converge, STOP. Otherwise, go to step 3.
3. For k = 1, . . . , K, solve the following subproblem:

min qk(w)
Ty(w)

s.t. Wk(w)y(w) = hk(w)− Tk(w)x
i

y ≥ 0

(2.14)

If all the problems are feasible, add the following optimality cut to the master
problem:

θ ≥ el − Elx (2.15)

Where el =
∑K

k=1 pk(π
i
k)

T (hk(w)); El =
∑K

k=1 pk(π
i
k)

T (Tk(w)); π
i
k is the mul-

tiplier of (2.14). Set nopt = nopt + 1.
If Equation (2.14) is infeasible, solve the problem (2.10); and then add the
following feasibility cut to the master problem:

dl −Dlx ≤ 0

Where dl = (σi)T (hk(w)); Dl = (σi)T (Tk(w)) and σi is the multiplier of
Equation (2.10).
Return to step 2

17

2.3 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition method (Inner Linearization method) was
first introduced by Dantzig and Wolfe (1960). It is the dual of the Bender’s
decomposition method that we have mentioned in Section 2.1. Therefore,
instead of solving the problem (2.13), we solve the following problem:

max ρT b+
r∑

l=1

σldl +
s∑

l=1

πlel

s.t. ρTA+
r∑

l=1

σlDl +
s∑

l=1

πlEl ≤ cT

s∑

l=1

πl = 1

σl ≥ 0, l = 1, . . . , r

πl ≥ 0, l = 1, . . . , s

(2.16)

It can be seen that problem (2.16) is the dual problem of the linear program
(2.13). However, it is the master problem in the Dantzig-Wolfe decomposition
method. Once we solve it, we will obtain the solutions (ρ, σ, π) and the duals
(x, θ), which are then used to solve the subproblem given as follows:

max πT
k (hk(w)− Tk(w)x)

s.t. Wk(w)
Tπk ≤ qk(w)

(2.17)

If the problem (2.17) is infeasible for any realization, it generates a feasibility
cut and adds this cut in the column corresponding to dr+1 = σThk and
Dr+1 = σTTk. If all problems are feasible, it generates a optimality cut and
adds this cut in the column corresponding to es+1 =

∑K
k=1 pkπ

T
k hk and Es+1 =∑K

k=1 pkπ
T
k Tk. In the same way as the Bender’s decomposition method, the

algorithm terminates when θ ≥ es+1 − Es+1x.

In practice, many problems have the first-stage decision variables with a
large number of dimensions and a few number of constraints. This means that
the primal version has a smaller basis matrix than the basis of the dual (Birge
and Louveaux (2011)). As a result, the Bender’s decomposition method is
more effective than the Dantzig-Wolfe decomposition in many situations.

18

2.4 Basic Lagrangian Dual Ascent and Aug-

mented Lagrangian

Consider the following problem:

inf f1(x) +Q(x)
s.t. g1,i(x) ≤ 0, i = 1, . . . ,m1

(2.18)

where Q(x) = Eξ{Q(x, y(w), ξ(w))} and
Q(x, y(w), ξ(w)) = inf f2(x, y(w), ξ(w))

s.t. g2,i(x, y(w), ξ(w)) ≤ 0, i = 1, . . . ,m2

where f1(x) and f2(x) are the objective functions of the first and second
stage; g1,i(x) and g2,i(x) are the constraints for the first and second-stage
problem; m1 is the number of constraints in the first stage, m2 is the number
of constraints in the second stage. The idea of Lagrangian methods is to
put any links between the first and second-stage variables into the objective,
instead of having the hard constraints in the problem. In other words, the
Lagrangian methods solve problem (2.18) by reformulating it as follows:

max
π(w)≥0

θ(π(w)) (2.19)

where

θ(π(w)) = inf
x,y(w)

f1(x) + Eξ{f2(x, y(w), ξ(w))}

+ Eξ(w){
m2∑

i=1

πi(w)g2,i(x, y(w), ξ(w))}

s.t. g1,i(x) ≤ 0, i = 1, . . . ,m1

(2.20)

Suppose that the problem 2.18 has a finite optimal value, all of the functions
are convex and there is a point strictly satisfying all constraints, the Basic
Lagrangian Dual Ascent method will iterate between two main steps. The
first step is to solve the problem (2.20) in order to obtain the approximate
solutions for {x, y(w)}. The second step is to solve the problem (2.19) i.e. to
find the next value of π(w) that maximizes the function θ. The algorithm will
converge to optimal solutions that are equivalent to the solutions of problem
(2.18). The efficiency of the algorithm depends on the computational cost of
finding the dual in problem (2.19) relatively to the cost of solving the original
problem (2.18).

The Augmented Lagrangian adds a penalty term r‖g2,i(x, ξ(w))+‖2 to the
objective function. This allows us to perform the Newton-type steps since
the Hessian matrix now becomes nonsingular. As a result, the convergence
of the algorithm can improve significantly (Dempster (1988)).

19

2.5 Progressive Hedging

The method was first introduced by Rockafellar and Wets (1991). In this
algorithm, problem (2.1) is separated into several subproblems and each
subproblem corresponds to a realization. The computational cost for a sub-
problem is therefore relatively small but the number of iterations for the
algorithm convergence may increase. Similar to the Bender’s decomposition
method, the advantage of this method is the subproblems can be solved in
parallel. The principles of the Progressive Hedging method are as follows:
First, problem (2.18) is reformulated as:

inf
K∑

k=1

pk{f1(x) + f2(x, ξ(w)) + ρ(x− xprev) +
r

2
‖x− xprev‖2}

s.t. g1,i(x) ≤ 0, i = 1, . . . ,m1, k = 1, . . . , K

g2,i(x, ξ(w)) ≤ 0, i = 1, . . . ,m2, k = 1, . . . , K

(2.21)

Where ξ(w) have K realizations. The algorithm iterates between two main
steps. The first step is to find the approximate solutions for x. The second
step is to compute the new optimal value of ρ such that ρnew = ρ+ (x− x̄),
where x̄ is the expected value of x calculated in the previous iteration. The
algorithm stops when x = xprev and ρ = ρprev; at that time, the algorithm
has converged and (x, ρ) are proved to be the optimal solutions (Rockafellar
and Wets (1991)).

2.6 Stochastic Dual Dynamic Programming

In this section, we introduce a method called Stochastic Dual Dynamic Pro-
gramming (SDDP) for solving multistage SP problems (Pereira and Pinto
(1991)). A great advantage of SDDP is that it does not require the sce-
nario tree construction. The algorithm is based on the theory of Bender’s
decomposition (as explained in Section 2.1), in which the recourse function
is approximated by a piecewise linear function. These functions are obtained
from the dual solutions of subproblems at each stage. We are going to start
with the deterministic problem. Then it is followed by the extension to the
stochastic case.

20

2.6.1 Deterministic Dual Dynamic Programming

The concepts of Dual Dynamic Programming (DDP) is illustrated with the
following LP problem:

min c1
Tx1 + c2

Tx2

s.t. A1x1 ≥ b1

E1x1 + A2x2 ≥ b2

(2.22)

where c1 ∈ R
n1 , x1 ∈ R

n1 , c2 ∈ R
n2 , x2 ∈ R

n2 , A1 ∈ R
m1×n1 , b1 ∈ R

m1 ,
E1 ∈ R

m2×n1 , A2 ∈ R
m2×n2 , b2 ∈ R

m2 . Problem (2.22) can be interpreted as
a two-stage problem. The first-stage problem is defined as:

min c1
Tx1 + α1(x1)

s.t. A1x1 ≥ b1
(2.23)

The second-stage problem is defined as:

α1(x1) =min c2
Tx2

s.t. A2x2 ≥ b2 − E1x1

(2.24)

In Dynamic Programming (DP), c1
Tx1 represents the current cost ; α1(x1)

represents the future cost, which is a function of the first-stage decision vari-
ables x1. DP algorithms construct the future cost function by discretizing x1

into a set of trial values {x̂1i, i = 1, . . . , n} and then solving problem (2.24)
for each trial value. The intermediate values of α1(x1) can be obtained by in-
terpolating the neighbouring discretized states. Once the future cost function
is constructed, problem (2.23) is solved again to find the optimal solutions
and objective value.

DP has many attractive properties. Firstly, it can easily extend to mul-
tistage and stochastic problems. Secondly, it can solve nonlinear problems
with relative ease. Its drawback is that the first-stage decisions need to be
discretized into a very large number of values such that the future cost func-
tion can be constructed accurately. The computation therefore can become
very intensive or even intractable. For example, if the vector x1 has ten
components and each component is discretized into five values, there are
510 ≈ 9.76 million different combinations of x1. This problem is well-known
as the Curse of Dimensionality.

An approach to avoiding the Curse of Dimensionality is to approximate
the future cost function by an analytical function rather than discretizing
the first-stage decision variables. In this case, the future cost function is
approximated by a piecewise linear function by taking the dual of Equation

21

(2.24), which is a similar technique used in Bender’s decomposition (Section
2.1). The dual of Equation (2.24) is given as:

α1(x1) =max πT (b2 − E1x1)

s.t. A2
Tπ ≤ c2

(2.25)

Where π is the simplex multiplier vector associated with the constraint in
(2.23). According to the LP theory, the optimal solution obtained from
the original problem coincides with the one obtained from its dual. Hence,
problem (2.24) and (2.25) are equivalent and both of them represent the
future cost function. However, the constraint A2

Tπ ≤ c2 in problem (2.25)
is not dependent on x1, so a set of possible solutions π can be obtained even
before knowing the decision x1.

Let Π = {π1, . . . , πm} be the set of all vertices of the constraint in
(2.25). The future cost function can be found using the complete enumera-
tion method:

α1(x1) = max{πi}T (b2 − E1x1), i = 1, . . . ,m (2.26)

As a result, the equivalent problem to problem (2.24) is:

α1(x1) =min α

s.t. α ≥ {πi}T (b2 − E1x1), i = 1, . . . ,m
(2.27)

Where α is a scalar variable. Equation (2.27) shows that the future cost func-
tion can be described by a piecewise linear function of different components.
Each component is a hyperplane defined by {πi}T (b2−E1x1). It is sufficient
to use only the coefficients {πi} to construct the future cost function, and
it is not required to discretize x1. Finding all vertices {πi}, however, may
be very challenging. For many problems, we can use only a subset of these
vertices. If x̂1i is the trial first-stage decisions, the vertices can be obtained
by solving the dual of the following problems:

α1(x̂1i) =min c2
Tx2

s.t. A2x2 ≥ b2 − E1x̂1i

(2.28)

Let πi be the vector multiplier of problem (2.28). πi therefore belongs to
the set Π. Given a set of n trial values {x̂1i, i = 1, . . . , n}, one can obtain n
associated multipliers πi, i = 1, . . . , n by solving (2.28) for each trial value.
The future cost function therefore can be approximated as:

α̂1(x1) =min α

s.t. α ≥ {πi}T (b2E1x1), i = 1, . . . , n
(2.29)

22

Since only a subset of {Π} are used to approximate the future cost function,
Equation (2.29) is the lower bound of the true future cost function. After
that, we can solve the first-stage problem:

z =min c1
Tx1 + α̂1(x1)

s.t. A1x1 ≥ b1
(2.30)

Substituting (2.29) into (2.30),

z =min c1
Tx1 + α

s.t. A1x1 ≥ b1

α ≥ {πi}T (b2 − E1x1), i = 1, . . . , n

(2.31)

Equation (2.31) is the lower bound of the true optimal cost because the
approximate future cost is the lower bound to the true future cost. The
lower bound z is therefore calculated as:

z = c1
T x̂1 + α̂ (2.32)

Where x̂1 and α̂ are the solutions of Equation (2.31). The upper bound z̄
is obtained by solving second-stage problem (2.28) for the trial first-stage
decisions x̂1:

z̄ = c1
T x̂1 + α1(x̂1) (2.33)

z̄ and z can be considered as the actual and predicted cost respectively. If (z̄−
z) ≤ ε for a small tolerance ε ≥ 0, the optimal actual and predicted cost are
very close to each other. The problem is solved. Otherwise, a new set of trial
decisions is used and the whole process repeats. The new set of trial decisions
can be obtained from the previous iteration. The approximate future cost
function in this case can be built upon the previous good candidates for the
optimal solution.

In summary, DDP has several advantages. Firstly, it does not require
state discretization (Pereira and Pinto (1991)). Secondly, the optimal solu-
tion obtained at every iteration can be reused as the trial solution for the
next iteration. Thirdly, the upper and lower bound can be calculated for
every iteration and they are used directly for the stopping criterion. Finally,
the algorithm will converge after a finite number of iterations (Philpott and
Guan (2008) Shapiro (2011)).

In the next section, we are going to investigate the DDP approach for the
stochastic cases, which can deal with uncertain data and is more applicable
to real-life situations.

23

2.6.2 Stochastic Dual Dynamic Programming

In the previous section, we have seen how DDP can solve a two-stage and then
multistage DDP (deterministic) problems. In this section, we are going to
investigate Stochastic Dual Dynamic Programming (SDDP). We are going to
start with a two-stage stochastic problem and then extend it to a multistage
stochastic problem.

A two-stage SDDP problem is given as:

min c1
Tx1 +

m∑

j=1

pjc2
Tx2j

s.t. A1x1 ≥ b1

E1x1 + A2x2j ≥ b2j, j = 1, . . . ,m

(2.34)

Where c1 ∈ R
n1 , x1 ∈ R

n1 , pj ∈ R, c2 ∈ R
n2 , x2j ∈ R

n2 , A1 ∈ R
m1×n1 ,

b1 ∈ R
m1 , E1 ∈ R

m2×n1 , A2 ∈ R
m2×n2 , b2j ∈ R

m2 . Problem (2.34) can be
interpreted as a two-stage problem with the first-stage decision x1. Given
the trial decision x1, there are m second-stage problems (subproblems):

α1j(x1) =min c2
Tx2j

s.t. A2x2j ≥ b2j − E1x1

(2.35)

Where j = 1, . . . ,m. Each subproblem is a scenario that occurs with the
probability pj. Let ᾱ1(x1) =

∑m
j=1 pjα1j(x1). The first-stage problem in the

DP recursion becomes:

min c1
Tx1 + ᾱ1(x1)

s.t. A1x1 ≥ b1
(2.36)

All of the derivations with two-stage DDP problems can be applied to the
stochastic case. Furthermore, it can be extended to the multistage stochastic
program.

In the multistage stochastic problems, the SDDP algorithm performs one
forward simulation and one backward simulation for every iteration. The
purpose of the forward simulation is to find “good” trial decisions at each
stage. Also, it gives the upper bound on the objective value of the problem.
Then, given the trial decisions at each stage, the backward simulation will
solve the subproblems corresponding to each scenario generated from the
random variables. The dual obtained after solving these problems are used to
construct the lower-bound piecewise-linear approximation of the future cost
function at each stage. This technique is known as Bender’s decomposition
as explained in Section 2.1. Therefore, the objective value at the first stage

24

can also be used as the lower bound on the objective value of the whole
problem.

Depending on different ways of upper bound, lower bound and confidence
interval calculations, there are different ways to stop the SDDP algorithm
(Shapiro (2011) Homem-de Mello et al. (2011) Homem-de Mello and Bayrak-
san (2014)). The stopping criterion we use throughout the thesis is given in
Shapiro (2011) to avoid an early stop caused by the large variance of the up-
per bound estimator (Remark 4 in the paper Shapiro (2011)). Its principle
is as follows: Every iteration of the SDDP algorithm includes an backward
and an forward simulation. The backward simulation constructs the lower
bound on the recourse function at every stage so the objective value at the
first stage will also be the lower bound of the whole optimization problem.
This is denoted as θ. Then, in the forward simulation, we have n paths from
stage one to the final stage. For every projection j, we calculate the “true”
cost:

θi =
T∑

t=1

cTtix̂ti, i = 1, . . . , n (2.37)

Where cti and x̂ti are the cost and trial decicion vectors at stage t for the
projection j. We then calculate the mean, θ̄, and the variance, σ̂2

θ , of these
paths:

θ̄ =
1

n

n∑

i=1

θi (2.38)

σ̂2
θ =

1

n− 1

n∑

i=1

(θi − θ̄)2 (2.39)

Then the confidence interval can be constructed as:

[θ̄ − zα/2σ̂θ/
√
n, θ̄ + zα/2σ̂θ/

√
n] (2.40)

Where zα denotes the (1− α)-quantile of the standard Normal distribution.
For example: z0.025 = 1.96 shows the 95% confidence interval. If the difference
between the upper confidence bound θ̄ + zασ̂θ/

√
n and the lower bound θ is

less than a prescribed accuracy level ε > 0, the algorithm stops. Typically,
the value of ε is 10%, meaning that the upper bound is no more than 10%
above the lower bound Homem-de Mello et al. (2011). With this stopping
criterion, the optimization problem is guaranteed to be solved with accuracy
ε for the (1− α) confidence.

The accuracy of SDDP and other sampling algorithms can be increased by
increasing the number of samples n (Shapiro (2011) Homem-de Mello et al.
(2011) Homem-de Mello and Bayraksan (2014)). However, increasing in the

25

number of samples may make the problem intractable or very computation-
ally intensive. Our aim is to reduce the error while keeping a small number
of samples. The multistage SDDP algorithm is summarized in Algorithm 2.

In the next section, we are going to show an example of how sampling
algorithms can give wrong solutions when using a small number of samples.
After that, we are going to review different Variance Reduction (VR) methods
that can be used to solve this problem before proposing our own method
based on the theory of Importance Sampling.

2.7 The perils of sampling in decomposition

algorithms

In this section, we are going to show an example of how sampling algorithms
can give wrong solutions when using a small number of samples. Firstly,
we are going to introduce a newsvendor problem. Secondly, we are going
to solve this problem using Crude Monte Carlo (CMC) method paired with
a decomposition algorithm. The result shows that using a small number of
samples may produce an invalid cut, leading to a high error in the recourse
function’s approximation. Even if the sampling error of every cut is small,
it is compounded over a number of iterations. Eventually it can become so
significant that it gives inaccurate solutions and objective value.

2.7.1 Description of the newsvendor problem

We consider a two-stage newsvendor problem with uncertain demand and
uncertain sales prices, where the first-stage decision-making problem is a LP
problem defined as,

z∗ = min
x

x+Q(x)

s.t. x ≥ 0,
(2.46)

where Q(x) = Eξ{Q(x, ξ)}. The second-stage function is a LP problem
defined as,

Q(x̂, ξ) = min
y1,y2

− p(ξ)y1 − ry2

y1 ≤ d(ξ),

y1 + y2 ≤ x̂,

y1, y2 ≥ 0,

(2.47)

26

Algorithm 2 Multistage Stochastic Dual Dynamic Programming Algorithm

Step 1. Initialize: α̂t(xt) = 0 for t = 1, . . . , T , where T is the total number
of time periods (or stages); z̄ =∞.
Step 2. Solve the approximate first-stage problem as in (2.30). Let x̂1 be the
optimal solution.
Step 3. Calculate the lower bound z as in (2.32). If z̄ − z ≤ ε, the problem
is solved. Otherwise, go to step 4.
Step 4. For t = 1, . . . , T − 1 (forward simulation)
Sample n paths from stage one to the final stage. For i = 1, . . . , n, solve the
following optimization problem:

x̂t+1,i = argmin ct+1
Txt+1,i

s.t. At+1xt+1,i ≥ bt+1,i − Etx̂t

(2.41)

Store the optimal dual solution as πt+1,i.
Step 5. Calculate the mean, θ̄, and the variance, σ̂2

θ , of these paths:

θ̄ =
1

n

n∑

i=1

θi (2.42)

Where θi =
∑T

t=1 c
T
tix̂ti, and

σ̂2
θ =

1

n− 1

n∑

i=1

(θi − θ̄)2 (2.43)

Then construct the confidence interval:

[θ̄ − zα/2σ̂θ/
√
n, θ̄ + zα/2σ̂θ/

√
n] (2.44)

Set z̄ = θ̄ + zασ̂θ/
√
n

Step 6. For t = T − 1, . . . , 2 (backward recursion)
Solve the following optimization problem:

min ct
Txt + α

s.t. Atxt ≥ bt − Et−1x̂t−1

α ≥
m∑

i=1

pt+1,i{πt+1,i}T{bt+1,i − Etx̂t}
(2.45)

Where the multipliers πt+1,i are obtained from the step 4.
Step 7. Return to step 2.

27

where x̂ denotes the quantity of newspapers purchased in the first stage,
ξ = (ξ1, ξ2) represents the uncertainty in demand d(ξ) and sales price p(ξ) of
newspapers in the second-stage, and scalar r represents the price of recycling
unsold newspapers. We usually model the uncertainty in demand as d(ξ) =
100×exp(ξ1) and the uncertainty in sales price as p(ξ) = 1.5×exp(ξ2), where
ξ1 and ξ2 are independent normal random variables with mean µ and and
standard deviation σ. This implies that the uncertainty in d(ξ) and q(ξ) are
modelled using a lognormal distribution.

2.7.2 Sampling error in decomposition algorithms

We solve the newsvendor problem (Section 2.7.1) using Crude Monte Carlo
(CMC) method paired with a decomposition algorithm. Figure 2.1 shows an
invalid cut for approximating the recourse function when there are only a
small number of samples used in the decomposition algorithms.

Both cuts in this example were constructed using N = 50 samples. For
clarity, we plot a subset of the sample values Q(x̂, ξi), i = 1, . . . , N along the
vertical line of x̂, as well as their sample average. In Figure 2.1(a), we are
able to generate a valid sampled cut, which is valid because it underestimates
the true recourse function Q(x) at all values of x. However, it is possible to
generate a sampled cut that in some regions overestimates, and in other
regions underestimates the true recourse function Q(x). We illustrate this
situation in Figure 2.1(b), where the sampled cut excludes the true optimal
solution at x∗ ≈ 69 with z∗ ≈ −20. Assuming that the algorithm only
generates valid cuts until the algorithm converges, the resulting estimates of
x∗ and z∗ will be x̃ ≈ 38 and z̃ ≈ −15, corresponding to errors of 80% and
25% respectively.

It is true that we can avoid generating invalid sampled cuts if we model
the uncertainty in the problem using a scenario tree. However, it has other
drawbacks. Scenario trees are discrete in nature, and therefore require mod-
els where the uncertainty is modeled through discrete random variables, or a
suitable discretization procedure that can represent continuous random vari-
ables using finite outcomes and probabilities. There are no guarantees that
the solution obtained with the discretized scenario tree will be optimal for
the original continuous problem unless a large number of scenarios is used.
It is an active area of research how to best address this issue and a number of
ways have been proposed. One approach is to use a very large scenario tree
or a continuous distribution and then use scenario reduction methods to find
a representation with a finite and manageable scenario tree that is close to
the original in some sense (see e.g. Dupačová et al. (2003)). Even though sce-
nario trees can yield accurate answers for SP problems with a small number

28

of random variables and time periods, they still present computational chal-
lenges for large-scale problems with many random variables and many time
periods. In turn, we focus on the sampled cut approach described previously.

It is well-known that we can reduce the sampling error in the cut parame-
ters if we increase the number of samples. Even so, the O(N−0.5) convergence
rate of CMC methods effectively implies that we have to solve four times as
many linear programs in order to halve the sampling error of the cut pa-
rameters. Given the time that is required to solve a typical linear program
within a large-scale SP model, such an approach is simply not tractable. The
sampling error of the cut parameters depends on σ2/N , where σ2 denotes the
variance of the estimate. As a result, an alternative way to reduce the sam-
pling error in the cut parameters without increasing the number of samples
is to reduce the underlying variance of the quantity that we are trying to
estimate.

In the next section, we are going to review different Variance Reduction
(VR) methods that can estimate the recourse function with a high precision
(i.e.: small sampling error and variance) while using fewer samples than the
CMC method. Moreover, the small variance of the estimator of the recourse
function can lead to a fast convergence of the algorithm Homem-de Mello
and Bayraksan (2014).

2.8 Variance-Reduction Methods

In this section, we are going to review different types of Variance Reduction
(VR) methods. In the context of stochastic optimization algorithms, the
VR methods are used to give a better estimator of the recourse function
with a smaller variance and sampling error while using fewer samples than
the CMC method. Some VR methods that are going to be studied are:
Antithetic Variates (AV), Latin Hypercube Sampling (LHS), Quasi Monte
Carlo (QMC) and Importance Sampling (IS).

2.8.1 Antithetic Variates

The Antithetic Variates (AV) method is a Variance Reduction method. Its
principle is to generate negatively correlated pairs (ξ

j
, ξ̄j), j = 1, . . . , N/2,

such that ξ
j
is generated from the Uniform distribution U [0, 1]dξ and ξ̄j is

given as 1− ξ
j
. The AV estimator is then calculated as:

1

N

N/2∑

j=1

Q(x, ξ
j
) +Q(x, ξ̄j) (2.48)

30

AV is an unbiased estimator. Its variance is given by,

σ2(x)

N
+

Cov(Q(x, ξ
j
), Q(x, ξ̄j))

N
(2.49)

According to Equation (2.49), the variance reduction of AV depends signif-

icantly on the term
Cov(Q(x,ξ

j
),Q(x,ξ̄j))

N
. If this term is smaller than zero, the

variance of the AV estimator is smaller than of the CMC method; otherwise,
the variance of the AV estimator is increased relatively to the variance of the
CMC estimator. In other words, AV becomes useful if and only if Q(x, ξ

j
)

and Q(x, ξ̄j) have negative correlation. This property is shown to be satisfied
in two-stage stochastic linear programs and when the uncertainty only occurs
on the RHS (Higle (1998)). In some situations when the monotonicity of the
objective function is lost, the variance of the AV method is larger than the
variance of the CMC method (Koivu (2005)).

2.8.2 Latin Hypercube Sampling

Stratified Sampling reduces the variance of the estimator by splitting the
sample space Ξ into K strata and then generating samples from every strata.
The number of samples generated from each strata is proportional to the
probability of that strata. Hence, the samples spread across the entire sample
space. When K = N , it is known as the Latin Hypercube Sampling (LHS)
(McKay et al. (1979)). In the two dimensional case, the sample space is
considered as a square grid and LHS places one sample for each row and
column. In the multidimensional case, LHS places only one sample in each
axis-aligned hyperplane. It has been shown that the variance of the LHS
estimator is always less than or equal to the variance of the CMC estimator
(McKay et al. (1979)). In particular, their relationship is given as:

VarLHS ≤
N

N − 1
VarCMC (2.50)

Therefore, LHS always gives a better estimator than CMC.

LHS has also been widely used in stochastic optimization algorithms (Bai-
ley et al. (1999), Shapiro et al. (2002), Linderoth et al. (2006), Homem-de
Mello et al. (2011), Freimer et al. (2012)). It has been proven that the con-
vergence rate of stochastic optimizations using LHS is never worse than those
using CMC (Owen (1992) Drew and Homem-de Mello (2012)).

31

2.8.3 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) has been considered as one of the most popular
VR methods (Niederreiter (1992),Lemieux (2009),Dick and Pillichshammer
(2010)). The principle of QMC is that: instead of generating samples ran-
domly from the Uniform distribution on [0, 1]dξ , the QMC samples are gener-
ated in a specific way that can achieve a high-quality estimator. The quality
of an estimator, according to the Koksma-Hlawka inequality (Niederreiter
(1992)), is determined by the quality of the generated samples such that the
difference between the empirical distribution and the Uniform distribution is
minimal. This property is known as “star-discrepancy”. Moreover, the qual-
ity of an estimator depends on the total variation of the estimate function.
There has been a large number of research papers on the construction of
low-discrepancy sequences (Bastin et al. (2006) Freimer et al. (2012)). Some
examples of such sequences are: Halton and Sobol’ sequences.

In practice, the total variation of the estimate function can be very diffi-
cult to calculate. To overcome this problem, some randomness are introduced
into the generated QMC samples so that the error can be estimated using
the standard methods such as Multiple Independent Replications. Some ex-
amples of the randomized methods are: The Cranley-Patterson method and
other scrambling algorithms (e.g.: Owen scrambling algorithm for Sobol se-
quences, Reverse-Radix 2 algorithm for Halton sequences). It has been shown
that: The sampling error in the randomized QMC estimator converges at the

rate O(logN
0.5∗(dξ−1)

N1.5) (Bastin et al. (2006) Freimer et al. (2012)). This error
rate depends on the dimension of random variables, showing that QMC may
converge slowly for high dimensional problems. To solve this problem, one
can determine the effective dimension of the problem, and then apply QMC
on these dimensions while applying CMC or LHS or some other efficient
sampling methods on the other dimensions (Owen (1998) Owen (2003)).

In the context of stochastic optimization, QMC has been used for many
years (Kalagnanam and Diwekar (1997) Drew and Homem-de Mello (2006)).
The convergence of QMC in stochastic optimization has been studied by
(Pennanen and Koivu (2005) Koivu (2005)). These papers show that the
QMC can improve significantly the convergence rate of stochastic optimiza-
tion algorithms.

2.8.4 Importance Sampling

Importance Sampling (IS) increases the quality of estimator by generating
samples from a different distribution than the distribution of interest. The
new distribution is called the importance sampling distribution. This is be-

32

cause the samples generated from this distribution are in the regions that
contribute the most to the estimator. The principle of IS can be explained
as follows: We want to calculate the expected value of a given function Q:

Ef{Q(ξ)} =
∫

Q(ξ)f(ξ)dξ (2.51)

where ξ ∼ f . Equation (2.51) is usually a very high dimensional integration
so it is usually very difficult to evaluate. Using the Crude Monte Carlo
(CMC) approach, equation (2.53) can be approximated as:

Ef{Q(ξ)} = 1

n

n∑

i=1

Q(ξi) (2.52)

where ξi ∈ R
d are independent identical distributed (iid) samples and as-

sumed to be drawn efficiently from the distribution f . Although CMC
approximation is widely used in sampling methods due to its simple im-
plementation, it has many drawbacks. Firstly, it is not always possible to
draw samples efficiently from distribution f . Secondly, the variance of the

estimator (2.52) is σ2(Q(ξ))
n

. This is usually large, making the error of our
approximation large too. One possible solution is to take more samples in
order to reduce the error. However, taking more samples means that the
computation becomes more expensive or even intractable. It is therefore es-
sential to find a way to reduce the variance while keeping the same number
of samples. In other words, given the same number of samples, we want to
find an alternative distribution, say g, that gives us a much lower variance
and at the same time corrects for the fact that we are using distribution g,
instead of using the original distribution f . The function g is called the IS
distribution. The probability density function (pdf) of G is denoted as g. If
we multiply and divide equation (2.51) by g(ξ), the expected value remains
the same:

Ef{Q(ξ)} =
∫

Q(ξ)f(ξ)dξ =

∫
Q(ξ)

f(ξ)

g(ξ)
g(ξ)dξ (2.53)

with a condition that g(ξ) = 0 ⇐⇒ f(ξ) = 0. Equation (2.53) shows that
Ef{Q(ξ)} can be approximated as:

Ef{Q(ξ)} ≈ 1

n

n∑

i=1

Q(ξi)
f(ξi)

g(ξi)
(2.54)

where ξi ∼ g. Define:

λ =
f(ξi)

g(ξi)
(2.55)

33

λ is known as the likelihood ratio. This ratio is necessary for keeping the IS
estimator unbiased.

The motivation for using Equation (2.54) instead of Equation (2.52)
is that the variance of (2.52) is 1

n
σ2(Q(ξ)) while the variance of (2.54) is

1
n
σ2(Q(ξ)f(ξ)

g(ξ)
). This suggests that: If we can select a good g(x), we can

achieve a great reduction in the variance. Choosing a good IS distribution,
however, is a challenging process that is difficult to generalize and has moti-
vated many papers in the statistics and simulation literature. We refer the
interested reader to Asmussen and Glynn (2007) for a review of IS.

The IS estimator (2.54) maintains all of the attractive properties of CMC
estimator: It is an unbiased estimator; it is a consistent estimator i.e. the
approximate value is getting closer to the true value with probability one as
the number of samples n goes to infinity; the variance becomes zero as n goes
to infinity; and the convergence rate is independent on the dimension of x.

IS has been used in stochastic optimization for a long time (Dantzig and
Glynn (1990) Infanger (1992) Dantzig and Infanger (1993)). These papers
have shown many advantages of IS when applied to stochastic optimization
algorithms. For example: Large-scale multistage portfolio optimization prob-
lems can be solved efficiently (Dantzig and Infanger (1993)). Applying IS in
stochastic optimization, in addition, helps capturing rare events (e.g.: power
outage or a sudden rise in demand in the context of power generation and
expansion planning for electric utilities) much more effective than the CMC
method (Infanger (1992)).

2.9 Summary

Variance Reduction (VR) methods are techniques that are used to increase
accuracy of the sampling algorithms. There are many different approaches
such as Control Variates, Antithetic Sampling and Stratification. It is, how-
ever, not easy to apply these methods in SP algorithms, especially when
the distribution of recourse function is dependent on the previous-stage so-
lution. One promising VR method that can be used for solving SP problems
is Importance Sampling (IS). IS helps sampling algorithms such as Bender’s
decomposition and SDDP for several reasons. Firstly, it requires a small
number of samples to obtain a accurate estimator, and hence the number
of LP problems that need to be solved is reduced. This can save a great
amount of computational effort. Secondly, the accuracy of the estimate is
increased by obtaining less variance. The variance affects the stopping cri-
terion; therefore, reducing the variance also improves the convergence rate
of the algorithm. Finally, it is easy to implement the IS algorithm if the IS

34

distribution is known.
Based on the theory of Importance Sampling, we are going to propose an

algorithm to solve multistage SP problems efficiently and accurately in the
next Chapter.

35

36

Chapter 3

Importance Sampling for
Stochastic Programming
algorithms

In multistage SP problems, the most computationally intensive part is the
calculation of the recourse function Ef{Q(x̂, ξ)}, where x̂ is the previous-
stage decisions and ξ ∼ f . Based on (2.54), the IS estimator for the recourse
function is given as:

Ef{Q(x̂, ξ)} ≈ 1

n

n∑

i=1

Q(x̂, ξi)
f(ξi)

g(ξi)
(3.1)

where ξi ∼ g. IS is the most effective in the context of SP problems when g
can generate samples from the regions that contribute the most to the value
of the recourse function at a fixed point x̂. The variance of an IS estimator
is minimized when we sample from the following IS distribution Asmussen
and Glynn (2007):

g∗(ξ) =
|Q(x̂, ξ)|

Ef |Q(x̂, ξ)|f(ξ). (3.2)

The IS distribution g∗ is optimal in the sense that no other distribution can
produce an IS estimator with smaller variance. In fact, if Q(x, ξ) is always
positive then g∗ produces estimates with zero variance, and is therefore usu-
ally referred to as the zero-variance distribution. The problem with using
(3.2) in practice is that it requires us to know the value of Ef |Q(x̂, ξ)|, which
is the quantity that we sought to compute in the first place. We are thus
faced with a “curse of circularity” in that we can use (3.2) to construct zero-
variance estimates if we already have a zero-variance estimate of Ef |Q(x̂, ξ)|.

37

The IS framework that we introduce in this thesis revolves around two
key observations. The first observation is that we can generate samples
from (3.2) using an Markov Chain Monte Carlo (MCMC) algorithm since
we know the distribution up to a normalizing constant Ef |Q(x̂, ξ)|. This
observation is well-known and many MCMC methods have been developed
to take advantage of this. We note that we cannot use these samples to form
a zero-variance IS estimator because we need to evaluate the likelihood of
each sample as shown in Equation (2.55). In this case, the likelihood of a
given sample is given by,

Λ∗(ξ) =
f(ξ)

g∗(ξ)
=

f(ξ)
|Q(x̂,ξ)|

Ef |Q(x̂,ξ)|f(ξ)
=

Ef |Q(x̂, ξ)|
|Q(x̂, ξ)| , (3.3)

and it is also impossible to compute in practice as it depends on Ef |Q(x̂, ξ)|.
This leads us to the second observation: while we cannot use the samples
from (3.2) to directly form an IS estimator, we can use them to reconstruct
an approximation of the zero-variance distribution using a Kernel Density
Estimation (KDE) algorithm. Using this approximate distribution in hand,
we then can generate a second set of samples, evaluate the likelihood of each
sample, and form a lower-variance IS estimator. As a result, we propose a
new sampling framework that consists of three steps:

1. Generate samples from the zero-variance distribution using an MCMC
algorithm

2. Construct an approximate zero-variance distribution using a KDE al-
gorithm

3. Sample from the approximate zero-variance distribution to form a lower-
variance IS estimator.

This proposed sampling framework is the core of this thesis and we will ex-
plain its mechanism and applications in SP, as well as its benefits throughout
this thesis.

In the next section, we will review some principles of MCMC and KDE
algorithms, and then we will explain how they can be applied in SP.

38

3.1 Markov chain Monte Carlo: Sampling from

the optimal IS distribution for the re-

course function’s approximation

Markov Chain Monte Carlo (MCMC) are methods that can be used to sample
from a probability distribution. For every iteration, the chain generates a
sample (i.e.: a state) such that after a number of iterations, these samples
have an equilibrium distribution that is equivalent to the desired distribution.
As a result, the quality of samples increases with the number of iterations.
In addition, a good chain should have the rapid mixing property such that
the target distribution can be achieved quickly given any arbitrary starting
state.

In this thesis, we are going to use two types of MCMC methods: the Ran-
dom Walk MCMC and the Adaptive Metropolis proposed in Haario et al.
(2001). The Random Walk MCMC is a particular instance of the Metropolis-
Hastings algorithm. The motivation for using Random Walk MCMC is that
it is simple to implement and only requires the specification of the proposal
distribution. The Adaptive Metropolis algorithm was proposed in Haario
et al. (2001) and it increases the efficiency of the Metropolis-Hastings algo-
rithm by constantly updating the proposal distribution using the full infor-
mation accumulated so far. The advantages of using MCMC algorithm in
SP algorithms will be demonstrated in Section 5.2, Section 5.3 and Section
6.3.

We will explain the principles of the Metropolis-Hastings algorithm in the
next section.

3.1.1 Basic theory of Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was first introduced by Metropolis et al.
(1953). After that, it was generalized by Hastings (1970). The algorithm
has been used to solve many problems in image analysis, astronomy, ge-
netics and so on Gilks et al. (1996). One of its main advantages is that
it can draw samples from difficult multivariate distributions for which di-
rect sampling is not easy to be done (e.g.: when the normalization factor of
the target distribution is difficult to obtain in practice). Other advantages
are the generated samples can be used to approximate the distribution (i.e.
construct the density estimation of the generated samples) or to perform a
numerical integration. The principles of Metropolis-Hastings algorithm are
as follows: It generates a Markov chain whose distribution after a sufficient
long run matches the target distribution. Let g(x) be the target probability

39

density function (pdf). The algorithm first starts at a random state. It then
randomly moves to different points in the sample space. At each point, it
performs a test whether to accept or reject the proposed move. If the test
shows that the move goes from low to high-density region, we always accept
the move. On the other hand, if the test shows that the move goes from
high to low-density region, we reject the move with a certain probability.
The probability of rejection depends on how much the density will decrease
as the sample moves from the current position to the proposal position. By
performing the test, the algorithm ensures that most of the generated sam-
ples stay in the high-density region and only a few generate samples stay in
the low-density region. The full explanation of the algorithm can be found
in Chib and Greenberg (1995).

In terms of mathematical framework, it initially starts at an arbitrary
position, say ξ0 ∈ R

d, as the first sample. The next sample ζ0 ∈ R
d is

proposed according to the proposal distribution q(ζ0|ξ0). As we generate
more samples, the proposal distribution is denoted as q(ζk|ξk), where ξk is
the current sample at the k-th iteration and ζk is the proposal sample. A
commonly used proposal distribution is the Gaussian distribution centred
at the current sample ξk. The proposal sample ζk is then accepted with a
probability:

a(ξk, ζk) =
g(ζk)q(ξk|ζk)
g(ξk)q(ζk|ξk)

(3.4)

where a(ξk, ζk) is known as the acceptance ratio. If a(ξk, ζk) ≥ 1, ζk is obvi-
ously accepted; and hence ξk+1 = ζk. If a(ξk, ζk) < 1, we generate a random
variable α from the uniform distribution U(0, 1). If α ≤ a(ξk, ζk), ζk is ac-
cepted i.e. set ξk+1 = ζk; otherwise, ζk is rejected i.e. set ξk+1 = ξk.

The advantages of Metropolis-Hastings algorithm are: It is easy to imple-
ment, it does not require the specification of many parameters, and it does
not depend on a restrictive set of assumptions. We refer the interested reader
to Gelman et al. (2010) for more information on the Metropolis-Hastings al-
gorithm, and other MCMC algorithms that can be used in our proposed IS
framework.

In the next section, we will explain how the Metropolis-Hastings algo-
rithm can be used to generate a finite number of samples according to the
optimal IS distribution (3.2) in order to achieve a good approximation of the
recourse function in a SP problem.

40

3.1.2 Metropolis-Hastings for Stochastic Programming
algorithms

As mentioned before, the Metropolis-Hastings algorithm generates a Markov
chain whose distribution after a sufficient long run matches the target distri-
bution. In a SP problem, we want this target distribution to be as close as
possible to the IS distribution, g∗, as defined in Equation (3.2).

Let the sample at the k-th iteration be ξk ∈ R
d. Then, a proposal sample

ζk ∈ R
d is suggested with the proposal distribution q(ζk|ξk). For the Random

Walk MCMC, the proposal sample is given as:

ζk = ξk + vk (3.5)

where vk is the multivariate Normal distribution with mean 0 and covari-
ance matrix Σ. The proposal sample is accepted i.e. ξk+1 = ζk with the
probability:

a(ξk, ζk) = min

{
|Q(x̂, ζk)|f(ζk)q(ξk|ζk)
|Q(x̂, ξk)|f(ξk)q(ζk|ξk)

, 1

}
(3.6)

where a(ξk, ζk) is known as the acceptance ratio; Q(x̂, ζk) is the future cost
function of the current decision variable x̂ and random variable ζk. If a(ξk, ζk) ≥
1, ζk is obviously accepted; and hence ξk+1 = ζk. If a(ξk, ζk) < 1, we generate
a random variable α from the uniform distribution U(0, 1). If α < a(ξk, ζk),
ζk is accepted i.e. set ξk+1 = ζk; otherwise, Z is rejected i.e. set ξk+1 = ξk.

The Metropolis-Hastings algorithm in SP is summarized in Algorithm 3.
Algorithm 3 runs until we accumulate the required number of samples M .
In this thesis, the value of M is selected based on our numerical experiments
in Chapter 5.

The next step in our proposed IS algorithm is to construct the optimal
(zero-variance) IS distribution i.e.: construct g∗. In one dimension, g∗ can be
estimated using a histogram. However, histograms cannot be applied to the
multidimensional case. There are many requirements that need to specify
in order to construct a multivariate histogram: the bin origin, the bin size
and the bin orientation. The bin size normally has to be relatively small in
order to capture reasonably local information, resulting in a large number of
bins. In more than two dimensions, the number of bins quickly gets out of
hand and the random effects are likely to become dominant. Furthermore,
it is not easy to grasp the structure of data with a multivariate histogram.
This is due to the fact that histogram is made of discontinuous bins, not a
smooth function. One solution to overcome these problems is to use Kernel
Density Estimation (KDE), which will be explained in the next section. For

41

Algorithm 3 Metropolis-Hastings Algorithm

Given the current state Yk

1. Generate Z with the proposal distribution q ∼ N(Yk, σ
2I)

2. Generate a random variable α from the uniform distribution U(0, 1)
3. Compute the next state of the Markov chain:

Yk+1 =

{
Z if α < a(Yk, Z)

Yk otherwise

where,

a(Yk, Z) = min
{ |Q(x̂, Z)f(Z)|
|Q(x̂, Yk)f(Yk)|

, 1
}

the complete literature review on KDE, please refer to (Silverman (1986)
Scott (1992)).

3.2 Kernel Density Estimation: 1/ Construct-

ing the optimal Importance Sampling dis-

tribution 2/ Correcting the bias in the

estimator

A quick summary of the work described so far: Samples are generated ac-
cording to the optimal IS distribution (3.2) such that most of the samples
stay in the region that makes the most contribution to the calculation of the
recourse function. However, the estimator using this optimal IS distribution
is biased. In order to correct this bias, we need to calculate the so-called
likelihood ratio. We propose to use the Kernel Density Estimation (KDE)
to estimate the optimal IS density. Another advantage for using KDE to
construct the optimal IS distribution is that: We can generate more sam-
ples with a very small computational cost while these samples can increase
significantly the accuracy of the estimator.

In the next section, we will explain the basic theory of KDE, and then
how to apply it in SP algorithms.

42

3.2.1 Basic theory of Kernel Density Estimation

By definition, the probability density of a univariate random variable ξ ∈ R
is given as:

f(ξ) = lim
h→0

1

h
P (ξ − h

2
< ξ < ξ +

h

2
) (3.7)

For any given h ∈ R, we can estimate P (ξ − h
2
< ξ < ξ + h

2
) by counting the

number of samples falling in the interval (ξ − h
2
, ξ + h

2
). Thus the pdf of ξ

can be estimated as:

f̂(ξ) =
k

nh
(3.8)

where k is the number of samples falling in the interval (ξ − h
2
, ξ + h

2
); h is

the length of the interval; n is the total number of samples. Equation (3.8),
therefore, can be rewritten as:

f̂(ξ) =
1

nh

n∑

i=1

w(
ξ − ξi
h

) (3.9)

where w(.) is the weight function defined as:

w(x) =

{
1 if |x| < 1

2
,

0 otherwise
(3.10)

The naive estimator is very similar to the histogram formulation in which
the probability density of ξ is estimated as:

f̂(ξ) =
Number of samples in the same bin as ξ

Bin width × The total number of samples

The difference between the naive estimator and histogram is that: the naive
estimator does not require the specification of bin locations. In the naive
estimator, each sample is used as the centre of bin. The naive estimator,
however, still has many drawbacks. Firstly, the density function is not a
continuous function and therefore may cause some problems with interpret-
ing the data structure, especially in multivariate cases. Secondly, the naive
estimator weights all of the samples ξi equally, regardless of their distance
to the estimator point ξ. To avoid these problems, we use Kernel Density
Estimation (KDE), which is a generalization of the naive estimator. In par-
ticular, KDE replaces the weight function described in Equation (3.10) with
a smooth kernel function, which satisfies the following condition:

∫ ∞

−∞
K(ξ)dξ = 1 (3.11)

43

K(.) is usually, but not always, a symmetric probability density function (for
example: the Normal density) that satisfies the following conditions:

∫ ∞

−∞
tK(t)dt = 0 (3.12)

∫ ∞

−∞
t2K(t)dt = k2 6= 0 (3.13)

One popular choice of K(.) is the Gaussian kernel function:

K(x) =
1√
2π

exp{−1

2
x2} (3.14)

The KDE is then calculated as:

f̂(ξ) =
1

nh

n∑

i=1

K(
ξ − ξi
h

) (3.15)

where h is called the bandwidth or smoothing parameter. Different types of
kernel functions are shown in Figure 3.1. Just as the naive estimator can
be constructed as the sum of “boxes” placed on each sample, the kernel es-
timator is the sum of “bumps” placed on each sample as shown in Figure
3.2. The shape of “bumps” are determined by the type of kernel function K,
while their width are determined by the smoothing parameter h. It is essen-
tial to select a good smoothing parameter as it makes a significant impact
on the quality of the density estimator. A too large smoothing parameter
may oversmooth the density estimator. Then we may lose out some impor-
tant information. On the other hand, a too small smoothing parameter may
cause the density estimator to be very spiky. In this case, it may be very
difficult to interpret the data. Figure 3.3 demonstrates the effects of varying
smoothing parameter on the quality of the estimator. Therefore, the optimal
value of h is selected in such a way that it can minimize the error between
the estimated and the true density.

When considering the density estimation at a single point, a natural mea-
sure is the mean square error (MSE), given as:

MSEξ(f̂) = E{f̂(ξ)− f(ξ)}2

=
{
E{f̂(ξ)} − f(ξ)

}2

+Varf̂(ξ) (3.16)

= Bias of the estimator2 +Variance of the estimator

Equation (3.16) shows the trade-off between the bias and variance: For a
given MSE, the bias is only decreased if the variance is increased, and vice

44

x

-3 -2 -1 0 1 2 3

f(
x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Kernel Functions

normal

epanechnikov

box

triangle

Figure 3.1: Different types of kernel functions used to calculate the density
estimation

x

-5 0 5 10 15

p
d
f(

x
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Principles of Kernel Density Estimation

Kernel Density Estimation

each kernel function

Figure 3.2: Principles of Kernel Density Estimation. Data are drawn from
the Bimodal distribution which is the mixture of two Normal distributions.
They are N(2, 1) and N(8, 1).

45

x

-5 0 5 10 15

p
d
f(

x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Bandwidth Effects

Default BandWidth

Default BandWidth / 5

Default BandWidth * 5

Figure 3.3: The effects of varied bandwidth on the quality of Kernel Density
Estimation. Data are drawn from the Bimodal distribution which is the
mixture of two Normal distributions. They are N(2, 1) and N(8, 1).

versa, by adjusting the amount of smoothing. This result is illustrated in
Figure 3.4 and Figure 3.5. For a large smoothing parameter (Figure 3.4), it
makes little difference among the estimates for different data sets, and hence
obtains a low variance. However, they have a large bias since their shapes do
not follow the true density. The opposite phenomenon occurs when we use a
small smoothing parameter (Figure 3.5) i.e.: the kernel density estimation is
able to show similar shapes between the estimated and true density; however,
there is a large variance among the estimations for different sets of samples.

We can globally measure the accuracy of the density estimator with re-
spect to the true density by taking the integration of equation (3.16) over all
ξ. This quantity is known as the mean integrated square error (MISE):

MISE(f̂) =

∫ ∞

−∞

{
E{f̂(ξ)} − f(ξ)

}2

dξ +

∫ ∞

−∞
Varf̂(ξ)dξ (3.17)

According to Silverman (1986), MISE can be simplified as:

MISE(f̂) =
1

4
h4k2

2

∫ ∞

−∞
f ′′(ξ)2dξ +

1

nh

∫ ∞

−∞
K(t)2dt (3.18)

where k2 is defined in Equation (3.13). Since the smoothing parameter h
determines significantly the quality of the density estimator, it should be

46

x

-5 0 5 10 15

p
d
f(

x
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Bias-Variance Tradeoff in Kernel Density Estimation

True Density

Kernel Density Estimation

Figure 3.4: Trade-off between the bias and variance in the Kernel Density
Estimation. When the bandwidth is large, the variance of estimations is
small; The bias is large since their shapes do not follow the true density.

x

-5 0 5 10 15

p
d
f(

x
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Bias-Variance Tradeoff in Kernel Density Estimation

True Density

Kernel Density Estimation

Figure 3.5: Trade-off between the bias and variance in the Kernel Density
Estimation. When the bandwidth is small, the bias of estimations is small
because their shapes follow the true density; the variance, however, is large.

47

chosen carefully to minimize the error between the density estimator and the
true density. By minimizing the MISE with respect to h, the optimal value
of h is given as Parzen (1962):

hopt = argmin
h
{MISE(f̂)} (3.19)

= k2
−2/5

{∫ ∞

−∞
f ′′(ξ)2dξ

}−1/5

n−1/5

This is not implementable in practice as hopt still depends on the unknown
value of f(x). However, if we assume that the true distribution is Gaussian
and the kernel function is the Gaussian kernel, Equation (3.19) can be derived
as:

hopt = 1.06 ∗ σ ∗ n−1/5 (3.20)

where σ is the sample standard deviation and n is the total number of sam-
ples. Therefore, a quick way of selecting the smoothing parameter is by
calculating σ from the data and substituting it into equation 3.20. A better
result can be obtained by using a more robust measure of spread. The ro-
bust measure of spread can be the Inter-Quartile Range (IQR), which is the
difference between 75th percentile (Q3) and the 25th percentile (Q1). Also,
it is shown in Silverman (1986) that the coefficient 1.06 should be decreased
to better cope with multimodal density. The optimal smoothing parameter
therefore becomes:

hopt = 0.9An−1/5 (3.21)

Where A = min(σ, IQR
1.34

). The smoothing parameter selected in Equation
(3.21) works well for a wide range of density estimation problems. For many
purposes, it is certainly an adequate choice of smoothing parameter, for the
others it is a good starting point for some subsequent fine tuning (Scott
(2015)). There are many more sophisticated methods for selecting a good
smoothing parameter, such as the least-square cross-validation, maximum-
likelihood cross-validation. For a brief review on these literatures, please
refer to (Silverman (1986)) and (Jones et al. (1996)).

In addition, based on the MISE, Hodges and Lehmann (1956) suggested
a method for selecting the kernel function. The idea is to calculate the effi-
ciency of different symmetric kernels K and compare them with the standard
efficiency of Epanechnikov kernel. It is surprising that all of the kernels have
the efficiencies very close to one and there is not much difference among
them. This is consistent with the numerical results shown in Figure 3.6. The
selection of kernel function is therefore based on other considerations such as
the computational aspects.

48

x

-5 0 5 10 15

p
d
f(

x
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Kernel Effects

normal

epanechnikov

box

triangle

Figure 3.6: Different types of kernel functions can be used in the Kernel
Density Estimation. There are little differences in the estimations.

All of the formulas and attractive features that we have learned about
the univariate KDE can be applied directly for the multivariate KDE. In the
multivariate cases, the arguments for using the KDE rather than histogram
becomes much stronger. Firstly, it is much easier to present and grasp the
structure of multidimensional density function in a continuous form than in
discontinuous form. Secondly, it does not require the specification of bin
locations and bin orientation as kernels are placed on each sample. The
number of kernels is just equal to the number of samples.

The multivariate KDE is given as:

f̂(x) =
1

n

n∑

i=1

K(ξ, ξi) (3.22)

where

K(ξ, ξi) =
d∏

k=1

1

hk

K{ξk − ξi,k
hk

} (3.23)

According to (3.23), the kernel function now consists of the product of d one-
dimensional kernels. The same kernel function is applied to every dimension.
The smoothing parameter, however, can be varied according to the spread
of data in each dimension. The smoothing parameter for each dimension,
hence, can be determined by any methods used in the univariate case.

49

In summary, we have reviewed the theory of Kernel Density Estimation.
In the next section, we will explain how it can be used in SP algorithms.

3.2.2 Kernel Density Estimation in SP algorithms

In this section, we are going to apply KDE in SP algorithms. The basic idea
is as follows: when solving SP problems, we have a set of samples that are
used to approximate the recourse function; we can increase the accuracy of
the approximation by either increasing the number of samples or decreasing
the variance of the estimator. Since generating more samples is, in general,
very expensive, our aim is to reduce the variance of the estimator. Based on
the theory of importance sampling, a significant variance reduction can be
achieved if samples are generated with the distribution proportional to the
future cost function |Q(x, ξ)|f(ξ). We have shown that these samples can
be obtained effectively by Markov chain Monte Carlo algorithms (Section
3). However, if we apply Monte-Carlo approximation techniques directly
on these samples, we will obtain a biased estimator. This is because the
estimator is currently performed under the IS dsitribution but not under
the true underlying distribution. In order to correct this bias, we have to
multiply the biased estimator with the likelihood ratio. The likelihood ratio
measures the proportion of the original distribution with respect to the IS
distribution, and therefore can tell you how much to get from the biased
estimator (estimator under the “biased” importance sampling distribution)
to an unbiased estimator (estimator under the original “true” distribution).
The IS distribution can be estimated by KDE. We can generate more samples
from this IS distribution with little marginal computational cost while the
extra samples can increase the accuracy of the estimator.

In Section 3.1.2, we show that a set of M samples can be generated from
the optimal IS distribution using an MCMC algorithm. Using KDE, the
optimal IS distribution can be estimated as:

ĝ(ξ) =
1

M

M∑

i=1

KH(ξ, ξi) (3.24)

where KH(., .) is a kernel function satisfying the conditions of 3.11, 3.13 and
H ∈ R

D×D is its associated bandwidth matrix.

KH(., .) is normally a Gaussian kernel, defined as:

KH(ξ, ξi) =
d∏

k=1

1√
2πhk

exp{−‖ξk − ξi,k‖2
2hk

2 } (3.25)

50

The associated bandwidth matrix H for the Gaussian product kernel is a
D × D diagonal matrix that contains the bandwidth parameters of each
dimension h1, . . . , hD along its diagonal. In our implementation, we use a one-
dimensional likelihood-based search to estimate the value of the bandwidth
parameter hk separately for each dimension k.

The idea behind the one-dimensional likelihood-based search is as follows:
For each dimension k, we define the function, ĝ−i(ξ), which is the density
estimation constructed by all the data points except for ξi:

ĝ−i(ξ) =
1

(n− 1)h

∑

j 6=i

K(
ξ − ξj
h

) (3.26)

The log likelihood function is defined as:

CV(h) =
1

M

M∑

i=1

log ĝ−i(ξi) (3.27)

Then we find h to maximize the log likelihood function CV(h). This is the
optimal value for h because it maximizes the probablity that all of the data
points ξ1, . . . , ξM are drawn from the density function ĝ. There has been a
huge interest in selecting the optimal bandwidth for KDE and how it can
be tailored for dependent data. Most of them show that there is not much
difference in the smoothing parameter for dependent and independent data,
unless the variables are extremely long-range and strongly dependent.

Using the approximate zero-variance distribution ĝ(ξ), we can finally con-
struct an IS estimator of the recourse function by generating N additional
samples from ĝM . Although these samples will not originate from the true
zero-variance distribution g∗, they can still be used to produce a lower-
variance importance sampling estimate provided that the KDE algorithm
has constructed a ĝM that is similar to g∗. Generating samples from ĝM is
also beneficial in that the samples are independent and the kernel functions
are easy to sample from. In practice, we construct ĝM using modest values
of M and then construct Q̂IS(x̂) using large values of N .

The computational burden of the MCMC step is a result of the accept-
reject algorithm which typically requires more LP evaluations (proposed sam-
ples) than are used (accepted samples). The additional advantage of estimat-
ing and sampling the approximate importance sampling distribution is the
relative efficiency of generating a larger number of samples.

Because the proposed algorithm uses Markov Chain Monte Carlo and
Importance Sampling, we call it MCMC-IS. The full MCMC-IS algorithm
is described in Algorithm 4. In the next Chapter, we are going to prove

51

the convergence of the algorithm. After that, we will test the proposed
algorithm on a large number of applications as described in Ariyawansa and
Felt (2004) in Section 5.1. Then, we will use the proposed algorithm to
solve the capacity expansion planning in the electric power industry, which
is a very large scale optimization problem integrating the unit commitment
model and maintenance scheduling model, in Section 5.3.

52

Algorithm 4 Markov chain Monte Carlo Importance Sampling (MCMC–IS)
Require: x̂: previous stage decision;
Require: M : number of samples generated using the MCMC algorithm;
Require: N : number of samples generated from the optimal IS distribution;
Require: ξ0: starting state of the MCMC-IS algorithm

Step 1: Generate Samples from the optimal IS Distribution using MCMC

1.1 Set k = 0
1.2 Given the current state ξk, generate ζk ∼ q(· | ξk).
1.3 Generate a uniform random variable u ∼ U ∈ (0, 1).
1.4 Transition to the next state according to,

ξk+1 =

{
ζk if u ≤ a(ξk, ζk)

ξk otherwise
,

where,

a(ξk, ζk) = min

{
1,
|Q(x̂, ζk)|f(ζk)q(ξk|ζk)
|Q(x̂, ξk)|f(ξk)q(ζk|ξk)

}

1.5 Let k ← k + 1. If k = M then proceed to Step 2. Otherwise return to Step 1.1.

Step 2: Construct the Zero-Variance Distribution using KDE

2.1 For each state of the Markov chain generated from MCMC, reconstruct the approx-
imate zero-variance distribution as,

ĝM (ξ) =
1

M

M∑

i=1

KH(ξ, ξi).

Step 3: Sample from the Approximate Zero-Variance Distribution to Form

an Importance Sampling Estimate

3.1 For Generate N new samples from ĝM and form the importance sampling estimate,

Q̂IS(x̂) =
1

N

N∑

i=1

Q(x̂, ξi)
f(ξi)

ĝM (ξi)

53

Chapter 4

Convergence of the MCMC-IS
algorithm

In this chapter, we are going to prove the convergence of the proposed
MCMC-IS algorithm. The convergence of MCMC, KDE and SDDP have
been well studied individually (Robert and Casella (2013) Gelman et al.
(2010) Haario et al. (2001) Silverman (1998) Athreya and Atuncar (1998)
Shapiro (2011) Philpott and Guan (2008)). Therefore, the main task when
trying to prove the convergence of the proposed MCMC-IS algorithm is to
check the conditions for the convergence are satisfied. This chapter is or-
ganized into three sections. The first section establishes the convergence of
MCMC in the MCMC-IS algorithm. The second section shows the conver-
gence of KDE for a Markov chain that has been generated. The third sec-
tion establishes the convergence of SDDP when using the proposed sampling
framework for multistage SP problems.

4.1 Convergence of Markov Chain Monte Carlo

in the MCMC-IS algorithm

In this section, we are going to show the convergence of Metropolis-Hastings
when it is used in a Stochastic Programming algorithm as proposed in Section
3.1.2.

To show that a Markov chain converges, we have to prove that it has
a stationary distribution, as well as it has the aperiodic and Harris recur-
rent properties. It has been shown that the Detailed Balance Condition
described in the Definition 4.1 is the necessary and sufficient condition for a
Markov chain to have a stationary distribution (Robert and Casella (2013)).
For the completion of the thesis, we include the proof in Theorem 4.1. We

54

then show that the Metropolis-Hastings (MH) algorithm developed for the
Stochastic Programming (SP) algorithm is based on the same principle of
the conventional MH method. Therefore, based on the convergence proof for
the conventional MH method, we show that our proposed MH method for SP
algorithms will also converge to a stationary distribution, and this distribu-
tion is the optimal distribution (known up to a normalizing constant) for the
calculation of the recourse function in SP problems according to Equation
3.2.

Definition 4.1. (Robert and Casella (2013)) (Detailed Balance Condi-
tion) A Markov chain satisfies the detailed balance condition if there exists
a transition kernel K and a function g such that

K(ζk, ξk)g(ζk) = K(ξk, ζk)g(ξk) (4.1)

for every (ξk, ζk)

Theorem 4.1. (Robert and Casella (2013)) (Stationary distribution)
Suppose that a Markov chain satisfies the detailed balance condition with a
transition kernel K and a function g. Then g is the invariant density of the
chain

Proof. (Robert and Casella (2013)) Because the Markov chain satisfies the
detailed balance condition,

∫

ζk

K(ζk, B)g(ζk)dζk =

∫

ζk

∫

B

K(ζk, ξk)g(ζk)dξkdζk

=

∫

ζk

∫

B

K(ξk, ζk)g(ξk)dξkdζk

=

∫

B

g(ξk)dξk

(4.2)

for any measurable set B. Note that:
∫
ζk
K(ξk, ζk)dζk = 1. By the Definition

4.5.1 in Robert and Casella (2013), g is the invariant density of the chain.
The detailed balance condition and the reversibility of a chain are equivalent
when there exist a transition kernel K and an invariance density g.

Using the Detailed Balance Condition in Definition 4.1 and Theorem 4.1,
Robert and Casella (2013) proved the convergence of the MH algorithm in
Theorem 4.2.

Theorem 4.2. (Robert and Casella (2013)) For every proposal distribution
q, which has the support Ψ, g is the stationary distribution of the chain
produced by the Metropolis-Hastings.

55

Proof. Robert and Casella (2013) The transition kernel K given by the
Metropolis-Hastings algorithm is:

K(ξk, ζk) = q(ζk|ξk)a(ξk, ζk) + (1− r(ξk))δξk(ζk) (4.3)

where q is the proposal distribution, a(ξk, ζk) = min{ q(ξk|ζk)g(ζk)
q(ζk|ξk)g(ξk) , 1}; r(ξk) =∫

q(ζk|ξk)a(ξk, ζk)dζk; δξk denotes the Dirac mass in ξk. The acceptance-
rejection process in the Metropolis-Hastings algorithm can be written in an-
other mathematical forms as follows:

q(ζk|ξk)a(ξk, ζk)g(ξk) = q(ξk|ζk)a(ζk, ξk)g(ζk) (4.4)

And
(1− r(ξk))δξk(ζk)g(ξk) = (1− r(ζk))δζk(ξk)g(ζk) (4.5)

By adding Equation 4.4 and 4.5, we obtain the detailed balance condition of
the Metropolis-Hastings chain. By Theorem 4.1, g is the stationary (invari-
ant) distribution of the Metropolis-Hastings chain.

Our proposed MH method for SP algorithms uses a different acceptance
ratio to the conventional method such that the target stationary distribution
should be |Q(x̂, ξ)|f(ξ) (according to Equation 3.2). As a result, the accep-

tance ratio in our proposed algorithm is: a(ξk, ζk) = min{ q(ξk|ζk)|Q(x̂,ζk)|f(ζk)
q(ζk|ξk)|Q(x̂,ξk)|f(ξk) , 1}.

The next step is to prove that the Markov chain generated by our method is
aperiodic and Harris recurrent. The definitions of irreducibility and Harris
recurrence are given in Definition 4.2 and Definition 4.3.

Definition 4.2. (Robert and Casella (2013)) (Irreducibility) Given a mea-
sure g, the Markov chain with transition kernel K(ξk, ζk) is g-irreducible if,
for every set A with g(A) > 0, there exists n such that Kn(ξk, A) > 0 for all
ξk ∈ Ξ. The chain is strongly g-irreducible if n = 1 for all measurable A.

Definition 4.3. (Roberts and Rosenthal (2006)) (Harris recurrence) A
Markov chain X is Harris recurrent if there exists a σ-finite measure g on
the state space S such that for any set A where g(A) > 0, we have Px(τA <
∞) = 1, ∀x ∈ S, where τA is the hitting time to the set A and Px(τA < ∞)
is the probability of hitting set A in a finite amount of time given that the
starting point is x.

In other words, a Markov chain is aperiodic when the states of its chain
do not repeat in a certain manner. This property is satisfied by the fact that
the MH method developed for SP algorithms uses a Random Walk proposal
mechanism. Hence, given the current state, the next state can be anywhere
in the state space, which makes the sampling process completely random.

56

In addition, a Markov chain is recurrent if it is irreducible (i.e.: all of
the states connects to each other) and any state can be visited by an infinite
number of times. The Harris recurrence property is stronger than the recur-
rence property such that all of the generated Markov chains are recurrent
(i.e.: for any Markov chain generation, each state can be visited by an infinite
number of times). The Harris recurrence property is important because it
shows that a Markov chain can converge to a stationary distribution regard-
less of its initial state. The irreducibility of our proposed MH method for SP
algorithms can be verified by the fact that our method uses the same Ran-
dom Walk proposal mechanism as in the conventional MH method, such that
q(ζk|ξk) > 0 for every ζk and ξk. In other words, given that the current state
is ξk, it is always possible for the chain to move to the state ζk. As a result,
the Markov chain generated by our proposed method is recurrent. In order
to show the Harris recurrence property for our MH method, we show that
our method is just an extension of the conventional MH method, which has
been proven to be Harris recurrent by Tierney (1994) based on the theory of
harmonic functions. The theory states that: A Markov chain is Harris recur-
rent if the only bounded harmonic functions1 are constant (Tierney (1994)).
The proof for the Harris recurrence property of the conventional MH method
is shown in Lemma 4.1.

Lemma 4.1. Tierney (1994) If the Metropolis-Hastings chain is irreducible
with a stationary distribution g, it is Harris recurrent.

Proof. Consider the Metropolis-Hastings chain,

Eg[h(ξ2)|ξ1] =
∫

q(ξ2|ξ1)a(ξ1, ξ2)h(ξ2)dξ2 + (1− r(ξ1))h(ξ1) (4.7)

for every ξ1 ∼ g, where q is the proposal distribution, a(ξk, ζk) = min{ q(ξk|ζk)g(ζk)
q(ζk|ξk)g(ξk) , 1};

r(ξk) =
∫
q(ζk|ξk)a(ξk, ζk)dζk. Then,

Eg[h(ξ2)|ξ1] = Eg[h(ξ)]r(ξ1) + (1− r(ξ1))h(ξ1) (4.8)

By definition, a harmonic function h has the property Eg[h(ξ2)|ξ1] = h(ξ1).
Therefore, equation (4.8) can be written as,

h(ξ1) = Eg[h(ξ)]r(ξ1) + (1− r(ξ1))h(ξ1) (4.9)

1A harmonic function h for the chain ξ1, . . . , ξN is defined as any measurable function
that satisfies the following condition:

h(ξ1) = E[h(ξ2)|ξ1] = E[h(ξN)|ξ1] (4.6)

57

∴
{
Eg[h(ξ)]− h(ξ1)

}
r(ξ1) = 0 (4.10)

Because r(ξ1) > 0 (i.e.: the probability of moving to the next state is always
positive),

h(ξ1) = Eg[h(ξ)] (4.11)

Therefore, h is constant and the chain is Harris recurrent.

In our proposed MCMC algorithm, the stationary distribution g(ξ) is
|Q(x̂, ξ)|f(ξ). As a result, the only difference between our method and the
conventional MH method is the acceptance criterion, which now becomes
a(ξk, ζk) = min{ q(ξk|ζk)|Q(x̂,ζk)|f(ζk)

q(ζk|ξk)|Q(x̂,ξk)|f(ξk) , 1}. Following the same derivations above,
we can conclude that the chain generated by our proposed MH method for
SP algorithms is Harris recurrent.

So far, we have shown that our proposed MH method for SP algorithms
satisfies the Detailed Balance Condition with the stationary distribution g∗;
moreover, it is shown to be aperiodic and Harris recurrent. Therefore, ac-
cording to Robert and Casella (2013), we obtain the following convergence
results:

∫
h(ξ)g(ξ)dξ = lim

N→∞

1

N

N∑

i=1

h(ξi) (4.12)

and

lim
N→∞

‖
∫

KN(ξ, .)µ(dξ)− g∗‖TV = 0 (4.13)

for any initial distribution µ, and any initial state ξ, and K is the transition
kernel of the proposed algorithm that has been defined in Equation (4.3)

with the acceptance ratio a(ξk, ζk) = min{ q(ξk|ζk)|Q(x̂,ζk)|f(ζk)
q(ζk|ξk)|Q(x̂,ξk)|f(ξk) , 1}. These results

are important because they show that our proposed MH method for SP
algorithms is an unbiased estimator.

In the next section, we will discuss about the convergence of the Kernel
Density Estimation (KDE) for these generated samples. Based on the as-
sumption of the Harris recurrence, Athreya and Atuncar (1998) have shown
that the KDE for these samples converges and it is an unbiased estimator.
Therefore, the samples drawn from this KDE distribution can be used to give
a good approximation of the recourse function in SP problems.

58

4.2 Convergence of Kernel Density Estima-

tion in the MCMC-IS algorithm

In the previous section, we have shown that our proposed MH method for SP
algorithms generates an aperiodic, Harris recurrent chain with the stationary
distribution that is optimal for the calculation of the recourse function in SP
problems. The next step in our MCMC-IS algorithm is to use a KDE to
construct the optimal IS distribution. There are two important reasons for
doing so. Firstly, we can calculate the Radon-Nikodym derivative between
the original distribution and the optimal IS distribution in order to correct
the bias in the estimator. Secondly, we can generate more samples from
this optimal IS distribution with a small overhead, which can enhance the
accuracy and efficiency of our algorithm.

The convergence proof for KDE on a Harris recurrent chain has been
shown in Athreya and Atuncar (1998). Therefore, we will only include the
main result of that convergence proof for the completeness of the thesis.
In the next section, we are going to introduce some additional background
before we will discuss the main convergence proof in Section 4.2.2

4.2.1 Additional properties of Markov chain

In this section, we are going to state some important theorems and lemmas,
which will be used in Section 4.2.2 to prove the convergence of KDE for a
Harris-recurrent Markov chain.

An equivalent definition of Harris recurrence is given in Theorem 4.3.
Based on this equivalent Harris recurrence definition, Athreya and Ney
(1978) introduced the theory of regeneration as shown in Lemma 4.2. This
is important because the Markov chain can be split into several small i.i.d.
chains and hence the property of each chain can be investigated separately.

Theorem 4.3. (Equivalent Harris recurrence) (Athreya and Ney (1978))
A Markov chain is called (A, ε, g, n0) recurrent if there exists a set A ∈ Σ,
a probability measure g on A, a real number ε > 0, an integer n0 > 0 such
that:

Pξ0(τA <∞) = Pξ0(ξn ∈ A for some n ≥ 1) = 1, ∀ξ0 ∈ S (4.14)

Pξ0(ξn0 ∈ E) = P n0(ξ0, E) ≥ εg(E), ∀E ⊂ A (4.15)

where τA is the hitting time to the set A.

59

Lemma 4.2. (Regeneration) (Athreya and Ney (1978)) If a Markov chain
is (A, ε, g, 1) recurrent, there exists a random time T∆ such that the evolution
of process before and after T∆ are independent. Each random tour is {ξj :
j = T i

∆, T
i
∆ + 1, . . . , T i+1

∆ − 1}, where T i
∆ is the ith hitting time to the state

∆. These tours are independent, identically distributed and all of them have
distribution g.

Based on the theory of regeneration (Athreya and Ney (1978)), the sta-
tionary measure and the calculation of a bounded measurable function for
a Harris-recurrent Markov chain are given in Theorem 4.4 and Theorem ??
respectively.

Theorem 4.4. (Athreya and Ney (1978)) Let N1 = T 1
∆ be the regeneration

time as defined in Lemma 4.2. For a Harris recurrent Markov chain ξ and
a bounded measurable function h on S, and g is the stationary distribution,

∫

S

hdν = Eg

N1−1∑

i=0

h(ξi) (4.16)

Moreover, for any Harris-recurrent Markov chain with the recurrence state
∆, the relationship between the mean and variance of the hitting time to state
∆, as well as the total number of visits to ∆ and the total number of samples
generated in the chain are given in Lemma 4.3.

Lemma 4.3. (Asmussen (2003)) Let ξ be a Harris chain with a recurrence
point ∆. Let λ = E{t∆} and σ2 = Var(t∆), where t∆ is the average time to
visit ∆. Let n be the number of visits to the state ∆ when the chain moves
from state 0 to state N . Then:

n

N
→ 1

λ
a.e. as N →∞ (4.17)

√
N(

n

N
− 1

λ
)→ N(0,

σ2

λ3
) (4.18)

Finally, the convergence proof of KDE for a Harris-recurrent Markov
chain requires a theorem about kernel function as given in Theorem 4.5.

Theorem 4.5. (Rao (2014)) Assume that K satisfies the conditions of Equa-
tions 3.11 3.12 3.13. Define gN(ξ) =

∫
Rd

1
hdKH(

z
h
)g(ξ − z)dz where h > 0.

When h→ 0 as N →∞,

lim
N→∞

gN(ξ) = g(ξ)

∫

Rd

KH(z)dz (4.19)

60

In this section, we have reviewed some important theorems and lemmas
that prepare us to prove the convergence of KDE for a Harris recurrent
Markov chain. As mentioned before, this proof has been shown in Athreya
and Atuncar (1998) but we include it in the next section for the completeness
of the thesis.

4.2.2 Convergence of Kernel Density Estimation for a
Harris-recurrent Markov chain

In this section, we are going to discuss the convergence proof of KDE for
a Harris-recurrent Markov chain. Given a Harris-recurrent Markov chain
ξ1, . . . , ξN , where ξ1, . . . , ξN ∈ Rd, the KDE of this Chain is given as:

gN(ξ) =
1

Nhd

N∑

i=0

KH(
ξ − ξi
h

) (4.20)

Based on Lemma 4.2, if a Markov chain is a Harris recurrent, we can find a
number of random tours ηi (Athreya and Ney (1978) Athreya et al. (1996)),
and each tour starts and ends at the state ∆. This ∆ point can be considered
as the breaking point such that the Markov chain before and after this point
are independent. Hence, the properties of every small chain can be analyzed
independently. We are going to prove the consistency of the KDE for a Harris
recurrent chain as shown in Theorem 4.6.

Theorem 4.6. (Consistency) Assume that K satisfies the conditions of
Equations 3.11, 3.12, 3.13, if ξ is a Harris-recurrent Markov chain as given
in Lemma 4.2 then:

gN(ξ)→ g(ξ) for almost all ξ

as hN → 0 and NhN → ∞; where gN(x) is defined in 4.20 and g(x) is the
true density. For the MCMC-IS algorithm, g(x) is the optimal IS distribution
of the recourse function.

Proof. (Athreya and Atuncar (1998)) Since ξ is a Harris recurrent Markov
chain as defined in Lemma 4.2, we can find a sequence of random tours that
are i.i.d. and return to a point ∆ infinitely often (Athreya and Ney (1978)
Athreya et al. (1996)). Define:

T i
∆ = inf{k > T i−1

∆ : ξk = ∆} (4.21)

T i
∆ is the index of sample that the Markov chain returns to the state ∆ at

time i. As a result, the chain from T i
∆ to T i+1

∆ − 1 will form an i.i.d. Markov

61

chain with respect to the rest of the chain. Its properties therefore can be
analyzed independently. The KDE for the chain from T i

∆ to T i+1
∆ − 1 is given

as:

ηi(ξ) =

T i+1
∆ −1∑

j=T i
∆

1

hd
KH(

ξ − ξj
h

) (4.22)

According to Theorem 4.4 to Theorem 4.5, for all i and almost all ξ,

lim
N→∞

Eg{ηi(ξ)} = lim
N→∞

∫

Rd

T i+1
∆ −1∑

j=T i
∆

1

hd
KH(

ξ − u

h
)g(u)du

=

T i+1
∆ −1∑

j=T i
∆

lim
N→∞

∫

Rd

1

hd
KH(

ξ − u

h
)g(u)du

=

T i+1
∆ −1∑

j=T i
∆

g(ξ)

∫

Rd

KH(z)dz

= λg(ξ) (4.23)

where λ = E{t∆}, which is the average time between T i
∆ and T i+1

∆ − 1.

The KDE for a Harris-recurrent Markov chain (Equation 4.20) can be
rewritten as:

gN(ξ) =
1

Nhd

T 1
∆−1∑

j=0

KH(
ξ − ξj
h

)+
1

Nhd

Tn
∆−1∑

j=T 1
∆

KH(
ξ − ξj
h

)+
1

Nhd

N∑

j=Tn
∆

KH(
ξ − ξj
h

)

(4.24)

62

where n is the last visit to the state ∆ for the chain {ξ0, . . . , ξN}. As a result,

lim
N→∞

Eg{gN(ξ)} = lim
N→∞

∫

Rd

1

Nhd

T 1
∆−1∑

j=0

KH(
ξ − u

h
)g(u)du+

lim
N→∞

∫

Rd

1

Nhd

Tn
∆−1∑

j=T 1
∆

KH(
ξ − u

h
)g(u)du+

lim
N→∞

∫

Rd

1

Nhd

N∑

j=Tn
∆

KH(
ξ − u

h
)g(u)du

= lim
N→∞

E

{
T 1
∆g(ξ)

N
+

nE{ηi}
N

+
(N − T n

∆ + 1)g(ξ)

N

}

= lim
N→∞

{nλg(ξ)
N
} (4.25)

= g(ξ) (4.26)

The third equality can be derived due to the fact that the first and last
term become zero as N →∞; and then according to Equation 4.23, we have
Equation 4.25. Based on Lemma 4.3, we obtain Equation 4.26

In the next section, we are going to show the convergence of the SDDP
algorithm when using the proposed MCMC-IS framework.

4.3 Convergence of Stochastic Dual Dynamic

Programming with MCMC-IS algorithm

In Section 4.1, we have shown that our proposed MH method can generate
an aperiodic, Harris recurrent chain with the stationary distribution that is
optimal for the calculation of the recourse function in SP problems. Then, in
Section 4.2, we have shown that the KDE for these samples converges and it
is an unbiased estimator. Therefore, we can use it to calculate the accurate
Radon-Nikodym derivative in order to correct the bias of IS estimator. In
other words, we have shown that:

Eg[Q(x̂, ξ)
f(ξ)

g(ξ)
]→ Ef [Q(x̂, ξ)] (4.27)

where x̂ is the previous stage decisions, f is the original distribution, g is
the optimal IS distribution and ξ are random variables drawn the optimal IS
distribution g.

63

This result shows that for a given x̂, we can obtain the unbiased estimator
of the recourse function. Now, our aim is to show that after a number of
iterations, the SDDP algorithm with our proposed MCMC-IS framework will
give us the optimal solutions x∗.

There is a large number of literature on the convergence of the SDDP
algorithm (Philpott and Guan (2008) Shapiro (2011) Homem-de Mello et al.
(2011) Homem-de Mello and Bayraksan (2014)). Based on the Assumption
4.1, the convergence of the SDDP algorithm with Sample Average Approxi-
mation (SAA) was shown in Theorem 4.7 (Shapiro (2011)).

Assumption 4.1. (Shapiro (2011)) The master problem and subproblems at
every stage have finite optimal values for all realizations of the data.

Theorem 4.7. (Shapiro (2011)) Suppose that in the forward steps of the
SDDP algorithm the subsampling procedure is used and Assumption 4.1 holds.
Then, in the backward steps, the basic optimal solutions are employed. After
a sufficiently large number of backward and forward steps of the algorithm,
we will obtain the optimal solutions with probability one.

On the other hand, Homem-de Mello et al. (2011) combined the SDDP
algorithm with two sampling strategies: Latin Hypercube Sampling and Ran-
domized Quasi-Monte Carlo. They then proposed a different stopping cri-
terion using hypothesis testing. Several other ways of assessing the quality
of solutions for optimization algorithms were proposed in Homem-de Mello
and Bayraksan (2014). In general, all of the stopping criteria involve the
construction of the confidence interval to bound the optimality gap. When
the bound on the optimality gap is small, we can conclude that the solution
is of high quality.

Throughout this thesis, we will use the stopping criterion that was de-
scribed in Shapiro (2011). This stopping criterion ensures that the optimiza-
tion problem will be solved with the accuracy ε for the confidence of (1− α)
(Shapiro (2011)). It works as follows:

Every iteration of the SDDP algorithm includes a backward and forward
simulation. (Please refer back to Section 2.6) for the full explanation of the
SDDP algorithm). During the backward simulation, we solve the subprob-
lems at each stage in order to obtain the duals. The duals are then used
to construct the supporting hyperplane (i.e.: cutting plane), which gives us
the lower-bound linear approximation of the recourse function at each stage.
Therefore, solving the first stage problem will give us the lower bound for
the whole optimization problem. This is denoted as θ.

Then, in the forward simulation, we sample N paths from the first stage

64

to the final stage and calculate the “true” cost for each path:

θi =
T∑

t=1

cTtix̂ti, i = 1, . . . , N (4.28)

where cti and x̂ti are the cost and trial decicion vectors at stage t for the path
i. We then calculate the mean, θ̄, and the variance, σ̂2

θ , of these paths:

θ̄ =
1

N

N∑

i=1

θi (4.29)

σ̂2
θ =

1

N − 1

N∑

i=1

(θi − θ̄)2 (4.30)

Then the confidence interval can be constructed as:

[θ̄ − zα/2σ̂θ/
√
N, θ̄ + zα/2σ̂θ/

√
N] (4.31)

where zα denotes the (1 − α)-quantile of the standard Normal distribution.
For example: z0.025 = 1.96 shows the 95% confidence interval. If the difference
between the upper confidence bound θ̄ + zασ̂θ

√
N and the lower bound θ is

less than a given accuracy level ε > 0, the algorithm stops.
In summary, in this section, we have proved the convergence of our pro-

posed MCMC-IS algorithm and explained the stopping criterion that will be
used when our MCMC-IS algorithm combines with the SDDP algorithm to
solve multistage optimization problems. In the next section, we will provide
some practical guidelines for the implementation of Algorithm 4. After that,
we will test the proposed algorithm on a newsvendor problem in Section 5.2.
Then, we will test it on a large number of benchmark applications, which can
be found in Ariyawansa and Felt (2004), in Section 5.3. Finally, we use our
proposed algorithm to solve a large-scale optimization problem in the elec-
tric power industry, which integrates the planning of capacity expansion, unit
commitment and maintenance scheduling into a unified model, in Chapter 6.

65

Chapter 5

Numerical experiments

5.1 Practical guidelines for MCMC-IS

In this chapter, we are going to provide some practical guidelines for the im-
plementation of the Algorithm 4 (see Chapter 3). The first important choice
for MCMC-IS is the choice of a proper MCMC algorithm and a suitable pro-
posal distribution. In our experiments, we have used our own implementation
of the Metropolis-Hastings MCMC algorithm and the Adaptive Metropolis
MCMC algorithm described in Haario et al. (2001). Both algorithms propose
new samples using a random walk process that starts off at a user-defined
point ξ0, which we set as ξ0 = Ef [ξ]. In turn, the main benefit of the Adaptive
Metropolis algorithm is that it does not require users to specify the step-size
for the random walk process. More specifically, the Adaptive Metropolis
algorithm uses a random walk process in which the steps are normally dis-
tributed with zero mean and the identity matrix as the covariance matrix
- all the while keeping track of accepted samples. After a fixed number of
iterations (in our case, 30 per dimension of the random vector ξ), the Adap-
tive Metropolis algorithm begins to use a sample covariance matrix that is
estimated from previously accepted samples.

Another important choice in implementing MCMC-IS is the number of
samples to generate using an MCMC algorithm (M). This is an important
choice since generating samples with a MCMC algorithm is computationally
expensive due to the fact that it often takes more than M functional eval-
uations to obtain M samples (as some samples are rejected in the MCMC
process). In our experience, we have found that a small number of samples
produces a significant amount of variance reduction. Accordingly, we have
used M = 3000 within all of our numerical experiments in Sections 5.2 and
5.3. It may be surprising that a small and constant number is sufficient even

66

for large-scale problems. In Section 5.2.2 we provide a possible explanation
for this result based on our numerical experiments. In particular, it seems
that a small number of samples is sufficient to bias the sampling towards
the right direction, and that the computational advantage of sampling from
the “exact” density is relatively small compared to the computational cost
of computing it.

The final choice in implementing MCMC-IS related to the KDE algo-
rithm that is used to construct the approximate zero-variance distribution.
In our experiments, we have used the MATLAB KDE Toolbox, which is
available online at http://www.ics.uci.edu/~ihler/code/kde.html. The
MATLAB KDE Toolbox is a fast and flexible KDE implementation which
allows users to reconstruct kernel density estimates using different types of
kernels (e.g. Gaussian, Laplacian and Epatchenikov kernels) as well as dif-
ferent types of bandwidth estimation procedures (e.g. leave-one-out cross-
validation, optimizing MISE and AMISE criteria). In our case, we have re-
constructed the approximate density using a simple Gaussian product kernel
a leave-one-out cross-validation bandwidth estimator. The basic principle of
leave-one-out cross-validation is that: Firstly, the density estimation is con-
structed from N − 1 samples while leaving one sample out. This sample is
assumed to be drawn from the same distribution as the other N −1 samples.
It is, however, used as an out of sample in order to estimate the bandwidth
such that we can have the maximum log-likelihood density estimation func-
tion. Each sample in the set of N samples will be left out in turn and for
each turn, a KDE is constructed from the rest of N − 1 samples. Eventu-
ally, the log-likelihood density estimation function is the average of N KDEs.
The optimal bandwidth in this setting is chosen so that it gives the maxi-
mum log-likelihood density estimation function. For detailed explanation of
the bandwidth selection, please refer to (Silverman (1998)) and (Jones et al.
(1996)). Our experience to date has shown that MCMC-IS is robust with
regards to the choice of kernel function using a decent number of samples to
reconstruct the approximation zero-variance distribution. Insights into the
choice of the bandwidth estimator are provided in Section 5.2.2.

5.2 Numerical results with the Newsvendor

problem

In this section, we demonstrate several properties of MCMC-IS using a series
of numerical experiments based on a simple two-stage newsvendor problem
as described in Section 2.7.1. In Sections 5.2.2 - 5.2.4, we illustrate differ-

67

ent sampling-related properties of MCMC-IS to provide insights into how
MCMC-IS works and how it should be used in practice. In Section 5.2.5,
we compare the performance of MCMC-IS estimates to estimates that are
produced using a Crude Monte Carlo method (CMC), a Quasi Monte Carlo
(QMC) method, and the Dantzig-Glynn-Infanger (DGI) importance sam-
pling technique proposed in Dantzig and Glynn (1990) and Infanger (1992).
The reasons why we chose to compare our proposed algorithm with CMC,
QMC, and DGI are: CMC is one of most popular algorithms for solving
SP problems (Birge and Louveaux (2011) Shapiro et al. (2009) Kleywegt
et al. (2001)); QMC is the Variance Reduction method that has been applied
and performed well in many problems (Homem-de Mello (2008) Drew (2007)
Koivu (2005)); and DGI is one of the state-of-the-art Importance Sampling
frameworks used to solve stochastic programs and it shares a similar phi-
losophy with our proposed algorithm and therefore can be used as a good
benchmark. The remaining numerical experiments in Section 5.2.7 focus on
the performance of MCMC-IS when it is embedded in a decomposition algo-
rithm and used to solve stochastic programming models with different types
of uncertainty.

5.2.1 Details on experimental setup and reported re-
sults

Our choice of a simple model for this section is due to the fact that the distri-
butions can be easily visualized, and we can determine the value of the true
recourse function at various points using numerical integration procedures.
In contrast to other test problems in the stochastic programming literature,
this setup allows us to calculate the true values of the optimal solution x∗

and the optimal value z∗ of the underlying model. In turn, we are able to
report the following set of statistics:

• Mean-squared error of the estimate of optimal solution x̃, defined as MSE(x̃) ≡
E‖x∗ − x̃‖22;
• Mean-squared error of the estimate of the optimal value z̃, defined as
MSE(z̃) ≡ E‖z∗ − z̃‖22;
• Mean-squared error of the approximate zero-variance distribution, defined
as MSE(ĝ) ≡

∫
(g(ξ)− ĝ(ξ))2dξ;

• Mean-squared error of the estimated recourse function Q̂ at a fixed point
x̂, defined as MSE(Q̂(x̂)) ≡ E‖Q(x)− Q̂(x̂)‖22;
• Sample variance of the estimated recourse function Q̂ at a fixed point x̂,

defined as S(Q̂(x̂))2 ≡ E
[
Q(x)− E[Q̂(x̂)]

]2
;

68

In our experiments we estimated the quantities above using a sample aver-
age approximation. Such statistics are crucial in measuring the effectiveness
of importance sampling procedures as importance sampling estimates will
typically have low sample variance, but may be prone to high bias and high
mean-squared error. In our experiments, we compute sample average val-
ues for these statistics using a total of 30 simulations. Note that we have
normalized all of these values for the sake of clarity.

Our numerical experiments were specifically designed to provide a fair
computational comparison between different sampling methods by ensuring
that each sampling method was allotted the same number of functional eval-
uations. Note that MCMC-IS uses a total of M +Mr total function evalu-
ations to construct an importance sampling distribution, where Mr denotes
the number of samples that are rejected due to the accept-reject procedure
of the MCMC algorithm. Thus, if we ran an instance of MCMC-IS using M
samples to construct the importance sampling distribution and N samples
to compute our estimate, then we formed a comparable estimate for CMC,
QMC and DGI using a total of M + Mr + N samples. We note that this
point may be neglected as we have consistently used N to denote the number
of samples in Figures and Tables for the sake of clarity. In this case, N only
refers to the number of samples used to construct MCMC-IS estimates, and
we stress that all other methods were given the same number of functional
evaluations as MCMC-IS.

All of the results from our numerical experiments were produced using
MATLAB 2012a. In particular, we used a Mersenne-Twister algorithm to
generate random numbers that were used for CMC sampling as well as im-
portance sampling procedures. For QMC sampling, we used a Sobol sequence
that was randomized using the Matousek-Affine-Owen scrambling algorithm.
We note that we have implemented our own version of the DGI importance
sampling method, as it is described in Infanger (1992). As stated in Section
5.1, we used our own implementations of the Metropolis-Hastings MCMC
algorithm and the Adaptive Metropolis algorithm as the MCMC algorithm
in MCMC-IS. In both cases, we produced an approximate zero-variance dis-
tribution using the Gaussian product kernel function and a leave-one-out
cross-validation bandwidth estimator from the MATLAB KDE Toolbox.

Lastly, all of our stochastic programming problems were solved using a
MATLAB implementation of the SDDP algorithm, which used a MEX file to
call the IBM ILOG CPLEX 12.4 Callable Library and solve a series of linear
programs with sampled parameters in C. We have this set of MEX files to
make it easier for practitioners to implement MCMC-IS using MATLAB and
CPLEX 12.4 at the website - http://www.doc.ic.ac.uk/~pp500/. The
collection includes: a MEX file that can generate a sampled cut; a MEX

69

file that can generate samples from the zero-variance distribution using a
Metroplis-Hastings algorithm; and a MEX file that can generate samples from
the the zero-variance distribution using an Adaptive Metropolis algorithm.
These files can be paired with the MATLAB KDE toolbox and embedded in
a decomposition algorithm in order to solve stochastic programming models
using MCMC-IS.

5.2.2 The effect of the number of MCMC samples and
the KDE bandwidth parameter

Our numerical experiments with the newsvendor problem suggest that a
modest number of MCMC samples (M) can produce an approximate zero-
variance distribution (ĝM) that yields substantial variance reduction in our
estimates of the recourse function.

As shown in Figure 5.1(a), increasing M does reduce the error in our
ĝM . However, the computational cost of such an increase is not justified in
terms of the marginal improvement in the accuracy of our recourse function
estimates. This is a positive result as the MCMC algorithm represents a
computationally expensive part of our framework. A possible explanation
for this empirical observation is that if our ĝM qualitatively agrees with g∗,
then the sample statistics of the approximate distribution will qualitatively
agree with the sample statistics of the zero-variance density.

In order to illustrate this point, we plot the contours of the true zero-
variance distribution g∗ in Figure 5.1(b) and the contours of ĝM for different
values of M in Figures 5.1(c)-5.1(e). These figures suggest that the approxi-
mate distributions produced by MCMC-IS qualitatively agree with the true
zero-variance distribution even at low values of M . In Figure 5.1(f), we show
the contours of our approximate zero-variance distribution after we reduce
the bandwidth parameters of the kernel function by 20%. This decreases the
MSE of ĝM by approximately 12% but increases its variance by approximately
15%, thereby demonstrating the bias-variance tradeoff of KDE algorithms.
These results were constructed with the first stage decision fixed at x̂ = 50.

5.2.3 Adaptive sampling of the important regions

The major difference between our framework and a standard MC method
is that we generate samples using an importance sampling distribution ĝM
as opposed to the original distribution f . As a result, the samples that are
generated using ĝM are typically located in regions that contribute the most
to the value of the recourse function (i.e., in regions where |Q(x̂, ξ)|f(ξ) is

70

0 1 2 3 4 5
0

0.02

0.04

0 1 2 3 4 5
0

0.5

1

x10
−3

M × 10
4

M
S
E
(Q̂

)

MSE(Q̂)

MSE(ĝM)

M
S
E
(ĝ

M
)

(a)

ξ1

ξ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(b) g∗

ξ1

ξ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(c) ĝ500

ξ1

ξ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(d) ĝ1000

ξ1

ξ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(e) ĝ10000

ξ1

ξ
2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

(f) ĝ10000

Figure 5.1: (a) The majority of the gains in variance reduction and accuracy
can be achieved for a small value of M . Note that the axis for MSE(ĝM) is

on the right, and the scale for MSE(Q̂) is on the left. (b) Contours of g∗.
(c)-(e) Contours of ĝM for different values of M ; the bandwidth parameter
for these distributions is estimated using a one-dimensional likelihood-based
search. (f) ĝ10000 with a bandwidth that is 20% smaller for each dimension.
The resulting mean square error is lower but the variance is higher for the
density in (f)

71

ξ2

ξ
1

−5 0 5
−5

0

5
f (ξ)
Q(x, ξ)f (ξ)
CMC

ξ2

ξ
1

−5 0 5
−5

0

5
Q(x, ξ)f (ξ)
f (ξ)
MCMC IS

Figure 5.2: Comparison of points generated with the standard CMC ap-
proach, and MCMC-IS. Left: using MC sampling; Right: using importance
sampling.

large) while the samples that are generated using f are typically located in
regions where the original distribution attains high values. We demonstrate
this difference in Figure 5.2 where we plot a set of samples generated from
f using the CMC method (left), and another set of samples generated from
ĝM using MCMC-IS. The first set of contours in Figure 5.2 pertains to the
original distribution f while the second set of contours pertains to the true
zero-variance distribution g∗. Note that f and g∗ are not only centered
around different points but also have different shapes. These results were
constructed with the first stage decision fixed at x̂ = 50.

5.2.4 Dependence of the sampling distribution on the
previous-stage decision

In many cases, the importance sampling distributions used within a stochas-
tic programming application should depend on the previous stage decision.
We illustrate such a dependence in Figure 5.3, where we plot the absolute
difference between an approximate zero-variance distribution constructed
around the point x̂r = 50 and two other approximate zero-variance distribu-
tions constructed around the point x̂1 = 10 (left) and x̂2 = 100 (right). As
shown, the approximate zero-variance distribution produced by MCMC-IS
can vary substantially as we change the previous stage decision.

72

−2

−1

0

1

2

−2

−1

0

1

2

3

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

ξ1ξ2

−
|Q

(x
r
,
ξ
)
−

Q
(x

1
,
ξ
)|
f
(ξ
)

−2

−1

0

1

2

−2

−1

0

1

2

3

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

ξ1ξ2

−
|Q

(x
r
,
ξ
)
−

Q
(x

2
,
ξ
)|
f
(ξ
)

Figure 5.3: The absolute difference between an approximate zero-variance
distribution constructed at x̂r = 50 and two other approximate zero-variance
distributions constructed at x̂1 = 10 (left) and x̂2 = 100 (right).

5.2.5 Comparison with other sampling algorithms

In this section, we compare MCMC-IS estimates to those produced by the
CMC, QMC and DGI methods. In Figure 5.4(b), we plot the sample stan-
dard deviation of the different methods. Although both importance sampling
methods perform well in this respect, it is worth noting that MCMC-IS per-
forms better for smaller sample sizes. When we plot the error in Figure 5.4(a),
we find that MCMC-IS and the QMC sampling method perform best.

Our results suggest that the relative advantage of MCMC-IS over other
variance reduction methods becomes more significant as there is more un-
certainty in our model. Increasing the variance of the underlying model
typically means that more samples are required for the algorithms to pro-
duce estimates with a comparable variance and error. This is to be expected
since the error of an MC estimate depends on the variance of the random
parameters as well as the sample size. To emphasize this point, we repeat
the same calculations as above but increase the standard deviation of (ξ1, ξ2)
from σ = 1 to σ = 2 as described in Section 2.7.1. In this regime, MCMC-IS
outperforms all other methods (Figure 5.4(c) and 5.4(d)).

We note that the error in the DGI estimates of the recourse function
converges very slowly in this example because the DGI method uses an ap-
proximate zero-variance distribution which is specifically built for a recourse
function that is additively separable in the random variables. For this prob-
lem, however, the recourse function is not additively separable. This leads to
estimates of the recourse function that have high variance, and high MSE.

73

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
S
E
(Q̂

)

N

CMC
QMC
MCMC IS
DGI

(a)

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

CMC
QMC
MCMC IS
DGI

N

S
Q̂

(b)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

CMC
QMC
MCMC IS

M
S
E
(Q̂

)

N

(c)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N

S
Q̂

CMC
QMC
MCMC IS

(d)

Figure 5.4: Top: Comparison of the accuracy and variance of estimates
produced by different methods for a moderate-variance problem with σ = 1.
Bottom: Comparison of the accuracy and variance of estimates produced
by different methods for a higher-variance problem with σ = 2. Note that we
omit the results for the IDG method when σ = 2 for clarity. The normalized
values of SQ̂ and MSE(Q̂) for DGI are around 20% and 40% respectively.

74

5.2.6 Multimodal distributions and rare-event simula-
tion

Many decision-making models involve probability distributions that are mul-
timodal (Bucklew (2004)) or that involve rare-events (Ravindran (2008)).
Unfortunately, such complex probability distributions are difficult to include
in stochastic programming models as existing variance reduction methods
will need an extremely large number of samples in order to generate accurate
and reliable results.

Even as importance sampling is frequently used when dealing with such
models, existing importance sampling techniques are ill-suited for this pur-
pose due to two reasons. First, as was illustrated in the previous section, an
ideal importance sampling distribution depends on the incumbent solution
and has to be created each time we wish to generate a new sampled cut.
This implies that efficiency is an important consideration. Second, stochas-
tic programming models not only require us to generate samples from these
complex distributions, but to use them to compute an accurate estimate of
the recourse function. In other words, an appropriate importance sampling
technique also must be able to accurately evaluate the likelihood of each
sample that it generates as in (2.55) or risk generating biased results. Such
issues often preclude the application of stochastic programming when the
distribution of the uncertain variables has a complex structure.

To demonstrate these issues and show that our proposed algorithm can
sample efficiently in such cases, we use an example where the important
regions of the recourse function are described by a surface with two distinct
modes, whose contours are shown in 5.5(a). In this example, we have replaced
the original integrand in the recourse function Q(x̂, ξ1, ξ2)f(ξ1, ξ2) with a

new integrand Q(x̂, w(ξ1), w(ξ2))f(ξ1, ξ2), in which w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
)+

exp(ξ
2

2
− (ξ+1)2

8
), x̂ = 50 and f denotes the standard bivariate normal density.

This example illustrates rare-event sampling, in the sense that the majority
of the samples from the important regions are outside of the 2σ interval of
the original distribution, f .

As in Section 5.2.4, we then generate a set of samples using the CMC
method and MCMC-IS. In this example, the samples that are generated
using the CMC method are centered around the origin, where the original
distribution f attains its highest values (Figure 5.5(a), left). In contrast,
the samples that are generated using MCMC-IS are centered around the two
modes and in proportion to the depth of each mode. These areas constitute
the regions that contribute the most to the value of the recourse function and
correspond to the areas where the approximate zero-variance distribution ĝM

75

ξ2

ξ
1

−5 0 5
−8

−6

−4

−2

0

2

4

6

8
f (ξ)
Q(x, ξ)f (ξ)
CMC

ξ2

ξ
1

−5 0 5
−8

−6

−4

−2

0

2

4

6

8
Q(x, ξ)f (ξ)
f (ξ)
MCMC IS

(a)

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CMC
QMC
MCMC IS

N

M
S
E
(Q̂

)

(b)

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CMC
QMC
MCMC IS

N

S
Q̂

(c)

Figure 5.5: Top: Contours of a multimodal model. Samples generated using
CMC are shown on the left and the samples from MCMC-IS are shown on
the right. Bottom: Error and variance of estimates produced by different
methods.

76

takes on its largest values. As a result the MCMC-IS framework obtains an
estimate of the recourse function that is both more accurate (Figure 5.5(b))
and has less variance (Figure 5.5(c)) than the other methods. In this example,
we have omitted the results for the DGI method because the importance
sampling weights turn out to be zero for all the samples, meaning that the
estimates it produces do not converge. This is a well-known problem with
the DGI method that has previously been discussed in Section 1.4 of Higle
(1998).

5.2.7 Accuracy and variance of MCMC-IS estimations
from a decomposition algorithm

In this section, we compare the estimates of the optimal value z̃ of the
newsvendor problem when it is solved with a decomposition algorithm which
has been paired with MCMC-IS, CMC and QMC.

We consider an extension of the newsvendor problem from Section 2.7.1,
where the newsvendor buys and sells s different types of newspapers. We
purposely do not include any constraints to couple the different types of
newspapers so that we can extrapolate the true values of x∗ and z∗ for the
extended problem using the true values from Section 2.7.1. In this case, we
can assess the accuracy of our estimates for a D = 2×s dimensional problem
by noting that the optimal solution x∗ has to be the same for each of the s
different types of newspapers, and the optimal value z∗ has to scale additively
with the number of different newspapers s.

In contrast to the experiments in Sections 5.2.2 to 5.2.6, the accuracy of
z̃ depends on the number of sampled cuts that are added to the first-stage
problem through a decomposition algorithm, as well as the sampling method
that is used to generate these estimates. Note that in our implementation of
SDDP, we consider the number of iterations as equivalent to the number of
cuts added to the first stage problem. In practice, the number of iterations
needed for the algorithm to converge is determined by a stopping test that
is designed to assess whether the decomposition algorithm has converged. In
this experiment, however, we compare estimates that are produced after a
fixed number of iterations. Fixing the number of iterations ensures that each
sampling method produces estimates using the same number of samples, and
isolates the performance of the sampling method from the performance of
the stopping test. During our numerical experiments we fixed the number of
iterations to 8× s. We found that this simple rule was sufficient to show the
numerical properties of the different sampling algorithms.

Figure 5.6 shows the convergence of the estimates that we obtain when we

77

solve a two-stage newsvendor problem with D = 2× 3 = 6 random variables
after 8× 3 = 24 cuts have been added to the first-stage problem. In Figures
5.6(a) - 5.6(d), we show the results when we model the uncertainty in the
demand and sales price of each newspaper using the lognormal distributions
from Section 2.7.1, and we build the approximate zero-variance distribution
for each sampled cut using M = 3000 samples that are generated from a
standard Metropolis Hastings MCMC algorithm. In Figures 5.6(e) - 5.6(f),
we show results when we model the uncertainty in the demand and sales
price of each newspaper using the multimodal rare-event distribution from
Section 5.2.6, and we build the approximate zero-variance distribution for
each sampled cut using M = 3000 samples that are generated from the
Adaptive Metropolis algorithm described in Haario et al. (2001).

Our results confirm that the relative advantage of using MCMC-IS es-
timates depends on the inherent variance of the underlying stochastic pro-
gramming model. In models where the uncertainty is modeled using a lower-
variance distribution, MCMC-IS produces estimates that are just as accurate
as the estimates produced by a QMC method, but that are still more accu-
rate than the estimates produced by a CMC method. In models where the
uncertainty is modeled using a higher-variance or rare-event distribution,
MCMC-IS produces estimates that are much more accurate than those pro-
duced by QMC and CMC methods. Our numerical results also suggest that
MCMC-IS produces estimates with sample standard deviations that are far
lower than the estimates produced by CMC and QMC methods.

5.3 Numerical results on a collection of test

problems

In this section, we demonstrate the performance of MCMC-IS when it is
paired with a decomposition algorithm in order to solve a collection of bench-
mark stochastic programming models.

5.3.1 Overview of the test problems

In order to verify that our findings from Section 5.2.7 generalize to stochas-
tic programming models, we have based the numerical experiments in this
section on a collection of 9 benchmark stochastic programming models from
Ariyawansa and Felt (2004). We have specifically chosen these models due
to the fact that they represent a diverse collection of stochastic optimization
problems. On one hand, the models differ in the size of the instances, as well
as the number of stages and the number of random variables in each stage. In

78

2 4 8 16 32 64 128 256
0

0.005

0.01

0.015

0.02

0.025

0.03

M
S
E
(z̃
)

N × 103

(a)

2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

N × 103

S
z̃

MCMC IS
QMC
CMC

(b)

2 4 8 16 32 64 128 256
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
S
E
(z̃
)

N × 103

(c)

2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

N × 103

S
z̃

MCMC IS
QMC
CMC

(d)

2 4 8 16 32 64 128 256
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
S
E
(z̃

)

N × 103

(e)

2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

N × 103

S
z̃

MCMC IS
QMC
CMC

(f)

Figure 5.6: Error and variance of estimates for a newsvendor problem where
the uncertainty in demand and sales price is modeled using a lower-variance
lognormal distribution with σ = 1 (5.6(a) - 5.6(b)), a higher-variance log-
normal distribution with σ = 2 (5.6(c) - 5.6(d)), and multimodal rare-event
distribution (5.6(e) - 5.6(f))

79

addition, the models also pertain to decision-making problems across a wide
range of application areas such as energy, finance, and telecommunications.

Problem # Stages # Random Variables
(T) (

∑
t Dt)

Airlift Operation Scheduling (ASO) 2 2
Forest Planning (FP) 7 7
Electrical Investment (EI) 2 10
Selecting Currency Options (SCO) 4 4
Financial Planning Model (FPM) 2 16
Design of Batch Chemical Plants (DBCP) 2 4
Energy and Environmental Planning (EEP) 2 16
Telecommunications Network Planning (TNP) 2 15
Bond Investment Problem (BIP) 5 12

Table 5.1: Overview of the Test Problems from Ariyawansa and Felt (2004)

It is worth noting that many of the problems in Ariyawansa and Felt
(2004) had to be modified in order to be solved with a sampling-based ap-
proach. This was due to the fact that many problems were originally for-
mulated using discrete distributions and scenario trees (sometimes with 3
scenarios). In adapting these problems, we sought to change them as lit-
tle as possible, and have therefore replaced each discrete distribution with a
closely matching continuous distribution whose variance could be tuned. It
is also worth noting that some problems were also formulated using integer
variables. There have been efforts to extend the SDDP framework to allow
for integer variables however such an extension is beyond the scope of the
present paper. As such we have simply focused on solving the integer relax-
ations for these problems. Lastly, we note that we have omitted the “Cargo
Network Scheduling” problem as it required the use of a non-linear program-
ming solver. The full details of our modifications are listed in Appendix
A.

5.3.2 Details on the numerical experiments

As in Section 5.2.7, we solved each of the models using the SDDP algo-
rithm and compared the estimated optimal value z̃ when sampled cuts were
generated using MCMC-IS, CMC and QMC.

We used M = 3000 samples to construct an approximate zero-variance
importance sampling distribution in all of our experiments, and varied the
number of samples to construct the sampled cut from N = 2000 to N =

80

256000. As before, we have ensured that all sampling methods were allotted
an equal number of function evaluations. In other words, the sampled cuts
for CMC and QMC were constructed using M+Mr+N total samples, where
Mr denotes the number of rejected samples from the MCMC algorithm in
MCMC-IS. Table 8.4 in Appendix B gives the average number of rejected
samples from MCMC.

In the following experiments, we paired the SDDP algorithm with the
stopping rule proposed in Shapiro (2011). This stopping rule terminates the
SDDP algorithm as soon as the upper confidence bound θ̄ + zα/2σ̂θ

√
N and

the lower bound θk is less than a prescribed tolerance level ε > 0. In our
experiments, we have set α = 5% and ε = 10%. This means that we obtain a
solution which achieves a value that is within 10% of the optimal value with
95% confidence.

In order to report error statistics as in the previous section, we have
true optimal value for each model by solving each problem using the SDDP
algorithm paired with the QMC method and an extremely large number of
samples (N = 107). Such a large simulation is impractical in practice, but it
was required to validate the correctness of the different methods. Of course
we have no way of knowing that solutions obtained with N = 107 samples is
the correct one, but all three algorithms converged to values that were within
1% of each other. As before, we have computed sample average values for all
of our reported statistics using a total of 30 simulations, and have normalized
all reported statistics for the sake of clarity.

5.3.3 Accuracy and variance of the estimations

In Figure 5.7, we provide a summary of the error and sample standard de-
viation of the optimal value from the nine models when they are solved
using MCMC-IS, QMC, and CMC methods. More specifically, these plots
show the median error and sample standard deviation for different sample
sizes when the models contain lower-variance distributions (Figure 5.7(a)),
higher-variance distributions (Figure 5.7(b)) and rare-event multimodal dis-
tributions (Figure 5.7(c)). We have plotted the average error across all 9 test
problems. Given that the average values across different problems may be
deceiving, we have also included a full table of these results for each problem
and each value of N in Appendix B. Nevertheless, these results are consis-
tent across different test problems, some of which are multistage, and have
a markedly different structure.

When the models contain lower-variance distributions (Figure 5.7(a)),
we see that all methods have low error (less then 5% in all cases) but that
MCMC-IS estimates have lower variance. For models with higher-variance

81

distributions (Figure 5.7(b)), MCMC-IS significantly outperforms the other
methods, as MCMC-IS estimates of the optimal value have less error and less
variance. This is also the case when models contain rare event distributions.
In this case, MCMC-IS is the only method that can produce estimates near
the true values using fewer than N = 256000 samples; the other two sampling
methods exhibit an extremely slow convergence to the optimal value and
require a far greater number of samples in order to converge.

In Figure 5.7(d) we plot the error times CPU time for each method (in
% error × CPU time(min)). This metric provides insights into the relative
“efficiency” of the different methods as it balances the conflicting require-
ments of obtaining highly accurate results using the least amount of CPU
time. From the results in Figure 5.7(d) it can be seen that when the sam-
ple size is small (e.g. N = 2000), our method performs similarly to the
other methods. This is because the advantage of error reduction comes at a
high computational cost relative to the amount of time required to generate
a small sample using CMC or QMC. When the sample size is larger (e.g
N = 8000 and onwards), we see that the cost of MCMC-IS relative to other
methods (while taking into consideration the error reduction) is much less.

5.4 When to use MCMC-IS in Stochastic Pro-

gram

The proposed algorithm has an additional overhead when compared to CMC
and QMC. The benefits of variance reduction are obvious from Figures 5.7(a)-
5.7(c). In Figure 5.7(d) we showed that the algorithm is also efficient in the
sense defined in the previous section. Depending on the application, the
efficiency measure we used may or may not be appropriate. We therefore
conclude the discussion on our numerical results by weighing up the CPU
overhead and standard error statistics from our experiments. Based on these
statistics, we offer some insights on when the proposed algorithm is expected
to outperform conventional sampling methods.

In Table 5.2 below, columns two to four present the computational over-
head of MCMC-IS when compared to either CMC or QMC (who chose the
best from the two). We report the median computational overhead across
the different problems in percentage terms and in parenthesis we tabulate
the median overhead in seconds. At first glance it may seem that SDDP
combined with MCMC-IS does not become competitive until the number of
samples becomes large (around N = 64 × 103). However, CPU time alone
is not sufficient to judge the performance of sampling algorithms. Accuracy

82

is also an important consideration. To illustrate the trade offs, consider the
results for σ = 1 for which our algorithm appears to be the least competi-
tive. In this low variance regime we still manage to have half the standard
error of CMC/QMC even for very large N . It is well known that to halve
the standard error of Monte Carlo estimates one needs to increase the num-
ber of samples by four. As a result our algorithm becomes competitive not
around N = 64 × 103 but around N = 16 × 103 to achieve a comparable
level of accuracy. Whether or not this value is too large to justify MCMC-IS
will depend on the application. Many engineering applications, especially
in energy systems, require a large number of samples in order to obtain a
sufficiently accurate approximation of the recourse function. For example,
in Lubin et al. (2011) the authors found that they need 104 − 105 scenarios
to represent a realistic energy system with uncertainties distributed across
time and space. Similarly, models in finance can also require a large number
of scenarios (Gondzio and Grothey (2006)). When the problem has higher
variance, the number of samples for which our algorithms becomes competi-
tive is even lower. Finally, when the model has rare events, one would expect
that a large number of samples should be used in order to accurately capture
the uncertainties. Given the large error of other methods (see Figure 5.7(c)),
the proposed algorithm clearly outperforms the other methods in the sense
that it has about 70% less variance and in terms of CPU time becomes com-
petitive after a moderate number of samples. In summary, we believe that
the proposed method should be used when the model has a moderate/high
variance or rare events, and when more than 16 × 103 samples are required
to estimate the recourse function.

Samples Median Overhead (%)(secs) Median Var. Reduction (%)
(N × 103) σ = 1 σ = 2 Rare σ = 1 σ = 2 Rare

2 111%(40) 134%(80) 61%(103) 45% 56% 74%
4 92%(40) 143%(96) 80%(154) 50% 57% 73%
8 79%(43) 118%(90) 61%(144) 48% 54% 75%
16 74%(46) 71%(78) 47%(133) 48% 58% 74%
32 58%(51) 25%(37) 16%(61) 47% 56% 73%
64 11%(16) -20%(-61) -8%(-45) 50% 56% 72%
128 -9%(-20) -29%(-141) -15%(-126) 53% 62% 73%
256 -20%(-60) -30%(-208) -23%(-285) 50% 62% 74%

Table 5.2: Computational overhead and variance reduc-
tion trade offs for MCMC-IS.

In the next section, we are going to use the proposed algorithm to solve

83

the capacity expansion planning in the electric power industry. This capacity
expansion planning model is different to the existing models in such a way
that it also includes the unit commitment problem and maintenance schedul-
ing. The challenge is the problem becomes a very large scale optimization
problem and it is very computationally intensive. We will propose differ-
ent approaches for formulating the problems and then using the proposed
algorithm to be able to solve the problem efficiently and accurately.

84

2 4 8 16 32 64 128 256

−4

−2

0

2

4

6

8

M
S
E
(z̃
)
(%

)

N × 103

CMC
QMC
MCMC-IS

(a)

2 4 8 16 32 64 128 256
−5

0

5

10

M
S
E
(z̃
)
(%

)

N × 103

CMC
QMC
MCMC-IS

(b)

2 4 8 16 32 64 128 256

−4

−2

0

2

4

6

8

10

12

14

16

18

M
S
E
(z̃
)
(%

)

N × 103

CMC
QMC
MCMC-IS

(c)

2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

E
rr
o
r
(%

)×
C
P
U

T
im

e
(m

in
s)

×
1
0
4

CMC
QMC
MCMC-IS

(d)

Figure 5.7: Median results with the Collection of Test Problems. (a) MSE(z̃)
for models with lower-variance distributions (b) MSE(z̃) for models with
higher-variance distributions (c) MSE(z̃) for models with rare-event distribu-
tion. The error bars indicate the standard error associated with the solution
obtained. (d) Error (%) × CPU Time (mins); for this plot we averaged the
low variance, moderate variance and rare event results.

85

Chapter 6

Application: The capacity
expansion planning in the
electric power industry

In this chapter, we are going to present an optimization model that integrates
the stochastic unit commitment problem, the maintenance scheduling and
the capacity investment planning into a single framework as shown in Figure
6.1. This allows the investors to make the optimal decisions on the installed
capacity of each generator to satisfy the electricity demand while miniziming
the fixed cost, the operating cost and the maintenance cost for the power
system over a long period of time. Some typical questions addressed in each
model are shown in the corresponding box in Figure 6.1, and the overlapping
box presents the interaction between models.

In particular, the aim of the unit commitment model is to ensure the
system can produce sufficient electricity to meet the demand every hour.
This requires a careful consideration of operational flexibility of the system
and the systems operating cost in response to the uncertain demand. The
demand can be predicted over the next few hours or they can be modelled as a
statistical distribution based on historical data. The operational flexibility of
the system depends on the flexibility of each generator, which is determined
by many technical specifications such as the minimum and maximum capacity
output, the ramping-up and ramping-down rate, the minimum operational
time, etc. According to this information, the operators will coordinate the
system and decide which generator should be turned on or off and how much
power should be produced from them in order to achieve the overall minimal
cost. The challenge arises further when the number of generators increases
and a high penetration of renewable energy introduces more uncertainties
into the system, requiring a significant flexibility. In addition, strict CO2

86

CAPACITY EXPANSION PLANNING

-SWhatStypeSofSgeneratorsStoSbuild?

-SHowSmanySofSthem?

-SHowSmuchScapacityStoSbuild?

-SHowSmuchSisStheSinvestmentScost?

-SHowSmuchSisStheS(approx.)SoperatingScost?

MAINTENANCE SCHEDULING

-SWhichSgeneratorsSneedSmaintenance?

-SHowSmuchScapacitySneedsStoSshutS

downSforSmaintenance?

-SWhenSdoesStheSmaintenanceSstart?S

-SHowSlongSisStheSmaintenance?

UNIT COMMITMENT PROBLEM

-SWhatSgeneratorsStoSoperateSatSaSspecificStime?

-SHowSmuchSisStheS(detailed)SoperatingScost?

Details SystemComponents

Time

Years

Hour

Figure 6.1: The unit commitment, maintenance scheduling and capacity ex-
pansion models are integrated into a single framework. Some typical ques-
tions addressed in each model are shown in the corresponding box. The
overlapped box presents the interaction between models.

regulations encourage a large switch to the new low-CO2 technologies to
happen faster. The unit commitment problem has been studied over many
years and it still remains one of the most active research areas in the operation
research community due to its complexity and the benefits (i.e. cost saving)
it can bring for every improvement in the quality of the model (Hobbs et al.
(2001) Padhy (2004) Chao (2010) Palmintier (2013)). We will investigate
this problem in detail in Section 6.1.1.

The next model that will be integrated into our unified framework is the
maintenance scheduling model. The aim of this model is to minimize the
maintenance cost while keeping the system reliable (Chattopadhyay et al.
(1998)). The maintenance work for each generator is performed within a
certain timescale and under the limited number of engineers, equipment, etc,
to complete the task. We will investigate this problem in detail in Section
6.1.3.

The third model that will be integrated into our model is the capacity
expansion planning problem. This model will provide the investors the op-
timal decisions on the capacity to build for every type of generator in order
to satisfy the current and future demand while minimizing the capital and
operating cost. The model usually includes a large number of different types

87

of generators and once being built, the generators will last for several years
or decades. Therefore, this problem is usually a very large-scale multi-period
optimization problem (Abilock et al. (1979) Botterud et al. (2005)). In order
to reduce the complexity of the problem, many traditional models have sim-
plified the unit-commitment problem by ignoring many technical constraints
in the generators. This approach was acceptable in the traditional power sys-
tem when the uncertainty such as demand changed slowly and predictably
over time so the operational flexibility was not a big concern. Moreover,
a strong correlation between the operational flexibility and the merit order
plant dispatch made the system operators’ task simple (Palmintier (2013)).
For example: the traditional power system had coal generators run at all
time, acting as the baseload power plants because they have the lowest op-
erating cost. Only in the peak period, the demand was so high that some
peakers (i.e. generators with high operational-flexibility such as Natural Gas
fired combustion Gas Turbine (NGGT)) had to be switched on to quickly
produce enough supply. These peakers usually had very high operating costs
and hence it was cost-effective to use them only for a short period of time
and in an emergency only (i.e. a few hours of peak demand). All of these
assumptions are no longer satisfied in modern power systems networks. In
modern power systems networks, many European countries and the United
State (US) impose strict regulations on the greenhouse gas emissions and
they also demand a high penetration level of renewable energy into the sys-
tem (European Commission (2011) National Renewable Energy Laboratory
(2012) Intergovernmental Panel on Climate Change (2014)). In particular,
CO2 is the main contributor to the greenhouse gas emissions so we will con-
sider it as the only pollutant. The regulation imposes a heavy penalty cost
for every ton of CO2 emission. This gives incentives for electrical companies
to switch their generation mix to low-CO2 technologies such as coal with
Carbon Capture and Sequestration (CCS) and gas generators. However, the
operational flexibility of these generators are low as they have long minimum
up/down time, small ramping-up, ramping-down rate, high minimum output
level. Furthermore, they have high start-up cost. With the increasing use
of renewable energy such as wind energy, the system now has to cope with
more uncertainty, requiring it to be much more flexible such that the opera-
tional flexibility plays an important role in the modern power system can be
demonstrated in the following scenario. During night time, the demand is
usually low but wind output is high. If the output from renewable energy has
to be at least 20% of the total generation, the output from another sources
of energy such as coal and gas has to decrease significantly. As a result, some
coal and gas generators will be fully switched off at night. On the next day,
when the demand rises dramatically but the wind output plunges, there are

88

not enough coal and gas generators available to produce the supply. This
leads to the risk of outage.

In fact, many recent reports such as the IEA (International Energy Agency),
NERC (North American Electric Reliability Corporation) and research pa-
pers have emphasized the importance of capturing operational flexibility
in the capacity expansion planning in the modern power system (Interna-
tional Energy Agency (2008) North American Electric Reliability Corpora-
tion (2009) Lannoye (2011)). However, due to the complexity of the com-
bined model, most of the literature so far have solved them separately, which
may lead to the sub-optimal solutions for the long-term capacity expansion
problem (Palmintier (2013)).

The combination of three models was first proposed in Palmintier (2013).
The paper showed that ignoring the operational flexibility may lead to an
infeasible solution of unit commitment, which then increases the cost of any
unserved-demand compensation. It can also result in the underestimation of
CO2 emission and thus having to pay for a high environmental penalty cost.
In addition, in order to reduce the computational complexity, he proposed
to cluster the generaters into groups. However, his model is a deterministic
Mixed Integer Linear Programming (MILP) problem. In this paper, we will
solve a multistage stochastic model, which also combines the unit commit-
ment, maintenance scheduling and capacity investment planning together.
The stochastic model will be more responsive to the uncertainties such as
the electricity demand and the wind production, and hence it can provide a
more robust solution. However, the problem can become intractable. To re-
duce the computational complexity, we propose the following methodological
framework:

1. Formulate the problem as a Multistage Stochastic Linear Programming
(MSLP) problem

2. Cluster similar generators together

3. Use an efficient optimization algorithm to solve the whole problem

The first step is to relax all of the integer variables in the problem so that
we can exploit many well-established, powerful algorithms for solving multi-
stage stochastic LP problems (Pereira and Pinto (1991) Birge and Louveaux
(2011) Prekopa (1995) Higle and Sen (2013) Homem-de Mello and Bayraksan
(2014)). The relaxation for the unit commitment problem is based on Weber
(2005). According to Section 4.7 in Palmintier (2013), the relaxed problem
(which is called as UcLp in Palmintier (2013)) gives a solution that is nearly
identical to the originally MILP model in all but a few cases. The only differ-
ence is that the relaxed problem sometimes replaces the wind capacity with

89

another low-CO2 technology such as the Natural Gas fired Combined Cycle
Gas Turbine (NGCC) with a very small difference in the total cost. Apart
from that, both models always produce enough power without any loss of load
at any time and they can fully capture the generators operational flexibility
such as their minimum up/down time, maximum ramping-up and ramping-
down rate, the CO2 emission of each generator, etc. In summary, “In terms
of utility perspectives, the UcLp simplification does extremely well, produc-
ing generation mixes that cost essentially the same as those from the full
Advanced model for all cases” - Page 165 (Palmintier (2013)). In addition,
we are going to introduce some random variables in our formulation. The
random variables include the demand and the wind output. They are mod-
elled as lognormal distributions based on historical data. We will formulate
the problem as the multistage stochastic program in Section 6.1.

In order to reduce the problem size, we propose to cluster generators with
some common features together. The formalution for clustered problems is
given in Section 6.2. (Palmintier (2013)) showed that using clustering in a
deterministic unit-commitment problem can speed up the calculation up to
5000 times compared with the unclustered formulation while the error in the
objective cost and solutions only increase by less than one percent. Compared
with some other heuristic methods such as perturbation, merit order priority
list, etc, in all cases, clustering is found to be the most effective approach
Palmintier (2013).

In this paper, we will cluster the generators manually by two ways:

1. By technology: The generators are clustered according to the elec-
tricity generation technology. In particular, we consider four types of
technology:

- Coal with Carbon Capture and Sequestration (Coal with CCS)

- Natural Gas fired Combined Cycle Gas Turbine (NGCC)

- Natural Gas fired Combustion Gas Turbine (NGGT)

- Wind

The general features of each technology are described in Table 6.1.

2. By technology and size: The generators of each type of technology
are then classified further into two groups: Large size and small size.

It is possible to use some clustering algorithms such as k-means, mean shift,
Gaussian mixture model to automatically classify the generators (Celebi et al.
(2013) Comaniciu and Meer (2002) Bishop (2006)). This will be investigated

90

Coal NGCC NGGT Wind
with CCS

Capital cost High Medium Lowest Medium-High

Operating cost Low Medium Highest Very small

Operational flexibility Low Medium-High Very high Very low

Efficiency Low High High Medium

Table 6.1: Four types of technology and their main features

in our future work. Our focus in this section is to find the formulation
and algorithm that are suitable for solving efficiently and accurately the
capacity expansion planning problem while including an unit commitment
and maintenance scheduling model.

A drawback of clustering is the possible increase in error of the solutions.
This is because generators within a cluster are assumed to be homogeneous.
In other words, they are assumed to have the same characteristics such as the
minimum up time, the minimum down time, the maximum ramping-up rate,
the maximum ramping-down rate, the minimum operational time, etc. In
practice, any difference in the technical specifications of generators can lead
to a difference in the system operation and therefore, it will affect the long-
term investment decisions. We will investigate the tradeoff between the error
of solutions and the computational time for different levels of aggregation in
Section 6.3. Two methods that we will use to solve this problem are:

1. Stochastic Dual Dynamic Programming (SDDP) (Pereira and Pinto
(1991))

2. MCMC-IS algorithm proposed in Section 3

The performance of different algorithms and formulations will be evaluated
according to the percentage error of the total cost (i.e. the sum of capital cost
and operations cost over a long period of time), the percentage error of the
optimal first-stage solution and the computational time. Also, we measure
the tradeoff between the computational time and the error. We will test every
algorithm in two cases. The first case is when the random variables such as
the demand and the wind output are drawn from a lognormal distribution
with the standard deviation (SD) of one. The second case is when these
random variables are drawn from a lognormal distribution with the SD of two.
This situation is likely to happen in some places where the demand and wind
output vary significantly. The details of the experiment and performance
testing are given in Section 6.3. In the next section, we will introduce the
problem formulation.

91

6.1 Formulation

We are going to formulate the unit-commitment problem in Section 6.1.1.
Then, we propose an approach to scale effectively the time resolution from
hour to season to year while keeping the structure of the problem unchanged
and accessible for the integration of the maintenance scheduling and capacity
expansion models. This scaling-time-resolution approach is given in Section
6.1.2. After that, we will introduce the maintenance scheduling formulation
in Section 6.1.3, and then explain the capacity expansion formulation in
Section 6.1.5.

6.1.1 Unit commitment problem

The ultimate aim of the unit-commitment problem is to find the optimal
operations for the power system to supply the electricity at the lowest cost
to meet the demand at all times. This can be achieved by obtaining the
optimal generation mix among all of the generators in the system. Not
only does the model has to determine what generator to switch on/off at
a certain point of time, but also it is able to tell exactly how much power
needs to be generated from every generator. As a result, it is crucial for
the model to carefully take into consideration many technical constraints for
every generator. Some of them may involve the dynamic link across several
time periods. Moreover, the decisions at a later stage can be influenced by
the previous decision variables. For example: a generator cannot be switched
on and off immediately because of its minimum operation time. For the rest
of this Section, we will explain in detail the constraints and the objective
function in the unit-commitment problem.

The most important constraint in the unit-commitment problem is that
the total generation must always exceed or equal the demand. Let yg,t be
the generation of the generator g at time t; Dt(ξ1) is the uncertain demand
at time t, which depends on the random variable ξ1 ∼ N(µ, σ). Then, the
supply and demand constraint is given as follows:

∑

g

yg,t ≥ Dt(ξ1) (6.1)

In addition, the generation of the generator g cannot exceed its maximum
capacity, Kg:

yg,t ≤ Kg (6.2)

The commitment and start-up decisions for every generator are typically
modelled as binary variables. However, the problem can easily become in-

92

tractable when the model includes a large number of generators. Many re-
search papers have relaxed the problem by replacing the binary variables with
the continuous ones. According to (Palmintier (2013)), the relaxed problem
can provide identical results to the advanced binary-variables model while
taking a significantly less amount of computational time. The relaxation
can be done by defining an additional decision variable, known as the online
capacity yONL,g,t for every generator (Weber (2005)). This online capacity
will give an upper bound for the generation, as shown in equation (6.3). The
lower bound of the generation can be found by multiplying this online ca-
pacity yONL,g,t with the minimum load factor, rMIN , as shown in equation
(6.4).

yg,t ≤ yONL,g,t (6.3)

rMIN ∗ yONL,g,t ≤ yg,t (6.4)

Moreover, the online capacity cannot exceed the maximum capacity that has
been built:

yONL,g,t ≤ Kg (6.5)

For the renewable-energy generators, the online capacity is also limited by
the amount of power available at that time. This amount of power, Pg,t(ξ2), is
uncertain and can be described as a lognormal distribution with the random
variable ξ2 ∼ N(µ, σ):

yONL,g,t ≤ Pg,t(ξ2), ∀g ∈ Grenewable (6.6)

The start-up capacity of a generator is simply defined as the difference of the
online capacity between time t and t+ 1:

ySTU,g,t ≥ yONL,g,t − yONL,g,t−1 (6.7)

The cost for every start-up capacity unit is cSTU,g,t. Thus the total start-up
cost for generator g at time t is given as:

CSTU,g,t = cSTU,g,t ∗ ySTU,g,t (6.8)

To calculate the operating cost, one common practice is to split it into two
parts. The first part is to calculate the generation cost at the minimum
output level. The second part is to calculate the marginal generation cost
above the minimum output level (Weber (2005)). This is useful for modelling
different levels of efficiency and cost when a generator performs at its full or
partial capacity. Hence, the operating cost is calculated as:

COP,g,t = cf,g,t ∗ h0,g ∗ rMIN ∗ yONL,g,t + cf,g,t ∗ hm,g ∗ (yg,t − rMIN ∗ yONL,g,t)

93

= cf,g,t ∗ hm,g ∗ yg,t + cf,g,t ∗ (h0,g − hm,g) ∗ rMIN ∗ yONL,g,t (6.9)

where cf,g,t is the fuel cost; h0,g is the heat rate at the minimum load factor;
hm,g is the marginal heat rate between the minimum and full load. The max-
imum ramping-up rate, RUg, is the maximum generation that can possibly
increase from time t to t+ 1 (Li and Shahidehpour (2005)):

yg,t+1 − yg,t ≤ RUg (6.10)

The maximum ramping-down rate, RDg, is the maximum generation that
can possibly decrease from time t to t+ 1 (Li and Shahidehpour (2005)):

yg,t − yg,t+1 ≤ RDg (6.11)

The minimum operational time can be modelled by the difference between
the online capacity between time t and t+1 such that this difference cannot
exceed the online capacity during the last minimum operational time (Weber
(2005)):

yONL,g,t − yONL,g,t+1 ≤ yONL,g,τ (6.12)

where t−TOP,MIN,g ≤ τ ≤ t and TOP,MIN,g is the minimum operational time
of generator g. The maximum start-up capacity is limited by the minimum
offline capacity during the minimum shut-down time (Weber (2005)):

ySTU,g,t ≤ Kg − yONL,g,τ (6.13)

where τ ≥ t − TSD,MIN,g and TSD,MIN,g is the minimum shut-down time of
generator g.
The objective of the unit-commitment problem is to find the minimum gen-
eration cost:

min
∑

t

∑

g

CSTU,g,t + COP,g,t (6.14)

In the next section, we will propose an approach to scale up the time effec-
tively from hour to season to year, so that the maintenance scheduling and
capacity expansion problems can be integrated into this model.

6.1.2 Scaling time

We make the following assumption: the demand for electricity throughout a
year can be approximated by the demand of four seasons. During a season,
the daily demand is assumed to have the same pattern for twenty four hours.
Therefore, instead of using 8760(= 365∗24) time periods for modelling a-year

94

The limited number of engineers, equipment, etc, is described in the coeffi-
cient alimited−resource,g:

ymaint,g,s ≤ alimited−resource,g ∗Kg (6.16)

For example: Due to the small number of engineers, the maintenance capacity
can only perform up to 50% of the capacity of generator g in season s. In
this case, alimited−resource,g = 50%. If the maintenance work for a generator
cannot finish in a season, it will be likely to continue in the next season for
the reason explained above. In that case, the constraint is given as:

s∑

τ=s−Smaint,g

ymaint,g,τ = Kg (6.17)

Where Smaint,g is the number of seasons required for maintaining generator
g.
The maintenance cost of generator g in season s is given as:

Cmaint,g,s = cmaint,g,s ∗ ymaint,g,s (6.18)

Where cmaint,g,s is the maintenance cost for every maintenance capacity unit.
The objective of the maintenance scheduling is to find the minimum main-
tenance cost:

min
∑

g

∑

s

Cmaint,g,s (6.19)

In the next section, we will take into account the effects of CO2 emission,
the integration of renewable energy and the charge for non-served energy.

6.1.4 Carbon Dioxide emission, renewable energy in-
tegration, non-served energy penalty

In the previous sections, we introduced the unit-commitment and mainte-
nance scheduling formulation. In this section, we will take into account the
cost of CO2 emission, the cost of unmet renewable energy and the cost of
non-served energy over a long period of time.

The cost of CO2 emission from generator g in season s at hour t is given
as:

CCO2,s,t =
∑

g

ls ∗ cCO2 ∗ ag,CO2 ∗ yg,s,t (6.20)

where ls is the number of days in season s, cCO2 is the cost for every ton of
CO2 emission, ag,CO2 is the CO2 emission from generator g to produce one

96

power unit.
The Renewable Portfolio Standard (RPS) requires the power system to have
at least a certain level of renewable-energy integration. For example: the
generation from renewable-energy sources must share at least 20% of the
total generation at any point of time (Wiser and Barbose (2008)). The
constraint for RPS requirement is given as:

ERPS−unmet,s,t +
∑

g∈Grenewable

yg,s,t ∗ ls ∗ dt ≥ aRPS ∗
∑

g∈G
yg,s,t ∗ ls ∗ dt (6.21)

where dt is the duration of time t; aRPS is the required renewable-energy
penetration level, expressed in percentage; ERPS−unmet,s,t is the unmet re-
newable energy. In Equation 6.21, the power generation yg,s,t is multiplied
with the time dt to obtain the energy. In this paper, dt = 1. There is a cost
crps−unmet for every unmet renewable-energy unit. Hence, the cost for the
unmet renewable energy is given as:

CRPS−unmet,s,t = crps−unmet ∗ ERPS−unmet,s,t (6.22)

In some rare events (for example: The demand surges and the supply cannot
meet the demand after trying every possible solution), the electrical company
has to pay a penalty cost for the unserved energy, Eunserved,s,t:

Cunserved,s,t = cunserved ∗ Eunserved,s,t (6.23)

where cunserved is the cost of every unserved energy unit; Eunserved,s,t is given
in the following equation:

Eunserved,s,t +
∑

g

yg,s,t ∗ ls ∗ dt = Ds,t ∗ ls ∗ dt (6.24)

In the next section, we will introduce the capacity expansion formulation.
It will be seen that there are strong interactions between the decisions in
the unit-commitment problem, the maintenance scheduling problem and the
capacity expansion problem.

6.1.5 Capacity expansion problem

The objective of the capacity expansion problem is to provide investors the
optimal decisions on what types of generator and how much capacity to build
to maximize their profit. In other words, the aim is to minimize the capital
cost and the expected operating cost over the next several years. The capital
cost for building a generator g is given by:

cg ∗ ng (6.25)

97

Where cg is the capital cost of building a generator g; ng is number of gen-
erator g. The constraint for ng is:

0 ≤ ng ≤ 1 (6.26)

In this case, ng = 1 suggests that the full capacity of generator g should be
built; ng = 0 shows that generator g should not be built; and if the value is
somewhere between zero and one, it implies that a proportion of the capacity
of generator g should be constructed. As a result, the capacity constraint for
a generator (Equation (6.5)) is modified as follows:

yONL,g,t ≤ ngKg (6.27)

The operating cost is the expected sum of the start-up cost, the cost of
electricity generation, the maintenance cost, the cost of RSP unmet energy
and the cost of unserved demand over the next several years:

Ctotal = min
∑

g

(ng∗cg)+Eξ

{∑

s

∑

g

Cmaint,g,s+
∑

s

∑

t

∑

g

{
ls∗(CSTU,g,s,t+COP,g,s,t)+

CCO2,s,t + CRPS−unmet,s,t + Cunserved,s,t

}}
(6.28)

As we have seen so far, the formulation combining three models into a single
framework will have a large number of decision variables and constraints. In
the next section, we will explain the clustering method to reduce the problem
size.

6.2 Clustered formulation

In this section, we are going to reduce the number of decision variables
and constraints in our optimization problem using the clustering technique.
The generators of similar characteristics (e.g.: technology, size, age, etc) are
grouped together to be considered as one type of generator only. Therefore,
the dimension of the problem shrinks down proportionally to the aggregra-
tion (clustering) level. We note that this dimensionality reduction is applied
to the problem at every time period. The benefit of clustering, hence, will
be compounded over the number of time periods, making the problem much
more tractable. The drawback is that the error in the objective cost and
optimal solutions may rise. The extent of the increase depends on the simi-
larity of the generators in a cluster, which depends on the clustering features
that the system operators or experts decide to use.

98

The clustered formulation requires only a small number of changes to the
formulation in Section 6.1. In particular, the changes occur in the equations
involving the capacity, the available renewable-energy capacity, the maximum
ramping-up and ramping-down rate. In the unclustered formulation, these
quantities represent only one generator; whereas in the clustered formulation,
they are used for describing a group of generators. As a result, the capacity
in the clustered formulation, Kĝ, is equal to the sum of all of the generators

capacity in the clustered set Ĝ:

Kĝ =
∑

g∈Ĝ

Kg =
∑

g∈Ĝ

ngKg (6.29)

where Kg is the capacity of one generator as defined in Equation 6.2. In this
paper, we use the “ˆ” notation to identify a clustered variable.
Similarly, the available renewable-energy capacity, the maximum ramping-up
and ramping-down rate in the clustered formulation are given as:

Pĝ,s,t(ξ2) =
∑

g∈Ĝ

Pg,s,t(ξ2) (6.30)

RUĝ =
∑

g∈Ĝ

RUg (6.31)

RDĝ =
∑

g∈Ĝ

RDg (6.32)

where Pg,t(ξ2), RUg, RDg are the available renewable-energy capacity, the
maximum ramping-up rate, the maximum ramping-down rate for one gener-
ator as defined in Equation 6.6, 6.10 and 6.11 respectively.
In addition, the constraint for the number of generators is given by:

0 ≤ nĝ ≤ NMAX,ĝ (6.33)

where NMAX,ĝ is the maximum number of generators in the cluster. For
example: If five generators are clustered together into a single generator,
NMAX,ĝ = 5.
On the other hand, the parameters such as the minimum operational time
TOP,MIN,g, the minimum shut-down time TSD,MIN,g; the heat rate at the
minimum load h0,g, the marginal heat rate hm,g, the minimum load factor
rMIN , the start-up cost per unit cSTU,g,t, the generation cost per unit cf,g,t, the
maintenance cost per unit cmaint,g,t, the capital cost for building a generator
cg, are the mean value of the generators in the cluster.

99

Other parameters such as the cost for every ton of CO2 emission, cCO2 , the
cost of every unserved-demand unit, cunserved, the cost of every unmet RPS-
energy unit, cRPS−unmet, the duration at time t, dt, the number of days in a
seasons, ls, which are set either by the government or nature facts, will be
kept the same in the clustered formulation.
As a result, the clustered formulation is given as:

Ctotal = min
∑

ĝ

(nĝ∗cĝ)+Eξ

{∑

s

∑

ĝ

Ĉmaint,ĝ,s+
∑

s

∑

t

∑

ĝ

{
ls∗(ĈSTU,ĝ,s,t+ĈOP,ĝ,s,t)+

ĈCO2,s,t + ĈRPS−unmet,s,t + Ĉunserved,s,t

}}
(6.34)

Subject to:

∑

ĝ

yĝ,s,t ≥ Ds,t(ξ1) (6.35)

yĝ,s,t ≤ Kĝ (6.36)

yĝ,s,t ≤ yONL,ĝ,s,t (6.37)

yONL,ĝ,s,t ≤ Pĝ,s,t(ξ2), ∀ĝ ∈ Ĝrenewable (6.38)

rMIN ∗ yONL,ĝ,s,t ≤ yĝ,s,t (6.39)

yONL,ĝ,s,t ≤ Kĝ (6.40)

ySTU,ĝ,s,t ≥ yONL,ĝ,s,t − yONL,ĝ,s,t−1 (6.41)

ĈSTU,ĝ,s,t = cSTU,ĝ,s,t ∗ ySTU,ĝ,s,t (6.42)

ĈOP,ĝ,s,t = cf,ĝ,s,t∗h0,ĝ∗rMIN ∗yONL,ĝ,s,t+cf,ĝ,s,t∗hm,ĝ∗(yĝ,s,t−rMIN ∗yONL,ĝ,s,t)

= cf,ĝ,s,t ∗ hm,ĝ ∗ yĝ,s,t + cf,ĝ,s,t ∗ (h0,ĝ − hm,ĝ) ∗ rMIN ∗ yONL,ĝ,s,t (6.43)

100

yONL,ĝ,s,t − yONL,ĝ,s,t+1 ≤ yONL,ĝ,τ (6.44)

Where τ ≥ t− TOP,MIN,ĝ

ySTU,ĝ,s,t ≤ Kĝ − yONL,ĝ,τ (6.45)

Where τ ≥ t− TSD,MIN,ĝ

yĝ,s,t+1 − yĝ,s,t ≤ RUĝ (6.46)

yĝ,s,t − yĝ,s,t+1 ≤ RDĝ (6.47)

0 ≤ yĝ,s,t ≤ Kĝ − ymaint,ĝ,s (6.48)

ymaint,ĝ,s ≤ alimited−resource,ĝ ∗Kĝ (6.49)

s∑

τ=s−Smaint,ĝ

ymaint,ĝ,τ = Kĝ (6.50)

Ĉmaint,ĝ,s = cmaint,ĝ,s ∗ ymaint,ĝ,s (6.51)

ĈCO2,s,t =
∑

ĝ

ls ∗ cCO2 ∗ aĝ,CO2 ∗ yĝ,s,t (6.52)

ÊRPS−unmet,s,t +
∑

ĝ∈Ĝrenewable

yg,s,t ∗ ls ∗ dt ≥ aRPS ∗
∑

g∈G
yg,s,t ∗ ls ∗ dt (6.53)

ĈRPS−unmet,s,t = crps−unmet ∗ ÊRPS−unmet,s,t (6.54)

Êunserved,s,t +
∑

ĝ

yĝ,s,t ∗ ls ∗ dt = Ds,t ∗ ls ∗ dt (6.55)

Ĉunserved,s,t = cunserved ∗ Êunserved,s,t (6.56)

0 ≤ nĝ ≤ NMAX,ĝ (6.57)

In the next section, we are going to explain the numerical results of dif-
ferent formulations proposed in Section 6.1 and Section 6.2 with two differ-
ent methods (SDDP and MCMC-IS). The pseudo code for the SDDP and
MCMC-IS can be found in Algorithm 5.

101

Algorithm 5 SDDP and MCMC-IS algorithm
BACKWARD SIMULATION
for t = T to 1 do
SDDP: Generate random variables using MC
OR
MCMC-IS: Generate random variables using MCMC. Then
construct the Importance Sampling distribution by KDE based
on the generated samples
Solve the subproblems with the generated samples→ Obtain the duals
Compute Benders cuts
Add the cuts to the previous stage

end for
Set LB = The objective value at t = 1
FORWARD SIMULATION
Sample M forward paths
for m = 1 to M do
for t = 1 to T do
Solve the f(t) + θ(t+1), where θ(t+1) is the approximate cost-to-go
function value
Store the solution as the trial solution for the next-iteration backward
simulation

end for
Set the upper bound of path m = The objective cost

end for
Calculate the mean and standard deviation of M paths. Denote them as
µM and σM .
STOPPING CRITERION
if µM − 1.96∗σM√

M
≤ LB ≤ µM + 1.96∗σM√

M
then

STOP
else
Return to BACKWARD SIMULATION

end if

102

6.3 Numerical results

In this section, we are going to compare the performance of different formu-
lations and methods. The comparisons are based on three criteria:

1. The CPU time

2. The % error

3. The trade-off between the CPU time and the % error

After that, we are going to analyze the optimal decisions obtained by different
methods.

In the previous sections, we reduced the complexity of the problem by
relaxing the binary decision variables. Then we formulated the whole prob-
lem as a multistage stochastic programming problem in Section 6.1 so that
we can exploit its special structure and solve it efficiently by a decomposi-
tion algorithm. After that, we proposed the clustered formulation to further
reduce the number of decision variables and constraints in Section 6.2.

As mentioned before, we use the resolution of hours for modelling the
unit-commitment problem because any rapid change in the hourly demand
and wind output can make a heavy impact on the unit commitment and total
cost, and therefore they can change significantly the long-term investment
decision. We choose the resolution of years for modelling the investment
planning because the investors may want to look longer towards the future
to make their decisions. The resolution for the maintenance scheduling is
seasonal because the maintenance decisions are usually made quarterly.

In our experiments, we will test different methods on a number of different
time periods: 48, 96, 144 and 192, which are corresponding to 2, 4, 6 and 8
seasons respectively.

In the experiment, we will test six methods (which are the combination
of different types of clustering and algorithm):

1. Unclustered with SDDP

2. Unclustered with MCMC-IS

3. Clustered-by-Tech with SDDP

4. Clustered-by-tech with MCMC-IS

5. Clustered-by-Tech-and-Size with SDDP

6. Clustered-by-Tech-and-Size with MCMC-IS

103

For ease of exposition, the method 1, 3 and 5 will be written as:

1= Unclustered

3= Clustered-by-Tech

5= Clustered-by-Tech-and-Size

Three metrics will be used to compare the performance between different
methods:

1. The CPU time

2. The % error, which is given as:

% error =

∣∣∣∣∣
Ctotal − C∗

total

C∗
total

∣∣∣∣∣× 100 (6.58)

where C∗
total is the true objective cost, which is obtained by performing

the SDDP algorithm on the unclustered formulation for a very large
number of samples. In this case, we used 1000 samples for every time
period. Ctotal is the objective cost obtained by the tested algorithm us-
ing 100 samples. In the SDDP algorithm, the samples were generated
by Crude Monte Carlo method. In the MCMC-IS, the samples were
generated by the MCMC algorithm. Due to the acceptance-rejection
step in the MCMC, there were more than 100 samples generated during
the process. However, we ensure that the number of function evalua-
tions are always kept the same for all of the methods in order to have
a fair comparison.

3. The “Relative Efficiency”, which is defined as:

Relative Efficiency = CPU running time×% error (6.59)

This “Relative Efficiency” metric measures the tradeoff between the CPU
time and the percent error. The small value indicates that the algorithm
takes a small amount of time for a given percent error.
The algorithms were implemented in MATLAB, in which many heavily com-
putational functions, including the SDDP, MCMC, KDE were implemented
in MEX/C++ in order to improve the efficiency. The MCMC algorithm used
in this paper was proposed in Haario et al. (2001). The KDE algorithm was
taken from this source: http://www.ics.uci.edu/~ihler/code/kde.html
The generators specifications and fuel cost were obtained from U.S. En-
ergy Information Administration (2010) Northwest Power and Conservation

104

Council (2010) U.S. Environmental Protection Agency (2010) Palmintier
(2013). The random variables in our model are: the demand and the wind
output used in Equation 6.1, 6.6, 6.30, 6.35, 6.38. We assumed that they
had the lognormal distributions:

Dt(ξ1) = a ∗ exp(b ∗ ξ1) (6.60)

Pg,t(ξ2) = c ∗ exp(d ∗ ξ2) (6.61)

Where ξ1, ξ2 ∼ N(µ, σ2); a and b are chosen to closely match the load data
of the 2014 ERCOT Hourly Load Data Archives http://www.ercot.com/

gridinfo/load/load_hist/; c and d are chosen to closely match the wind
output of the 2014 ERCOT Wind Integration Archives http://www.ercot.
com/gridinfo/generation/windintegration/2014. Because the demand
and wind output can vary significantly in some places, we also tested our
algorithms in the case when σ = 2.
The results and analysis will be given in the next section.

6.3.1 Low variance case

In this section, we are going to analyze the CPU time, the percent error and
the “Relative Efficiency” for different methods over a number of seasons when
the demand and wind output are drawn from the lognormal distribution with
the standard deviation of one. All of the numerical results for this section
are given in Table 6.2.

Table 6.2: Numerical results when the demand and fuel cost are drawn from
the lognormal distribution with σ = 1. The running time is rounded to
minutes.

CPU time (minutes) % error of objective value Relative Efficiency
Number of time periods (seasons) 2 4 6 8 2 4 6 8 2 4 6 8
Uncluster 38 172 401 670 2.23 3.06 4.27 5.46 85.63 525.10 1713.76 3656.02
Uncluster + MCMC 34 149 348 559 1.97 2.83 3.46 4.58 66.55 420.54 1203.22 2558.92
Tech 7 44 119 175 3.08 4.58 6.21 7.03 22.54 203.35 737.75 1231.66
Tech + MCMC 5 42 112 166 3.04 4.06 5.74 6.89 15.91 169.57 644.03 1141.79
Tech + Size 14 73 175 290 2.77 3.83 4.97 6.52 38.23 280.36 867.76 1893.41
Tech + Size + MCMC 10 55 147 219 2.64 3.74 4.58 6.07 26.58 204.64 672.65 1331.56

Firstly, Figure 6.3 shows the CPU time of different methods for a number
of seasons.

According to Figure 6.3, it can be seen that the order of the CPU time for
different methods does not change over the number of season and it is shown
in Table 6.3. Figure 6.3 and Table 6.3 show that the clustered formulations
take significantly less amount of CPU time than the clustered formulation.

105

2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Number of time periods (seasons)

T
im

e
 (

m
in

u
te

s
)

Running time

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.3: The CPU time of different methods for a number of seasons when
the demand and wind output are drawn from the lognormal distribution with
the standard deviation of one

1. Clustered-by-Tech with MCMC-IS
2. Clustered-by-Tech
3. Clustered-by-Tech-and-Size with MCMC-IS
4. Clustered-by-Tech-and-Size
5. Unclustered with MCMC-IS
6. Unclustered

Table 6.3: The order of the CPU time of different methods over a number of
seasons (increasing order)

106

1. Unclustered with MCMC-IS
2. Unclustered
3. Clustered-by-Tech-and-Size with MCMC-IS
4. Clustered-by-Tech-and-Size
5. Clustered-by-Tech with MCMC-IS
6. Clustered-by-Tech

Table 6.4: The order of the % error of the objective cost for different methods
over a number of seasons (increasing order)

The level of speed up is proportional to the aggregation level of the problem.
For example: Since the size of the unclustered problem is about five times
bigger than of the “Clustered-by-Tech” problem, it takes about four to five
times greater than of the latter. The similar result can be seen when the CPU
time of the “Unclustered” formulation is compared with the “Clustered-by-
Tech-and-Size” one. More specifically, as the problem size of the former is
about 2.5 times bigger than the size of the latter, it takes two to nearly three
times longer for the “Unclustered” method to converge. Furthermore, the
results show that the MCMC-IS algorithm takes less CPU time to solve a
particular formulation than the SDDP algorithm. As the number of time
periods increases, the advantage of the MCMC-IS algorithm becomes clearer
(Figure 6.3). This implies that the cutting-planes construction for approxi-
mating the expected cost-to-go function in the MCMC-IS algorithm are more
effective at every time period, and then accumulative over the number of time
periods. The only case when the MCMC-IS algorithm does not show its clear
advantage over the SDDP algorithm is in the “Clustered-by-Tech” formula-
tion. This is because the size of the “Clustered-by-Tech” problem is relatively
small, so the Monte Carlo method for generating samples in the SDDP algo-
rithm is efficient enough for producing accurate results. On the other hand,
the MCMC-IS algorithm takes some time for generating the MCMC samples
and constructing the IS distribution to correct the bias. Therefore, the ad-
vantage of the MCMC-IS is easier to be realized in the large-scale problems
such as the “Clustered-by-Tech-and-Size” and “Unclustered” formulation.
The % error of the objective cost for different methods for a number of sea-
sons is shown in Figure 6.4.

According to Figure 6.4, the % error increases as the number of seasons
increases. The order of the % error for different methods is shown in Table
6.4.

From Table 6.3 and Table 6.4, the results suggest that: Although the

107

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of time periods (seasons)

P
e
rc

e
n
t

e
rr

o
r

Percent error of the objective value

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.4: The % error of the objective cost for different methods for a
number of seasons when the demand and wind output are drawn from the
lognormal distribution with the standard deviation of one

aggregation reduces the CPU time to solve a problem, it increases the per-
centage error. This is because it assumes that all of the generators in the
cluster are identical and hence, the clustered formulations will lose some de-
tails of every generator. Nevertheless, the % error increases very small, as
shown in 6.2: All of the clustered methods have less than 2% increase in the
% error relatively to the unclustered methods. For example: The % error
increases from the “Unclustered” to “Clustered-by-Tech” method is 0.85%,
1.52%, 1.94% and 1.57% for the 2, 4, 6, 8−seasons respectively, whereas the
CPU time of the “Clustered-by-Tech” method is 5.2, 3.9, 3.4, 3.9 times faster
than of the former.
The “Relative Efficiency” that investigates the trade-off between the CPU
time and the % error is shown in Figure 6.5.

According to Figure 6.5, the order of the “Relative Efficiency” of different
methods over a number of seasons is shown in Table 6.5. According to
Table 6.5, the top four methods use the clustered formulation while the
bottom two positions belong to the unclustered formulations. This shows the
advantage of the aggregation. For a given clustered formulation, the MCMC-
IS algorithm always performs better than the SDDP algorithm. Therefore,
the results indicate the advantage of MCMC-IS and clustering for solving
this large scale problem.

108

2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000

Number of time periods (seasons)

E
ff

ic
ie

n
c
y
 (

m
in

u
te

s
 *

 p
e
rc

e
n
t

e
rr

o
r)

Efficiency

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.5: The “Relative Efficiency” of different methods over a number of
seasons when the demand and wind output are drawn from the lognormal
distribution with the standard deviation of one

1. Clustered-by-Tech with MCMC-IS
2. Clustered-by-Tech
3. Clustered-by-Tech-and-Size with MCMC-IS
4. Clustered-by-Tech-and-Size
5. Unclustered with MCMC-IS
6. Unclustered

Table 6.5: The order of the “Relative Efficiency” of different methods over a
number of seasons. 1 = the best method. 6 = the worst method

109

2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Number of time periods (seasons)

T
im

e
 (

m
in

u
te

s
)

Running time when the variance increases

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.6: The CPU time of different methods for a number of seasons when
the demand and wind output are drawn from the lognormal distribution with
the standard deviation of two

6.3.2 High variance case

In this section, we are going to investigate the situation when the demand and
wind output fluctuate strongly. Therefore, we will repeat the same procedure
as in this section but the standard deviations of the lognormal distributions
increases from one to two. The numerical results are given in Table 6.6.

Table 6.6: Numerical results when the demand and fuel cost are drawn from
the lognormal distribution with σ = 2. The running time is rounded to
minutes.

Running time (minutes) % error of objective value Relative Efficiency
Number of time periods (seasons) 2 4 6 8 2 4 6 8 2 4 6 8
Uncluster 69 326 865 1385 2.71 3.48 4.82 6.16 186.85 1133.09 4170.02 8531.39
Uncluster + MCMC 46 196 525 875 2.62 3.37 4.64 5.69 119.43 660.01 2434.14 4977.99
Tech 18 86 211 403 4.56 5.35 7.37 8.57 80.86 462.60 1552.12 3456.14
Tech + MCMC 11 66 168 242 3.97 4.78 6.38 7.83 44.53 314.21 1072.80 1892.51
Tech + Size 29 134 386 645 3.24 4.16 5.87 7.45 94.01 557.23 2265.62 4805.62
Tech + Size + MCMC 16 81 197 340 3.39 4.19 5.32 6.77 53.73 337.85 1049.55 2301.46

Figure 6.6 shows the CPU time of different methods for a number of
seasons when the demand and wind output are drawn from the lognormal
distribution with standard deviation of two. Figure 6.6 shows that all of the
methods take longer than those of σ = 1. The order of the CPU time of dif-
ferent methods for a number of seasons is shown in Table 6.7. In comparison

110

1. Clustered-by-Tech with MCMC-IS
2. Clustered-by-Tech-and-Size with MCMC-IS
3. Clustered-by-Tech
4. Clustered-by-Tech-and-Size
5. Unclustered with MCMC-IS
6. Unclustered

Table 6.7: The order of the CPU time of different methods for a number of
seasons (increasing order)

to Table 6.3, there is a swap between the position two and three. As a result,
the two fastest methods are the “Clustered-by-Tech with MCMC-IS” and
“Clustered-by-Tech-and-Size with MCMC-IS”. It shows that even though
the “Clustered-by-Tech” formulation has the smaller number of constraints
and decision variables dimensions, the algorithm still takes a long time to
converge. This can be explained by the fact that the convergence rate of
the SDDP is proportional to the variance of the samples. In the SDDP al-
gorithm, the samples are generated directly from the Monte Carlo method
so their quality is influenced significantly when the standard deviation in-
creases. On the other hand, the samples used in the MCMC-IS algorithm
are generated from the zero-variance IS distribution so the MCMC-IS algo-
rithm can perform robustly in many distributions Parpas et al. (2014). As a
result, the MCMC-IS algorithm with the clustered formulation are the key
for making the problem tractable when the uncertainties are drawn from the
high-variance distribution.
The percentage error of the objective cost for different methods for a number
of seasons is shown in Figure 6.7.

Similarly to the case of σ = 1, Figure 6.7 shows that the % error of the
objective cost increases with the number of time periods. In comparison the
the % error when σ = 1 (Table 6.2), the % error of the objective cost when
σ = 2 (Table 6.6) increases by less than one percent for most of the methods
and only one percent in the others.
The “Relative Efficiency” of different methods are shown in Figure 6.8.

According to Figure 6.8, the order of the “Relative Efficiency” of differ-
ent methods for a number a seasons is shown in Table 6.8. In comparison
to the previous case when σ = 1 (Table 6.5), Table 6.8 shows that the bot-
tom three methods are unchanged; there is, however, a big change in the
top three positions. When σ = 1, the “Clustered-by-Tech with MCMC-
IS”, “Clustered-by-Tech” and “Clustered-by-Tech-and-Size with MCMC-IS”

111

2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

Number of time periods (seasons)

P
e
rc

e
n
t

e
rr

o
r

Percent error of the objective value when the variance increases

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.7: The % error of the objective cost for different methods when the
demand and wind output are drawn from the lognormal distribution with
standard deviation of two

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of time periods (seasons)

E
ff
ic

ie
n
c
y
 (

m
in

u
te

s
 *

 p
e
rc

e
n
t
e
rr

o
r)

Efficiency when the variance increases

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.8: The efficiency of six methods when the demand and wind output
are drawn from the Normal distribution with high standard deviation

112

1. Clustered-by-Tech with MCMC-IS
2. Clustered-by-Tech-and-Size with MCMC-IS
3. Clustered-by-Tech
4. Clustered-by-Tech-and-Size
5. Unclustered with MCMC-IS
6. Unclustered

Table 6.8: The order of the CPU time of different methods for a number of
seasons (increasing order)

1. Unclustered with MCMC-IS
2. Unclustered
3. Clustered-by-Tech-and-Size with MCMC-IS
4. Clustered-by-Tech-and-Size
5. Clustered-by-Tech with MCMC-IS
6. Clustered-by-Tech

Table 6.9: The % error of the optimal decision variables for different methods
over a number of seasons (increasing order)

methods have nearly equal performances. When σ = 2, the “Clustered-
by-Tech with MCMC-IS” and “Clustered-by-Tech-and-Size with MCMC-IS”
methods show their clear advantages over the “Clustered-by-Tech” method.
As a result, it suggests that the combination of the MCMC-IS algorithm and
the clustered formulation is key for solving our integrated model efficiently
when the random variables are drawn from a high-variance distribution. In
the next section, we are going to investigate the optimal decision variables
of different methods.

Figure 6.9 and Figure 6.10 show the % error of the optimal decision vari-
ables for different methods over a number of seasons. They are summarized
in Table 6.9. Table 6.9 shows that the “Unclustered with MCMC-IS” method
gives the lowest % error of the optimal decision variables. However, as shown
in Figure 6.3 and Figure 6.6, this method is very computationally expensive
for a large number of time periods. Since the generators are built to last for
several years or decades, it is important to include as large number of time
periods as possible in order to take into account the changes in the future
demand. In the next section, we are going to investigate the quality of the
optimal decision variables obtained by different clustered methods and then
compare them with the “Unclustered with MCMC-IS” method.

113

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

11

12

Number of time periods (seasons)

P
e
rc

e
n
t

e
rr

o
r

Percent error of the decision variables

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.9: The % error of the optimal decision variables for different methods
over a number of seasons when the demand and wind output are drawn form
the lognormal distribution with the standard deviation of one

2 3 4 5 6 7 8

2

4

6

8

10

12

14

Number of time periods (seasons)

P
e
rc

e
n
t
e
rr

o
r

Percent error of the decision variables when the variance increases

Unclustered

Unclustered with MCMC−IS

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.10: The % error of the optimal decision variables for different meth-
ods over a number of seasons when the demand and wind output are drawn
from the lognormal distribution with the standard deviation of two

114

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

C
a

p
a

c
it
y
 (

G
W

)

Clustered−by−Tech

Wind

NGGT

NGCC

Coal−CCS

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

C
a

p
a

c
it
y
 (

G
W

)

Clustered−by−Tech with MCMC−IS

Wind

NGGT

NGCC

Coal−CCS

Figure 6.11: Optimal decision variables for the “Clustered-by-Tech” method

6.3.3 The optimal capacity expansion decisions

In this section, we are going to analyze the optimal capacity expansion de-
cisions given by different clustered methods and then compare them with
the “Unclustered with MCMC-IS” method. The optimal decision variables
for the “Clustered-by-Tech” method is given in Figure 6.11, and for the
“Clustered-by-Tech-and-Size” method is given in Figure 6.12 in the case
σ = 1. The optimal decision variables for the “Clustered-by-Tech” method
is given in Figure 6.13 , and for the “Clustered-by-Tech-and-Size” method is
given in Figure 6.14 in the case σ = 2.

As shown in Figure 6.11 and Figure 6.12, the total new installed capacity
increases as the number of time periods increases from two to four seasons.
After that, it remains relatively the same for the four, six and eight seasons.
This is because: In the first two seasons, the demand has not reached its peak
of the year yet. The peak demand happens during the last two seasons of
the first year and therefore, it can only be considered if the problem has the
number of time periods up to four seasons or above. Therefore, this is one
example to show that the problem may give sub-optimal decision variables
if it does not include a large number of time periods. Since the demand in
the second year is assumed to remain the same as in the first year, the new
installed capacity for the six and eight seasons does not change much after
the first year.

115

2 4 6 8
0

1

2

3

4

5

6

7

8

9

Number of time periods (seasons)

C
a
p
a
c
it
y
 (

G
W

)

Clustered−by−Tech−and−Size

Wind

L

Wind
S

NGGT
L

NGGT
S

NGCC
L

NGCC
S

Coal
L

Coal
S

2 4 6 8
0

1

2

3

4

5

6

7

8

9

Number of time periods (seasons)

C
a
p
a
c
it
y
 (

G
W

)

Clustered−by−Tech−and−Size with MCMC−IS

Wind

L

Wind
S

NGGT
L

NGGT
S

NGCC
L

NGCC
S

Coal
L

Coal
S

Figure 6.12: Optimal decision variables for the “Clustered-by-Tech-and-Size”
method

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

C
a
p
a
c
it
y
 (

G
W

)

Clustered−by−Tech when the variance increases

Wind

NGGT

NGCC

Coal−CCS

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

C
a
p
a
c
it
y
 (

G
W

)

Clustered−by−Tech with MCMC−IS when the variance increases

Wind

NGGT

NGCC

Coal−CCS

Figure 6.13: Optimal decision variables for the “Clustered-by-Tech” method
when the variance increases

116

2 4 6 8
0

1

2

3

4

5

6

7

8

9

Number of time periods (seasons)

C
a

p
a

c
it
y
 (

G
W

)

Clustered−by−Tech−and−Size when the variance increases

Wind

L

Wind
S

NGGT
L

NGGT
S

NGCC
L

NGCC
S

Coal
L

Coal
S

2 4 6 8
0

1

2

3

4

5

6

7

8

9

Number of time periods (seasons)

C
a

p
a

c
it
y
 (

G
W

)

Clustered−by−Tech−and−Size with MCMC−IS when the variance increases

Wind

L

Wind
S

NGGT
L

NGGT
S

NGCC
L

NGCC
S

Coal
L

Coal
S

Figure 6.14: Optimal decision variables for the “Clustered-by-Tech-and-Size”
method when the variance increases

Moreover, the results show that the wind capacity increases as the problem
increases from two to four seasons. This can be explained by the fact that
the wind output during the last two seasons of the year is higher than of the
first two seasons. Hence, more wind capacity needs to build to ensure that
at least 20% of the power generation come from the wind output. Besides,
the capacity for “Coal-CCS” also increases as the problem increases from
two to four seasons. This is because the demand during the last two seasons
increases. The total capacity thus has to increase. In this case, the capacity
expansion of Coal-CCS will keep the operating cost low while the NGGT
are able to provide enough flexibility to respond to the uncertainties in the
demand and wind output.
Figure 6.13 and Figure 6.14 show that the capacity for Coal-CCS reduces sig-
nificantly when σ = 2. Instead, a large capacity of NGGT is built to increase
the system’s operational flexbility in order to cope with the high fluctuation
of the wind output. In comparison to the case of σ = 1, the capacity for
NGCC decreases; however, unlike the Coal-CCS, NGCC still play an im-
portant role as they have relatively low operating cost with medium-to-high
operational flexibility. In addition, the installed capacity for wind increases
as the wind output can go up significantly due to the high standard devia-
tion, and the system has to be ready for capturing as much wind output as
possible.

117

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

P
e

rc
e

n
t

e
rr

o
r

Percent error of the decision variables of different clustered methods
with respect to the "Unclustered with MCMC−IS" method

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.15: Difference between the MSE of the optimal decision variables
and the “true” solution given by the “Unclustered with MCMC-IS” method

In summary, when the demand and wind output vary significantly, the opti-
mal capacity expansion decisions will change accordingly. They are shifting
towards using more highly flexible generators such as NGGT while reducing
the capacity of the less flexible technologies (i.e. Coal-CCS). More wind ca-
pacity is also required to leverage the wind output when there is strong wind.
The next step is to compare the quality of the optimal decision variables of
different clustered methods with the “Unclustered with MCMC-IS” method,
which achieves the lowest % error in the optimal decision variables but may
suffer the curse of complexity. Figure 6.15 shows the % error of the optimal
decision variables of different clustered methods relatively to the “Unclus-
tered with MCMC-IS” method when the demand and wind output are drawn
from the lognormal distribution with the standard deviation of one. Figure
6.16 shows the % error of the optimal decision variables of different clustered
methods relatively to the “Unclustered with MCMC-IS” method when the
demand and wind output are drawn from the lognormal distribution with
the standard deviation of two.

Figure 6.15 and Figure 6.16 show that the optimal decision variables
in the “Clustered-by-Tech-and-Size” and “Clustered-by-Tech-and-Size with
MCMC-IS” have about 1.5% error, whereas the percent error in the optimal
decision variables given by the “Clustered-by-Tech” and “Clustered-by-Tech
with MCMC-IS” is about 3.7% to 4.5%.

118

2 4 6 8
0

1

2

3

4

5

6

7

Number of time periods (seasons)

P
e

rc
e

n
t

e
rr

o
r

Percent error of the decision variables of different clustered methods with respect to
the "Unclustered with MCMC−IS" method when the variance increases

Clustered−by−Tech

Clustered−by−Tech with MCMC−IS

Clustered−by−Tech−and−Size

Clustered−by−Tech−and−Size with MCMC−IS

Figure 6.16: Difference between the MSE of the optimal decision variables
and the “true” solution given by the “Unclustered with MCMC-IS” method

6.4 Summary

We have presented a multistage stochastic program that integrates the unit-
commitment, the maintenance scheduling and the capacity expansion models
into a single framework. We then proposed different ways of aggregation and
two different optimization algorithms to solve this problem. The numer-
ical experiments show that the MCMC-IS algorithm in combination with
the clustered formulation are key for solving it efficently. When the demand
and wind output fluctuate strongly, the “Clustered-by-Tech with MCMC-IS”
method can speed up to almost six times the “Unclustered” method while
the error only increases by one percent. On the other hand, the “Clustered-
by-Tech-and-Size with MCMC-IS” method can speed up by four times the
“Unclustered” method for almost zero increase in the percent error. More-
over, the results show that as the demand and wind output fluctuate strongly,
the power system has to increase the capacity of the highly flexible genera-
tors such as NGGT while relying less on the less flexible generators such as
Coal-CCS.

119

Chapter 7

Conclusions

Multistage stochastic programming models are considered to be computa-
tionally challenging mainly because the evaluation of the recourse function
involves the solution of a multidimensional integral. Numerical methods such
as Sample Average Approximation and Stochastic Dual Dynamic Program-
ming rely on sampling algorithms to approximately estimate the recourse
function. The sampling algorithm used in conjunction with the optimization
algorithm has a major bearing on the efficiency of the overall algorithm and
on the accuracy of the solution. As a result the development of efficient
sampling methods is an active area of research in stochastic programming.

The main contribution of this thesis is the development of an importance
sampling framework that is based on Markov Chain Monte Carlo (MCMC)
to generate biased samples, and a Kernel Density Estimation method to
compute the likelihood function. Importance Sampling has been proposed
before in the literature of stochastic programming. The proposed method
makes fewer restrictive assumptions than the Importance Sampling algorithm
proposed in Dantzig and Glynn (1990) and Infanger (1992), and in particular
can perform well even when the objective function is not additively separable.
Our numerical experiments show that the method outperforms Crude Monte
Carlo and Quasi Monte Carlo algorithms when the problem has moderate
or high variance, and when the probability density function is difficult to
sample from.

The results from numerical experiments suggest that MCMC-IS yields
accurate estimates for models with lower-variance distributions and that it
has a distinct advantage over sampling methods such as CMC and QMC
when models are equipped with higher-variance distributions or rare-event
distributions. We have also implemented the Importance Sampling technique
from Infanger (1992) and in most cases it did not converge or was worse than
CMC. We believe that the method proposed in Infanger (1992) is suitable for

120

problems with a particular structure and may need further tuning for different
test problems. Finally, it is clear from our results that if the stochastic
program has rare events then the proposed method is the only one (from the
ones we tested) that can produce reliable results. This last conclusion was
not a surprise to us given that the MCMC method is known to perform well
in such cases.

The Importance Sampling framework proposed in this thesis could be ex-
tended in many ways. We have shown how importance sampling can be used
in the context of a decomposition algorithm and expected value optimiza-
tion. However, it is possible to use our approach with different algorithms
(e.g. SAA) and with different types of stochastic programming models (e.g.
risk averse stochastic programming). In addition, we have shown that the
proposed method performs well when compared to existing methods.

We have also proved the convergence of the proposed algorithm. We will
investigate the complexity of the algorithm in the future. We then used
the proposed algorithm to solve the capacity expansion planning problem in
the electric power industry. This problem is a very large scale optimization
problem, which includes another two very challenging problems: The unit
commitment problem and the maintenance scheduling problem. Therefore,
we had to reduce the number of dimensions and the number of constraints of
the problems before trying to solve it. We therefore used different types of
clustering methods to group power generators of similar characteristics to-
gether. This approach helps to reduce the problem size; however, the problem
is still intractable, especially when the model includes a large number of time
periods in order to seek for better long-term investment decisions or when the
uncertainties such as the demand and wind output vary significantly. Then
the numerical experiments showed that the MCMC-IS algorithm in combi-
nation with the clustered formulation are key for solving it efficently and
accurately. There is a tradeoff between the computational time and the ac-
curacy of the solutions for different aggregation levels. However, this tradeoff
can be kept minimal if we select the right clustering features. For example:
When the electric demand and wind output fluctuate strongly, our results
show that the “Clustered-by-Tech with MCMC-IS” method can speed up to
almost six times the “Unclustered with SDDP” method while the error only
increases by one percent. On the other hand, the “Clustered-by-Tech-and-
Size with MCMC-IS” method can speed up by four times the “Unclustered”
method for almost zero increase in the percent error. In terms of the optimal
solutions, the results showed that as the demand and wind output fluctuate
strongly, the power system has to increase the capacity of the highly flexible
generators such as NGGT while relying less on the less flexible generators
such as Coal-CCS.

121

Chapter 8

Appendix

Appendix A: Description of the Test Problems

from Section 5.3

In this section, we explain the modifications we made to the set of test prob-
lems from Ariyawansa and Felt (2004).

Airlift Operation Scheduling (ASO): The aim of this model is to deter-
mine the optimal scheduling of several types of aircraft over different routes.
Each aircraft type can only fly a certain number of hours within a month.
Decision makers are allowed to switch aircraft from one route to another,
under the condition that the switching hours from aircraft type i and from
route j cannot exceed the original schedule. The objective is to minimize
the cost of flights while ensuring that aircrafts can carry enough number of
goods required for every route j. The demand of goods in route j is uncer-
tain. Hence decision makers have to constantly take recourse actions in order
to meet the actual requirement.

This is a stochastic programming model with T = 2 periods. The demand
for route 1 is assumed to follow a lognormal distribution: d1 = 1000 ×
exp(0.1 × ξ1), where ξ1 ∼ N(0, σ2

i). The demand for route 2 is also log-
normal: d2 = 1700 × exp(0.1 × ξ2), where ξ2 ∼ N(0, σ2

i). The coefficients
1000 and 1700 are chosen such that the demand given by these equations are
as close as possible to the original problem. In particular, the mean demand
for route i should be around 1000 and for route j should be around 1700.
The value 0.1 is selected so that the uncertainty in demand does not vary
too much.

In our experiments, we vary the amount of uncertainty in our model by
setting σi = i. For experiments in which we pair this model with a rare-event

122

distribution, we have spread the outcomes of the random variables across two

important regions by using the transformation: w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) +

exp(ξ
2

2
− (ξ+1)2

8
). As a result, the recourse function Q(x, ξ1, ξ2)f(ξ1, ξ2) is

replaced with Q(x, w(ξ1), w(ξ2))f(ξ1, ξ2). All other information such as the
flying hours per trip, carrying capacity, cost per flight, penalty costs, flying
hours after switching flights, and the cost per flight switched are kept the
same as the original test problem.

Forest Planning (FP): The aim of this model is to decide how to harvest a
forest in order to maximize the final value of timber that is obtained after T
stages. To model this problem, the forest area is divided intoK = 8 segments
according to the ages of trees. In any period, trees that are not harvested or
destroyed by fire will be transferred to the next age class. In addition, forest
planners have to decide how much area in each age class will be harvested
while minimizing the risk that a random proportion of the remaining forest
could be destroyed by fire. It is assumed that the burned areas will quickly
get replaced and started at age class 1. As each period of time can last for
20 years, the future value of timber will be discounted at a given rate, δ.

This is a stochastic programming model with T = 7 periods. Instead
of discretizing the fire rate as in the original problem, the fire rate is now
described by 0.07 × exp(0.1 × ξj), where ξj ∼ N(0, σ2

i) and j = 1, ..., K.
The value of 0.07 is chosen so that the fire rate is as close as possible to the
values given in the original test problem. In our experiments, we vary the
amount of uncertainty in our model by setting σi = i. For experiments in
which we pair this model with a rare-event distribution, we have spread the
outcomes of the random variables across two important regions by using the

transformation: w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
).

All other information such as the number of age classes K, the initial
forest area of each age class s1, the discount rate δ, the value of standing
timber v, the yields of harvest y and two constants α, β that limit the change
in purchasing timber from one period to the next are all kept the same as
the original formulation.

Electrical Investment (EI): In this model, decision makers have to decide
how much to invest in n = 4 different power system technologies in order to
produce electricity. Each technology has a random investment cost, operat-
ing cost, and an availability factor corresponding to the time during which
each technology operates. The objective is to minimize the total cost while
satisfying the electricity demand. The demand of electricity is uncertain and
is modeled as different modes in the load duration curve. There is a penalty

123

charge if there is a shortage of electricity production. In addition, there is
a limitation on how much the producers can invest to expand the electricity
supply at every period of time.

This is a stochastic programming model with T = 2 periods. To make
the model more realistic, we have increased the number of intervals (modes)
used to create the load duration curve into a large number of intervals from
3 modes to 10 modes. We have set the demand for each mode as:

d1 = 5× exp(0.1× ξ1)

d2 = 20× exp(0.1× ξ2)

d3 = 20× exp(0.1× ξ3)

d4 = 15× exp(0.1× ξ4)

d5 = 10× exp(0.1× ξ5)

d6 = 8× exp(0.1× ξ6)

d7 = 8× exp(0.1× ξ7)

d8 = 4× exp(0.1× ξ8)

d9 = 5× exp(0.1× ξ9)

d10 = 5× exp(0.1× ξ10)

where ξ1, . . . , ξ10 ∼ N(0, σ2
i). In our experiments, we vary the amount of

uncertainty in our model by setting σi = i. For experiments in which we pair
this model with a rare-event distribution, we have spread the outcomes of the
random variables across two important regions by using the transformation:

w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
).

We note that we have chosen the coefficients for the load blocks described
above so as to create a smooth and realistic load duration curve. We assume
that the operating costs of mode 2 are 90% of the operating costs in mode
1. Given that the operating costs of mode 3 should be smaller than the op-
erating costs of mode 2, we have set these to 85%. Following this pattern,
operating costs of each subsequent mode decrease by 5%. Lastly, given that
the the demand has increased from the original value of 12 to 100, we have
also increased the total investment budget from 120 to 1200.

Selecting Currency Options (SCO): Many multinational corporations
have a substantial amount of revenue across a wide number of different cur-
rencies. If the foreign exchange rate decreases, the actual revenue received
will be less than predicted. To hedge this risk, decision makers can purchase
currency options, which guarantees a certain exchange rate (also known as
strike price) at some point in the future.

124

The aim of this model is to help corporates minimize the cost of pur-
chasing currency options while ensuring that their payoff is greater than a
level specified by the company. This level is normally known as the target
exchange rate. The random variables in this model are the exchange rate and
option prices at time t. The number of time periods is four. The interest rate
is set to 0.10 and the volatility of the exchange rate is set to 0.11 throughout
all of time periods. The number of options is 10 with strike prices as follows:
E1 = 0.44;E2 = 0.50;E3 = 0.57;E4 = 0.63;E5 = 0.70;E6 = 0.76;E7 =
0.83;E8 = 0.89;E9 = 0.96;E10 = 1.02. In order to simplify the problem,
foreign interest rate is set to the UK interest rate of 0.5%. The exchange
rate is given by S = 0.5 ∗ exp(0.2 ∗ ξ), where ξ ∼ N(0, σ2

i). The coefficient
0.5 and 0.2 are chosen such that the generated exchange rate are as close
as possible to the original source. Finally, the target exchange rate is set
to 0.463, which is the average of target exchange rates across all scenarios
shown in Table 5 in Ariyawansa and Felt (2004). In our experiments, we vary
the amount of uncertainty in our model by setting σi = i. For experiments
in which we pair this model with a rare-event distribution, we have spread
the outcomes of the random variables across two important regions by using

the transformation: w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
).

Financial Planning Model (FPM): The aim of this model is to maxi-
mize the expected value of savings and general accounts while avoiding the
shortfall in these accounts. Due to the structures and regulations of different
types of insurance policies, there are several constraints in the problem. Also,
different types of investment (i.e. direct or indirect) may result in different
calculations. The random variables are: income return, price return, interest
rate, deposit inflow, principle payments, interest payments and total reserve
liability. The number of time periods is two and the number of funds we used
is five. Since the data are not given precisely either in the original source or
in Ariyawansa and Felt (2004), the data are created such that they are as
close as possible to some of the examples found in the original paper. The
data are generated as follows:

RI(nt+1) = 0.15× exp(0.1× ξ1)

RP(nt+1) = 0.20× exp(0.1× ξ2)

gt+1 = 0.05× exp(0.1× ξ3)

Ft+1 = 200× exp(0.1× ξ4)

Pt+1 = 400× exp(0.1× ξ5)

It+1 = 75× exp(0.1× ξ6)

Lt = 700× exp(0.1× ξ7)

125

where ξ1, . . . , ξ7 ∼ N(0, σ2
i). We kept the same notation as in Ariyawansa

and Felt (2004) and the explanation of what each variable means can be
found there. The only piece of information that cannot be found is the in-
come gap IGt+1. In this case, we propose to describe the income gap as the
percentage given by the equation 1+0.3×exp(0.1∗ ξ8), where ξ8 ∼ N(0, σ2

i).
This number will be multiplied with the value of funds to find the invest-
ment income. In our experiments, we vary the amount of uncertainty in
our model by setting σi = i. For experiments in which we pair this model
with a rare-event distribution, we have spread the outcomes of the ran-
dom variables across two important regions by using the transformation:

w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
).

Design of Batch Chemical Plants (DBCP): The aim of this model is to
decide what kinds of chemical plants should be built in order to maximize the
profit from selling chemical products - all the while minimizing the investment
costs for these plants. Decision makers have to what kinds of chemical plants
to build, as well as how many of them, and how they should be built. Decision
makers also have to decide which tasks to perform on a particular plant while
satisfying the constraint of capacity, processing time of each task and the
limited amount of resource.

This is a stochastic programming model with T = 2 periods. The random
variables in this problem are: the demand and the price per unit mass of
resource. The random variables are changed from discrete to continuous
distribution as follows:

• the demand for resource 4 is: Q4 = 150× exp(0.5× ξ1).

• the price of resource 4 is: v4 = 55× exp(0.1× ξ2).

• the demand for resource 7 is: Q7 = 200× exp(0.5× ξ3).

• the price of resource 7 is: v7 = 80× exp(0.1× ξ4)

where ξ1, . . . , ξ4 ∼ N(0, σ2
i). In our experiments, we vary the amount of un-

certainty in our model by setting σi = i. For experiments in which we pair
this model with a rare-event distribution, we have spread the outcomes of the
random variables across two important regions by using the transformation:

w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
). The coefficients are selected so

that the quantities described by these equations are as close as possible to
the data found in the original paper. All other information is the same as
the original formulation.

126

Energy and Environmental Planning (EEP): The objective of this
model is to minimize investment costs as well as operating costs of different
types of energy technologies while making sure that the electricity produc-
tion satisfies the demand of each utility. The model shows a great degree
of realism by taking into account various aspects of the problem including
the production constraints, capacity expansions constraints, equilibrium con-
straints, and environmental constraints. The energy supply and demand are
classified by many different technologies. Depending on different types of
technologies, there are different ways of calculating their productions and
energy balances. The problem also considers the peak demand level and en-
sures that the capacity of the production can cover the peak demands. Hence
there are peak demand constraints for different types of technologies. In ad-
dition, different technologies can perform at different levels depending on the
season (i.e. winter or summer) and the time of day. The problem also takes
into account the environmental aspects, in which the CO2 level produced by
all of these technologies has to be less than a certain level, which is uncertain
in the future. Hence the random variable in this problem is the CO2 limit.

Telecommunication Network Planning (TNP): There are many nodes
in a telecommunication network. Between any two nodes, there are several
possible routes to connect them together. At any time, there are various
point-to-point pairs that need to be served by the network. This demand
is random. The purpose of this model is to decide which links to connect
within a communication network while minimizing the unserved requests and
satisfying a budget constraint.

This is a stochastic programming model with with T = 2 time periods.
Assuming that there is a huge increase in the demand for telecommunica-
tion in the future, the budget for network expansion should be set at a
reasonably high level of the value of 5. This is equivalent to about 22%
increase in the initial capacity of the network. The demand for every point-
to-point pair i is given as: dj = 3 × exp(0.2 × ξj), where ξj ∼ N(0, σ2

i),
where j = 1, ..., 15. In our experiments, we vary the amount of uncertainty
in our model by setting σi = i. For experiments in which we pair this
model with a rare-event distribution, we have spread the outcomes of the
random variables across two important regions by using the transformation:

w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) + exp(ξ

2

2
− (ξ+1)2

8
).

Bond Investment Problem (BIP): The objective of this model is to max-
imize the expected return on bond lending and the balance of transactions
while minimizing the cost of bond borrowing. In this model, the random

127

variables are the rates of return on bond lending, bond borrowing and total
balance of transactions, as well as the growth rate of the transactions.

This is a stochastic programming model with T = 5 periods. In each
period, there is a limited number of bonds that can be traded. The rate of
return on lending is described by 0.07× exp(0.1× ξ1). The rate of borrowing
is given as 0.1× exp(0.1× ξ2), and the rate of return on balance transaction
is given as 0.15× exp(0.1× ξ3) where ξ1, . . . , ξ3 ∼ N(0, σ2

i). This corresponds
to the rate of return on lending of around 7%, rate of borrowing of around
10% and rate of return on the balance of transactions of around 15% with a
reasonable fluctuation in their quantities. We assume that the total balance
of bond transactions increased by a stochastic quantity ξt = p× ξt−1, where
p = 0.1 × exp(0.1 × ξ3), ξ3 ∼ N(0, σ2

i). This is equivalent to the increase of
around 10% increase (with a certain amount of uncertainty) in the balance
of transactions in every time period.

In our experiments, we vary the amount of uncertainty in our model by
setting σi = i. For experiments in which we pair this model with a rare-event
distribution, we have spread the outcomes of the random variables across two

important regions by using the transformation: w(ξ) = exp(ξ
2

2
− (ξ+3)2

8
) +

exp(ξ
2

2
− (ξ+1)2

8
).

128

Appendix B: Detailed Numerical Results from Section 5.3

Table 8.1: Comparison of performance of MC, QMC and
the proposed algorithm (MCMC) when the random vari-
ables are drawn from the distribution with standard de-
viation of 1

Problem # Samples (N) MSE(z̃) (%) Variance(z̃) (%) # of Iterations Runtime (s)
MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 1.25 1.22 0.87 3.95 3.86 2.02 18 21 4 2 2 8
4000 0.76 0.71 0.69 3.91 3.88 1.97 20 22 6 2 4 9
8000 0.54 0.53 0.48 3.89 3.89 1.32 24 23 6 2 5 12
16000 0.42 0.45 0.41 3.91 3.90 2.05 25 26 5 7 7 13
32000 0.39 0.37 0.36 3.91 3.90 2.12 26 25 6 10 12 17
64000 0.34 0.35 0.31 3.93 3.91 1.97 28 27 8 19 22 22
128000 0.38 0.32 0.28 3.92 3.91 2.17 29 30 14 73 78 52
256000 0.32 0.29 0.27 3.91 3.92 1.97 33 32 16 138 137 86

FP 2000 0.98 0.89 0.76 5.12 5.04 2.36 92 92 62 67 87 1106
4000 0.61 0.58 0.55 5.11 5.03 2.31 93 92 64 79 150 1141
8000 0.49 0.45 0.47 5.07 5.02 2.27 94 93 63 93 176 1134
16000 0.35 0.34 0.35 5.06 5.01 1.68 112 101 65 272 249 1540
32000 0.32 0.32 0.28 5.06 5.01 2.26 118 112 69 420 536 1779
64000 0.33 0.28 0.27 5.08 5.02 1.33 125 118 72 836 876 1938
128000 0.30 0.29 0.27 5.07 5.01 2.32 131 125 76 2998 2963 2468
256000 0.31 0.27 0.26 5.03 5.01 2.06 134 130 78 4987 5029 3751

EI 2000 1.56 1.54 0.88 3.99 3.97 2.07 19 21 5 2 3 7

129

4000 0.78 0.73 0.67 4.01 3.98 2.03 25 22 5 4 4 11
8000 0.52 0.51 0.32 4.01 3.97 2.04 22 24 5 5 6 14
16000 0.47 0.43 0.46 3.99 3.99 2.12 25 26 6 9 10 8
32000 0.36 0.33 0.32 3.97 3.96 2.01 24 26 7 16 18 16
64000 0.45 0.32 0.33 3.99 3.96 1.95 29 25 11 33 31 29
128000 0.38 0.31 0.28 3.96 3.95 2.03 28 29 14 65 71 55
256000 0.34 0.28 0.28 3.98 3.93 2.02 33 30 18 153 147 75

SCO 2000 2.51 2.14 1.27 3.94 3.93 2.83 66 63 53 373 359 1008
4000 1.24 1.08 0.78 3.95 3.92 1.76 67 63 58 446 363 1160
8000 0.91 0.83 0.85 3.93 3.90 2.86 70 65 56 481 457 963
16000 0.48 0.49 0.54 3.91 3.91 2.42 72 67 61 526 502 1159
32000 0.42 0.44 0.41 3.92 3.90 2.06 79 73 63 705 694 1228
64000 0.42 0.38 0.30 3.93 3.89 2.12 83 79 62 1070 1099 1394
128000 0.39 0.34 0.32 3.93 3.89 1.85 89 85 68 1499 1483 1614
256000 0.38 0.31 0.29 3.90 3.87 1.93 94 91 71 1860 1899 1798

FPM 2000 3.42 2.95 1.46 5.09 4.98 2.54 30 34 31 62 73 122
4000 1.65 1.15 0.98 5.12 4.98 2.51 32 35 33 67 81 125
8000 0.98 0.81 0.64 5.06 5.02 1.65 37 36 32 78 79 133
16000 0.76 0.89 0.73 5.06 4.97 1.97 41 49 36 92 114 147
32000 0.73 0.61 0.61 4.98 4.93 2.56 45 49 48 110 130 188
64000 0.62 0.53 0.63 5.08 4.92 2.39 58 62 49 158 170 209
128000 0.52 0.45 0.37 4.98 4.93 1.85 65 73 51 227 254 239
256000 0.47 0.41 0.48 4.97 4.95 2.46 72 74 47 305 321 258

DBCP 2000 1.67 1.55 0.72 3.82 3.78 1.92 26 28 16 36 39 77
4000 0.94 1.03 0.61 3.79 3.76 1.95 28 29 20 45 43 77
8000 0.65 0.62 0.47 3.81 3.76 2.08 32 33 22 54 57 97

130

16000 0.45 0.53 0.46 3.81 3.79 2.02 34 37 23 62 68 108
32000 0.49 0.43 0.36 3.82 3.73 1.96 39 40 25 88 94 122
64000 0.38 0.36 0.26 3.83 3.75 1.87 49 44 28 156 144 149
128000 0.43 0.32 0.32 3.81 3.72 1.67 56 55 32 229 236 187
256000 0.41 0.31 0.28 3.82 3.69 1.62 57 59 34 281 301 215

EEP 2000 1.45 1.32 0.82 2.63 2.61 1.56 34 32 26 20 12 74
4000 0.72 0.71 0.64 2.63 2.61 1.59 39 38 28 28 25 83
8000 0.59 0.55 0.52 2.64 2.59 1.62 37 38 29 31 35 88
16000 0.65 0.52 0.43 2.61 2.60 1.38 44 42 33 40 43 105
32000 0.46 0.48 0.38 2.58 2.58 1.71 55 57 35 82 97 138
64000 0.51 0.41 0.28 2.59 2.56 1.78 64 66 38 144 132 160
128000 0.41 0.38 0.35 2.59 2.57 1.56 65 67 42 234 196 209
256000 0.40 0.38 0.30 2.58 2.55 1.43 68 69 41 313 297 242

TNP 2000 2.54 2.33 0.96 3.97 3.93 2.18 19 21 18 9 19 42
4000 1.34 1.21 0.89 4.02 3.92 1.92 22 22 18 11 20 47
8000 0.96 0.84 0.69 3.96 3.92 1.94 25 24 20 14 28 50
16000 0.57 0.47 0.47 3.96 3.91 2.19 29 28 22 22 37 60
32000 0.54 0.45 0.45 3.94 3.82 1.95 31 32 25 29 48 80
64000 0.41 0.37 0.36 3.88 3.83 1.19 32 30 25 43 66 84
128000 0.38 0.36 0.35 3.86 3.83 1.58 38 29 26 94 87 112
256000 0.40 0.35 0.34 3.85 3.83 1.88 40 39 32 151 165 133

BIP 2000 2.87 2.79 1.37 5.16 4.57 2.98 78 79 64 234 165 694
4000 1.39 1.33 0.97 5.19 4.51 2.87 81 80 67 294 273 747
8000 0.88 0.82 1.14 5.20 5.09 2.32 83 81 68 356 378 856
16000 1.03 0.92 0.87 5.16 5.06 1.17 88 85 71 415 443 929
32000 0.78 0.81 0.63 5.18 5.08 2.55 92 87 75 695 745 1169

131

64000 0.74 0.74 0.46 5.16 5.06 2.43 96 91 78 1150 922 1461
128000 0.64 0.62 0.51 5.08 4.98 2.78 101 96 82 1841 1413 1628
256000 0.61 0.60 0.51 5.09 4.98 2.35 106 103 87 2439 2296 1749

132

Table 8.2: Comparison of performance of MC, QMC and
the proposed algorithm (MCMC) when the random vari-
ables are drawn from the distribution with standard de-
viation of 2

Problem # Samples (N) MSE(z̃) (%) Variance(z̃) (%) # of Iterations Runtime (s)
per period MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 2.03 1.92 0.96 3.77 3.62 1.47 21 24 7 2 3 16
4000 1.17 1.05 0.87 3.68 3.66 1.32 22 26 6 3 5 15
8000 0.84 0.73 0.68 3.78 3.75 2.03 23 25 7 7 8 20
16000 0.62 0.57 0.63 3.77 3.76 1.72 27 28 8 10 12 27
32000 0.67 0.52 0.52 3.88 3.75 1.08 26 29 8 16 20 24
64000 0.57 0.52 0.48 3.76 3.77 2.03 30 30 12 39 39 36
128000 0.52 0.43 0.32 3.76 3.78 1.72 30 30 14 72 77 87
256000 0.48 0.40 0.31 3.77 3.77 1.52 34 30 17 168 149 139

FP 2000 1.19 1.08 0.79 5.94 5.92 2.45 96 93 67 118 131 1214
4000 0.68 0.62 0.53 5.93 5.91 1.52 98 94 66 131 135 1175
8000 0.53 0.52 0.38 5.92 5.89 2.38 101 96 69 142 150 1332
16000 0.51 0.49 0.43 5.92 5.90 2.14 118 107 69 316 293 1526
32000 0.48 0.46 0.36 5.91 5.90 1.98 122 114 73 473 477 1929
64000 0.47 0.44 0.40 5.91 5.91 2.23 128 121 75 914 994 2043
128000 0.40 0.42 0.37 5.93 5.88 2.04 137 126 77 3139 2940 3319
256000 0.42 0.41 0.35 5.91 5.89 1.67 142 136 78 5444 5387 4567

EI 2000 2.12 2.09 0.96 4.12 4.10 1.96 22 23 7 3 3 15
4000 1.05 0.98 0.85 4.12 4.09 1.45 27 25 7 5 5 17
8000 0.89 0.73 0.57 4.11 4.07 1.78 27 25 8 7 6 23

133

16000 0.78 0.66 0.54 4.10 4.09 1.56 27 27 9 11 12 29
32000 0.85 0.61 0.57 4.09 4.05 1.86 30 29 8 20 21 24
64000 0.72 0.71 0.52 4.09 4.07 1.93 33 31 13 44 43 43
128000 0.67 0.62 0.52 4.09 4.08 1.45 35 34 17 88 90 105
256000 0.62 0.61 0.49 4.08 4.09 1.86 38 37 20 171 167 173

SCO 2000 4.14 4.07 2.69 4.27 4.22 1.84 69 67 56 402 403 1196
4000 2.34 2.28 1.65 4.27 4.21 1.95 70 67 59 450 455 1221
8000 1.61 1.36 1.04 4.25 4.20 1.56 73 68 59 494 484 1428
16000 1.36 1.04 0.95 4.26 4.22 1.74 75 69 63 569 538 1598
32000 0.74 0.63 0.41 4.27 4.23 1.45 83 74 64 767 726 1664
64000 0.58 0.72 0.53 4.28 4.22 1.75 89 82 65 1164 1094 1772
128000 0.56 0.52 0.41 4.27 4.23 1.67 92 84 70 1771 1631 1976
256000 0.54 0.48 0.32 4.26 4.21 1.78 98 93 73 2754 2624 2125

FPM 2000 4.23 4.17 1.84 5.87 5.82 2.01 32 36 33 82 96 202
4000 2.43 2.34 1.42 5.85 5.81 1.96 34 35 34 91 98 217
8000 1.48 1.43 0.82 5.83 5.74 2.23 39 38 36 108 106 235
16000 0.98 0.93 0.84 5.85 5.73 2.08 42 42 39 122 135 272
32000 0.72 0.64 0.60 5.84 5.76 2.15 46 47 45 148 165 365
64000 0.74 0.62 0.54 5.83 5.73 2.05 62 63 51 328 331 479
128000 0.67 0.62 0.53 5.80 5.74 2.07 69 71 55 489 489 565
256000 0.54 0.52 0.45 5.78 5.73 2.10 81 82 58 691 718 689

DBCP 2000 2.57 2.34 0.98 4.63 4.65 1.97 28 27 23 61 60 141
4000 1.34 1.23 0.79 4.62 4.63 1.93 31 28 26 72 68 164
8000 0.87 0.83 0.72 4.63 4.62 2.07 33 33 25 76 84 167
16000 0.86 0.65 0.56 4.61 4.63 1.87 36 35 27 109 145 187
32000 0.62 0.62 0.53 4.61 4.66 2.03 40 38 28 172 189 177

134

64000 0.73 0.57 0.41 4.63 4.68 2.18 49 47 35 311 361 250
128000 0.62 0.53 0.42 4.65 4.68 1.65 57 54 39 443 427 312
256000 0.57 0.51 0.41 4.64 4.64 1.61 61 60 45 573 574 455

EEP 2000 1.94 1.72 1.04 3.04 3.03 1.48 37 36 28 34 35 109
4000 1.12 1.05 0.85 3.06 3.03 1.46 42 40 29 50 49 113
8000 0.73 0.64 0.72 3.05 2.98 1.52 43 41 31 53 55 130
16000 0.64 0.47 0.57 3.06 3.02 1.43 47 44 36 63 74 158
32000 0.64 0.42 0.45 3.06 2.99 1.48 55 52 37 111 127 185
64000 0.52 0.47 0.41 3.05 2.98 1.64 63 61 42 276 298 221
128000 0.51 0.45 0.37 3.07 2.97 1.51 69 69 48 566 609 348
256000 0.40 0.38 0.35 3.07 2.98 1.42 72 73 53 817 840 483

TNP 2000 3.80 3.56 1.32 4.53 4.47 1.97 22 21 20 22 28 66
4000 2.03 1.73 0.93 4.56 4.46 2.05 25 23 21 25 34 75
8000 1.04 0.86 0.75 4.54 4.45 1.83 27 24 20 33 48 76
16000 0.65 0.64 0.62 4.55 4.43 1.95 30 29 22 44 65 88
32000 0.73 0.53 0.47 4.56 4.45 2.35 34 33 23 57 85 109
64000 0.61 0.62 0.42 4.57 4.45 1.75 37 35 27 85 98 141
128000 0.52 0.49 0.43 4.57 4.46 1.71 42 38 30 183 182 164
256000 0.52 0.52 0.45 4.56 4.45 1.63 46 44 35 298 286 252

BIP 2000 4.32 4.18 1.84 5.68 5.57 2.05 83 81 68 344 383 749
4000 2.18 2.03 1.21 5.66 5.58 2.13 85 82 68 361 395 781
8000 1.39 1.25 0.92 5.67 5.63 2.36 85 83 70 406 424 887
16000 1.21 1.03 0.84 5.65 5.61 2.27 92 89 73 452 463 976
32000 0.72 0.75 0.62 5.67 5.62 2.04 95 94 76 783 825 1226
64000 0.67 0.58 0.61 5.66 5.58 1.97 102 98 81 1279 1247 1539
128000 0.65 0.52 0.40 5.67 5.63 2.01 108 104 86 2060 2141 1731

135

256000 0.62 0.48 0.36 5.67 5.59 1.94 116 112 93 2921 2827 1968

Table 8.3: Comparison of performance of MC, QMC and
the proposed algorithm (MCMC) when the random vari-
ables are drawn from the rare-event distribution

Problem # Samples (N) MSE(z̃) (%) Variance(z̃) (%) # of Iterations Runtime (s)
per period MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 5.62 5.34 1.32 8.78 8.48 2.03 23 23 9 8 10 43
4000 5.36 4.87 0.96 8.48 8.59 2.03 23 24 9 9 18 47
8000 4.54 4.21 0.82 8.35 8.47 1.90 25 24 9 10 19 54
16000 3.95 3.66 0.76 8.28 8.37 1.47 25 26 14 26 29 109
32000 3.59 3.43 0.63 8.24 8.26 1.76 27 26 15 42 55 133
64000 3.70 3.24 0.58 8.25 8.27 1.90 31 28 17 89 84 153
128000 3.45 3.16 0.43 8.22 8.18 1.83 33 32 19 332 335 233
256000 2.98 2.84 0.42 8.19 8.17 1.54 35 33 22 588 590 357

FP 2000 7.85 7.23 1.82 9.66 9.32 2.79 98 96 64 289 364 3335
4000 7.74 7.15 1.38 9.59 9.21 2.25 99 97 65 343 642 3438
8000 7.62 6.93 1.23 9.53 9.02 2.31 103 99 66 424 746 3504
16000 7.32 6.84 0.94 9.43 8.94 2.03 112 106 66 1090 1047 4676
32000 6.92 6.65 0.89 9.34 9.03 2.94 120 114 69 1755 2165 5323
64000 6.42 5.87 0.68 9.28 8.96 2.57 129 122 73 3460 3627 5847
128000 6.28 5.72 0.66 9.22 9.10 1.96 134 128 76 12262 12136 7443
256000 5.83 5.35 0.43 9.12 9.12 2.09 137 132 80 20399 20438 11564

136

EI 2000 6.43 6.32 2.03 8.82 8.76 2.12 24 24 13 9 10 55
4000 6.26 6.17 1.22 8.71 8.82 2.07 28 27 15 19 17 68
8000 6.20 6.02 0.94 8.83 8.63 1.97 27 28 14 19 21 73
16000 5.92 5.53 0.93 8.96 8.69 2.15 28 28 17 31 30 101
32000 5.63 5.38 0.84 8.95 8.52 2.02 31 31 18 43 52 110
64000 5.22 4.65 0.62 8.91 8.76 2.08 33 32 21 89 87 151
128000 4.49 4.28 0.64 8.89 8.42 2.10 36 33 26 190 199 218
256000 4.34 4.08 0.52 8.87 8.75 2.14 39 36 28 415 393 300

SCO 2000 8.26 7.91 2.78 9.71 9.64 2.46 71 73 57 1610 1681 2971
4000 8.36 7.62 1.88 9.62 9.54 2.35 73 72 59 1964 1667 3232
8000 8.03 7.39 1.39 9.61 9.47 2.84 74 75 59 2046 2116 3417
16000 7.65 7.23 0.93 9.62 9.81 2.17 77 76 62 2327 2291 3779
32000 7.55 6.88 0.97 9.67 9.38 2.54 85 81 65 3070 3157 4232
64000 7.21 6.43 0.78 9.74 9.82 2.35 92 86 68 4752 4795 4573
128000 6.84 6.21 0.65 9.68 9.76 2.27 96 90 71 6471 6303 5109
256000 6.14 5.75 0.53 9.65 9.12 2.23 102 96 75 8083 8066 6200

FPM 2000 8.91 8.53 2.01 8.75 9.14 2.55 36 35 33 301 305 387
4000 8.16 7.72 1.85 9.82 9.04 2.96 38 37 35 320 345 417
8000 8.58 7.44 1.27 9.45 9.12 2.85 39 38 36 332 357 459
16000 7.83 7.39 0.92 9.34 9.35 2.86 44 42 39 403 395 469
32000 7.48 7.05 1.11 9.72 9.02 2.64 49 46 47 481 490 633
64000 7.21 6.52 0.84 9.41 8.97 2.47 56 52 51 618 602 731
128000 7.03 6.61 0.72 9.60 9.22 2.35 68 59 55 958 831 814
256000 6.75 6.26 0.59 9.64 9.16 2.24 74 68 59 1255 1187 923

DBCP 2000 4.26 4.03 1.85 7.59 7.02 2.05 30 30 23 168 171 271
4000 4.02 3.74 1.64 7.41 6.97 1.96 32 32 24 207 192 346

137

8000 3.69 3.32 1.25 7.36 6.86 1.84 35 34 26 237 237 381
16000 3.41 3.21 0.98 7.45 6.78 1.93 39 38 28 284 282 415
32000 3.32 3.02 0.82 7.54 7.06 1.85 43 42 29 388 400 438
64000 3.17 2.85 0.77 7.34 6.92 1.85 50 48 34 639 636 556
128000 3.09 2.79 0.69 7.22 7.01 2.04 58 56 39 954 967 719
256000 2.91 2.64 0.56 7.38 6.88 1.86 62 59 46 1222 1213 928

EEP 2000 3.45 3.21 1.73 6.87 6.32 2.13 39 37 29 90 57 248
4000 3.23 3.03 1.52 6.42 6.26 2.42 42 41 28 123 110 250
8000 3.19 2.95 1.47 6.56 6.26 2.04 43 40 31 151 153 284
16000 3.06 2.82 1.12 6.77 6.33 2.45 48 47 35 180 214 379
32000 2.91 2.56 0.97 6.64 6.28 2.10 55 52 38 331 358 448
64000 2.72 2.43 0.73 6.70 6.31 2.36 63 59 39 576 529 503
128000 2.63 2.34 0.79 6.51 6.35 2.22 70 66 45 1027 846 720
256000 2.46 2.09 0.74 6.43 6.32 2.21 74 71 48 1374 1233 1087

TNP 2000 4.61 4.29 2.01 7.68 7.15 2.21 23 22 22 45 81 163
4000 4.32 4.31 1.22 7.93 7.41 2.14 26 23 25 55 85 185
8000 4.21 4.17 1.35 7.65 7.32 2.11 26 25 24 61 115 205
16000 3.85 3.79 0.97 7.79 7.12 2.08 30 29 25 97 154 225
32000 3.69 3.56 0.96 7.52 7.28 2.22 33 33 26 124 202 256
64000 3.27 3.05 0.83 7.84 7.08 2.08 37 36 28 199 317 324
128000 3.18 2.94 0.86 7.89 7.44 2.24 43 40 31 432 482 387
256000 3.09 2.86 0.76 7.76 7.06 2.32 48 43 34 737 735 537

BIP 2000 7.42 7.32 2.04 8.46 8.31 2.71 85 81 69 1030 696 2237
4000 7.33 7.04 1.43 8.35 8.44 2.64 85 83 70 1243 1208 2370
8000 6.89 6.83 1.58 8.67 8.33 2.83 87 86 70 1497 1635 2623
16000 6.67 6.26 0.94 8.51 8.42 2.48 91 90 72 1721 1888 2813

138

32000 6.59 6.23 0.74 8.32 8.38 2.34 94 95 75 2882 3370 3484
64000 6.42 5.87 0.81 8.68 8.39 2.71 99 100 82 4753 4066 4593
128000 5.89 5.62 0.71 8.75 8.35 2.31 107 106 93 7811 6255 5567
256000 5.82 5.29 0.68 8.48 8.34 2.19 117 116 102 10850 10410 6699

Table 8.4: Average number of rejections when generating 3000 samples (Mr)

Problem σ = 1 σ = 2 Rare-event

AOS 3849 6287 14154
FP 7683 9974 17408
EI 8952 12889 23785
SCO 5086 7514 15987
FPM 12463 15518 20584
DBCP 4653 6782 10562
EEP 13949 18318 28185
TNP 10761 15951 32714
BIP 9605 12789 35314

139

Bibliography

Abilock, H., C. Bergstrom, J. Brady. 1979. Markal: a multiperiod, linear program-
ming model for energy systems analysis. Technical Report .

Ariyawansa, K., A Felt. 2004. On a new Collection of Stochastic Linear Program-
ming Test Problems. INFORMS Journal on Computing 16(3) 291–299.

Asmussen, S. 2003. Applied Probability and Queues. Springer.

Asmussen, S., P.W. Glynn. 2007. Stochastic Simulation: Algorithms and Analysis,
Stochastic Modelling and Applied Probability , vol. 57. Springer, New York.

Athreya, K.B., G.S. Atuncar. 1998. Kernel estimation for real-valued markov
chains. The Indian Journal of Statistics 60 1–17.

Athreya, K.B., H. Doss, J. Sethuraman. 1996. On the convergence of the markov
chain simulation method. The Annals of Statistics 24 69–100.

Athreya, K.B., P. Ney. 1978. A new approach to the limit theory of recurrent
markov chains. Transactions of the American Mathematical Society 245 493–
501.

Bailey, T.G., P.A. Jensen, D.P. Morton. 1999. Response surface analysis of two-
stage stochastic linear programming with recourse. Naval Research Logistics
46 753–778.

Bastin, F., C. Cirillo, P. Toint. 2006. Convergence theory for nonconvex stochastic
programming with an application to mixed logit. Mathematical Programming
108 207–234.

Beale, E.M.L. 1955. On Minimizing A Convex Function Subject to Linear Inequal-
ities. Journal of the Royal Statistical Society 17 173–184.

Benders, J.F. 1962. Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik .

Birge, J.R., F. Louveaux. 2011. Introduction to Stochastic Programming . Springer
Verlag.

Birge, J.R., F.V. Louveaux. 1988. A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research 34 384–392.

Bishop, C.M. 2006. Pattern Recognition and Machine Learning . Springer.

Botterud, A., M.D. Ilic, I. Wangensteen. 2005. Optimal investments in power gen-

140

eration under centralized and decentralized decision making. IEEE Transac-
tions on Power Systems .

Bucklew, J.A. 2004. Introduction to Rare Event Simulation. Springer Series in
Statistics, Springer-Verlag, New York.

Celebi, M.E., H.A. Kingravi, P.A. Vela. 2013. Expert systems with applications. A
comparative study of efficient initialization methods for the k-means clustering
algorithm .

Chao, H. 2010. Nyiso Reliability & Economic Planning Process. FERC Technical
Conference on Planning Models and Software .

Chattopadhyay, D., K. Bhattacharya, J. Parikh. 1995. A system approach to
least-cost maintenance scheduling for an interconnected power system. IEEE
Transactions on Power Systems 10 2002–2007.

Chattopadhyay, D., K. Bhattacharya, J. Parikh. 1998. A practical maintenance
scheduling program: Mathematical model and case study. IEEE Transactions
on Power Systems 13 1475–1480.

Chib, S., E. Greenberg. 1995. Understanding the metropolis-hastings algorithm.
The American Statistician 49 327–335.

Comaniciu, D., P. Meer. 2002. Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence .

Dantzig, G., G. Infanger. 1993. Multi-stage stochastic linear programs for portfolio
optimization. Annals of Operations Research 45 59–76.

Dantzig, G.B. 1955. Linear Programming under Uncertainty. Management Science
1 197–206.

Dantzig, G.B., P.W. Glynn. 1990. Parallel Processors for Planning Under Uncer-
tainty. Annals of Operations Research 22(1) 1–21.

Dantzig, G.B., P. Wolfe. 1960. Decomposition principle for linear programs. Op-
erations Research 8 101–111.

Dempster, M.A.H. 1988. On stochastic programming ii: dynamic problems under
risk. Stochastics 25 15–42.

Dick, J., F. Pillichshammer. 2010. Digital Nets and Sequences. Cambridge Uni-
versity Press.

Drew, S.S. 2007. Quasi-monte carlo methods for stochastic programming. Ph.D.
thesis, Northwestern University .

Drew, S.S., T. Homem-de Mello. 2006. Quasi-Monte Carlo Strategies for Stochas-
ticOptimization. Proceedings of the 38th conference on Winter simulation.
Winter Simulation Conference, 774–782.

Drew, S.S., T. Homem-de Mello. 2012. Some Large Deviations Results for Latin
Hypercube Sampling. Simulation Conference 14 203–232.

Dupačová, J., N. Gröwe-Kuska, W. Römisch. 2003. Scenario Reduction in Stochas-
tic Programming. Mathematical Programming 95(3) 493–511.

141

European Commission. 2011. Energy roadmap 2050 .

Freimer, M.B., J.T. Linderoth, D.J. Thomas. 2012. The impact of sampling meth-
ods on bias and variance in stochastic linear programs. Computational Opti-
mization and Applications 51 51–75.

Gassman, H.I. 1990. Mslip: A computer code for the multistage stochastic linear
programming problem. Mathematical Programming 47 407–423.

Gelman, A., S. Brooks, G. Jones, X.L. Meng. 2010. Handbook of Markov Chain
Monte Carlo: Methods and Applications. Chapman & Hall/CRC.

Gilks, W.R., S. Richardson, D.J. Spiegelhalter. 1996. Markov chain Monte Carlo
in practice. Chapman and Hall.

Gondzio, J., A. Grothey. 2006. Direct Solution of Linear Systems of size 109 arising
in Optimization with Interior Point Methods. Parallel Processing and Applied
Mathematics. Springer, 513–525.

Haario, H., E. Saksman, J. Tamminen. 2001. An adaptive metropolis algorithm.
Bernoulli .

Hastings, W.K. 1970. Monte carlo sampling methods using markov chains and
their applications. Biometrika 57 97–109.

Hestenes, M.R. 1969. Multiplier and gradient methods. Journal of Optimization
Theory and Applications 4 303–320.

Higle, J.L. 1998. Variance Reduction and Objective Function Evaluation in
Stochastic Linear Programs. INFORMS Journal on Computing 10(2) 236–
247.

Higle, J.L., S. Sen. 1991. Stochastic Decomposition: An algorithm for two-stage
linear programs with recourse. Mathematics of Operations Research 650–669.

Higle, J.L., S. Sen. 2013. Stochastic Decomposition: A statistical Method for Large
Scale Stochastic Linear Programming (Nonconvex Optimization and Its Ap-
plications). Springer.

Hobbs, B.F., M.H. Rothkopf, R.P. O’Neil, H. Chao. 2001. The Next Generation
of Electric Power Unit Commitment Models . Springer.

Hodges, J.L., E.L. Lehmann. 1956. The efficiency of some nonparametric competi-
tors of the t-test. The Annals of Mathematical Statistics 27 324–335.

Homem-de Mello, T. 2008. On Rates of Convergence for Stochastic Optimization
Problems under non-iid Sampling. SIAM Journal on Optimization 19 524–
551.

Homem-de Mello, T., G. Bayraksan. 2014. Monte carlo sampling-based methods
for stochastic optimization. Surveys in Operations Research and Management
Science .

Homem-de Mello, T., V.L.D Matos, E.C. Finardi. 2011. Sampling strategies and
stopping criteria for stochastic dual dynamic programming: a case study in
long-term hydrothermal scheduling. Energy Systems 2 1–31.

142

Infanger, G. 1992. Monte Carlo (Importance) Sampling within a Benders De-
composition algorithm for Stochastic Linear Programs. Annals of Operations
Research 39(1) 69–95.

Intergovernmental Panel on Climate Change. 2014. Climate change 2014: Synthe-
sis report. contribution of working groups i, ii and iii to the fifth assessment
report of the intergovernmental panel on climate change .

International Energy Agency. 2008. Empowering variable renewables - options for
flexible electricity systems .

Jones, M.C., J.S. Marron, S.J. Sheather. 1996. A brief survey of bandwidth selec-
tion for density estimation. Journal of the American Statistical Association
91 401–407.

Kalagnanam, J., U. Diwekar. 1997. An efficient sampling technique for off-line
quality control. Technometrics 39 308–319.

Kleywegt, A.J., A. Shapiro, T. Homem-de Mello. 2001. The sample average ap-
proximation method for stochastic discrete optimization. SIAM Journal on
Optimization 12 479–502.

Koivu, M. 2005. Variance Reduction in Sample Approximations of Stochastic
Programs. Mathematical Programming 103(3) 463–485.

Kuhn, D., W. Wiesemann, A. Georghiou. 2011. Primal and dual linear decision
rules in stochastic and robust optimization. Mathematical Programming 130

177–209.

Lannoye, E. 2011. The role of power system flexibility in generation planning.
Power and Energy Society General Meeting .

Lemieux, C. 2009. Monte Carlo and Quasi-Monte Carlo Sampling . Springer.

Li, T., M. Shahidehpour. 2005. Priced-based unit commitment: A case of la-
grangian relaxation versus mixed integer programming. IEEE Transactions
on Power Systems 20 2015–2025.

Linderoth, J., A. Shapiro, S. Wright. 2006. The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research 142

215–241.

Lubin, M., C.G Petra, M. Anitescu, V. Zavala. 2011. Scalable Stochastic Optimiza-
tion of Complex Energy Systems. High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for . IEEE, 1–10.

McKay, M.D., R.J. Beckman, W.J. Conover. 1979. A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a
computer code. Technometrics 21 239–245.

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. 1953.
Equation of state calculations by fast computing machines. Journal of Chem-
ical Physics 21 1087–1092.

National Renewable Energy Laboratory. 2012. Renewable electricity futures report
.

143

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Meth-
ods. Society for Industrial and Applied Mathematics.

North American Electric Reliability Corporation. 2009. Accommodating high lev-
els of variable generation .

Northwest Power and Conservation Council. 2010. Sixth northwest conservation
and electric power plan .

Owen, A.B. 1992. A Central Limit Theorem for Latin Hypercube Sampling. Jour-
nal of the Royal Statistical Society 54 541–551.

Owen, A.B. 1998. Latin supercube sampling for very high-dimensional simulations.
ACM Transactions on Modeling and Computer Simulation 8 71–102.

Owen, A.B. 2003. The dimension distribution and quadrature test functions. Sta-
tistica Sinica 13 1–17.

Padhy, N.P. 2004. Unit commitment - a bibliographical survey. IEEE Transactions
on Power Systems .

Palmintier, B.S. 2013. Incorporating operational flexibility into electric generation
planning: Impacts and methods for system design and plicy analysis. Master’s
thesis, Massachusetts Institute of Technology.

Parpas, P., B. Rustem. 2007. Computational assessment of nested benders and
augmented lagrangian decomposition for mean-variance multistage stochastic
problems. INFORMS Journal on Computing 19 239–247.

Parpas, P., B. Ustun, M. Webster, Q.K. Tran. 2014. Importance sampling in
stochastic programming: A markov chain monte carlo approach. INFORMS
Journal on Computing 27 358–377.

Parpas, P., M. Webster. 2013. A stochastic minimum principle and an adaptive
pathwise algorithm for stochastic optimal control. Automatica 49 1663–1671.

Parzen, E. 1962. On estimation of a probability density function and mode. Annals
of Mathematical Statistics 33 1065–1076.

Pennanen, T., M. Koivu. 2005. Epi-convergent Discretizations of Stochastic Pro-
grams via Integration Quadratures. Numerische Mathematik 100(1) 141–163.

Pereira, MVF, L. Pinto. 1991. Multi-stage Stochastic Optimization applied to
Energy Planning. Mathematical Programming 52(1) 359–375.

Philpott, A.B., Z. Guan. 2008. On the convergence of stochastic dual dynamic
programming and related methods. Operations Research Letter .

Powell, M.J.D. 1969. A method for nonlinear constraints in minimization problems.
Optimization 283–298.

Powell, W.B. 2007. Approximate Dynamic Programming: Solving the Curses of
Dimensionality , vol. 703. Wiley-Blackwell.

Prekopa, A. 1995. Stochastic Programming . Springer.

Rao, B.L.S.P. 2014. Nonparametric Functional Estimation. Elsevier Science.

144

Ravindran, A. Ravi, ed. 2008. Operations Research and Management Science
Handbook . Operations Research Series, CRC Press, Boca Raton, FL.

Robert, C.P., G. Casella. 2013. Monte Carlo Statistical Methods. Springer.

Roberts, G.O., J.S. Rosenthal. 2006. Harris recurrence of metropolis-within-gibbs
and trans-dimensional markov chains. The Annals of Applied Probability 16

2123–2139.

Rockafellar, R.T., R.J.B. Wets. 1991. Scenarios and Policy Aggregation in Opti-
mization Under Uncertainty. Mathematics of Operations Research 119–147.

Ruszczynski, A. 1986. A regularized decomposition for minimizing a sum of poly-
hedral functions. Mathematical Programming 35 309–333.

Scott, D. 1992. Multivariate Density Estimation: Theory, Practice, and Visual-
ization. 1st ed. Wiley.

Scott, D.W. 2015. Multivariate Density Estimation: Theory, Practice and Visual-
ization, Second Edition. WileySeries in Probability and Statistics.

Shapiro, A. 2011. Analysis of Stochastic Dual Dynamic Programming Method.
European Journal of Operational Research 209(1) 63–72.

Shapiro, A., D. Dentcheva, A.P. Ruszczyński. 2009. Lectures on Stochastic Pro-
gramming: Modeling and Theory , vol. 9. Society for Industrial and Applied
Mathematics.

Shapiro, A., T. Homem-de Mello, J.C. Kim. 2002. Conditioning of convex piecewise
linear stochastic programs. Mathematical Programming 94 1–19.

Shapiro, A., A. Nemirovski. 2005. On complexity of stochastic programming prob-
lems. Continuous Optimization 99 111–146.

Silverman, B. 1986. Density Estimation for Statistics and Data Analysis (Chap-
man & Hall/CRC Monographs on Statistics & Applied Probability). 1st ed.
Chapman and Hall/CRC.

Silverman, B.W. 1998. Density Estimation for Statistics and Data Analysis. CRC
Press.

Tierney, L. 1994. Markov chains for exploring posterior distributions. The Annals
of Statistics 22 1701–1762.

U.S. Energy Information Administration. 2010. Updated capital cost estimates for
electricity generation plants .

U.S. Environmental Protection Agency. 2010. The emissions and generation re-
source integrated database (egrid) .

Weber, C. 2005. Uncertainty in the electric power industry - Methods and Models
for Decision Support . Springer.

Wiser, R., G. Barbose. 2008. Renewables portfolio standards in the united states
- a status report with data through 2007. Technical report LBNL-154E,
Lawrence Berkeley National Laboratory 13.

145

	Introduction to Linear Stochastic Programming and thesis overview
	Overview of the thesis
	Linear Stochastic Programming
	Computational Challenges
	Existing algorithms
	Proposed Methodology
	Thesis outline
	Contributions

	Background
	Bender's decomposition
	Regularized decomposition
	Dantzig-Wolfe decomposition
	Basic Lagrangian Dual Ascent and Augmented Lagrangian
	Progressive Hedging
	Stochastic Dual Dynamic Programming
	Deterministic Dual Dynamic Programming
	Stochastic Dual Dynamic Programming

	The perils of sampling in decomposition algorithms
	Description of the newsvendor problem
	Sampling error in decomposition algorithms

	Variance-Reduction Methods
	Antithetic Variates
	Latin Hypercube Sampling
	Quasi-Monte Carlo
	Importance Sampling

	Summary

	Importance Sampling for Stochastic Programming algorithms
	Markov chain Monte Carlo: Sampling from the optimal IS distribution for the recourse function's approximation
	Basic theory of Metropolis-Hastings algorithm
	Metropolis-Hastings for Stochastic Programming algorithms

	Kernel Density Estimation: 1/ Constructing the optimal Importance Sampling distribution 2/ Correcting the bias in the estimator
	Basic theory of Kernel Density Estimation
	Kernel Density Estimation in SP algorithms

	Convergence of the MCMC-IS algorithm
	Convergence of Markov Chain Monte Carlo in the MCMC-IS algorithm
	Convergence of Kernel Density Estimation in the MCMC-IS algorithm
	Additional properties of Markov chain
	Convergence of Kernel Density Estimation for a Harris-recurrent Markov chain

	Convergence of Stochastic Dual Dynamic Programming with MCMC-IS algorithm

	Numerical experiments
	Practical guidelines for MCMC-IS
	Numerical results with the Newsvendor problem
	Details on experimental setup and reported results
	The effect of the number of MCMC samples and the KDE bandwidth parameter
	Adaptive sampling of the important regions
	Dependence of the sampling distribution on the previous-stage decision
	Comparison with other sampling algorithms
	Multimodal distributions and rare-event simulation
	Accuracy and variance of MCMC-IS estimations from a decomposition algorithm

	Numerical results on a collection of test problems
	Overview of the test problems
	Details on the numerical experiments
	Accuracy and variance of the estimations

	When to use MCMC-IS in Stochastic Program

	Application: The capacity expansion planning in the electric power industry
	Formulation
	Unit commitment problem
	Scaling time
	Maintenance scheduling problem
	Carbon Dioxide emission, renewable energy integration, non-served energy penalty
	Capacity expansion problem

	Clustered formulation
	Numerical results
	Low variance case
	High variance case
	The optimal capacity expansion decisions

	Summary

	Conclusions
	Appendix

