
Imperial College London

Department of Computing

Multilevel Algorithms for the Optimization of
Structured Problems

Chin Pang Ho

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College and

the Diploma of Imperial College, 2016

➞ The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

3

4

Declaration

I, Chin Pang Ho, declare that the research presented in this thesis is my own work, except where

acknowledged. No part of this thesis has been submitted before for any degree or examination

at this or any other university.

5

6

Abstract

Although large scale optimization problems are very difficult to solve in general, problems that

arise from practical applications often exhibit particular structure. In this thesis we study and

improve algorithms that can efficiently solve structured problems. Three separate settings are

considered.

The first part concerns the topic of singularly perturbed Markov decision processes (MDPs).

When a MDP is singularly perturbed, one can construct an aggregate model in which the

solution is asymptotically optimal. We develop an algorithm that takes advantage of existing

results to compute the solution of the original model. The proposed algorithm can compute

the optimal solution with a reduction in complexity without any penalty in accuracy.

In the second part, the class of empirical risk minimization (ERM) problems is studied. When

using a first order method, the Lipschitz constant of the empirical risk plays a crucial role in

the convergence analysis and stepsize strategy of these problems. We derive the probabilistic

bounds for such Lipschitz constants using random matrix theory. Our results are used to derive

the probabilistic complexity and develop a new stepsize strategy for first order methods. The

proposed stepsize strategy, Probabilistic Upper-bound Guided stepsize strategy (PUG), has a

strong theoretical guarantee on its performance compared to the standard stepsize strategy.

In the third part, we extend the existing results on multilevel methods for unconstrained convex

optimization. We study a special case where the hierarchy of models is created by approximating

first and second order information of the exact model. This is known as Galerkin approximation,

and we named the corresponding algorithm Galerkin-based Algebraic Multilevel Algorithm

(GAMA). Three case studies are conducted to show how the structure of a problem could

affect the convergence of GAMA.

7

8

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Panos Parpas for making

this thesis possible. My journey of getting PhD admission was a long trek over 2010-2012. By

August 2012, I already accepted that a single PhD offer is impossible for me, and contacting

Panos was my last trial. To this day, I still remember the moment when Panos offered me a

position: It was one day after I have bought my one-way ticket back to Hong Kong. I have

to admit that I did once hesitate whether joining the computing department is suitable for

me, but I am glad that I made the right decision and had my ticket refunded. With all other

applications rejected, I am extremely grateful that Panos made the unpopular decision and

believed that I could handle research in computational optimization, which I had no knowledge

of. As an international student, it is impossible to not mention how thankful I am to Panos,

for funding 3.5 years of my PhD studies with his two research grants, despite being a (very)

junior faculty himself in 2012. Panos is my first teacher in optimization, and he has introduced

many exciting research to me during our countless meetings. He has always encouraged me

to enjoy doing research and do what I believe. He served as a great example for me too;

his calmness and patience, especially when faced with emotional PhD student (i.e. me, and

hopefully just me), are always something that I need to learn. Working with Panos is not

easy though. During the iterative process of research, he has always put a sufficient condition1

as a stopping criteria while I was aiming to use a necessary condition2. This four years have

been arduous and uncomfortable, but yet interesting, challenging, memorable, and ruthlessly

pushing the limit of my patience, knowledge, and sanity. By looking at the input-output ratio,

I cannot resist questioning myself whether this precious opportunity from Panos was given to

right person. This question perhaps cannot be answered with certainty, but in the following

years of my career I hope to prove that it might not be a complete mistake.

I am heartily thankful to my second supervisor, Professor Berc Rustem, who is also the head

of the Computational Optimization Group (COG). Berc has always tried to encourage me to

enjoy my life as a PhD student as well as doing research. I truly appreciate it when he told me

that the next chapter of life is not very far away when I was lost in the darkness with very dim

streetlight.

1Sufficient conditions do not guarantee convergence.
2Necessary conditions do not guarantee optimality.

9

As a rookie in optimization, I was very fortunate to join the COG which comprises faculty

members whose expertise covers a large spectrum of optimization. Dr. Daniel Kuhn, Dr.

Ruth Misener, and Dr. Wolfram Wiesemann have enlightened me on stochastic optimization,

global optimization, and robust optimization through seminars and discussion during lunch,

group meetings, and pub drinks. They have also set up themselves as very good and perhaps

unachievable examples for PhD students. Special thanks go to Wolfram, who has been giving

me invaluable advice for my career plan, helping me with the empirical behavioral sensitivity

analysis (in pubs), and inviting me to all of his activities during INFORMS Annual Meeting

2014; otherwise I would be totally lost in such a huge conference. I also highly appreciate the

help from Wolfram, Daniel, Dr. Phebe Vayanos, and Professor Kalyan Talluri when I applied

for the Imperial Junior Research Fellowship.

I would like to thank Professor Huifu Xu and Wolfram for their time spending on my thesis

and viva, and I avoid trying to realize how much effort they put in to figure out all unnecessary

typos and unclear proofs. I was extremely guilty when Professor Xu showed me what algebraic

trick I used for the proof of Theorem 5.18.

It has been an eye-opening experience coming to the computing department, and I would like

to thank my collaborators April Xi Chen, Liang Chen, and Yuanwei Li for inviting me to

work in their fascinating PhD projects. I believe the true value of optimization comes from

its practicality, and working with them has been an amazing experience. They have also been

my dinner buddies, together with Luo Mai, Lukas Rupprecht, and Jeremy Riviere. Engaging

in heated discussions with all of them is more than enjoyable, and gives me good exposure

to many aspects of computer science. Additional thanks go to Yuanwei who has been a very

understanding, helpful, and reliable flatmate.

It is very easy to feel isolated as a PhD student, but this does not apply to me because of my

fellows: Radu Baltean-Lugojan, Juan Campos Salazar, Jeremy Cohen, Raul Castro Fernandez,

Christos Gavriel, Micheal Hadjiyiannis, Layal Hakim, Grani Adiwena Hanasusanto, Sei Howe,

Bidan Huang, Iakovos Kakouris, Eva Kalyvianaki, Alexandros Koliousis, Georgia Kouyialis,

Miten Mistry, Dan O’Keeffe, Simon Olofsson, Andreas Pamboris, Zhan Qiu, Napat Rujeerapai-

boon, Mali Shen, Christine Simpson, Jacintha Mack Smith, Quang Kha Tran, Weikun Wang,

Pijika Watcharapichat, Poonam Yadav, Liang Zhao, and many others. I am not able to make

a list with finite items to mention how much I have learned from all of them. I would like to

10

thank the supportive staffs: Amani El-Kholy, Teresa Ng, and Geoff Bruce. Many thanks and

appreciation go to Ryan Vu Ngoc Duy Luong and Vahan Hovhannisyan for their encouragement

during April 2015.

This separate paragraph is used to thank Vladimir Roitch, who has been extremely supportive

with very few words. To show my respect to Vlad, here is my feeling: he is very nice!3

I left Hong Kong in July 2006 as a way-below-average student, who was not able to continue

A-level education in Hong Kong. The changes in these 10 years were dramatic and would not

happen without the help from the following people:

❼ Teresa June Mun Mark: Teresa helped me when I applied to the U.S. high school exchange

program in 2005-2006. It is clear that my English level was not well qualified for the

program, and I would not have made it without her help.

❼ Janet and Guillermo Munoz: Janet and Guillermo hosted me in their family in Oxnard,

CA, for my first three weeks in the U.S. in 2006, and they recommended “Clint” to be my

American name. I am very thankful for the eight pages (if not more) long encouragement

from Janet when I moved to Lott, TX.

❼ Suzanne Woodill and Brandy Glenn: Suzanne and Grandy were my host parents in Lott,

TX, during the academic year 2006-2007. I am heartily thankful to them for giving me a

year of difficult life and being perfect counterexamples in everything.

❼ Marilyn and Steve Holland, Kandy and Chris Nasso: They were the source of warmth

during the year in Lott. I am grateful for everything they provided me with.

❼ Veronica and Art Ayres: Veronica and Art hosted me in their family in Port Angeles,

WA, in 2007-2008. It was a very nice and warm experience, and one of the best years of

my vagrant life.

❼ Professor Gerald N. Estberg: Jerry is a Professor Emeritus in the University of San Diego,

who settled at Port Angeles for his retirement. I am very fortunate to be his research

student during my second year of undergraduate. Jerry was my first teacher in program-

ming and many other things in life. Because of Jerry, I am very honored and embarrassed

3Word count: 4. Characters excluding spaces: 13. Appreciation: Uncountable.

11

to be the (unofficial) third academic generation of Professor Kenneth G. Wilson, who is

a world-famous physicist, Nobel Prize winner, and supercomputing pioneer. I also like

to express my sincere gratitude to Jerry for providing countless recommendation letters

when I was applying to PhD programs.

❼ Larry Smith: Larry is a wonderful math lecturer at Peninsula College who is the first

person telling me that “operations research is very interesting”.

❼ Dr. Thomas Richthammer and Dr. Yves van Gennip: Thomas and Yves are my favourite

math lecturers and role models when I was in UCLA. I owe my sincere gratitude to them

for providing countless recommendation letters when I was applying to PhD programs.

❼ Professor Radek Erban and Dr. Mark Flegg: Radek and Mark are my supportive MSc

supervisors in Oxford, and they introduced to me to the fascinating research in mathe-

matical biology and algorithms.

❼ Joe Chee Hoe Fong, Shuohao Liao, and Andrew Xiaodong Sui: They are my best friends

and classmates at Oxford. It is hard to imagine how I could ever survive a year in Oxford

without them.

❼ Stephen Yee Man Chung and Raymond Chi Kan Cheung: Stpehen and Raymond are my

close friends who are long gone. They often remind me how fortunate I am whenever I

feel frustrated. Raymond dreams to study computer science at UCLA, and I am pleased

to partially fulfil his dream twice.

I would also like to thank my fiancee Sylvia Suet Yee Cheng and her family. Sylvia’s family

kindly offered to support my PhD studies without knowing what I was doing and where I was

heading. I am deeply indebted to Sylvia, for all her love, support, and understanding over

the last 7 years. I met Sylvia in 2007, when she was one of the very few people who actually

believed in me. I cannot overstate my appreciation for all the colors that she has brought into

my life, and I am looking forward to the following years that I can spend my life with her.

I don’t know how to express my gratitude to my family for their unconditional tolerance, love,

and upbringing. I am proud to be the (academic) role model of my sister, Hazel Wing Yung

Ho, and I hope she can be humble and persistent on the way of pursuing her own dreams.

I am grateful to my parents for providing this oversea experience. My mom, Mo Ching Ho,

12

has always encouraged me to do whatever I believe in. Without her encouragement, I doubt I

would ever follow my heart to major in mathematics in the first place. Her calmness, tenacity,

and tolerance are also something beyond my imagination. My dad, Sau Ming Ho, has been

giving me invaluable advice for my future plans. He shows me how a diligent working attitude

can change the fate of the entire family. His intelligence and visions are something that I can

only dream to have. There is no doubt that these good genes were not passed on to me well,

but nothing stops me from keep trying my very best, for everyone I care.

13

14

In dedication to my family for their unconditional

love, trust, tolerance, and support.

‘I do not know what I may appear to the world, but to myself I seem to have been only like a
boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.’

Sir Isaac Newton

Contents

Copyright 3

Declaration 5

Abstract 7

Acknowledgements 9

1 Introduction 27

1.1 Motivation and Objectives . 27

1.2 Thesis Outline and Contributions . 31

2 Background Theory 34

2.1 Unconstrained Continuous Convex Optimization 35

2.1.1 First Order Methods . 36

2.1.2 Second Order Methods . 43

2.2 Machine Learning and Statistics . 49

2.2.1 Concentration Bounds . 49

17

18 CONTENTS

2.2.2 The Nyström Method . 51

2.3 Continuous-Time Markov Decision Processes . 54

2.3.1 Continuous-Time Markov Chains . 54

2.3.2 Continuous-Time MDPs . 56

2.3.3 Computational Methods . 56

3 Singularly Perturbed Markov Decision Processes 59

3.1 Introduction . 60

3.2 Multiscale Markov Decision Processes . 62

3.2.1 Markov Decision Processes . 62

3.2.2 The Coarse Model . 65

3.3 Computational Complexity of Multiscale Markov Decision Processes 67

3.3.1 Value Iteration . 67

3.3.2 Model Assumptions . 69

3.3.3 Complexity . 70

3.3.4 Convergence Rate and Complexity for Multiscale Markov Decision Pro-

cesses . 73

3.4 Analysis of the Full Approximation Scheme . 75

3.4.1 Prolongation and Restriction . 75

3.4.2 The FAS Algorithm . 77

3.4.3 Numerical Example from a Multiscale Manufacturing System 78

3.4.4 Lack of progress in the coarse iterations of the FAS 80

CONTENTS 19

3.5 The Alternating Multiresolution Scheme . 83

3.5.1 One-way Multiresolution Scheme . 84

3.5.2 Convergence Analysis of AMS . 90

3.6 Action Space Sampling for the Coarse Model . 100

3.6.1 Linear Programming and MDPs . 100

3.7 Numerical Experiments . 104

3.7.1 Manufacturing Example . 105

3.7.2 Example from Molecular Dynamics . 106

3.8 Discussion . 109

4 Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strat-

egy 110

4.1 Introduction . 111

4.2 Preliminaries . 115

4.3 Complexity Analysis using Random Matrix Theory 117

4.3.1 Statistical Bounds . 118

4.3.2 Complexity Analysis . 126

4.4 PUG: Probabilistic Upper-bound Guided stepsize strategy 128

4.4.1 Current Stepsize Strategies . 129

4.4.2 PUG . 131

4.4.3 Convergence Bounds: Regular Strategies vs. PUG 133

4.4.4 Mini-batch Algorithms and Block-coordinate Algorithms 134

20 CONTENTS

4.5 Numerical Experiments . 135

4.5.1 Numerical Simulations for Average L . 135

4.5.2 Regularized Logistics Regression . 136

4.5.3 Regularized Linear Regression . 138

4.6 Conclusions and Perspectives . 138

5 Multilevel Methods for Unconstrained Convex Optimization 140

5.1 Introduction . 140

5.2 Multilevel Models . 144

5.2.1 Basic Settings . 145

5.2.2 The General Multilevel Algorithm . 147

5.2.3 Connection with Variable Metric Methods 151

5.2.4 Connection with Block-coordinate Descent 152

5.2.5 Connection with SVRG . 153

5.2.6 The Galerkin Model . 154

5.3 Convergence of GAMA . 155

5.3.1 The Worst Case O(1/k) Convergence . 157

5.3.2 Maximum Number of Iterations of Coarse Correction Step 162

5.3.3 Quadratic Phase in Subspace . 164

5.3.4 Composite Convergence Rate . 167

5.4 Complexity Analysis . 172

5.4.1 Complexity Analysis: Newton’s Method 172

CONTENTS 21

5.4.2 Complexity Analysis: GAMA . 176

5.4.3 Comparison: Newton v.s. Multilevel . 183

5.5 PDE-based Problems: One-dimensional Case . 185

5.5.1 Galerkin Model by One-dimensional Interpolations 186

5.5.2 Analysis . 187

5.5.3 Convergence . 192

5.6 Low Rank Approximation using Nyström Method 193

5.6.1 Galerkin Model by Näıve Nyström Method 194

5.6.2 Analysis . 196

5.6.3 Convergence . 199

5.7 Block Diagonal Approximation . 202

5.7.1 Multiple Galerkin Models . 203

5.7.2 A Counterexample for General Functions 204

5.7.3 Weakly connected Hessian . 205

5.7.4 Analysis . 205

5.7.5 Convergence . 208

5.8 Numerical Experiments . 210

5.8.1 Poisson’s Equation . 210

5.8.2 Regularized Logistic Regression . 212

5.8.3 A Synthetic Example for Block Diagonal Approximation 213

5.8.4 Numerical Performance: PDE Test Cases 214

5.8.5 Numerical Performance: Machine Learning Test Cases 217

5.9 Comments and Perspectives . 219

6 Discussion 221

6.1 Summary . 221

6.2 Future Work . 222

Bibliography 223

22

List of Tables

4.1 Gisette . 137

4.2 YearPredictionMSDt . 137

5.1 PDE-based text examples . 216

5.2 Details of ERM Test Examples . 217

23

24

List of Figures

1.1 The solutions, u(x, y)’s, of the Poisson’s equation (1.1) with different mesh sizes. 28

3.1 The Full Approximation Scheme (FAS) . 78

3.2 Performance of the FAS, ǫ = 10−2, initial number of iterations in the fine model:

5000, stepsize s = 1. The figure shows that no useful computation is performed

by the FAS during the coarse iterations. 80

3.3 Different ideas between discretization and aggregation 82

3.4 The Alternating Multiresolution Scheme (AMS) 83

3.5 The One-way Multiresolution Scheme (OWMS) 84

3.6 Stopping criteria in the coarse model . 86

3.7 Numerical performance of the different algorithms. Parameters: v0
h = 0, v0

H = 0,

s = 1.15, and ρ = 0.05. (Left) Iteration History. (Right) Relative increase in

realized complexity of the different algorithms. Value iteration was taken to be

the base line. Compared to value iteration conventional FAS has an increased

complexity, whereas the proposed schemes achieve a 10% reduction. 106

3.8 Numerical results of different algorithms. Parameters: v0
h = 0, v0

H = 0, s = 1.1,

R = 10000, and ρ = 0.05. (Left) Convergence in each iteration. (Right) Relative

increase in realized complexity of the different algorithms. Value iteration was

taken to be the base line. 108

25

4.1 Case I, m = n . 135

4.2 Case II, 2m = n . 135

4.3 Case III, n = 1024 . 135

5.1 P in (5.25) . 186

5.2 R in (5.26) . 186

5.3 Φ(σ2) in (5.33) . 200

5.4 Convergence of solving Poisson’s equation with different N ’s 211

5.5 The smoothing effect with different N ’s . 211

5.6 The ℓ1 regularized logistic regression example. 213

5.7 Block diagonal approximation. 214

5.8 YearPredictionMSDt . 220

5.9 log1pE2006test . 220

5.10 w8at . 220

5.11 Gisette . 220

5.12 epsilon normalizedt . 220

5.13 epsilon normalizedt (subsample) . 220

26

Chapter 1

Introduction

I don’t know anything, but I do know

that everything is interesting if you go

into it deeply enough.

Richard Feynman

1.1 Motivation and Objectives

Due to the complexity of practical applications, the ability to solve large scale optimization

problems is crucial. Examples can be found across many disciplines: machine learning [SNW12],

finance [Pri07], logistics [YCYA12], energy systems [PW14], molecular conformation [Wu96].

As one of the fundamental challenges in computational science, solving large scale optimization

is computationally demanding, and much efforts have been made to reduce this burden.

In general, it is fair to say that solving an arbitrary optimization problem could be very difficult,

or it simply could not be done [BV04]. Problems arising from practical applications, however,

often have particular structure. In what follows, we will discuss several important applications

and their underlying structure.

27

28 Chapter 1. Introduction

1

0.8

0.6

0.4

x
0.2

00y

0.5

1

0.5

0

-0.5

-1

1

u
(x

;y
)

1

0.8

0.6

0.4

x
0.2

00y

0.5

-1

-0.5

0

0.5

1

1

u
(x

;y
)

Figure 1.1: The solutions, u(x, y)’s, of the Poisson’s equation (1.1) with different mesh sizes.

Geometric Structure

Many optimization problems exhibit geometric structure, in which the geometry of the solution

can be approximated.

One classical example is the class of infinite-dimensional optimization problems, which include

many problems in optimal control. These problems usually could not be solved exactly, and

one needs to approximate and discretize the original problem using finite differences or finite

elements. The dimension of the discretized problem depends on the mesh size during the

discretization. In general, smaller mesh size results in higher dimensional problems, although

the solution would be more accurate. Figure 1.1 shows an example using a two-dimensional

Poisson’s equation,

−∂
2u

∂x2
− ∂2u

∂y2
= 13π2 sin(2πx) sin(3πy), in Ω = [0, 1]2, (1.1)

where,

u = 0, on ∂Ω.

Notice that the “two-dimensional” in (1.1) refers to the dimensions of the continuous variables

in the original Poisson’s equation, i.e. x and y. Once the Poisson’s equation is discretized, the

decision variable of the corresponding optimization problem is not in two dimensions, and the

number of dimensions is the same as the number of grid points on the chosen mesh. Figure

1.1. Motivation and Objectives 29

1.1 shows the solutions of a Poisson’s equation using different mesh sizes. One can see that

although using a large mesh size would yield an inaccurate solution, the geometry of the solution

is highly similar to the solution which is computed by using a smaller mesh size. Thus, the

geometric structure of the solution is preserved across the different mesh sizes.

Another example can be found in image processing. For natural images, it is expected that the

same image with different resolutions would have the same structure for every small region of

the image. That is, neighbouring pixels usually have similar image intensities. Therefore, one

can use a high resolution image to construct a low resolution image that is visually similar. For

applications such as image de-blurring, images with lower resolution would yield an optimization

model that is in lower dimension [PLRR].

Multiscale Structure

Apart from geometric structure, many practical applications on complex systems present mul-

tiscale structure, i.e. there exists an important feature in which its magnitude spans across

multiple scales, such as time and space scales.

One important example could be found in energy systems, where many long term sequential

decisions are made based on the dynamics of an environment. This environment depends on

the long term decisions made as well as the short-term operations such as unit commitment

and generation dispatch. The interactions between long term environment and short term

operations display a multiple time scales dynamics, i.e. dynamics that evolve significantly in

both short and long time horizons [PW14].

The resource allocation problem in cloud provisioning is another example [MKC13, KRC+15].

Cloud provisioners often receive job requests that have needs for a certain amount of cloud

resource within a time period. These requests could ask for cloud resource that ranges from

the scale of 10 units to 10000 units, and so the resource requirement of this problem exhibits a

multiscale structure. On the other hand, the deadlines of these job requests also have multiscale

structure since they could be in the range of seconds to hours, or even days.

30 Chapter 1. Introduction

Statistical Structure

Consider an example in stochastic optimization,

min
x∈Rn

EQ[f(x, ξ)], (1.2)

where ξ ∈ RP is a random vector which follows the distribution Q, and f is convex in x. There-

fore, the above optimization model minimizes the expected value of f with decision variable

x. In practice, however, the distribution Q is often unknown. Instead, one is usually given a

sample of data, i.e. {ξi}mi=1. In such cases, one common way is to solve the sample average of

the above optimization model, i.e.

min
x∈Rn

1

m

m∑

i=1

fi(x), (1.3)

where fi(x) = f(x, ξi), for i = 1, 2, . . . ,m.

Equation (1.3) is called the Sample Average Approximation (SAA), and SAA has a long history

of developments. See [BL11, KSHdM02] for more details. One famous example of using SAA

is the empirical risk minimization, which is a general form of many popular regression models,

including linear regression and logistics regression.

Notice that SAA (1.3) displays a unique statistical and mathematical structure. Firstly, SAA

always has the form of a sum of functions. Secondly, the difference between each fi is due to

the data points ξi’s, in which they follow the same probability distribution. These two features

of SAA have motivated a lot of development in optimization algorithms, including stochastic

gradient descent [Bot12, PJ92, TH12, Bot98] and mini-batch algorithms [CR16].

In this thesis, we aim to take advantages of problem structure to advance computational per-

formance of optimization algorithms. The structure of this thesis will be provided in the next

section.

1.2. Thesis Outline and Contributions 31

1.2 Thesis Outline and Contributions

We consider optimization problems with different structures, and develop efficient algorithms

based on this additional information. The problems we consider cover a large spectrum of in-

teresting applications, ranging from stochastic optimal control to machine learning to infinite-

dimensional optimization. Except for Section 4, the main approach used is multilevel optimiza-

tion methods, which follow the idea of multigrid methods for solving (non-)linear equations of

discretizations arising from partial differential equations. This thesis expands the capabilities

and knowledge in the field of multilevel optimization methods.

Apart from Chapter 2 and Chapter 6, which we provide the background materials and the

conclusions, this thesis is divided into three parts. Each part corresponds to a class of structured

optimization problems.

In Chapter 3, we consider singularly perturbed Markov Decision Processes (MDPs), which

exhibit multiple time-scale structure. An existing result shows that a singularly perturbed

MDP could be approximated by an aggregate model. The solution of the aggregate model

was shown to be asymptotically optimal [YZ13]. By making use of this result, a multilevel

algorithm is developed by replacing some parts of the computation using the coarse model. We

show that the complexity of the proposed algorithm is superior to the standard value iteration

for this class of problems. The contents of this chapter appeared in the following paper:

1. C. P. Ho, and P. Parpas. Singularly Perturbed Markov Decision Processes: A Multireso-

lution Algorithm. SIAM Journal on Control and Optimization 52:6, 3854-3886, 2014.

In Chapter 4, we consider the computational complexity and stepsize strategy of regularized

empirical risk minimization problems. The worst-case complexity for this problem follows from

standard results in convex optimization theory [BT09, Nes15]. Some algorithms in this class

of problems are considered to be “dimension-free” because the convergence analysis of these

algorithms is independent of the size of the problem. This above argument is based on the as-

sumption that the Lipschitz constant of the problem is independent of the dimensionality. We

32 Chapter 1. Introduction

show that the dimensionality of the model is, however, hidden within the Lipschitz constant.

Standard random matrix theory is used to derive the probabilistic bounds of the Lipschitz con-

stant. The derived bounds are also used to develop a stepsize strategy for better computational

performance. The contents of this chapter are currently being prepared for publication with

the following working title:

2. C. P. Ho, and P. Parpas. Empirical Risk Minimization: Probabilistic Complexity and

Stepsize Strategy. In preparation.

In Chapter 5, we consider the unconstrained convex optimization problem. We provide a

broader view on the general multilevel framework, and we show a connection between this

framework and standard optimization methods. A special case of this general framework is

further studied, and we call it Galerkin-based Algebraic Multilevel Algorithm (GAMA). The

Galerkin model is highly related to algebraic multigrid methods, in which the hierarchy of

the models is generated by using the algebraic information of the models instead of using the

geometric structure. In the view of optimization, GAMA is equivalent to performing Newton’s

method in reduced dimensions. We prove that GAMA has a local rate of composite convergence,

which is a linear combination of linear and quadratic convergence. By considering three case

studies, we show how the structure of the problems could affect the convergence of multilevel

methods. The contents of this chapter are currently being prepared for publication with the

following working title:

3. C. P. Ho, and P. Parpas. Multilevel Optimization Methods: Convergence and Problem

Structure. In preparation.

During the 4 years of doctoral studies, I was fortunate to have opportunities to collaborate

with different researchers and PhD students at Imperial College London. Below is a list of

publications which do not directly contribute to this thesis.

4. X. Chen, C. P. Ho, R. Osman, P. Harrison, and W. Knottenbelt. Understanding, Mod-

elling and Improving the Performance of Web Applications in Multi-core Virtualised Envi-

1.2. Thesis Outline and Contributions 33

ronments. Proceedings of the 5th ACM/SPEC International Conference on Performance

Engineering (ICPE) 197-207, 2014.

5. C. P. Ho, and P. Parpas. On Using Spectral Graph Theory to Infer the Structure of

Multiscale Markov Processes. 2015 Proceedings of the Conference on Control and its

Applications 228-235, 2015.

6. L. Chen, T. Tong, C. P. Ho, R. Patel, D. Cohen, A. C. Dawson, O. Halse, O. Geraghty,

P. E.M. Rinne, C. J. White, T. Nakornchai, P. Bentley, and D. Rueckert. Identifica-

tion of Cerebral Small Vessel Disease Using Multiple Instance Learning. Medical Image

Computing and Computer-Assisted Intervention MICCAI 2015, Springer International

Publishing, 9349, 523-530, 2015.

7. Y. Li, C. P. Ho, N. Chahal, R. Senior, and M.-X. Tang. Myocardial Segmentation of

Contrast Echocardiograms Using Random Forests Guided by Shape Model. Accepted for

Medical Image Computing and Computer-Assisted Intervention MICCAI, 2016.

Chapter 2

Background Theory

It is not knowledge, but the act of

learning, not possession but the act of

getting there, which grants the greatest

enjoyment.

Carl Friedrich Gauss

In this chapter, we will provide background material for the thesis. The chapter is divided into

three sections.

In the first section, we review first order and second order algorithms which solve unconstrained

continuous convex optimization problems. We consider the conventional setting that the objec-

tive function is (twice) continuously differentiable and Lipschitz continuous, and we introduce

four classical algorithms: gradient descent, block-coordinate descent, Newton’s method, and

quasi-Newton methods. We also consider the composite convex program, in which the ob-

jective function is a sum of a continuously differentiable function and a simple function. The

definition of simple function will be provided later in the section. One state-of-the-art algorithm

for such problems is known as “FISTA”, which stands for Fast Iterative Shrinkage-Thresholding

Algorithm. Algorithmic details and theoretical performance of all five algorithms will be re-

viewed.

34

2.1. Unconstrained Continuous Convex Optimization 35

In the second section, some existing results in machine learning and statistics are provided, and

these results will be used later in this thesis. We first summarize some concentration bounds in

both random variables and random matrices. We then introduce the Nyström method, which

is used to compute low rank approximations of positive semi-definite matrices.

In the third section, we review background materials for Markov decision processes (MDPs).

We cover the basis of continuous-time Markov chains (CTMCs), Markov decision processes

(MDPs), and the two common computational methods for MDPs: value iteration and linear

programming.

We emphasize that each topic covered in this chapter has its own long history in research, and

this chapter is far from a complete review of all of them. The goal of this chapter is to cover

necessary knowledge that will lead to a smoother reading experience for the rest of this thesis.

The material presented in this chapter is based on [BT09, BT13, BV04, Ros06, Pow11, Tro15,

PGD+15, Git11, NW06].

2.1 Unconstrained Continuous Convex Optimization

In this section we are interested in the unconstrained continuous convex program,

min
x∈Rn

f(x), (2.1)

where f : Rn → R is a convex function. Note that we require different additional properties of

a convex function at different stages of this thesis. Below is a list of common properties.

Definition 2.1 A continuously differentiable function f : Rn → R is said to have a L-Lipschitz

continuous gradient if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rn.

36 Chapter 2. Background Theory

Suppose f is also twice continuously differentiable. Then the above definition is equivalent to

−LI � ∇2f(x) � LI, ∀x ∈ Rn.

Definition 2.2 A twice continuously differentiable function f : Rn → R is said to have a

M-Lipschitz continuous Hessian if

‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖, ∀x,y ∈ Rn.

Definition 2.3 A convex differentiable function f : Rn → R is said to be strongly convex if

there exists a positive constant µ such that for each x ∈ Rn,

f(y) ≥ f(x) +∇f(x)T (y − x) + µ‖y − x‖2, ∀y ∈ Rn.

Suppose f is also twice continuously differentiable. Then the above definition is equivalent to

µI � ∇2f(x), ∀x ∈ Rn.

2.1.1 First Order Methods

We begin with the introduction of first order methods. Starting with the case that the objective

function is differentiable and has a L-Lipschitz continuous gradient, gradient descent method

and block-coordinate descent method are introduced. We then consider objective functions

that have the form of a composite function, i.e. a sum of a differentiable function and a

(non-smooth) simple function. In such setting, we introduce one standard first order method

- Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [BT09]. FISTA can be seen as an

extension of gradient descent method with two main differences: (i) Nesterov’s acceleration

techniques [Nes04] is applied for FISTA. (ii) It accommodates for composite functions.

2.1. Unconstrained Continuous Convex Optimization 37

Gradient Descent

Consider the objective function

min
x∈Rn

f(x), (2.2)

where f is a continuously differentiable function and has L-Lipschitz continuous gradient. Gra-

dient descent is an iterative method for (2.2). For any initial guess x0, it updates the incumbent

by

xk+1 = xk + αkdk, k = 0, 1, 2, . . . ,

where αk ∈ R and dk ∈ Rn are the stepsize and direction at the kth iteration, respectively.

The idea of gradient descent is to use the negative gradient as the direction,

dk = −∇f(xk),

and this particular choice of direction is a descent direction, since

∇f(xk)
Tdk = −‖∇f(xk)‖2 < 0, ∀∇f(xk) 6= 0.

There are many methods to compute stepsize αk. When L is known or could be estimated,

then one choice could be αk = 1/L since

f

(

xk −
1

L
∇f(xk)

)

≤ f(xk) +∇f(xk)
T

(−1
L
∇f(xk)

)

+
L

2

∥
∥
∥
∥
∥

1

L
∇f(xk)

∥
∥
∥
∥
∥

2

= f(xk)−
1

L
‖∇f(xk)‖2 +

1

2L
‖∇f(xk)‖2

= f(xk)−
1

2L
‖∇f(xk)‖2.

That is, the next incumbent xk+1 has a smaller function value as long as ∇f(xk) 6= 0. However,

in many cases L is unknown, and one needs to use a large enough constant L̃k such that,

f

(

xk +
1

L̃k

dk

)

≤ f(xk)−
1

2L̃k

‖∇f(xk)‖2. (2.3)

38 Chapter 2. Background Theory

Algorithm 2.1 Gradient descent

Input parameters: Initial guess x0 ∈ Rn, η > 1. Choice of Option 1 or 2.
for k = 1, 2, · · · do
Compute the direction dk = −∇f(xk).
Select αk using

❼ Option 1: αk = 1/L.

❼ Option 2: Find the smallest q ∈ N such that for L̃k = ηqL̃k−1, L̃k satisfies (2.3). Set
αk = 1/L̃k.

Set xk+1 = xk + αkdk.
end for

Algorithm 2.1 provides the details of gradient descent method. The following theorem states

the theoretical performance of gradient descent.

Theorem 2.4 ([Nes04]) Suppose Algorithm 2.1 is performed, then

f(xk)− f(x⋆) ≤
L̂‖x0 − x⋆‖2

2k
,

where L̂ = L if Option 1 is chosen, and L̂ = ηL if Option 2 is chosen.

From Theorem 2.4, one can see the function value converges to the minimum at a rate in

O(1/k). We emphasize that gradient descent method is not the best among its kind. In

particular, Nesterov proposed the optimal scheme, which accelerates gradient descent method

to the rate in O(1/k2) [Nes04].

Block-coordinate Descent

When using Algorithm 2.1 to solve (2.2), gradient evaluations and vector operations are needed.

However, these operations could be computationally expensive or even intractable for large

scale problems. To this end, block-coordinate descent methods were proposed to relax this

computational burden. Similar to gradient descent method, block-coordinate descent can be

2.1. Unconstrained Continuous Convex Optimization 39

accelerated using the Nesterov’s acceleration techniques [BT13]. However, for the purpose of

this thesis, we shall focus on the non-accelerated version.

The basic idea of block-coordinate descent is to decompose vector operations. We denote

matrices Ui ∈ Rn×ni , i = 1, . . . , p, for which

[U1U2 . . .Up] = I,

where ni’s are positive integers such that
∑p

i=1 ni = n. The above notation considers a division

of p blocks, and each i represents the ith block. Using the notation of Ui, we define the ith

block of the gradient

∇if(x) , UT
i ∇f(x).

For block-coordinate descent, we further assume that f is block-wise Lipschitz continuous, i.e.

there exist constants Li, i = 1, 2, . . . , p such that

‖∇if(x+Uihi)−∇if(x)‖ ≤ Li‖hi‖, ∀hi ∈ Rni .

Following the above notation, we can define the ith block of gradient update in the kth iteration

xi
k = xi−1

k − 1

Li

Ui∇if(x
i−1
k).

The above update uses the stepsize 1/Li. When Li is unknown, one can apply the same

technique as in gradient descent, i.e. finding a large enough L̃i such that

f

(

xi−1
k − 1

L̃i

Ui∇if(x
i−1
k)

)

≤ f(xi−1
k)− 1

2L̃i

‖∇if(x
i−1
k)‖2. (2.4)

Algorithm 2.1 states the algorithmic procedure of block-coordinate descent method. The

theoretical performance is provided in the following theorem, and it uses following notations.

X⋆ ,
{

x⋆ : x⋆ ∈ arg min
x∈Rn

f(x)
}

, and R(x0) , max
x∈Rn

max
x⋆∈X⋆

{‖x− x⋆‖ : f(x) ≤ f(x0)}.

40 Chapter 2. Background Theory

Algorithm 2.2 Block-coordinate gradient descent

Input parameters: Initial guess x0 ∈ Rn, (For option 2: L0
j , j = 1, . . . , p). Choice of Option

1 or 2.
for k = 1, 2, · · · do
Set x0

k = xk and update recursively

xi
k = xi−1

k − αi
kUi∇if(x

i−1
k), i = 1, . . . , p,

where αi
k is computed by

❼ Option 1: αi
k = 1/Li

❼ Option 2: Find the smallest q ∈ N such that for L̃i = ηqL̃0
i , L̃i satisfies (2.4). Set

αk = 1/L̃i.

Set xk+1 = xp
k.

end for

Theorem 2.5 ([BT13]) Suppose Algorithm 2.2 is performed. Then for k = 0, 1, . . . ,

f(xk)− f(x⋆) ≤

4Lmax(1 + p3κ2)R2(x0)
1

k + (8/p)
if Option 1,

4ηLmax(1 + pL2/(L0
min)

2)R2(x0)
1

k + (8/p)
if Option 2,

where Lmax = maxi Li, κ = (maxi Li)/(mini Li), L
0
min = mini L

0
i .

From Theorem 2.5, one can see the drawback of block-coordinate descent method because p is

inversely proportional to the performance of the algorithm. That is, the more blocks we make,

the worse rate of convergence block-coordinate descent would have. Therefore, for problems in

which vector operations and gradient evaluations are not computationally expensive, gradient

descent would be preferable.

FISTA

We now let the objective function to be in the form of a composite function. That is,

min
x∈Rn
{F (x) = f(x) + g(x)}, (2.5)

2.1. Unconstrained Continuous Convex Optimization 41

where f : Rn → R is a convex function with L-Lipschitz continuous gradient, and g : Rn → R is

a continuous convex function which is possibly nonsmooth but simple. The definition of simple

function means that it results in computationally inexpensive proximal projection steps, which

will be formally defined later in this section.

One of the standard optimization algorithms for (2.5) is FISTA. FISTA is a modification of

ISTA, Iterative Shrinkage-Thresholding Algorithm, with the additional Nesterov’s acceleration

technique applied [Nes04]. For both FISTA and ISTA, the proximal projection step is taken in

each iteration

pL(y) , argmin{QL(x,y) : x ∈ Rn},

where

QL(x,y) , f(y) + 〈x− y,∇f(y)〉+ L

2
‖x− y‖2 + g(x).

We point out the the proximal projection step admits a unique minimizer. Recall that g is

assumed to be a simple function. By simple we mean that the choice of g would yield to cheap

computation in the “argmin” procedure at the proximal step pL(·). One special case of g is the

weighted ℓ1 norm. Suppose g(x) = ω‖x‖1 with positive constant ω, the proximal step would

become

pL(y) = Tω/L
(

x− 1

L
∇f(x)

)

,

where Tα is called the shrinkage operator, and

Tα(x)i = (|xi| − α)+sgn(xi).

One can see that in this special case the proximal step is no more than a usual gradient descent

step plus the shrinkage operator, which is computationally inexpensive.

The details of FISTA with constant stepsize are provided in Algorithm 2.3. Notice that Algo-

rithm 2.3 requires the Lipschitz constant L. When L is not known, one has to ensure at each

iteration, a large enough L̃ is chosen. In particular, at the kth iteration with incumbent xk, L̃

42 Chapter 2. Background Theory

Algorithm 2.3 FISTA with constant stepsize

Input parameters: Lipschitz constant L, initial guess x0 ∈ Rn.
Initialization: Set y1 = x0 and t1 = 1.
for k = 1, 2, · · · do

xk = pL(yk),

tk+1 =
1 +

√

1 + 4t2k
2

,

yk+1 = xk +
tk − 1

tk+1

(xk − xk−1).

end for

Algorithm 2.4 FISTA with backtracking

Input parameters: Initial guess x0 ∈ Rn, L0 > 0, η > 1
Initialization: Set y1 = x0 and t1 = 1.
for k = 1, 2, · · · do
Find the smallest q ∈ N such that for L̃ = ηqLk−1,

F (pL̃(xk)) ≤ QL̃(pL̃(xk),xk).

Set Lk = ηqLk−1 and compute

xk = pLk
(yk),

tk+1 =
1 +

√

1 + 4t2k
2

,

yk+1 = xk +
tk − 1

tk+1

(xk − xk−1).

end for

needs to be large enough to satisfy

F (pL̃(xk)) ≤ QL̃(pL̃(xk),xk).

Algorithm 2.4 provides the details of FISTA with backtracking stepsize strategy. We should

mention that the stepsize strategy in Algorithm 2.4 is the original approach proposed in [BT09],

but not the only one. See for example [Nes15].

2.1. Unconstrained Continuous Convex Optimization 43

Theorem 2.6 Suppose Algorithm 2.3 or 2.4 is performed. Then for any k ≥ 1,

F (xk)− F (x⋆) ≤
2L̂‖x0 − xk‖2

(k + 1)2
,

where x⋆ = argminx F (x), L̂ = L if the constant stepsize strategy is chosen, and L̂ = ηL if the

backtracking stepsize strategy is chosen. η is the user-defined parameter in Algorithm 2.4.

Both versions of FISTA have optimal theoretical performance guarantees. Compared to the

non-accelerated version ISTA which has the rate O(1/k), FISTA converges with the rate

O(1/k2), as stated in Theorem 2.6.

We emphasize that research in first order algorithms is a popular topic. Gradient descent,

block-coordinate descent, and FISTA are just three standard algorithms. We refer readers to

[RT16, HPZ15, DBLJ14, HL15, Nes04, Nes15, LPRR16, BTMN01] for the developments on

this line of research, including Nesterov’s acceleration technique, mirror descent, and parallel

coordinate descent.

2.1.2 Second Order Methods

In the rest of this section, some background material on second order algorithms is provided.

We solely consider second order methods that solve problems in the following form

min
x∈Rn

f(x), (2.6)

where f is a twice continuously differentiable function. We further assume that f is a strongly

convex function with parameter µ, and f has L-Lipschitz continuous gradient and M -Lipschitz

continuous Hessian.

The above setting is more restrictive compared to (2.2) because of the extra assumptions on

strong convexity and twice differentiability. Countless research studies have been conducted

on solving (2.6), and it is impossible to mention every one of them. We refer readers to

44 Chapter 2. Background Theory

[DM77, DES82, Ber95, NW06] for more details. However, it is fair to say that a good portion

of those algorithms are variants of Newton’s method. In what follows, we will provide the

details of Newton’s method and one of its variants, quasi-Newton method.

Newton’s method

Similar to the gradient and block-coordinate descent, Newton’s method is an iterative method.

The core idea of Newton’s method is based on second order approximation of f at the current

incumbent xk, i.e.

f(xk + d) ≈ f(xk) + 〈∇f(xk),d〉+
1

2
dT∇2f(xk)d,

and the direction dk is computed by minimizing the right hand side of the above equation over

d. Equivalently,

dk = −[∇2f(xk)]
−1∇f(xk).

There are many methods to compute stepsize αk, but for the purpose of this chapter, we only

consider the Armijo’s rule, i.e., we require that αk satisfies

f(xk + αkdk) ≤ f(xk) + ρ1αk∇f(xk)
Tdk. (2.7)

where ρ1 ∈ (0, 0.5) is a user-defined parameter. The Armijo’s rule ensures the stepsize yields

a sufficient reduction in function value. In particular, the next function value f(xk+1) must be

less than f(xk), since dk is a descent direction and ∇f(xk)
Tdk ≤ 0.

Algorithm 2.5 is one standard version of Newton’s method using Armijo’s rule as stepsize

strategy. In the following two theorems, we state the theoretical performance of Newton’s

method.

Theorem 2.7 ([BV04]) Suppose Algorithm 2.5 is performed and ‖∇f(xk)‖ ≥ η, for some

η > 0, then

f(xk+1)− f(xk) ≤ −ρ1βlsη2
µ

L2
.

2.1. Unconstrained Continuous Convex Optimization 45

Algorithm 2.5 Newton’s method with Armijo’s rule

Input parameters: Initial guess x0 ∈ Rn, ρ1 ∈ (0, 1/2), βls ∈ (0, 1)
for k = 1, 2, · · · do
Compute the direction

dk = −[∇2f(xk)]
−1∇f(xk).

Find the smallest q ∈ N such that for αk = βq
ls,

f(xk + αkdk) ≤ f(xk) + ρ1αk∇f(xk)
Tdk.

Set xk+1 = xk + αkdk.
end for

Theorem 2.8 ([BV04]) Suppose Algorithm 2.5 is performed and ‖∇f(xk)‖ ≤ 3(1− 2ρ1)
µ2

M
,

then

‖∇f(xk+1)‖ ≤
M

2µ2
‖∇f(xk)‖2.

Theorem 2.7 and 2.8 describe the performance of Newton’s method at different stages. Suppose

when the current incumbent xk is far from the solution x⋆, Theorem 2.7 guarantees that each

iteration of Newton’s method would result in a reduction in function value, and thus moving

closer to x⋆. This stage is called the damped Newton phase. Once the current incumbent

xk is sufficiently close to x⋆, i.e. ‖∇f(xk)‖ is sufficiently small, Theorem 2.8 guarantees that

the norm of the gradient would be reduced quadratically in each iteration. This stage of the

iterative process is called the quadratically convergent phase.

We emphasize that the quadratically convergent phase is the main reason that Newton’s method

outperforms many other algorithms. However, the drawback of using Newton’s method is clear:

one needs to solve a n×n system of linear equations in each iteration. For large scale problems

with large n, Newton’s method is intractable. Despite its obvious limitation, Newton’s method

is one of the best algorithms for moderate size optimization problems, and it serves as a base

case for many further developments in unconstrained continuous optimization, including the

two well-known types of algorithms: inexact Newton method and quasi-Newton method.

46 Chapter 2. Background Theory

Quasi-Newton methods

Quasi-Newton methods were developed to overcome the major drawbacks of Newton’s method:

evaluation of Hessians and expensive iteration cost. The main idea of quasi-Newton methods is

to approximate Newton steps using just first order information. In what follows, we provide the

background materials of the BFGS method, which is the most popular quasi-Newton method.

BFGS is named after Broyden, Fletcher, Goldfarb, and Shanno. We then discuss the drawback

of BFGS, and how it could be relaxed by the limited-memory BFGS (L-BFGS). L-BFGS is one

of the state-of-the-art methods for unconstrained optimization.

Consider the problem (2.6), at the kth iteration, the direction of using Newton’s method is

computed by minimizing the following model,

dk = arg min
d∈Rn

f(xk) + 〈∇f(xk),d〉+
1

2
dT∇2f(xk)d.

The basic idea of BFGS is to consider an approximation of the Hessian using the model,

mk(d) = f(xk) + 〈∇f(xk),d〉+
1

2
dTBkd,

for a symmetric positive definite matrix Bk. Notice that Bk is analogous to ∇2f(xk), as shown

above. When using the BFGS method, the approximation of the Hessian is not computed afresh

at every iteration, but rather it is updated using the previous estimate in the last iteration. In

order to do so, one has to impose the updating rules at each iteration. In the case of BFGS, it

is based on the idea of secant equation,

∇mk+1(−αkdk) = ∇f(xk).

The secant equation is based on the observation that ∇mk+1(0) = ∇f(xk+1). If the secant

equation is satisfied, then the model mk+1 is a good interpolation of the objective function f ,

and it has gradients that are matched at the points xk and xk+1. The above secant equation

2.1. Unconstrained Continuous Convex Optimization 47

can be re-written as,

Bk+1sk = yk,

where sk , xk+1 − xk and yk , ∇f(xk+1) − ∇f(xk). Using the idea of the above secant

equation, we then can approximate the inverse of the Hessian [∇2f(xk+1)]
−1 by,

sk = Hk+1yk, (2.8)

where Hk+1 = B−1
k+1 and so it is analogous to [∇2f(xk+1)]

−1.

Equation (2.8) states the constraints when one updates the inverse of the Hessian. In the BFGS

method, one updates the Hk+1 based on the following optimization problem [NW06].

min
H

‖H−Hk‖G̃k
(2.9)

subject to H = HT , Hyk = sk,

where ‖A‖W , ‖W1/2AW1/2‖F for all matrix that satisfy Wsk = yk, and

G̃k =

∫ 1

0

∇2f(xk + ταkdk) dτ.

The optimization problem (2.9) has a unique analytical solution

Hk+1 = (I− ρkskyT
k)Hk(I− ρkyks

T
k) + ρksks

T
k , (2.10)

where ρk = 1/yT
k sk. This above update is the core step in BFGS, and it is used to update the

approximation of inverse Hessian at each iteration.

Algorithm 2.6 provides the algorithmic procedure of BFGS method. The theoretical advantage

of BFGS is stated in the following theorem.

Theorem 2.9 Suppose Algorithm 2.6 is performed, then the generated sequence {xk} converges

48 Chapter 2. Background Theory

Algorithm 2.6 BFGS method

Input parameters: Initial guess x0 ∈ Rn, ρ1 ∈ (0, 1/2), βls ∈ (0, 1), H0 ∈ Rn×n which is
symmetric and positive definite.
for k = 0, 1, 2, · · · do
Compute the direction

dk = −Hk∇f(xk).

Find the smallest q ∈ N such that for αk = βq
ls,

f(xk + αkdk) ≤ f(xk) + ρ1αk∇f(xk)
Tdk.

Set xk+1 = xk + αkdk.
Update Hk+1 using BFGS update (2.10).

end for

to the minimizer x⋆ of f . In particular, it converges at a superlinear rate. That is,

‖xk+1 − x⋆‖ ≤ o(‖xk+1 − x⋆‖), as k →∞.

The above definition of superlinearly convergence was taken in [DES82].

From Algorithm 2.6, one can see that BFGS requires a large amount of storage for the inverse

Hessian Hk and requires a matrix-vector multiplication at each iteration. These requirements

are not ideal when n is large. To reduce these computational burdens, limited-memory BFGS

method was developed.

L-BFGS avoids the storage of the inverse Hessian by the following observation. From equation

(2.10), one can rewrite the BFGS update as

Hk+1 = VT
kHkVk + ρksks

T
k ,

where Vk = I − ρkyks
T
k . By recursively applying the above updating equation m times, for

some positive integer m, L-BFGS could store the approximation of Hk implicitly by just storing

the m lastest pairs of si and yi.

Algorithm 2.7 states the details of how L-BFGS computes the direction dk using two-loop

recursion. Notice that H0
k in Algorithm 2.7 is often chosen to be the identity matrix. In this

case one can see that L-BFGS has the computational advantage of only performing vector

2.2. Machine Learning and Statistics 49

Algorithm 2.7 L-BFGS direction update (at the kth iteration)

Input: ∇f(xk), {si,yi}k−1
i=k−m, and H0

k ∈ Rn×n which is symmetric and positive definite.
Set qk−1 = ∇f(xk).
for i = k − 1, k − 2, . . . , k −m do
Update βi = ρis

T
i qi.

Update qi−1 = qi − βiyi.
end for
Set d̃k−m = H0

kqk−m−1.
for i = k −m, k −m+ 1, . . . , k − 1 do
Update ζi = ρiy

T
i d̃i.

Update d̃i+1 = d̃i − si(βi − ζi).
end for
Output: direction dk = −d̃k.

operations, and matrix operations are completely avoided. This is done by computing the

approximation of the direction −[∇2f(xk)]
−1∇f(xk) at once instead of having the two separate

steps - approximating the inverse Hessian and then computing the direction.

We refer the readers to [BV04, NW06, Ber95] for more details regrading second order methods

such as Newton’s method, inexact Newton method, and quasi-Newton method.

2.2 Machine Learning and Statistics

In this section, we review some existing results in machine learning and statistics that serve as

tools used in the thesis.

2.2.1 Concentration Bounds

Concentration bounds or concentration inequalities are used to analyze the likelihood of a

random variable larger or smaller than some value. In other words, concentration bounds can

give the output range of a random variable, with high probability.

In what follows, we will provide some concentration bounds for both scalar random variables

and random matrices.

50 Chapter 2. Background Theory

Theorem 2.10 ([Tro11]) Let Q be a finite set of positive numbers, and suppose

max
q∈Q

q ≤ B.

Sample {q1, q2, . . . , ql} uniformly from Q without replacement. Compute

s = l · E(q1).

Then

P

{
∑

j

qj ≤ (1− σ)s
}

≤
(

e−σ

(1− σ)1−σ

)s/B

for σ ∈ [0, 1), and

P

{
∑

j

qj ≥ (1 + σ)s

}

≤
(

eσ

(1 + σ)1+σ

)s/B

for σ ≥ 0.

Proof See Theorem 2.1 from Tropp [Tro11].

The above concentration bounds are called Chernoff bounds. We point out that E(q1) =
∑

qj∈Q
qj/|Q|, since we assume sampling are conducted uniformly without replacement. It

shows that, with high probability, the sum of samples over a finite set is bounded by O(l/|Q|),

where l is the size of the subset. We refer reader to [CL06] for other settings apart from sampling

uniformly without replacement.

In this thesis, we are only interested in the largest eigenvalue of structured random matrices,

which forms the basis of Chapter 4. Below we provide some results from [Tro12] that are used

in Chapter 4.

Lemma 2.11 For a sequence {Qk : k = 1, 2, · · · ,m} of random matrices,

λmax

(
∑

k

E[Qk]

)

≤ E

[

λmax

(
∑

k

Qk

)]

.

We shall mention that the above lemma is a result of Jensen’s inequality.

2.2. Machine Learning and Statistics 51

Lemma 2.12 Suppose that Q is a random positive semi-definite matrix that satisfies λmax(Q) ≤

1. Then

E
[
eθQ
]
4 I+ (eθ − 1)(E [Q]), for θ ∈ R,

where I is the identity matrix in the correct dimension.

Lemma 2.13 Consider a sequence {Qk : k = 1, 2, · · · ,m} of independent, random, self-adjoint

matrices with dimension n. For all t ∈ R,

P

{

λmax

(
m∑

k=1

Qk

)

≥ t

}

≤ n inf
θ>0

exp

(

−θt+m log λmax

(

1

m

m∑

k=1

EeθQk

))

.

One may find that the above inequality is not meaningful when t is small, i.e. the right hand

side is greater than 1 when t is small. However, as we will see in Chapter 4, in this thesis we

are interested in the cases where t is sufficiently large.

2.2.2 The Nyström Method

We shall first emphasize that originally Nyström method was developed as a numerical method

to approximate eigenfunctions [Nys30]. However, the main idea of Nyström method was used

to approximate Gram matrix for machine learning applications, and then this name was also

used as a computational method for low rank approximation of Gram matrices [WS01]. We

clarify that this thesis only considers the latter case.

In the era of big data, storage of matrices becomes a limitation for some applications. Fortu-

nately, many matrices that are formed from data exhibit the low rank structure. For a positive

semi-definite matrix A ∈ RN×N , its best low rank approximation can be recognized as the

following optimization problem

min
Aq∈RN×N

‖A−Aq‖2, s.t. rank(Aq) = q. (2.11)

The solution of the above problem, Aq,⋆, is a matrix with rank q. It is obvious that when

52 Chapter 2. Background Theory

q = N , then Aq,⋆ = A. When one restricts q << N , then Aq,⋆ is the best rank q approximation

of the original matrix A. We mention that in the problem (2.11), ‖ · ‖2 is chosen to be measure

of the distance between A and Aq. In general, any measure or norm can be used, but the two

most common choices are ‖ · ‖2 and ‖ · ‖F .

Whether ‖ · ‖2 or ‖ · ‖F is used, an analytical solution of (2.11) is available due to the Eckart-

Young-Mirsky theorem [EY36, Mir60]. Denote the eigenvalue decomposition of A as follows,

A = UΣUT =

(

U1 U2

)

Σ1

Σ2

(

U1 U2

)T

(2.12)

where U1 ∈ RN×q, U2 ∈ RN×(N−q), Σ1 ∈ Rq×q, and Σ2 ∈ R(N−q)×(N−q). We also assume that

eigenvalues in Σ are sorted in descending order. Then Aq,⋆ has the form,

Aq,⋆ = U1Σ1U
T
1 . (2.13)

We clarify that Eckart-Young-Mirsky theorem applies for the setting in which A does not need

to be positive semi-definite nor a square matrix, but for the purposes of this chapter we only

consider the case where A is positive semi-definite.

From (2.13) one can see that computing the exact solution Aq,⋆ is computationally expensive

when N is large, because it requires the eigenvalue decomposition on A. To this end, the

Nyström method is developed to compute the approximation of Aq,⋆ and thus a good low rank

approximation of A.

The details of Nyström method are provided in Algorithm 2.8, which can also be found in

[DM05]. Notice that Aq can be also recognized in the following form,

Aq = AS[STAS]+STA, (2.14)

where S ∈ RN×q such that the ith column of S is the qthi column of I. One can also notice

the advantage of using Nyström’s method in terms of storage. The low rank approximation

2.2. Machine Learning and Statistics 53

Algorithm 2.8 Nyström’s method

Input parameters: A positive semi-definite matrix A ∈ RN×N

Step 1. Construct a set Q1 ⊆ {1, 2, · · · , N}, and let qi be the ith element of Q1.

Step 2. Construct a matrix A1 ∈ Rq×N such that the ith row of A1 is the qthi row of A.

Step 3. Construct a matrix A2 ∈ RN×q such that the ith column of A2 is the qthi column of
A.

Step 4. Construct a matrix A3 ∈ Rq×q such that (A3)i,j is (A)qi,qj .

Step 5. Compute Aq = A2A
+
3 A1, where A+

3 is the pseudo-inverse of A3.

Aq can be stored as three matrices: A1, A2, and A+
3 . When q ≪ N , the storage requirement

of Aq is much less than the original matrix A. Also, the computational cost of performing

pseudo-inverse A+
3 is not expensive when q is small.

In general, Q1 is constructed using one of the following methods:

i. Uniform sampling (with or without replacement).

ii. Adaptive sampling based on the scores assigned on the columns of A.

iii. Deterministic methods based on the decrease in error, ‖Aq−A‖, by selecting a particular

column of A.

We will focus on the case where uniform sampling without replacement is deployed. This

version of Nyström method is called the näıve Nyström’s method.

Theorem 2.14 Let A ∈ RN×N be a positive semi-definite matrix, S ∈ RN×q be a matrix as

defined in (2.14), and the eigenvalue decomposition A has the form in (2.12).

Let τ denotes the coherence of U1,

τ = µ0(U1) ,
N

q
max

i
(U1U

T
1)ii.

54 Chapter 2. Background Theory

Then ∀δ, ǫ ∈ (0, 1), suppose

q ≥ 2τk log(k/δ)

(1− ǫ)2 .

The error of using the näıve Nyström method is

‖A−Aq‖ ≤ λk+1(A)

(

1 +
N

ǫq

)

,

with probability at least 1− δ, where λk+1(A) is the (k + 1)th largest eigenvalue of A.

Theorem 2.14 shows the theoretical performance of the näıve Nyström method. As expected,

näıve Nyström method achieves good error bound when A has a large spectral gap, i.e. when

λN(A) ≤ λN−1(A) ≤ · · · ≤ λk+1(A)≪ λk(A) ≤ · · · ≤ λ1(A).

We refer readers to [DM05, Git13, WS01, SS00] for different versions of Nyström method. Apart

from Nyström method, random projection is another technique for low rank approximation.

See [HMT11] for a review in details.

2.3 Continuous-Time Markov Decision Processes

Markov decision processes (MDPs) are considered to be one of the standard models for se-

quential decision problems under uncertainties. Many practical applications in operations re-

search can be categorized as MDPs. Examples include road maintenance [GS97], nuclear plant

management [RR95], and revenue management [SSJL99]. To formally define MDPs, we first

introduce Markov chains.

2.3.1 Continuous-Time Markov Chains

Continuous-time Markov Chains (CTMCs), by definition, follow the Markov property, i.e. the

probability of the future only depends on the current situation but not the past [Ros06]. Every

CTMC is constructed by (1) a group of states to illustrate all possible situations in the system

2.3. Continuous-Time Markov Decision Processes 55

and (2) a Markov generator which defines the probabilistic transitions between any two states.

We further assume the number of states is always finite. One could refer such Markov chains

as discrete-state continuous-time Markov chains.

Suppose we let x(t) to be a CTMC. We can represent the transitions by a matrix called

transition probability matrix P(t, s) = (pij(t, s)) where pij(t, s) represents the probability of

x(t) = j given x(s) = i for 0 ≤ s ≤ t; that is,

pij(t, s) = P(x(t) = j|x(s) = i).

We should emphasize that, in this thesis, we are only interested in Markov chains that are

irreducible, which means it is possible (positive probability) for x(t) to visit any state in the

future regardless of the current state. For CTMCs, it is known that all transition probability

matrices follow the below differential equation

dP(t, s)

dt
= P(t, s)Q(t) , s ≤ t,

P(s, s) = I.

The matrix Q(t) = (qij(t)) is called the Markov generator which satisfies

qii(t) = −
∑

j 6=i

qij(t) , qij(t) ≥ 0, for j 6= i.

We point out that the diagonal elements of Q(t), qii’s, represent the rates of exiting current

state. The off-diagonal elements, qij’s, represent the likelihood that a transition from i to j

will occur. Suppose a CTMC is in state i at time 0, it will leave state i at time t where t is a

random variable which follows an exponential distribution with parameter qii, and enter a state

j with probability qij/|qii|, ∀j 6= i. In this thesis, we use “x ∼ Q(t)” to represent the following

statement: x(t) is a CTMC in which the uncertainty is govern by the Markov generator Q(t).

The magnitude of Q is related to the “speed” of the process. In general, the larger magnitude

represents a faster process. For instance, consider the two Markov generators, Q1 and Q2,

56 Chapter 2. Background Theory

where Q2 = 10Q1. In such case Q1 and Q2 will generate the same Markov processes except

the one from Q2 is 10 times faster.

2.3.2 Continuous-Time MDPs

The general goal of Markov Decision Process is to find the best policy u over a Markov process,

in which the underlying uncertainties of the process depend partly on the policy. A policy is

analogous to a lookup table which suggests an action aj to each state j in the Markov process.

We denote an N state MDP with x(t) and takes values from the state space X := {1, 2, · · · , N}.

For each state i, 1 ≤ i ≤ N , the available actions of the state i are denoted in the set Ai.

Therefore, a policy can be described by u = (a1, a2, · · · , aN) where ai ∈ Ai for ∀i ∈ X . The

policy space for all policies u’s is denoted by U := {(a1, a2, · · · , aN) : ai ∈ Ai, ∀i ∈ X}.

The unconstrained MDP is stated as follows,

min
u∈U

J(i,u) = E

[∫ ∞

0

e−ρtG(x(t),u(x(t))) dt

]

,

subject to x ∼ Q(u(x(t))) , t ≥ 0, (2.15)

x(0) = i,

where Q(·) = (qij) ∈ RN×N is a Markov generator, G(·, ·) is the cost function, and ρ > 0 is the

discount factor. As we can see, the generator Q depends on feedback control (policy u); so our

actions affect the Markov chain and thus the uncertainty. Also, the Markov generator Q(·) we

consider is time-invariant and independent of time t.

2.3.3 Computational Methods

The optimization model (2.15) can be solved by introducing the value function

v(i) = min
u∈U

J(i,u), (2.16)

2.3. Continuous-Time Markov Decision Processes 57

which satisfies

ρv(i) = min
a∈Ai

[

G(i, a) +
∑

j∈X ,j 6=i

qij(a)[v(j)− v(i)]

]

. (2.17)

Equation (2.17) is called the Hamilton-Jacobi-Bellman (HJB) equation. An equivalent form is

v(i) = min
a∈Ai

[

G(i, a)

|qii(a)|+ ρ
+
∑

j 6=i

qij(a)

|qii(a)|+ ρ
v(j)

]

. (2.18)

The derivation of (2.17) and (2.18) can be founded in [YZ13]. The above problem can be

recognized as a nonlinear equation

Av = 0, (2.19)

where

(Av)(i) := min
a∈Ai

[

G(i, a)

|qii(a)|+ ρ
+
∑

j 6=i

qij(a)

|qii(a)|+ ρ
v(j)

]

− v(i). (2.20)

By solving the HJB equation, one can find the value function v⋆(x) which represents the lowest

possible expected cost of the problem. Once v⋆(x) is found, the optimal policy of (2.15) can

be obtained by

u⋆(i) ∈ arg min
a∈Ai

[

G(i, a)

|qii(a)|+ ρ
+
∑

j 6=i

qij(a)

|qii(a)|+ ρ
v⋆(j)

]

. (2.21)

Therefore, solving the HJB equation is equivalent to solving for the optimal policy u⋆ [Ber07].

The state-of-the-art methods for solving HJB equations are characterized as different categories

such as linear programming, policy iteration, and value iteration [Pow11]. For the purpose of

this chapter, we will only introduce the latter two methods.

Value Iteration

The method of value iteration is based on the following nonlinear operator

(Tv)(i) := min
a∈Ai

[

G(i, a)

|qii(a)|+ ρ
+
∑

j 6=i

qij(a)

|qii(a)|+ ρ
v(j)

]

. (2.22)

58 Chapter 2. Background Theory

It is well-known that T is a contraction mapping [YZ13], e.g. it satisfies

‖Tv1 − Tv2‖∞ ≤ α‖v1 − v2‖∞, (2.23)

where 0 ≤ α ≤ 1. In our case,

α = max
i∈X ,a∈Ai

|qii(a)|
|qii(a)|+ ρ

. (2.24)

By the properties of contraction mapping and the Banach fixed point theorem [TBI97], for any

initial guess v0, one can compute the solution of the HJB equation by iteratively applying T

on v0. That is,

vτ := T τv0 = (T ◦ T ◦ · · · ◦ T)
︸ ︷︷ ︸

τ T ’s

v0 → v⋆ as τ →∞. (2.25)

Using the operator T iteratively as the above equation, one can compute the approximation of

v⋆. This approach is called value iteration.

Linear Programming

One can also solve the model (2.15) using linear programming (LP). It is known that solving

(2.18) is equivalent to solving

max
v∈RN

∑

i∈X

v(i),

s.t. v(i) ≤ G(i, a)

|qii(a)|+ ρ
+
∑

j 6=i

qij(a)

|qii(a)|+ ρ
v(j), ∀a ∈ Ai, i ∈ X .

(2.26)

The constraints of (2.26) can be proved to be equivalent to v ≤ Tv. Based on the monotonicity

property of T [Pow11], this constraint requires that all feasible solution v to satisfy the condition

v ≤ v⋆, in which v⋆ is the optimal value function in (2.16). Since this a maximization problem

and v⋆ is a feasible solution, solving the above LP is equivalent to solving the HJB equation

(2.18), and thus equivalent to solving the model (2.15).

We refer readers to [Ros06, Ber07, Pow11] for more details in CTMCs and MDPs.

Chapter 3

Singularly Perturbed Markov Decision

Processes

With four parameters I can fit an

elephant, and with five I can make him

wiggle his trunk.

John von Neumann

Singular perturbation techniques allow the derivation of an aggregate model whose solution is

asymptotically optimal for Markov Decision Processes with strong and weak interactions. In

this chapter, we develop an algorithm that takes advantage of the asymptotic optimality of the

aggregate model in order to compute the solution of the original model. We derive conditions for

which the proposed algorithm has better worst case complexity than conventional contraction

algorithms. Based on our complexity analysis we show that the major benefit of aggregation

is that the reduced order model is no longer ill conditioned. The reduction in the number of

states (due to aggregation) is a secondary benefit. This is a surprising result since intuition

would suggest that the reduced order model can be solved more efficiently because it has fewer

states. However we show that this is not necessarily the case. Our theoretical analysis and

numerical experiments show that the proposed algorithm can compute the optimal solution

with a reduction in computational complexity and without any penalty in accuracy.

59

60 Chapter 3. Singularly Perturbed Markov Decision Processes

3.1 Introduction

Recently there has been considerable interest in modeling and control of stochastic dynamics

across different timescales. Typical applications appear in molecular dynamics [Chr09], net-

worked systems [Mey08], manufacturing [SZ94], and optimal control of energy systems [PW14],

just to name a few. Controlling dynamics across different scales is computationally difficult and

a considerable amount of literature has been devoted to the challenge of finding approximate

models that capture the effective dynamics of the system. The main techniques used for op-

timal control are based around aggregation, averaging and homogenization. Starting from the

work of Simon and Ando [SA61] hierarchical decomposition and aggregation has been at the

core of approximation techniques for modeling and controlling dynamics across different scales.

The literature around this topic is substantial and we refer the interested reader to [KKO87]

for early work on singular perturbation techniques in optimal control. The averaging principle

and applications in manufacturing are described in [SZ94]. The homogenization for determin-

istic optimal control problems has been studied in [BM08]. The recent research monograph

by Yin and Zhang [YZ13] describes the main mathematical results in the context of stochastic

optimal control using the theory of singularly perturbed Markov processes. The mathematical

framework described in [YZ13] is the one we adopt in this chapter. The main result of the

aggregation techniques and averaging principles reviewed in [SZ94] and [YZ13] is the derivation

of an approximate model that captures the slow dynamics of the system. The approximate

model is based on an asymptotic analysis of a singularly perturbed control problem (see [YZ13]

for details, and Section 3.2 of this chapter for precise definitions).

The mathematical properties and especially the use of asymptotic techniques coupled with

the perturbation approach for controlling Markov processes have been extensively studied.

However, numerical methods that take into consideration the specific structure of multiscale

Markov processes have not received much attention. Given all the work that has gone into

the development of aggregate models, it is surprising that the obvious question of whether

the reduced order models can be solved more efficiently than the original model has not been

addressed. We take the first steps towards answering this question for a particular class of

3.1. Introduction 61

multiscale Markov processes. Based on our complexity analysis we show that the major benefit

of aggregation is that the reduced order model is no longer ill conditioned, and the reduction in

the number of states (due to aggregation) is a secondary benefit. This is a surprising result since

intuition would suggest that the reduced order model can be solved more efficiently because it

has fewer states. However, it will be shown later that this is not necessarily the case. There is no

standard definition for an ill conditioned Markov Decision Process (MDP). In the context of this

chapter a MDP is ill conditioned if the contraction modulus of value iteration is approximately

equal to one. This means that progress at each iteration will be extremely slow. We propose a

class of multiresolution contraction algorithms that are not sensitive to the ill conditioning of

weakly connected MDPs. Because we are considering a particular class of MDPs we are able

to improve the worst case complexity of algorithms based on value iteration. We illustrate our

approach on value iteration, but any contraction algorithm can potentially be improved using

the proposed scheme.

It is important to stress that the proposed algorithm aims to solve the original model and not

just obtain an approximation using the aggregate model. The aggregate model is only asymp-

totically optimal and our algorithm exploits its approximate optimality to reduce the number

of iterations with the high dimensional (and often ill-conditioned) model. Our algorithm is

ideal when there is some scale separation but it is not known whether there is sufficient scale

separation to just solve the approximate model. This setting is the most frequent scenario en-

countered in practice. For simplicity we study a Multiscale Markov Decision Process (MMDP)

with two timescales, but generalizing the results to problems with more than two time scales

is straightforward.

The rest of the chapter is structured as follows: In Section 3.2 we define the notation we use and

provide a review of existing results. In Section 3.3 we review complexity results for the value

iteration algorithm. We extend some known results from discrete time to continuous time

and give particular emphasis to MMDPs. In Section 3.4 we review the Full Approximation

Scheme (FAS). The FAS can be used to accomplish some of the objectives we set to achieve

in this chapter, i.e. take advantage of the structure of MMDPs to improve the computational

efficiency of algorithms for this class of MDPs. The FAS is a non-linear extension to the

62 Chapter 3. Singularly Perturbed Markov Decision Processes

traditional multigrid scheme, and in Section 3.4, we show that it may not be an appropriate

choice for MDPs. Based on our observations of the complexity of MMDPs in Section 3.3 and

the FAS scheme in Section 3.4, we propose an alternative scheme in Section 3.5. We named our

proposed scheme the Alternating Multiresolution Scheme (AMS) since it uses features from

the FAS and known results regarding the quality of the approximate (aggregate) model. In

Section 3.6, we propose a refinement of our scheme that allows the scheme to be applied to

problems that have a large number of actions. Finally, in Section 3.7, we illustrate the proposed

scheme on two applications, one from manufacturing and one from chemistry.

3.2 Multiscale Markov Decision Processes

The notation and framework for MMDPs we adopt in this chapter is standard and more infor-

mation and results can be obtained in [YZ13].

3.2.1 Markov Decision Processes

Let xh(t) denote the state of a discrete state continuous time Markov Decision Process (MDP)

at time t. We use the subscript h to denote processes that capture effects at the fast time scale

h. We assume that the chain can take one of the finite number states X h , {l1, l2, · · · , lN}. For

each of the states i, 1 ≤ i ≤ N , the available actions of state i are denoted by the set Ah
i . A

policy uh : X h → Ah maps states into actions and is described by uh = (a1, a2, · · · , aN) where

ai ∈ Ah
i for ∀i ∈ X h. The space of all policies uh’s is denoted by Uh , {(a1, a2, · · · , aN) : ai ∈

Ah
i , i = 1, 2, . . . , N} and we use Ah to denote the space of all possible actions i.e. Ah = ∪Ni=1Ah

i .

Note that Ah
i ’s are assumed to be time independent in this chapter. We assume that we are

given a cost function Gh : X h × Ah → R that measures the cost associated with a particular

state-action pair. We will focus on the infinite horizon case and denote the discount factor by

ρ. All the results reported in the chapter can be extended to the finite horizon case. We use

MDP(N,L) to denote the class of problems for which |X h| = N , |Ah
i | = L, for i = 1, 2, . . . , N .

It is easy to generalize our results to the case where each of the action spaces Ah
i have different

3.2. Multiscale Markov Decision Processes 63

cardinality |Ah
i | = Li, but for ease of exposition we assume that |Ah

i | = L, for i = 1, 2, . . . , N .

With the notation introduced above we are now in a position to state the class of problems we

study in this chapter,

min
uh∈Uh

Jh(i,uh) = E

[∫ ∞

0

e−ρtGh(xh(t),uh(xh(t))) dt
∣
∣
∣xh(0) = i

]

. (3.1)

The expectation above is taken with respect to a probability matrix P and we use Pi,j(t, s)

to denote the probability of the process, xh(t), transitioning to state j at time t given that it

starts from state i at time s. According to the theory of Markov processes the transition matrix

satisfies the following equation,

dP(t, s)

dt
= P(t, s)Qǫ

h(uh), P(s, s) = IN , (3.2)

where Qǫ
h denotes the infinitesimal generator of xh, and IN denotes the N ×N identity matrix.

We are focusing on a Markov process with a multiscale structure and so we assume the generator

of the process is defined as follows,

Qǫ
h(uh) =

1

ǫ
Q̂(uh) +W(uh), (3.3)

where Q̂(uh) = diag(Q̂1(uh), Q̂2(uh), . . . , Q̂m(uh)) is a block diagonal matrix with m blocks,

with Q̂k(uh) ∈ Rnk×nk and
∑m

j=1 nj = N , for k = 1, 2, . . . ,m. We further assume that each

Q̂k(uh) is a weakly irreducible Markov generator. A Markov generator Q is said to be weakly

irreducible if there exists a row vector ν ≥ 0 such that νQ = 0 and ‖ν‖1 = 1 [YZ13]. For ease

of exposition we assume that all blocks have the same size (n). All our results can easily be

generalized to the case where each block has size ni. We use Xk = {lk1, . . . , lknk
}, k = 1, . . . ,m

to denote the states corresponding to Q̂k. This decomposition is done so that X = ∪mk=1Xk.

The small parameter ǫ is used to capture the multiscale structure of the process. When ǫ≪ 1

the Markov process jumps frequently between the states within a block Xk and less frequently

between states that belong to different blocks. The matrix W(uh) is also assumed to be a

Markov generator and it is used to model the transition between the blocks. The smaller the

64 Chapter 3. Singularly Perturbed Markov Decision Processes

ǫ, the faster the transitions inside the blocks. As ǫ approaches zero, the transitions inside the

blocks happen at such a fast rate that the process can be approximated by the equilibrium

distribution inside each of the blocks. This idea can be made rigorous and we refer the reader

to Chapter 6 of [YZ13] for the details. Our aim is to study the complexity and propose an

efficient algorithm for the solution of the stochastic control problem in (3.1).

The class of weakly connected processes will be denoted by MMDP(ǫ, n,m, L), which is a

subclass ofMDP(nm,L). Using the dynamic programming principle it can be shown that the

value function associated with the problem,

vh(i) = min
uh∈Uh

Jh(i,uh), (3.4)

satisfies the so called the Hamilton-Jacobi-Bellman (HJB) equation,

ρvh(i) = min
a∈Ah

i

Gh(i, a) +
∑

j∈Xh,j 6=i

qhij(a)[vh(j)− vh(i)]

 . (3.5)

Notice that we use min instead of inf in our problem definition because the action space is

finite and we will assume Gh is bounded. It was shown in [YZ13] that (3.5) is equivalent to,

vh(i) = min
a∈Ah

i

[

Gh(i, a)

|qhii(a)|+ ρ
+
∑

j 6=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

]

. (3.6)

Our analysis will be based on the properties of the contraction operator derived from value

iteration. With that in mind we can rewrite the problem of computing the value function as

the solution of the following nonlinear equation,

Ahvh = 0,

where Ah is a nonlinear operator defined as follows,

(Ahvh)(i) , min
a∈Ah

i

[

Gh(i, a)

|qhii(a)|+ ρ
+
∑

j 6=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

]

− vh(i). (3.7)

3.2. Multiscale Markov Decision Processes 65

The contraction operator will be denoted by Th and is defined below,

(Thvh)(i) , min
a∈Ah

i

[

Gh(i, a)

|qhii(a)|+ ρ
+
∑

j 6=i

qhij(a)

|qhii(a)|+ ρ
vh(j)

]

. (3.8)

So far we have not used our assumption that ǫ≪ 1. This setting has been extensively studied

in the last thirty years and in the next section we summarize the results we will need in our

analysis.

3.2.2 The Coarse Model

The computational cost of solving (3.1) exactly is extremely high when the Markov process

has a large number of states. Many researchers noticed that if the problem has the multiscale

structure described in the previous section then the computational costs can be reduced by

considering an approximate model. In the approximate model each set of states associated

with each of the “fast” blocks is aggregated into a single state. For this reason the resulting

approximate model is called the aggregate model. In this chapter, however, we will adopt the

terminologies from the multigrid community by using fine model (defined in (3.1)) and coarse

model (defined in (3.9) below) instead of exact and aggregate model. It can be shown that if

ǫ is small enough, the coarse model becomes arbitrarily accurate. There are many results of

this type for the model described in the previous section, as well as generalizations to different

models. These results are described in [YZ13], and we refer the reader there for a comprehensive

literature review. In our work we will need to make use of the coarse model and we describe

the notation we use below.

The state space of the coarse model is denoted by XH , {l′1, l′2, · · · , l′m}, where each state i in

the coarse model represents block i in the fine model. The available actions of state i in the

coarse model aHi , are combinations of the available actions in block i, and they form the action

space AH
i , {(ai1, ai2, . . . , ain) : aij ∈ Ah

Xi(j)
}. Therefore, uH is the policy of the coarse model,

and it takes values from the policy space UH , {(aH1 , aH2 , . . . , aHm) : aHi ∈ AH
i , i = 1, 2, . . . ,m}.

The coarse model is anMDP(m,Ln) model.

66 Chapter 3. Singularly Perturbed Markov Decision Processes

In order to define the coarse model we also need to define both the coarse Markov generator

and the coarse objective function. Let ϕ1(uH), . . . ,ϕm(uH) denote the stationary distribu-

tions of the blocks 1, 2, . . . ,m in the form of column vectors under policy uH . We obtain the

corresponding Markov generator,

QH(uH) = ϕ(uH)W(uH)1̃,

where

ϕ(uH) = diag(ϕT
1 (uH),ϕ

T
2 (uH), . . . ,ϕ

T
m(uH)),

1̃ = diag(1n×1,1n×1, . . . ,1n×1
︸ ︷︷ ︸

m copies

),

where 1n×1 , (1, 1, . . . , 1)T ∈ Rn×1, and diag(·) is a function which maps its argument to a

diagonal matrix. The coarse cost function is given by,

GH(i,uH) =
n∑

k=1

(ϕi(uH))kG
h(Xi(k), ((uH)i)k) ∀i ∈ XH .

Given the notation above, the coarse model is,

min
uH

JH(i,uH) = E

[∫ ∞

0

e−ρtGH(xH(t),uH(xH(t))) dt

]

,

s.t xH ∼ QH(uH(xH(t))) , t ≥ 0, (3.9)

xH(0) = i , uH ∈ UH ,

vH(i) = min
uH∈UH

JH(i,uH).

The corresponding HJB equation becomes,

vH(i) = min
aH∈AH

i

[

GH(i, aH)

|qHii (aH)|+ ρ
+
∑

j 6=i

qHij (aH)

|qHii (aH)|+ ρ
vH(j)

]

. (3.10)

For the problem, we denote by AH and TH the nonlinear operator and its corresponding con-

traction operator, respectively. Using singular perturbation techniques (see [YZ13]) it can be

3.3. Computational Complexity of Multiscale Markov Decision Processes 67

shown that under the assumptions made in this chapter the following result holds,

v⋆
H(k)→ v⋆

h(i), ∀i ∈ Xk as ǫ→ 0,

where v⋆
H denotes the solution of (3.9) and v⋆

h denotes the solution of (3.1). Also,

|v⋆
H(k)− v⋆

h(i)| = O(ǫ) for i ∈ Xk. (3.11)

3.3 Computational Complexity of Multiscale Markov De-

cision Processes

In this section we review the complexity of value iteration for the MMDP model introduced in

the previous section. The purpose of this section is twofold. Firstly, the complexity of MDPs in

continuous time has not received as much attention as that of their discrete-time counterparts.

Even though the complexity results here are new, they are straightforward generalizations of

results from discrete time. The second and main purpose of this section is to point out that

the convergence rate of value iteration becomes arbitrarily bad when ǫ becomes small. We

believe that this insight is an important consideration when designing algorithms for multiscale

processes. Previously, it was claimed that the coarse model might have lower complexity because

it has fewer states than the fine model. Here we show an additional and (as discussed later

on) more important advantage is that the coarse model is better conditioned since it does not

depend on ǫ. We also show that the complexity results below are tight.

3.3.1 Value Iteration

Value iteration is one of the first methods to be proposed to solve dynamic programming

problems. Value iteration is used to compute the value function. After the value function,

68 Chapter 3. Singularly Perturbed Markov Decision Processes

v⋆
h(x), is obtained, the optimal policy u⋆

h can be obtained by,

u⋆
h(i) ∈ arg min

a∈Ah
i

[

Gh(i, a)

|qhii(a)|+ ρ
+
∑

j 6=i

qhij(a)

|qhii(a)|+ ρ
v⋆
h(j)

]

.

Therefore, solving the HJB equation is equivalent to solving for the optimal policy u⋆
h [Ber07].

State-of-the-art deterministic methods for solving HJB equations fall into three broad cate-

gories: linear programming, policy iteration, and value iteration [Pow11]. In this chapter,

value iteration is applied to solve the HJB equation even though the central idea of this chap-

ter can be applied to all three of the methods. The extension of the proposed framework to the

stochastic case (e.g. to Approximate Dynamic Programming techniques) is beyond the scope

of the current chapter. Value iteration is simply defined as,

vk+1
h = Thv

k
h. (3.12)

The nonlinear operator Th was defined in (3.8) and it is well known that it is a contraction

mapping,

‖Thv1 − Thv2‖∞ ≤ αh‖v1 − v2‖∞, (3.13)

where v1,v2 ∈ RN , αh is the Lipschitz constant, 0 < αh < 1. For the MDP model we study in

this chapter the Lipschitz constant is given by,

αh = max
i∈Xh,a∈Ah

i

|qhii(a)|
|qhii(a)|+ ρ

. (3.14)

The Lipschitz constant above is derived in [YZ13], where the HJB equation (3.6) is reformulated

as an HJB equation for discrete time problems with a discount factor αh in (3.14). For discrete

time problems, the discount rate itself is the Lipschitz constant of the problem [Pow11]. Using

the Banach fixed point theorem [TBI97], it can be shown that for an initial guess v0
h, one can

compute the solution of the HJB equation by iteratively applying Th on v0
h,

vτh
h , T τh

h v0
h = (Th ◦ Th ◦ · · · ◦ Th)

︸ ︷︷ ︸

τh copies

v0
h → v⋆

h as τh →∞.

3.3. Computational Complexity of Multiscale Markov Decision Processes 69

The Lipschitz constant αh is an upper bound for the convergence rate of the value iteration

algorithm. In particular,

‖v⋆
h − vτh

h ‖∞ ≤ αh‖v⋆
h − vτh−1

h ‖∞ ≤ ατh
h ‖v⋆

h − v0
h‖∞. (3.15)

A smaller αh guarantees a faster convergence rate for the algorithm. Other than equation

(3.15), we will make use of the following well-known properties of contraction mappings,

‖v⋆
h − vτh

h ‖∞ ≤ αh

1− αh

‖vτh
h − vτh−1

h ‖∞ (3.16)

≤ ατh
h

1− αh

‖v1
h − v0

h‖∞. (3.17)

3.3.2 Model Assumptions

In this section, we state our assumptions, and these will hold throughout the chapter. Some of

our results will be asymptotic and will rely on the assumption that the problem has multiscale

structure stronger than certain threshold ǫ0. To be precise we assume that ǫ > 0 is small enough

such that the value function of the fine model (3.1) and its corresponding coarse model satisfy

the following inequality,

|v⋆
H(k)− v⋆

h(i)| ≤ K̃ǫ, ∀ǫ ∈ (0, ǫ0), ∀i ∈ Xk, (3.18)

for some constants K̃ and ǫ0 < 1. That this inequality holds for an ǫ small enough follows from

Theorem 7.10 (page 273) in [YZ13].

Our second main assumption is that the objective function is bounded. We will assume that

there exists a constant ζ such that,

0 ≤ Gh(xh, ah) ≤ ζ, ∀xh ∈ X h, ah ∈ Ah.

The bounded assumption is needed to avoid trivialities. Since Gh(·, ·) is assumed to be bounded,

70 Chapter 3. Singularly Perturbed Markov Decision Processes

the value function should also be bounded; in other words, there exists a constant K̂ such that,

0 ≤ ‖v⋆
h‖∞ ≤ K̂, 0 ≤ ‖v⋆

H‖∞ ≤ K̂.

Without loss of generality we will assume that the initial guess v0
h and v0

H are both zero vectors

of the appropriate dimensions. Finally, to simplify our notation, instead of using K̂ and K̃,

we will directly use K , max{K̂, K̃}, where K̃ is defined in equation (3.18). With these two

assumptions, we obtain

0 = ‖v0
h‖∞ ≤ ‖v1

h‖∞ ≤ ‖v2
h‖∞ ≤ · · · ≤ ‖v⋆

h‖∞ ≤ K, (3.19)

0 = ‖v0
H‖∞ ≤ ‖v1

H‖∞ ≤ ‖v2
H‖∞ ≤ · · · ≤ ‖v⋆

H‖∞ ≤ K. (3.20)

The above inequalities follow from the fact that both operators Th and TH are monotone

contraction operators [Ber07]. Also, the above assumption yield

‖v⋆
h − vi

h‖∞ ≤ K, ‖Thvi
h − vi

h‖∞ ≤ K, ∀vi
h for i = 1, 2, · · · ,

‖v⋆
H − vi

H‖∞ ≤ K, ‖THvi
H − vi

H‖∞ ≤ K, ∀vi
H for i = 1, 2, · · · .

Notice that (3.18) and K̃ ≤ K gives

|v⋆
H(k)− v⋆

h(i)| ≤ Kǫ, ∀i ∈ Xk. (3.21)

3.3.3 Complexity

In this section we discuss the complexity of continuous time MDPs. The complexity result in

this section is a variant of the existing discrete time result [CT91]. We use δ > 0 to denote the

convergence tolerance for the value iteration algorithm, i.e. the algorithm terminates when,

‖v⋆
h − vτh

h ‖ < δ. (3.22)

3.3. Computational Complexity of Multiscale Markov Decision Processes 71

The parameter δ > 0 is user specified and since Th is a contraction mapping, for large enough

τh, the above inequality can be satisfied. A more interesting question is how large τh should be

to guarantee that (3.22) holds. We answer this question in the lemma below by providing an

upper bound and then we give an example to show that this bound is tight.

Lemma 3.1 The number of iterations in the value iteration algorithm is bounded by

τh ≤ max

{ log

(
K

(1− αh)δ

)

| logαh|
, 0

}

, (3.23)

where K = max{K̂, K̃}.

Proof We use equation (3.17),

‖v⋆
h − vτh

h ‖∞ ≤
ατh
h

1− αh

‖v1
h − v0

h‖∞ ≤
ατh
h

1− αh

K, (3.24)

where we used the fact that ‖Thv0
h − v0

h‖ < K. We then select τ ′h such that

α
τ ′h
h

1− αh

K = δ.

Rearranging the preceding equation, we obtain the following expression

τ ′h =

log

(
K

(1− αh)δ

)

| logαh|
.

Since v
τ ′h
h guarantees the desired accuracy, we have τh ≤ max{τ ′h, 0}.

Equation (3.23) gives an upper bound for the number of iterations we need when using value

iteration. The complexity of the value iteration algorithm can be easily derived from Lemma

3.1. The complexity model we consider in this chapter is consistent with [CT91], where each

arithmetic operation or comparison is considered to cost one unit of computation.

72 Chapter 3. Singularly Perturbed Markov Decision Processes

Theorem 3.2 For MDP(N,L), the worst–case complexity for the value iteration algorithm

in (3.12) is

O

max

{ log

(
1

(1− αh)δ

)

| logαh|
, 0

}

N2L

. (3.25)

Proof For the contraction operator in equation (3.8) and for an MDP problemMDP(N,L),

the worst-case complexity of computing Thvh is O(N2L). Since the total complexity of the algo-

rithm is the number of iterations multiplied by the cost per iteration, we obtain the complexity

result in (3.25) by applying Lemma 3.1.

A natural question to ask is whether the complexity result in Theorem (3.2) is tight. We end

this section by showing that indeed the bound is tight.

Remark

Consider an instance ofMDP(N,L) that satisfies the following

❼ |Ah
i | = 1, ∀i ∈ X h. This assumption means that the corresponding HJB equation is a

linear equation.

❼ The cost function Gh(i, ai) = g > 0, ∀i ∈ X h is a constant. Therefore, the value function

v⋆
h(i) = v⋆ is also a positive constant.

❼ qhii = q, ∀i ∈ X h i.e. each state has the same jump rate.

❼ The initial guess v0
h = 0 is a zero vector, so v0

h < Thv
0
h < T 2

hv
0
h < · · · < v⋆

h.

3.3. Computational Complexity of Multiscale Markov Decision Processes 73

Given the assumptions above, it follows that vτ
h , T τ

hv
0
h are all constants, i.e. vτ

h(i) = vτ , ∀i ∈

X h, τ ∈ Z+. Consider the error reduction rate between iteration τ and τ + 1,

‖v⋆
h − vτ+1

h ‖∞ = ‖v⋆
h − T τ+1

h v0
h‖∞

= ‖Thv⋆
h − Thvτ

h‖∞

= max
i∈Xh

∣
∣
∣
∣
∣

g

|q|+ ρ
+
∑

j 6=i

qhij
|q|+ ρ

v⋆ − g

|q|+ ρ
−
∑

j 6=i

qhij
|q|+ ρ

vτ

∣
∣
∣
∣
∣

= max
i∈Xh

∣
∣
∣
∣
∣

∑

j 6=i

qhij
|q|+ ρ

(v⋆ − vτ)

∣
∣
∣
∣
∣

= max
i∈Xh

∣
∣
∣
∣

|q|
|q|+ ρ

∣
∣
∣
∣
‖v⋆

h − vτ
h‖∞

= αh‖v⋆
h − vτ

h‖∞.

Therefore, in this particular instance of an MDP(N,L), the number of iterations is exactly

the one given by Lemma 3.1.

3.3.4 Convergence Rate and Complexity for Multiscale Markov De-

cision Processes

The main motivation for stating Theorem 3.2 is that it will enable us to make precise statements

concerning the computational advantages of the coarse model derived in Section 3.2.2. Using

the results derived above we show that the principal benefit of the coarse model is not that the

number of states is less, but that the rate of convergence is much higher (provided that scale

separation is present). In fact, the complexity of the coarse model when no scale separation

is present, i.e. ǫ ≈ 1, is greater than that of the original model. The lemma below shows

that MMDP(ǫ, n,m, L) becomes ill conditioned as ǫ approaches zero. Note that there is no

standard definition for an ill conditioned MDP. However, in the context of this chapter an MDP

is ill conditioned if the contraction modulus of value iteration is approximately equal to one.

The lemma below shows that this indeed is the case if the MDP is singularly perturbed.

74 Chapter 3. Singularly Perturbed Markov Decision Processes

Lemma 3.3 ForMMDP(ǫ, n,m, L) with Lipschitz constant αh,

αh → 1 as ǫ→ 0.

Proof InMMDP(ǫ, n,m, L), the Lipschitz constant has the form

αh = max
i∈Xh,a∈Ah

i

∣
∣
∣
∣

1

ǫ
q̂ii(a) + wii(a)

∣
∣
∣
∣

∣
∣
∣
∣

1

ǫ
q̂ii(a) + wii(a)

∣
∣
∣
∣
+ ρ

→ 1 as ǫ→ 0.

When ǫ is small the guaranteed improvement in each iteration is almost zero for the fine model.

On the other hand, for the coarse model the corresponding Lipschitz constant is given by,

αH = max
i∈XH ,aH∈AH

i

∣
∣qHii (aH)

∣
∣

|qHii (aH)|+ ρ
.

Crucially, αH is independent of the multiscale structure of the original model. Therefore, there

exists a ǫ⋆ such that

αH ≤ αh for ǫ ≤ ǫ⋆.

In other words, the guaranteed convergence behavior of coarse model is superior to that of

the fine model when ǫ is small enough. We end this section by comparing the computational

complexity associated with the two models,

Fine Model,MMDP(ǫ, n,m, L) : O

max

{ log

(
1

(1− αh)δ

)

| logαh|
, 0

}

(mn)2L

,

Coarse Model,MDP(m,Ln) : O

max

{ log

(
1

(1− αH)δ

)

| logαH |
, 0

}

m2Ln

.

(3.26)

If ǫ ≈ 1, then there are no benefits to aggregating the model using the singular perturbation

approach. Indeed the preceding equation shows the coarse model has an exponential dependence

3.4. Analysis of the Full Approximation Scheme 75

on n that is not present in the original model. We will discuss ways to alleviate this issue in

Section 3.6. Finally in the setting of this chapter as ǫ → 0, the complexity of the fine model

goes to infinity.

3.4 Analysis of the Full Approximation Scheme

The conventional way to exploit multiresolution structure of a model is the Full Approximation

Scheme (FAS) (see e.g. [Hac03]). The FAS is an extension of the multigrid scheme to non-

linear problems. Algorithms based on multigrid are in spirit close to the scheme we propose in

this chapter. In other words, multigrid algorithms try to solve the fine model by considering

a hierarchy of approximate models. We also develop a scheme that fits within this general

principle but we propose a different way to couple the models together than the one used

in FAS. We stress that the theory around the FAS is still valid, and that the convergence

proof developed in [Hac03] can be used to show that the FAS will converge to the solution of

MMDP(ǫ, n,m, L). However, we will use a simple numerical example to illustrate the point

that even though convergence is guaranteed, the rate of convergence is likely to be worse than

just solving the fine model with the single level value iteration algorithm. In Section 3.5, we

show how to overcome this problem of the FAS by proposing a different way of incorporating

information from the coarse model to the iterations of the fine model. We refer the interested

reader to the tutorial in [BHM00] for an introduction to multigrid and the FAS. The FAS

is rigorously developed in [Hac03]. In this section, we just mention some of the key ideas

behind multigrid and FAS in order to understand how the existing framework is likely to fail

for multiscale MDPs.

3.4.1 Prolongation and Restriction

The first step in the development of the FAS is the definition of the prolongation and restriction

operators. The prolongation operator is used to transfer solutions from the coarse model to the

fine model. We use IhH and IHh to denote the prolongation and restriction operators, respectively.

76 Chapter 3. Singularly Perturbed Markov Decision Processes

Typically, they are linear operators and in this chapter we take IhH and IHh to be constant

matrices. The exact definition of these operators is problem dependent. For the class of models

we consider in this chapter it is natural to define IhH and IHh based on the asymptotic properties

of the fine and coarse models. The prolongation operator is given by

IhH = diag(1n×1,1n×1, . . . ,1n×1
︸ ︷︷ ︸

m copies

) ∈ Rnm×m.

The choice of IhH is based on equation (3.21), which shows that the value functions are asymp-

totically the same for the states that are in the same block. The definition of the restriction

operator is not as straightforward as that of IhH . There is no obvious property to approximate

vH by vh. However, a natural choice that can be rigorously justified (see Section 3.5) is to

restrict vh into the same size as vH using the stationary distribution of each block. Let ϕi

denote the column vector for the stationary distributions associated with block i. We define

the restriction operator as follows

IHh = diag(ϕT
1 ,ϕ

T
2 , . . . ,ϕ

T
m) ∈ Rm×nm. (3.27)

In other words, we “compress” the values of the value function in block i by forming a convex

combination with the elements in each of the blocks. Notice that Qǫ
h(uh) depends on the policy

uh and so there exist many different stationary distributions for each block. To address this

problem, we select Qǫ
h(ũh) with ũh as the best policy for the current incumbent solution at

iteration τ , vτ
h. That is, we select ũh such that

ũh(i) ∈ arg min
a∈Ah

i

[

Gh(i, a)

|qhii(a)|+ ρ
+
∑

j 6=i

qhij(a)

|qhii(a)|+ ρ
vτ
h(j)

]

,

for the current solution vτ
h, and apply equation (3.27) with ϕ1,ϕ2, . . . ,ϕm as the stationary

distributions of blocks 1, 2, . . . ,m in Qǫ
h(ũh). It follows from (3.21) that there exists a constant

K such that,

‖v⋆
h − IhHv

⋆
H‖∞ ≤ Kǫ. (3.28)

3.4. Analysis of the Full Approximation Scheme 77

3.4.2 The FAS Algorithm

With the definitions of IHh and IhH provided above we are now in a position to fully specify the

FAS. The main idea of the FAS is simple and we describe it as a solution algorithm for the

following general nonlinear equation,

Ah(vh) = fh. (3.29)

In our case Ah is given in (3.7) and fh can be taken to be zero (at the finest level). Given an

incumbent solution v̂h, we can proceed to compute the exact correction for v̂h so that it solves

(3.29). That is we compute an e⋆h such that,

Ah(v̂h + e⋆h) = fh.

Of course the preceding nonlinear equation is just as hard as the original problem. The idea

behind the FAS is instead of computing e⋆h using the fine model, an approximation of e⋆h is

computed using the coarse model by solving the following correction problem

AH(I
H
h v̂h + eH) = dH ,

where

dH , AH(I
H
h v̂h)− sIHh (Ah(v̂h)− fh),

for some stepsize s. The existences of s and dH establish a useful relation between the fine

and coarse models [Hac03]. Finally, we complete the correction v̂h + 1/sIhHeH . Figure 3.1

illustrates the main steps of FAS. We first compute v̂h by τ applications of Th. We then restrict

the solution to the coarse scale and perform some iterations in the coarse scale to obtain an

approximate correction eH . We then prolongate the error correction term to the fine model and

continue performing iterations at the fine scale. The addition of the prolongated error 1/sIhHeH

to the current solution v̂h can lead to faster convergence rates than just using the fine model.

The step size s is needed because this is a nonlinear problem. Obviously it is possible to have

78 Chapter 3. Singularly Perturbed Markov Decision Processes

Figure 3.1: The Full Approximation Scheme (FAS)

more than one level. The full details of the algorithm are given in [Hac03].

3.4.3 Numerical Example from a Multiscale Manufacturing System

The full approximation scheme appears to be a good method to solve multiscale MDPs. It

solves both the problems we set out to address in this chapter, i.e. it uses the coarse model

that is better conditioned, but still computes an exact solution for the original model. However,

we will show using a simple example that for MDPs with multiscale structure the FAS can have

an extremely slow convergence rate. The algorithm still converges but it is much slower than

simple value iteration. We propose a solution to this issue in the next section.

The example we use is not a contrived model but a simple and widely used model motivated

by a manufacturing application. The model is described in [YZ13] and concerns the control of

a manufacturing process with two machines. Each machine has two states, up and down. We

use 1 to denote that machine is working, and 0 for the state when the machine is broken down.

The total number of states in the system are {(1, 1), (0, 1), (1, 0), (0, 0)}, where (i, j) represents

the state where machine 1 in state i and machine 2 in state j. In this manufacturing process,

the state of each machine depends on the action a, which is the rate of preventive maintenance.

The overall goal of the problem is to pick the policy u such that the machines do not break

down often while the cost of maintenance is not too high. The model further assumes that the

two machines have failure rates that occur in different timescales. To reflect this assumption

3.4. Analysis of the Full Approximation Scheme 79

the following generator is used,

Qǫ
h(a) =

1

ǫ

−λ1(a) λ1(a) 0 0

µ1(a) −µ1(a) 0 0

0 0 −λ1(a) λ1(a)

0 0 µ1(a) −µ1(a)

+

−λ2(a) 0 λ2(a) 0

0 −λ2(a) 0 λ2(a)

µ2(a) 0 −µ2(a) 0

0 µ2(a) 0 −µ2(a)

,

(3.30)

where λ1(a)/ǫ and µ1(a)/ǫ are the breakdown and repair rates for machine 1, and λ2(a) and

µ2(a) for machine 2, respectively. As we can see, equation (3.30) is in the same form of equation

(3.3). Intuitively, the more preventive maintenance is performed on a machine, then the machine

is more likely to stay in state 1. For this simple example, we assume X h = {1, 2, 3, 4}, a ∈

{1, 2, . . . , 5}, and

λ1(a) = 1/a, µ1(a) = a2,

λ2(a) = 3/a, µ2(a) = 3a.

A higher value of a would ensure the system is online more often. Of course the more mainte-

nance is performed the higher the costs. To reflect this trade-off we use the following objective

function,

Gh(x, a) = x2 + a2 , ∀x ∈ X h , a ∈ {1, 2, 3, 4, 5}.

We used the FAS scheme to solve the infinite horizon version of the model described above.

We plot the iteration history of the FAS against the exact solution of the fine model in Figure

3.2. The exact solution was obtained using linear programming. It may initially appear that

the FAS has a similar performance as the value iteration algorithm when applied to the fine

model. In closer inspection this is not the case. To illustrate this point we zoom in to the part

of the computation where the FAS jumps to the coarse model (iteration 5000 in this example).

From Figure 3.2 we see that actually no useful computation is performed during the coarse

iterations. We point out that we tried different strategies for updating the step size as well as

experimenting with the different parameters (such as when to jump to the coarse model and

80 Chapter 3. Singularly Perturbed Markov Decision Processes

3.6 3.7 3.8 3.9
1.0

1.1

1.2

1.3

1.4

1.5

1.6

E
r
r
o
r
1
0
y

Number of iterations 10x

Value Iteration
FAS

Figure 3.2: Performance of the FAS, ǫ = 10−2, initial number of iterations in the fine model:
5000, stepsize s = 1. The figure shows that no useful computation is performed by the FAS
during the coarse iterations.

how many iterations to perform there). The numerical performance of the FAS is disappointing.

It appears that the correction does not help the incumbent solution to get closer to the exact

solution. In the next section, we discuss some possible reasons why the FAS may not be suitable

for solving MDPs.

3.4.4 Lack of progress in the coarse iterations of the FAS

In this section, we provide some possible explanations as to why the coarse iterations of the

FAS do not provide useful corrections to the current fine solution. To simplify the analysis,

suppose that there is only one policy uh. We drop the dependence on uh from Qǫ
h and Gh(·).

It is easy to generalize our conclusions to the case when the policy space is richer. With these

simplifications our model reduces to the following linear equation

(Ahvh)(i) ,
Gh(i)

|qhii|+ ρ
+
∑

j 6=i

qhij
|qhii|+ ρ

vh(j)− vh(i) = 0,

3.4. Analysis of the Full Approximation Scheme 81

which can be written more compactly as Lhvh = bh, where

Lh =

−1 qh12
|qh11|+ ρ

. . .
qh1nm
|qh11|+ ρ

qh21
|qh22|+ ρ

−1 . . .
qh2nm
|qh22|+ ρ

...
.

...

qhnm1

|qhnmnm|+ ρ
. −1

, bh =

− Gh(1)

|qh11|+ ρ

− Gh(2)

|qh22|+ ρ
...

− Gh(nm)

|qhnmnm|+ ρ

.

The corresponding coarse model also reduces to the linear system LHvH = bH , where

LH =

−1 qH12
|qH11|+ ρ

. . .
qH1m
|qH11|+ ρ

qH21
|qH22|+ ρ

−1 . . .
qH2m
|qH22|+ ρ

...
.

...

qHm1

|qHmm|+ ρ
. −1

, bH =

− Gh(1)

|qh11|+ ρ

− Gh(2)

|qh22|+ ρ
...

− Gh(m)

|qhmm|+ ρ

.

Given an incumbent solution vh and the exact correction e⋆h, we have

Lh(vh + e⋆h) = bh.

From which we obtain the following,

e⋆h = L−1
h bh − vh = L−1

h bh − L−1
h Lhvh = L−1

h (bh − Lhvh).

Letting dh = Lhvh − bh we obtain,

e⋆h = L−1
h (bh − Lhvh) = −L−1

h dh.

The FAS approximates e⋆h by computing a correction in the coarse model. For the correction

problem, we let vH , IHh vh, dH , LHvH − sIHh dh, and compute,

ṽH , L−1
H dH = vH − sL−1

H IHh dh.

82 Chapter 3. Singularly Perturbed Markov Decision Processes

(a) Traditional Discretization in Differential Equations (b) Aggregation for MMDP

Figure 3.3: Different ideas between discretization and aggregation

Then, the correction is

ẽh ,
1

s
IhH(ṽH − vH) =

1

s
IhH(−sL−1

H IHh dh) = −IhHL−1
H IHh dh.

In the case when IhHL−1
H IHh ≈ L−1

h , the correction problem provides a good approximation of e⋆h.

Traditionally, multigrid methods are aimed towards the solution of differential equations and

discretize a continuous space into different grid sizes. The assumption that IhHL−1
H IHh ≈ L−1

h

usually holds because LH and Lh are discrete operators derived from the same continuous

operator. However, in the case of MMDP, our coarse model is obtained by averaging each

block with its stationary distribution, which makes LH different from Lh. Also, as ǫ → 0, LH

remains unchanged but this is not the case for Lh. Figure 3.3 illustrates the differences between

the two kinds of problems. In order to give some deeper insights into the numerical challenges

caused by MMDP models we consider the example from the previous subsection when we

have a single action, a = 1. In this simple setting we can compute Lh and LH exactly and

see the differences between the two operators. We performed this analysis with the parameters

described in the previous section and found that the difference between IhHL−1
H IHh and L−1

h

is very large especially for smaller ǫ. The difference between the two operators was measured

using the spectral norm. We also computed the eigenvalues of L−1
h in closed form. The resulting

expression are long but can be easily computed using a symbolic mathematics package. From

our calculations we observed that as ǫ approaches zero the matrix Lh becomes nearly singular

and therefore its inverse does not exist. In contrast, LH is independent of ǫ and its inverse

always exists. This explains why the difference between IhHL−1
H IHh and L−1

h is very large for

small ǫ. In addition, we found that this difference, when measured using the spectral norm, is

a log-linear function of ǫ. This indicates FAS is not suitable for our problem because the basic

3.5. The Alternating Multiresolution Scheme 83

Figure 3.4: The Alternating Multiresolution Scheme (AMS)

motivation of FAS does not fit with the setup ofMMDP models. In the next section, we will

introduce a new scheme, the alternating multiresolution scheme that attempts to address some

of these issues.

3.5 The Alternating Multiresolution Scheme

We have already seen in Section 3.4 that the traditional full approximation scheme is not

suitable forMMDP . We introduce a new algorithm, the Alternating Multiresolution Scheme

(AMS), to address the low convergence rate of the FAS. One can think of the AMS as a

modified version of FAS. In particular, we eliminate the correction problem in the coarse model

and replace it with the original coarse problem. The main idea of the AMS is to split all the

iterations in the coarse model into many pieces.

In the AMS, neither the coarse model nor the fine model is solved completely once. Instead,

we apply the coarse contraction map τH,P times to the initial guess of the coarse model, then

project the solution to the fine model as an initial guess. We then apply the fine contraction

map Th for τh,P times, project it back to the coarse model for τH,P iterations to find the

approximate error, and so on. The scheme is shown in Figure 3.4. For convenience we number

the nodes and pair up one fine iteration node with one coarse iteration node together. Starting

with node 1, which is a coarse iteration node, we add 1 to the iteration counter whenever we

switch between coarse and fine iterations. With this indexing convention all the odd nodes are

iterations with the coarse model, and all the even nodes are iterations with the fine model.

For an alternating multiresolution scheme with M nodes, we pair up node 2j and node 2j + 1

together, j = 1, 2, . . . , (M − 2)/2. A P-AMS denotes the alternating multiresolution scheme

84 Chapter 3. Singularly Perturbed Markov Decision Processes

Algorithm 3.1 The Alternating Multiresolution Scheme (P-AMS)

· Start with initial guess v0
H .

· v1
H ← T

τH,P

H v0
H .

· v0
h ← IhHv

1
H .

for p = 1, 2, . . . , P do
· v1

h ← T
τh,P
h v0

h.
· v1

H ← IHh v
1
h.

· v2
H ← T

τH,P

H v1
H .

· v0
h ← v1

h + sIhH [(v2
H − v1

H)] (where s is the stepsize).
end for
while Ah(v

0
h) ≥ δ do

· v0
h ← Thv

0
h.

end while

Figure 3.5: The One-way Multiresolution Scheme (OWMS)

with P pairs. Figure 3.4 illustrates the P-AMS with P=3. We state the full algorithm below.

In order to have a fully specified algorithm we need to decide τh,P , τH,P , and a strategy to pick

the step-size parameter s. We discuss how the number of iterations is determined below. We

first discuss this issue on a simplified version of AMS before addressing the general case.

3.5.1 One-way Multiresolution Scheme

We begin our analysis of the AMS for the specific case where we only have two nodes. We call

this specific scheme the One-Way Multiresolution Scheme (OWMS). In this scheme we solve

the coarse model first and prolongate the solution as an initial guess for the fine model. Figure

3.5 illustrates the simplified scheme. The Lemma below gives an upper bound on the number

of iterations that need to be performed in the coarse model. The significance of the lemma

below is that it provides an estimate of the number of iterations required and relies on known

input data.

3.5. The Alternating Multiresolution Scheme 85

Lemma 3.4 The number of iterations required to achieve the following accuracy in the coarse

model,

‖vτH,0

H − v
τH,0−1
H ‖∞ ≤ K

ǫ(1− αH)

αH

. (3.31)

is bounded by,

τH,0 ≤
log

(
1

ǫ(1− αH)

)

| logαH |
. (3.32)

In addition when (3.31) is satisfied then v
τH,0

H satisfies

‖v⋆
H − v

τH,0

H ‖∞ ≤ Kǫ (3.33)

where the constant K is defined in (3.21).

Proof Using the contraction property (3.16)

‖v⋆
H − v

τH,0

H ‖∞ ≤
αH

1− αH

‖vτH,0

H − v
τH,0−1
H ‖∞ ≤

αH

1− αH

K
ǫ(1− αH)

αH

≤ Kǫ,

In order to find the bound of τH,0, we select τ ′H,0 such that

‖vτ ′H,0

H − v
τ ′H,0−1

H ‖∞ ≤ α
τ ′H,0−1

H ‖v1
H − v0

H‖∞ ≤ α
τ ′H,0−1

H K = K
ǫ(1− αH)

αH

,

and so

α
τ ′H,0−1

H K = K
ǫ(1− αH)

αH

, (3.34)

τ ′H,0 =

log

(
1

ǫ(1− αH)

)

| logαH |
. (3.35)

Notice that τ ′H,0 > 0 because both ǫ < 1 and αH < 1. Since v
τ ′H,0

H guarantees the desired

accuracy, we have τH,0 ≤ τ ′H,0, for τ
′
H,0 in equation (3.35).

Figure 3.6 illustrates the concept behind the stopping criterion developed in the preceding

lemma. The reason we do not compute the exact v⋆
H is that using v

τH,0

H as the initial point for

86 Chapter 3. Singularly Perturbed Markov Decision Processes

Figure 3.6: Stopping criteria in the coarse model

the fine iterations (bold line) is always faster than the alternative (dotted line) of computing

the fine solution v⋆
H and then performing fine iterations to compute v⋆

h. The preceding lemma

just gives a rigorous backing to the intuitive idea that the exact solution of the approximate

model does not add enough information to justify the cost of computing it.

The next step in the definition of the OWMS is the definition of τh,0, i.e. the number of

iterations that need to be performed in the fine scale. Of course this number must depend on

a user specified error tolerance δ defined as follows,

‖v⋆
h − v

τh,0
h ‖∞ < δ.

Any solution that satisfies the solution above is called δ-optimal (note that under our assump-

tions v⋆
h is unique). The upper bound derived in the lemma below depends on δ and the amount

of scale separation present in the problem ǫ.

Lemma 3.5 Suppose that the initial point for the fine iterations is

v0
h , IhHv

τ ′H,0

H ,

where τ ′H,0 satisfies equation (3.31). Then the number of iterations in the fine model required

3.5. The Alternating Multiresolution Scheme 87

to compute a δ-optimal solution is bounded by

τh,0 ≤ max

{ log

(
Kǫ(2− αH)

δ

)

| logαh|
, 0

}

. (3.36)

Proof Since the initial guess of the fine model is the solution in the coarse model, using Lemma

3.4, we have

‖v0
h − v⋆

h‖∞ ≤ ‖v0
h − IhHv

⋆
H‖∞ + ‖IhHv⋆

H − v⋆
h‖∞,

≤ α
τ ′H,0

H ‖v0
H − v⋆

H‖∞ +Kǫ,

≤ α
τ ′H,0

H K +Kǫ,

= ǫ(1− αH)K +Kǫ,

= Kǫ(2− αH).

Hence, we select a parameter τ ′h,0 such that

‖vτ ′h,0
h − v⋆

h‖∞ ≤ α
τ ′h,0
h ‖v0

h − v⋆
h‖∞ ≤ α

τ ′h,0
h Kǫ(2− αH) = δ,

and so,

τ ′h,0 =

log

(
Kǫ(2− αH)

δ

)

| logαh|
,

as required.

It follows from the lemma above that the number of iterations in the fine model decreases as

ǫ decreases. This is because when ǫ decreases, the coarse model is a better approximation of

the fine model and so we require less iterations in the fine model. This is in stark contrast to

the classical single scale value iteration algorithm that requires more iterations as ǫ decreases.

As ǫ→ 0, the contraction modulus of value iteration αh will tend to 1. In practice this means

that if there is sufficient scale separation in the model, value iteration will be extremely slow.

According to Lemma 3.1, the number of iterations required will tend to infinity as αh → 1.

88 Chapter 3. Singularly Perturbed Markov Decision Processes

However, when ǫ→ 0 then the prolongated value function IhHvH will equal tend to vh, and so

only using the coarse model will be enough to get an accurate solution.

For OWMS and when ǫ → 0 it follows from Lemma 3.5 that the upper bound of the number

of iterations needed in the fine model tends to zero, i.e. no iterations are needed in the fine

model. This is very good news from the point of computation because as alluded to above

when ǫ is small the algorithm may require arbitrarily many iterations using the full model to

converge. At the regime of ǫ→ 0, the coarse model can replace the fine model completely, and

OWMS can detect that ǫ is small enough and not perform any expensive iterations using the

fine model.

Note that ǫ is not an input parameter for our algorithm but represents the scale difference in

the problem. On the other hand, δ is a user specified parameter and it represents the accuracy

of the final solution. Therefore, the two parameters are independent of each other. For larger

δ, the final solution could be less accurate, and so it requires less iterations in the fine model.

This again can be seen from Lemma 3.5. While ǫ and δ are not directly related, they could

have similar effects. For example, for a fixed ǫ a small δ (high accuracy) will mean that more

iterations using the fine model will be performed by both value iteration and OWMS. Similarly,

for a fixed δ a small ǫ would imply more iterations for the classical value iteration algorithm

but the situation for OWMS is more complicated. For example, if ǫ≪ δ then OWMS will make

no iterations with the fine model. All these relationships can be derived from the expressions

derived in Lemma 3.5, and depend on parameters that are known (up to a multiplicative

constant) by the user.

Of course comparing just the number of iterations in the fine model is not sufficient. In order to

perform a more rigorous and fair comparison between the newly proposed scheme OWMS and

the classical single scale value iteration we derive the complexity of OWMS. We then find the

conditions the MDP has to satisfy in order for the OWMS to have a more favorable complexity

than value iteration.

3.5. The Alternating Multiresolution Scheme 89

Theorem 3.6 ForMMDP(ǫ, n,m, L), the complexity of the OWMS is

O

log

(
1

ǫ(1− αH)

)

| logαH |
m2Ln +max

{ log

(
ǫ(2− αH)

δ

)

| logαh|
, 0

}

(nm)2L

. (3.37)

Proof The complexity of the algorithm is divided into two parts. The first part is the com-

putational complexity associated with the coarse model. The second part is the complexity

associated with fine iterations. Combining the information obtained by the Lemmas 3.4 and

3.5, we obtain the required result.

We are now in a position to derive conditions that the MDP needs to satisfy so that we can

guarantee that the proposed scheme will outperform value iteration.

Theorem 3.7 Suppose that the tolerance δ < min{ǫ(2−αH), 1}. ForMMDP(ǫ, n,m, L), the

complexity of the OWMS is less than the complexity of the value iteration if

n2 ≥ log(ǫ(1− αH))

log(ǫ(2− αH)(1− αh))

| logαh|
| logαH |

Ln−1. (3.38)

Proof From equations (3.37) and (3.26), we know the complexity of both algorithms. Also,

since δ < min{ǫ(2− αH), 1},

log

(
ǫ(2− αH)

δ

)

> 0 and log

(
1

(1− αh)δ

)

> 0.

We proceed by computing the difference between the complexities.

log

(
1

(1− αh)δ

)

| logαh|
(nm)2L−

log

(
1

ǫ(1− αH)

)

| logαH |
m2Ln −

log

(
ǫ(2− αH)

δ

)

| logαh|
(nm)2L

=
m2

L

[

log

(
1

ǫ(1− αh)(2− αH)

)
n2

| logαh|
− log

(
1

ǫ(1− αH)

)
Ln−1

| logαH |

]

.

90 Chapter 3. Singularly Perturbed Markov Decision Processes

Using inequality (3.38) implies that the difference is greater than

≥ m2

L

[

log

(
1

ǫ(1− αH)

)
Ln−1

| logαH |
− log

(
1

ǫ(1− αH)

)
Ln−1

| logαH |

]

≥ 0.

As we can see, the complexity of the OWMS is not always less than the single resolution

algorithm. This is due to the fact that the number of actions for each coarse state is an

exponential compared to the number of actions for each single state in the fine model. We

will return to this issue in Section 3.6. If the problem has sufficient scale separation (which is

the setting of this chapter) then we see that inequality (3.38) is asymptotically satisfied in ǫ

because

log(ǫ(1− αH))

log(ǫ(1− αh)(2− αH))

| logαh|
| logαH |

→ 0 as ǫ→ 0.

Therefore, for a small enough ǫ, the complexity of the OWMS is less than that of value iteration.

3.5.2 Convergence Analysis of AMS

In this section we turn our attention to the full AMS which includes the OWMS as a special

case. We first prove some technical lemmas that will be used later on.

Lemma 3.8 IHh I
h
H = Im, where Im is the identity matrix in Rm×m.

Proof By definition, IhH = diag(1n×1,1n×1, . . . ,1n×1
︸ ︷︷ ︸

m copies

), so for any v = (vi) ∈ Rm,

IhHv = diag(1n×1,1n×1, . . . ,1n×1
︸ ︷︷ ︸

m copies

)v = diag(v1,v2, . . . ,vm),

where vi = vi1n×1, for i = 1, 2, . . . ,m. The equality above follows from the fact that the vector

3.5. The Alternating Multiresolution Scheme 91

v is premultiplied with a block diagonal matrix. Using the definition of IHh , we obtain

IHh I
h
Hv = diag(ϕT

1 ,ϕ
T
2 , . . . ,ϕ

T
m)diag(v1,v2, . . . ,vm).

Using the fact that the ϕi are the stationary distribution vectors,

n∑

j=1

(ϕi)j = 1 ∀i ∈ {1, 2, . . . ,m},

we obtain ϕT
i vi = vi and IHh I

h
Hv = v, as claimed.

Lemma 3.9 ‖IhH‖∞ = ‖IHh ‖∞ = 1.

Proof IhH is a matrix with only one 1 in each of its rows, and so ‖IhH‖∞ = 1. On the other

hand, IHh is a stochastic matrix, and so ‖IHh ‖∞ = 1.

Lemma 3.10 ‖I− IhHI
H
h ‖∞ ≤ 2, where I is the identity matrix in Rmn×mn.

Proof Notice that IHh is a stochastic matrix, and

IhHI
H
h = diag(1n×1,1n×1, . . . ,1n×1

︸ ︷︷ ︸

m copies

)diag(ϕT
1 ,ϕ

T
2 , . . . ,ϕ

T
m) = diag(ϕ̂T

1 , ϕ̂
T
2 , . . . , ϕ̂

T
m),

where ϕ̂T
i , 1n×1ϕ

T
i for i = 1, 2, . . . ,m. In addition, IhHI

H
h is also a stochastic matrix because

each of ϕ̂T
i is a stochastic matrix. Therefore, the sum of the absolute values for every row of

I− IhHI
H
h must be less than or equal to 2.

Suppose we have a current solution vh, we then restrict it to the coarse model for correction,

we then prolong the correction to the fine model, and add it to vh. We call this process a

correction and the associated correction operator is defined as

Tτvh , vh + sIhH(T
τ
HI

H
h vh − IHh vh). (3.39)

92 Chapter 3. Singularly Perturbed Markov Decision Processes

If the correction v′
h = Tτvh is useful for the problem, then the new solution v′

h should be closer

to the optimal solution than the original vh. In the next lemma we provide a link between the

corrected value function v′
h and the current incumbent vh.

Lemma 3.11 For the current value vh in the fine level, let v′
h = Tτvh, then

‖v⋆
h − v′

h‖∞ ≤ [|1− s|+ sατ
H] ‖v⋆

h − vh‖∞ + (sατ
H + s)Kǫ+ 2Ks, (3.40)

where s ≥ 0 is the fixed stepsize.

Proof

‖v⋆
h − v′

h‖∞ = ‖v⋆
h − vh − sIhH(vτ

H − IHh vh)‖∞

= ‖v⋆
h − vh − sIhHvτ

H + sIhHI
H
h vh‖∞

≤ |1− s|‖v⋆
h − vh‖∞ + s‖v⋆

h − IhHv
τ
H‖∞ + s‖vh − IhHI

H
h vh‖∞ (triangle ineq.)

≤ |1− s|‖v⋆
h − vh‖∞ + s‖v⋆

h − IhHv
⋆
H‖∞

+s‖IhHv⋆
H − IhHv

τ
H‖∞ + s‖I− IhHI

H
h ‖∞‖vh‖∞ (triangle ineq.)

≤ |1− s|‖v⋆
h − vh‖∞ + sKǫ+ s‖IhH‖∞‖v⋆

H − vτ
H‖∞ + 2Ks (model assumptions)

≤ |1− s|‖v⋆
h − vh‖∞ + sKǫ+ sατ

H‖v⋆
H − IHh vh‖∞ + 2Ks

≤ |1− s|‖v⋆
h − vh‖∞ + sKǫ+ sατ

H‖v⋆
H − IHh v

⋆
h‖∞

+sατ
H‖IHh v⋆

h − IHh vh‖∞ + 2Ks (triangle ineq.)

≤ |1− s|‖v⋆
h − vh‖∞ + sKǫ+ sατ

H‖IHh ‖∞‖IhHv⋆
H − v⋆

h‖∞ + sατ
H‖v⋆

h − vh‖∞

+2Ks

≤ (|1− s|+ sατ
H)‖v⋆

h − vh‖∞ + (s+ sατ
H)Kǫ+ 2Ks. (model assumptions)

Lemma 3.11 provides a bound for the difference between the new solution v′
h and the optimal

solution v⋆
h. Using the preceding result we then derive the conditions required for the new error

3.5. The Alternating Multiresolution Scheme 93

to be smaller than the previous error. Therefore when these conditions are satisfied, Algorithm

3.1 is a contraction, and the convergence is guaranteed by the fixed point theorem.

Theorem 3.12 Algorithm 3.1 is guaranteed to be a contraction if

(1− ατ
H)‖v⋆

h − vh‖∞ ≥ (ατ
H + 1)Kǫ+ 2K for 0 ≤ s ≤ 1,

[
2

s
− (1 + ατ

H)

]

‖v⋆
h − vh‖∞ ≥ (ατ

H + 1)Kǫ+ 2K for s > 1.

Proof In the case 0 ≤ s ≤ 1, using Lemma 3.11, we obtain

‖v⋆
h − v′

h‖∞ ≤ [|1− s|+ sατ
H] ‖v⋆

h − vh‖∞ + (sατ
H + s)Kǫ+ 2Ks

= ‖v⋆
h − vh‖∞ + s ([ατ

H − 1] ‖v⋆
h − vh‖∞) + s ((ατ

H + 1)Kǫ+ 2K)

≤ ‖v⋆
h − vh‖∞ − s ((ατ

H + 1)Kǫ+ 2K) + s ((ατ
H + 1)Kǫ+ 2K)

≤ ‖v⋆
h − vh‖∞.

For the case 1 < s, we obtain

‖v⋆
h − v′

h‖∞ ≤ [|1− s|+ sατ
H] ‖v⋆

h − vh‖∞ + (sατ
H + s)Kǫ+ 2Ks

= ‖v⋆
h − vh‖∞ + s

(

−2

s
+ (1 + ατ

H)

)

‖v⋆
h − vh‖∞ + s ((ατ

H + 1)Kǫ+ 2K)

≤ ‖v⋆
h − vh‖∞ − s ((ατ

H + 1)Kǫ+ 2K) + s ((ατ
H + 1)Kǫ+ 2K)

≤ ‖v⋆
h − vh‖∞.

We note from the conditions of Theorem 3.12 that (ατ
H + 1)Kǫ+ 2K is a constant throughout

all the iterations. However, ‖v⋆
h−vh‖∞ depends on the current solution vh. This indicates the

correction is not guaranteed to be useful when the current solution is too close to the exact

solution v⋆
h. This suggests we should restrict the number of coarse iterations of the algorithm.

We should not perform coarse iterations when the current solution is close to v⋆
h. The result

does not provide insight into how to select s since it depends on the optimal solution. In the

94 Chapter 3. Singularly Perturbed Markov Decision Processes

result below we provide the range that s can take so that the conditions of Theorem 3.12 are

satisfied.

Corollary 3.13 Algorithm 3.1 is a contraction only if the stepsize is chosen so that,

0 ≤ s ≤ 2

1 + ατ
H

.

Proof Using the result from Theorem 3.12 we obtain,

(ατ
H + 1)Kǫ+ 2K ≥ 0.

Algorithm 3.1 is guaranteed to be a contraction only if

1− ατ
H ≥ 0 for 0 ≤ s ≤ 1, (3.41)

2

s
− (1 + ατ

H) ≥ 0 for s > 1. (3.42)

In the case when s ≤ 1, equation (3.41) is always satisfied, and in addition the following holds,

|1− s|+ sατ
H = 1− s+ sατ

H = 1− s(1− ατ
H) ≤ 1.

However, when s > 1, equation (3.42) is only satisfied when

s ≤ 2

1 + ατ
H

.

For 1 < s ≤ 2

1 + ατ
H

,

|1− s|+ sατ
H = −1 + s+ sατ

H = −1 + s(1 + ατ
H) ≤ 1.

The above corollary shows that when s > 2/(1 + ατ
H), it is not guaranteed that the correction

would be useful. With the results obtained above concerning the correction iterations we are

3.5. The Alternating Multiresolution Scheme 95

now in a position to derive the complexity of the proposed scheme.

Let v2i
a,h denote the solution after calculations in node 2i, and let v2i−1

a,H be the solution after

calculations in node 2i− 1 for i = 1, 2, . . . , P + 1. Since the incumbent solution v2i−1
a,H is in the

coarse level, we prolongate the solution of the coarse model to the fine model as follows,

vj
a =

vj
a,h if j is even,

IhHv
j
a,H if j is odd,

for j = 1, 2, ..., 2(P + 1).

With this notation the flow of computations for the AMS is,

v0
a ⇒ v1

a ⇒ v2
a ⇒ · · · ⇒ v2P+1

a ⇒ v2(P+1)
a ,

where v
2(P+1)
a is the final solution computed by the algorithm and therefore satisfies,

‖v⋆
h − v2(P+1)

a ‖∞ ≤ δ,

where δ is a user specified error tolerance. We assume that for P-AMS, we always perform

τH,P iterations in each coarse iteration node and τh,P iterations in first P fine iteration nodes

for constants P , τh,P , and τH,P . In the complexity analysis below we fix these constants, and

calculate the number of iterations the algorithm needs to refine the final solution from the

AMS.

Lemma 3.14 Suppose that in the P-AMS we perform τH,P iterations in node 1, 3, 5, . . . , 2P +1

and τh,P iterations in node 2, 4, 6, . . . , 2P , and with a constant stepsize s satisfying the conditions

in Corollary 3.13. Then the initial point (v2P+1
a) from which the computations in the final node

2P + 2 start, satisfies

‖v⋆
h − v2P+1

a ‖∞ ≤ ηPKǫ+ ηPα
τH,P

H K +
1− ηP+1

1− η sC, (3.43)

where η , (|1− s|+ sα
τH,P

H)α
τh,P
h and C , (1 + α

τH,P

H)Kǫ+ 2K.

96 Chapter 3. Singularly Perturbed Markov Decision Processes

Proof We will prove this using induction. Using the contraction mapping property,

‖v⋆
h − v1

a‖∞ ≤ ‖v⋆
h − IhHv

⋆
H‖∞ + ‖IhHv⋆

H − v1
a‖∞ ≤ Kǫ+ α

τH,P

H ‖v⋆
H − v0

H‖∞,

= Kǫ+ α
τH,P

H K

and

‖v⋆
h − v2

a‖∞ ≤ α
τh,P
h ‖v⋆

h − v1
a‖∞.

Using Lemma 3.11, we have

‖v⋆
h − v3

a‖∞ ≤
[
|1− s|+ sα

τH,P

H

]
‖v⋆

h − v2
a‖∞ + (sα

τH,P

H + s)Kǫ+ 2Ks,

which gives the following estimate,

‖v⋆
h − v3

a‖∞ ≤
[
|1− s|+ sα

τH,P

H

]
α
τh,P
h ‖v⋆

h − v1
a‖∞ + (sα

τH,P

H + s)Kǫ+ 2Ks

= η‖v⋆
h − v1

a‖∞ + sC.

By induction, after P pairs, we have

‖v⋆
h − v2P+1

a ‖∞ ≤ ηP‖v⋆
h − v1

a‖∞ + sC
P∑

k=0

ηk = ηP‖v⋆
h − v1

a‖∞ +

(
1− ηP+1

1− η

)

sC

≤ ηPKǫ+ ηPα
τH,P

H K +

(
1− ηP+1

1− η

)

sC,

as required.

Lemma 3.14 establishes the error of the current solution before entering the last node. We now

complete the analysis by deriving an upper bound for the number of iterations required in the

fine model to get the final solution with tolerance δ.

Lemma 3.15 Suppose that in the P-AMS we perform τH,P iterations in node 1, 3, 5, . . . , 2P +1

and τh,P iterations in node 2, 4, 6, . . . , 2P , and with a constant stepsize s satisfying the conditions

3.5. The Alternating Multiresolution Scheme 97

in Corollary 3.13. Then the number of iterations in the last node τa is bounded by

τa ≤ max

{ log

(
KZ

δ

)

| logαh|
, 0

}

, (3.44)

where

Z , ηP ǫ+ ηPα
τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H)ǫ+ 2
)
, (3.45)

η , (|1− s|+ sα
τH,P

H)α
τh,P
h . (3.46)

Proof Using Lemma 3.14 implies

‖v⋆
h − v2P+1

a ‖∞ ≤ ηPKǫ+ ηPα
τH,P

H K +

(
1− ηP+1

1− η

)

sC

≤ K

[

ηP ǫ+ ηPα
τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H)ǫ+ 2
)
]

︸ ︷︷ ︸

=:Z

.

Now let v0
h , v2P+1

a and select τ ′a such that

‖vτ ′a
h − v⋆

h‖∞ ≤ α
τ ′a
h ‖v0

h − v⋆
h‖∞ ≤ α

τ ′a
h KZ = δ,

for a fixed tolerance δ. Using the same analysis as in Lemma 3.5, we obtain

τ ′a =

log

(
KZ

δ

)

| logαh|
. (3.47)

and therefore τa ≤ max{τ ′a, 0} as required.

Theorem 3.16 TheMMDP(ǫ, n,m, L), a P-AMS with τH,P iterations in node 1, 3, 5, . . . , 2P+

1 and τh,P iterations in node 2, 4, 6, . . . , 2P and a constant stepsize s satisfying the conditions

98 Chapter 3. Singularly Perturbed Markov Decision Processes

in Corollary 3.13 has the following worst-case computational complexity,

O

max

{ log

(
Z

δ

)

| logαh|
, 0

}

+ Pτh,P

(mn)2L+ (P + 1)τH,Pm

2Ln

, (3.48)

where Z is defined in (3.45).

Proof Using Lemma 3.15, we obtain the total number of iterations in both the fine and coarse

models. Therefore, the complexity is the sum of the number of iterations multiplied by the cost

of each iteration for both fine and coarse model.

The theorem below shows that OWMS is one specific case of AMS if the parameters of AMS

are judiciously chosen.

Theorem 3.17 Suppose the tolerance δ < min{Z, ǫ(2 − αH)}, where Z is defined in (3.45).

For MMDP(ǫ, n,m, L), AMS has the same complexity as OWMS in the case when P = 0,

s = 0, and τH,P = τ ′H,0, where τ
′
H,0 is defined in equation (3.35).

Proof Using Theorem 3.16 with P = 0, s = 0, and τH,P = τ ′H,0, where τ
′
H,0 is defined in

equation (3.35), we obtain

log

(
Z

δ

)

| logαh|
+ Pτh,P

(mn)2L+ (P + 1)τH,Pm

2Ln

=

log

(
Z

δ

)

| logαh|
(mn)2L+ τH,Pm

2Ln

=

log

(
Z

δ

)

| logαh|
(mn)2L+

log

(
1

ǫ(1− αH)

)

| logαH |
m2Ln,

3.5. The Alternating Multiresolution Scheme 99

where

Z = ηP ǫ+ ηPα
τH,P

H +
1− ηP+1

1− η s
(
(1 + α

τH,P

H)ǫ+ 2
)

= ǫ+ ατ ′H,0

= ǫ+ ǫ(1− αH) (Equation (3.34) implies α
τ ′H,0

H = ǫ(1− αH))

= ǫ(2− αH).

Therefore, the complexity of AMS becomes

O

log

(
ǫ(2− αH)

δ

)

| logαh|
(mn)2L+

log

(
1

ǫ(1− αH)

)

| logαH |
m2Ln

,

which is same as the OWMS.

Using the preceding theorem we can conclude that if we define the parameters

(s⋆, τ ⋆h,P , τ
⋆
H,P , P

⋆) ∈ arg min
s,τh,P ,τH,P ,P

max

{ log

(
Z

δ

)

| logαh|
, 0

}

+ Pτh,P

(mn)2L

+ (P + 1)τH,Pm
2Ln,

then the complexity of AMS with parameters (s⋆, τ ⋆h,P , τ
⋆
H,P , P

⋆) must be less than or equal to

the complexity of OWMS. Notice that the parameters (s⋆, τ ⋆h,P , τ
⋆
H,P , P

⋆) are optimizing the

worst case complexity. While the result above is useful it is difficult to obtain a closed form

solution for these parameters. Instead in our numerical results we will use a suboptimal solution

that is motivated by the optimal parameter selection problem above.

100 Chapter 3. Singularly Perturbed Markov Decision Processes

3.6 Action Space Sampling for the Coarse Model

It follows from the complexity analysis of the preceding sections that the advantages of the

coarse model are (a) the dimensionality reduction in the state space and (b) the improved

convergence rate. However, the action space in the coarse model is exponentially larger than the

fine model. If the fine modelMMDP(ǫ, n,m, L) is aggregated using perturbation theory then

the coarse model is anMDP(m,Ln) problem. We will take advantage of the well-established

links between linear programming and MDPs together with constraints sampling techniques

from [CC05, Cal10] to address the computational cost associated with the coarse model.

3.6.1 Linear Programming and MDPs

It is well known that the HJB equation (3.10) can be solved by the following LP,

max
∑

i∈XH

vH(i)

s.t vH(i) ≤
GH(i, aH)

|qHii (aH)|+ ρ
+
∑

j 6=i

qHij (aH)

|qHii (aH)|+ ρ
vH(j) ∀aH ∈ AH

i , i ∈ XH

The LP formulation of MDP(m,Ln) has m variables and mLn constraints. For large-scale

problems, it is very likely that m ≪ mLn, and so we will have a lot more constraints than

variables. In this commonly encountered scenario, most of the constraints are not active at the

optimum, and eliminating them could reduce the computational cost of the problem [dFVR04].

We will use the constraint sampling technique to reduce the action space and so the complexity.

We will make the following assumption regarding the relationship between samples and states.

Assumption 3.18 Let SSET , {(a1, x1), (a2, x2), (a3, x3), . . . , (aR, xR)} be the set of R sam-

ples from the probability mass function ψ(aH , xH), and let SA
i , {(aH , i) : aH ∈ AH

i }. Then,

SSET ∩ SA
i 6= ∅, ∀i ∈ XH .

Assumption 3.18 implies that the set of samples will contain at least one state-action pair for

each state. We use this assumption to ensure that our samples are enough to formulate another

3.6. Action Space Sampling for the Coarse Model 101

MDP which has action sets that are the (non-empty) subset of the action sets in the original

problem.

Lemma 3.19 Let ÃH
i , {aH : (aH , i) ∈ SSET ∩SA

i }, then the optimal solution of the following

LP,

max
∑

i∈XH

ṽH(i),

s.t. ṽH(i) ≤
GH(i, aH)

|qHii (aH)|+ ρ
+
∑

j 6=i

qHij (aH)

|qHii (aH)|+ ρ
ṽH(j) ∀(aH , i) ∈ SSET .

(3.49)

is the value function of the MDP below,

min J̃H(i,uH) = E

[∫ ∞

0

e−ρtGH(xH(t),uH(x(t))) dt

]

,

s.t xH ∼ QH(uH(xH(t))) , t ≥ 0, (3.50)

xH(0) = i , uH ∈ ŨH ,

ṽH(i) = min
uH∈ŨH

J̃H(i,uH),

where ŨH is the policy space for ÃH
i , ∀i ∈ XH .

Proof The LP in (3.49) is just the reformulation of (3.50) as a linear program.

We refer to the MDP in (3.50) as the reduced coarse model. Note that in the reduced

coarse model we still maintain the fast convergence rate due to the elimination of the multiscale

structure and at the same time we are able to control the complexity per iteration by decreasing

the number of actions. Of course when the reduced order policy space contains the optimal

policy then indeed the solution of the reduced coarse model coincides with the coarse solution.

This simple observation is established below.

Lemma 3.20 The solution of the reduced coarse model is same as the solution of the coarse

model when,

u⋆
H(i) ∈ ÃH

i , ∀i ∈ XH . (3.51)

102 Chapter 3. Singularly Perturbed Markov Decision Processes

In other words, the policy space of the reduced coarse model contains the optimal policy.

Proof Since the policy space in the reduced coarse model is a subset of the policy space

in the coarse model, if u⋆
H minimizes the expected discounted cost in the coarse model, it

also minimizes the expected discounted cost in the reduced coarse model with the same value

function.

Of course it is unreasonable to make such a strong assumption as the one above. Instead we

will analyze the performance of OWMS and AMS by sampling the actions in the coarse model

uniformly. In practice, it is often the case that some action-state pairs are more important

than others. As a result the uniform distribution assumption may not be the best from a

computational perspective. However, if no additional assumption is made about the MDP then

this is a valid assumption to examine. We use basic combinatorics to obtain a quantitative

estimate of the probability of obtaining the optimal policy from the reduced coarse model.

Theorem 3.21 For MMDP(ǫ, n,m, L) suppose that a P-AMS with τH,P iterations in node

1, 3, 5, . . . , 2P + 1 and τh,P iterations in node 2, 4, 6, . . . , 2P and stepsize s is used. If R =

(1− σ)1/mLn samples are drawn from AH
i , ∀i ∈ XH then the optimal solution will be obtained

with probability 1− σ and the complexity of AMS is,

O

max

{ log

(
Z

δ

)

| logαh|
, 0

}

+ Pτh,P

(mn)2L+ (P + 1)τH,Pm

2R

, (3.52)

where Z is defined in Lemma 3.15.

Proof For state i in the coarse model, only one optimal action is needed to construct the

optimal policy. For R actions that are drawn from AH
i , the total number of possible combina-

tions is

Ln

R

. If the optimal action is obtained in the samples, the total number of possible

3.6. Action Space Sampling for the Coarse Model 103

combinations is

Ln − 1

R− 1

. So, the probability of obtaining the optimal action is

Ln − 1

R− 1

Ln

R

=
R

Ln
.

The optimal policy is obtained only if each action space in the reduced coarse model contains

its optimal action. The probability of obtaining the optimal policy is then 1− σ ,
(

R
Ln

)m
, and

so R = (1 − σ)1/mLn. If ṽ⋆
H = v⋆

H , the convergence of the reduced coarse model is same as

coarse model with less actions in each state. Therefore, with R = (1− σ)1/mLn, the AMS has

probability 1− σ to obtain v⋆
h with complexity

O

max

{ log

(
Z

δ

)

| logαh|
, 0

}

+ Pτh,P

(mn)2L+ (P + 1)τH,Pm

2R

,

as stated in Theorem 3.16.

OWMS is a specific case of AMS and so Theorem 3.21 covers the case of OWMS too. While the

result above guarantees ṽ⋆
H = v⋆

H with certain probability, it may still require a large number of

samples. To address this last point we make use of the result from Calafiore [Cal10] to estimate

the number of action-state pairs that would guarantee one extra action-state pair would not

change the value function of the reduced coarse model with certain probability. This is useful

because it provides a guide on the number of sufficient samples required to obtain the most

“useful” actions so that the value function ṽ⋆
H is likely to be close to v⋆

H .

Theorem 3.22 Consider the reduced coarse model with state-action pairs set SSET with size

mR (R actions in each state on average) and let Assumption 3.18 hold. Let (ãH , x̃H) be a state-

action pair drawn from ψ(aH , xH). Let ṽ⋆
H be the value function of the reduced coarse model

104 Chapter 3. Singularly Perturbed Markov Decision Processes

with SSET , and v̂⋆
H be the value function of the reduced coarse model with SSET ∪ (ãH , x̃H).

Let

V(SSET) , P((ãH , x̃H) ∈ ψ(aH , xH) : ṽ⋆
H = v̂⋆

H), (3.53)

which is the probability that adding an extra action-state pair drawn from ψ(aH , xH) does not

change the optimal policy in the reduced coarse model. Then,

P(SSET ∈ ψ(aH , xH)mR : V(SSET) ≥ 1− ℓ) ≥ 1− β, (3.54)

if

mR ≥ 2

ℓ
log β−1 +

4

ℓ
(m− 1) (3.55)

for ℓ, β ∈ (0, 1).

Proof The proof is provided in [Cal10].

Note that the lower bound of the number of state-action pairs does not depend on the number

of state-action pairs in the original coarse model. In practice, it is possible that one would have

an idea what actions are more likely to be optimal in each state. Such knowledge can be used

to construct a better constraint sampling density ψ(aH , xH).

3.7 Numerical Experiments

In this section, we illustrate the performance of the AMS and the OWMS using two numer-

ical examples. The first example is the widely used example from the field of manufacturing

we introduced in Section 3.4.3. The second example is motivated from stochastic molecular

dynamics. Applications in molecular dynamics (MD) have a strong multiscale structure and

applications related to MD and stochastic optimal control are beginning to emerge [SWH12]. In

the results below we compare the performance of the proposed algorithms and the conventional

value iteration algorithm. The numerical performance of FAS has already been discussed. For

reasons explained in Section 3.4.4, FAS is not competitive with any of the other methods.

3.7. Numerical Experiments 105

The AMS requires the specification of 4 parameters. In the numerical examples below we fix

τh,P = τH,P = 100. The stepsize s is selected according to the estimates in Corollary 3.13. The

parameter P is determined adaptively. To monitor the progress of the algorithm we define the

following measure,

Φ(j) , ‖Ahv
j−2
a − Ahv

j
a‖∞, ∀j ∈ {2 + 2i : i ∈ Z+},

which can be interpreted as the improvement of the solution in node j−1 and j. It follows from

Theorem 3.12 that the coarse correction is only guaranteed to be a contraction if the current

solution is far away from the true solution. With that in mind, we define

Ψ(j) ,
Φ(j − 2)− Φ(j)

Φ(j − 2)
, ∀j ∈ {2 + 2i : i ∈ Z+},

to be the percentage change compared to the last two nodes. This measure of change was used

to detect whether the coarse correction is still useful during calculations, and we stop using

the coarse correction after node j when Ψ(j) is less than some constant ̺. In the experiments

below we set ̺ = 0.1, and we used ǫ = 10−2. With this parameter choice for ǫ, the two problems

contain some multiscale structure but it is not strong enough to just use the coarse model.

3.7.1 Manufacturing Example

Recall that in Section 3.4.3 we introduced an example motivated by a multiscale manufacturing

process. We showed that the Full Approximation Scheme (FSA) fails in this example and

this was one of our motivations for developing the proposed scheme. Figure 3.7 shows the

performance of the different schemes for this example. The parameter settings are exactly the

same as in Section 3.4.3. In Figure 3.7 (left) we show the iteration history, in terms of the

distance to the exact solution, for each of the algorithms. The exact solution was obtained

using linear programming. We do not plot the performance of the FAS for this model because

it makes it difficult to see the differences between value iteration and our algorithms. The

iteration history of FAS was plotted against value iteration in Figure 3.2. In Figure 3.7 (right)

106 Chapter 3. Singularly Perturbed Markov Decision Processes

0 1 2 3 4 5
−12

−7

−2

3
E
rr
o
r
1
0
y

Number of iterations 10x

Value Iteration
OWMS
AMS

Fine FAS OWMS AMS
−12

−10

−8

−6

−4

−2

0

2

4

6

R
el
a
ti
v
e
%

in
cr
ea
se

in
co
m
p
le
x
it
y

Figure 3.7: Numerical performance of the different algorithms. Parameters: v0
h = 0, v0

H = 0,
s = 1.15, and ρ = 0.05. (Left) Iteration History. (Right) Relative increase in realized complexity
of the different algorithms. Value iteration was taken to be the base line. Compared to value
iteration conventional FAS has an increased complexity, whereas the proposed schemes achieve
a 10% reduction.

we plot the (relative) comparisons of realized complexity of the different algorithms as the

number of iterations multiplied by the cost per iteration. We show the realized complexity

of each algorithm in relation to the realized complexity of value iteration. Since the size of

the problem is not large we do not apply sampling in this example. Both of our proposed

multiresolution algorithms are better than solely using the fine model. In this toy example, the

total complexity can be reduced by 10% without any penalty on the accuracy. Notice that in

this example, we have αH = 0.9967. Therefore, the choice of our stepsize s = 1.15 is reasonable

because s < 2/(1 + α
τH,P

H), with τH,P = 100, and s = 1.15.

3.7.2 Example from Molecular Dynamics

In this section we use the proposed scheme to solve a larger problem motivated by molecular

dynamics. The problem of controlling molecular dynamics is an active research area with many

applications in material science and chemical engineering [SWH12]. The potential energy of

3.7. Numerical Experiments 107

molecules is usually modeled as a stochastic differential equation, or as a Markov chain in the

discrete case. Even though the transitions from one energy level to another energy level are

considered to be stochastic, the underlying randomness is structured. Molecules are stable

when they are at a local minimum of the potential energy and are very likely to make fast

changes around the neighborhood of the local minimum. It is rare that molecules would move

from one stable configuration to another. The event that a molecule jumps from one well to

another is characterized as a rare event.

In this example, we consider a Markov chain with 50 states, where Q̂ is a block diagonal matrix

with 10 blocks, and each block is a 5×5 matrix. The state space is X h = {1, 2, . . . , 50}. In this

particular example, each block represents the transitions between different configurations within

a stable configuration. In practice this Markov chain is obtained by discretizing a stochastic

differential equation. For this reason, we assume that q̂ij = 0 if |i − j| > 1. The matrix

W represents the connection from one stable configuration to another. We assume wij = 0

if (i, j) is not from the set {(a, b) : (a, b) ∈ {5, 6, 10, 11, 15, 16, 20, 21, 25, 26}2, |b − a| ≤ 1}.

Since the system is large, we simply sample the entries for Q̂ and W uniformly from the set

{1, 2, 3, . . . , 9}. In order to introduce a control element into the model, we assume that there

exists a catalysis that can be used to speed up or slow down the rate by which the system

moves between states. To be precise, we assume the following form of the generator,

Qǫ
h(a) = 3a

[
1

ǫ
Q̂+W

]

,

where a ∈ {−1,−2/3,−1/3, 0, 1/3, 2/3, 1}. The objective function is G(x, a) = x + 50|a|, and

as before we solve the infinite horizon model. Optimizing the system with this particular choice

of cost function aims to control the dynamics so that the system remains in or close to state 1

without using too much catalysis. Figure 3.8 shows the numerical results of this example. For

this example FAS performed particularly bad. In order to have a clearer comparison between

the proposed algorithms and value iteration we do not plot the iteration history of the FAS.

Notice that the OWMS scheme takes more time to converge than value iteration. After a

few hundred iterations in the coarse model, the coarse model becomes ineffective because the

108 Chapter 3. Singularly Perturbed Markov Decision Processes

0 1 2 3 4 5
−4

−2

0

2

4
E
rr
o
r
1
0
y

Number of iterations 10x

Value Iteration
OWMS
AMS
SAMS

Fine FAS OWMS AMS SAMS
−20

−10

0

10

20

30

R
el
a
ti
v
e
%

in
cr
ea
se

in
co
m
p
le
x
it
y

Figure 3.8: Numerical results of different algorithms. Parameters: v0
h = 0, v0

H = 0, s = 1.1,
R = 10000, and ρ = 0.05. (Left) Convergence in each iteration. (Right) Relative increase in
realized complexity of the different algorithms. Value iteration was taken to be the base line.

current solution is “too close” to the exact solution. Therefore, in this example, OWMS spends

a lot of expensive iterations that do not achieve a significant error reduction. However AMS

still outperforms value iteration. In the fine model, each state has 7 available actions, and so

in the coarse model, each state has 75 = 16807 actions. As the action space is so large, it is

reasonable to apply the action sampling technique described in Section 3.6. In Figure 3.8 we

plot the results when using AMS with action sampling (SAMS), and R = 10000 samples. From

Figure 3.8 (left) we see that applying the sampling technique leads to a slower convergence

rate of our scheme compared to the original AMS and OWMS. However, since the size of the

coarse model is reduced the time spent per iteration is less. This point is made in Figure 3.8

(right) where the proposed scheme with action sampling computes the solution with less realized

complexity compared to all the others. The performance is not much better than the original

AMS due to the fact that uniform sampling is not very effective. In practice, we would expect

that it is possible to find a good distribution ψ(aH , xH) via empirical analysis. Still even without

optimizing the proposed schemes we are able to achieve close to a 20% improvement over value

iteration.

3.8. Discussion 109

3.8 Discussion

We proposed the Alternating Multiresolution Scheme (AMS), for Markov Decision Processes

with a multiscale structure. Our scheme is an alternative framework and, under certain con-

ditions, is theoretically superior to the conventional numerical methods used for this class of

problems. The main idea of AMS is to use the coarse (aggregate) model as much as possible

and avoid using the expensive full (fine) model for all the iterations. It was already known that

the coarse model has less states than the fine model. But more importantly we showed that the

coarse model is also better conditioned. Using complexity analysis and numerical examples we

showed that the proposed scheme outperforms value iteration and the conventional multigrid

based method (FAS). We also proposed a sampling method to address the problem of large

action space in the coarse model.

Our proposed scheme exploits the multiscale structure of the problem, but does not depend on

it, i.e. the convergence does not depend on having scale separation. When there is no scale

separation the algorithm still computes the correct solution but there are no real benefits in

terms of reduction of computation times. When the multiscale structure is very sharp, most of

the calculations will be done in the coarse model, and the final solution is computed by sightly

correcting the approximate solution using the fine model.

We believe that the general scheme proposed in this chapter can be extended to more general

settings or even to different classes of problems. For example, one could replace value iteration

by policy iteration. As long as the underlying algorithm is a contraction, the theoretical results

of this chapter can be used to evaluate its performance.

Chapter 4

Empirical Risk Minimization:

Probabilistic Complexity and Stepsize

Strategy

There are two possible outcomes: if the

result confirms the hypothesis, then

you’ve made a measurement. If the

result is contrary to the hypothesis, then

you’ve made a discovery.

Enrico Fermi

Empirical risk minimization (ERM) is recognized as a special form in standard convex opti-

mization. When using a first order method, the Lipschitz constant of the empirical risk plays

a crucial role in the convergence analysis and stepsize strategies for these problems. We derive

the probabilistic bounds for such Lipschitz constants using random matrix theory. We show

that, on average, the Lipschitz constant is bounded by the ratio of the dimension of the prob-

lem to the amount of training data. We use our results to develop a new stepsize strategy

for first order methods. The proposed algorithm, Probabilistic Upper-bound Guided stepsize

strategy (PUG), outperforms the regular stepsize strategies with strong theoretical guarantee

110

4.1. Introduction 111

on its performance.

4.1 Introduction

Empirical risk minimization (ERM) is one of the most powerful tools in applied statistics,

and is regarded as the canonical approach to regression analysis. In the context of machine

learning and big data analytics, various important problems such as support vector machines,

(regularized) linear regression, and logistics regression can be cast as ERM problems, see for

e.g. [SSBD14]. In an ERM problem, a training set with m instances, {(ai, bi)}mi=1, is given,

where ai ∈ Rn is an input and bi ∈ R is the corresponding output, for i = 1, 2, . . . ,m. The

ERM problem is then defined as the following convex optimization problem,

min
x∈Rn

{

F (x) ,
1

m

m∑

i=1

φi(a
T
i x) + g(x)

}

, (4.1)

where each loss function φi is convex with a Lipschitz continuous gradient, and the regularizer

g : Rn → R is a continuous convex function which is possibly nonsmooth. Two common loss

functions are

❼ Quadratic loss function: φi(x) =
1

2
(x− bi)2.

❼ Logistic loss function: φi(x) = log(1 + exp(−xbi)).

One important example of g is the scaled 1-norm ω‖x‖1 with a scaling factor ω ∈ R+. This par-

ticular case is known as ℓ1 regularization, and it has various applications in statistics [BCW14],

machine learning [SZ13], signal processing [Don06], etc. The regularizer g acts as an extra

penalty function to regularize the solution of (4.1). ℓ1 regularization encourages sparse solu-

tions, i.e. it favors solutions x with few non-zero elements. This phenomenon can be explained

by the fact that the ℓ1 norm is the tightest convex relaxation of the ℓ0 norm, i.e. the cardinality

of the non-zero elements of x [CRT06].

112Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

In general, if the regularizer g is nonsmooth, subgradient methods are used to solve (4.1).

However, subgradient methods are not advisable if g is simple enough, and one can achieve

higher efficiency by generalizing existing algorithms for unconstrained differentiable convex

programs. Much research has been undertaken to efficiently solve ERM problems with simple

g’s. Instead of assuming the objective function is smooth and continuously differentiable, they

aim to solve problems of the following form

min
x∈Rn
{F (x) , f(x) + g(x)}, (4.2)

where f : Rn → R is a convex function with L-Lipschitz continuous gradient, and g : Rn → R

is a continuous convex function which is nonsmooth but simple. By simple we mean that a

proximal projection step can be performed either in closed form or is at least computationally

inexpensive. Norms, and the ℓ1 norm in particular, satisfy this property. A function f is said

to have a L-Lipschitz continuous gradient if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rn. (4.3)

For the purpose of this chapter, we denote the matrix A ∈ Rm×n to be a dataset such that the

ith row of A is aT
i , and so in the case of ERM problems,

f(x) =
1

m

m∑

i=1

φi(a
T
i x) =

1

m

m∑

i=1

φi(e
T
i Ax), (4.4)

where ei ∈ Rm has 1 as its ith component and 0’s elsewhere. f is called the empirical risk in

ERM. We assume that each φi has a γi-Lipschitz continuous gradient and

γ , max{γ1, γ2, . . . , γm}.

Many algorithms [BT09, BF95, LSS14, QSG13, YFI89] have been developed to solve (4.1) and

(4.2). One famous example is the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

[BT09], which is a generalization of the optimal method proposed by Nesterov [Nes04] for

unconstrained differentiable convex programs. FISTA, with backtracking stepsize strategy, is

4.1. Introduction 113

known to converge according to the following rate,

F (xk)− F (x⋆) ≤
2ηL‖x0 − x⋆‖2

(k + 1)2
, (4.5)

where x⋆ is a solution of (4.2), and η is the parameter which is used in the backtracking stepsize

strategy. The convergence result in (4.5) contains three key components: the distance between

the initial guess and the solution ‖x0 − x⋆‖, the number of iterations k, and the Lipschitz

constant L. While it is clear that the first two components are important to explain the

convergence behavior, the Lipschitz constant, L, is relatively mysterious.

The appearance of L in (4.5) is due to algorithm design. In each iteration, one would have to

choose a constant L̃ to compute the stepsize that is proportional to 1/L̃, and L̃ has to be large

enough to satisfy the properties of the Lipschitz constant locally [BT09, QSG13]. Since the

global Lipschitz constant condition (4.3) is a more restrictive condition, the Lipschitz constant

L always satisfies the requirement of L̃, and so L is used in convergence analysis. We emphasize

that the above requirement of L̃ is not unique for FISTA. For most first order methods that

solve (4.2), L also appears in their convergence rates for the same reason.

Despite L being an important quantity in both convergence analysis and stepsize strategy, it

is usually unknown and the magnitude could be arbitrary for a general nonlinear function; one

could artificially construct a low dimensional function with large Lipschitz constant, and a high

dimensional function with small Lipschitz constant.

Therefore, L is often treated as a constant [Nes04, Nes13] that is independent of the dimensions

of the problem, and so the convergence result shown in (4.5) is considered to be “dimension-free”

because both ‖x0−x⋆‖ and k are independent of the dimension of the problem. Dimension-free

convergence shows that for certain types of optimization algorithms, the number of iterations

required to achieve a certain accuracy is independent of the dimension of the model. For large

scale optimization models that appear in machine learning and big data applications, algorithms

with dimension-free convergence are extremely attractive [BT09, BT13, ST13].

114Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

On the other hand, since L is considered to be an arbitrary constant, stepsize strategies for

first order methods were developed independent of the knowledge of L. As we will show later,

for adaptive strategies that try to use small L̃ (large stepsize), extra function evaluations will

be needed. If one tries to eliminate the extra function evaluations, then L̃ has to be sufficiently

large, and thus the stepsize would be small. This trade-off is due to the fact that L is unknown.

In this chapter, we take the first steps to show that knowledge of L can be obtained in the

case of ERM because of its statistical properties. For the ERM problem, it is known that the

Lipschitz constant is highly related to ‖A‖ [BT09, QR14], and so understanding the properties

of ‖A‖ is the goal of this chapter. If A is arbitrary, then ‖A‖ would also be arbitrary and

analyzing ‖A‖ would be impossible. However, for ERM problems that appear in practice, A

is structured. Since A is typically constructed from a dataset then it is natural to assume that

the rows of A are independent samples of some random variables. This particular structure of

A allows us to consider A as a non-arbitrary but random matrix. We are therefore justified to

apply techniques from random matrix theory to derive the statistical bounds for the Lipschitz

constant.

The contributions of this chapter is twofold:

(a) We obtain average/probabilistic complexity bounds which provide a better understand-

ing of how the dimension, size of training set, and correlation affect the computational

complexity. In particular, we show that in the case of ERM, the complexity is not

“dimension-free”.

(b) The derived statistical bounds can be computed/estimated with almost no cost, which

is an attractive benefit for algorithms. We develop a novel stepsize strategy called Prob-

abilistic Upper-bound Guided stepsize strategy (PUG). We show that PUG may save

unnecessary cost of function evaluations by adaptively choosing L̃ intelligently. Promis-

ing numerical results are provided at the end of this chapter.

Much research on bounding extreme singular values using random matrix theory has been

taken in recent years, e.g. see [RV10, KM15, Tro12]. However, we would like to emphasize that

4.2. Preliminaries 115

developments in random matrix theory is not our objective. Instead, we would like to consider

this topic as a new and important application of random matrix theory. To the best of our

knowledge, no similar work has been done in understanding how the statistics of the training

set would affect the Lipschitz constant, computational complexity, and stepsize.

4.2 Preliminaries

This chapter studies the Lipschitz constant L of the empirical risk f given in (4.4). In order

to satisfy condition (4.3), one could select an arbitrarily large L, however, this would create a

looser bound on the complexity (see for e.g. (4.5)). Moreover, L also plays a big role in stepsize

strategy for first order algorithms. In many cases such as FISTA, algorithms use stepsize that

is proportional to 1/L. Therefore, a smaller L is always preferable because it does not only

imply lower computational complexity, but also allows a larger stepsize for algorithms. While

the lowest possible L that satisfies (4.3) is generally very difficult to compute, in this section,

we will estimate the upper and lower bounds of L using the dataset A. For the mathematical

clarity, we emphasize that ‖ · ‖ represents the standard 2-norm, and some equations presented

in this chapter do not hold if other norms is taken.

Notice that the Lipschitz constant condition (4.3) is equivalent to the following condition

[Nes04].

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2, ∀x,y ∈ Rn. (4.6)

Therefore, a L that satisfies (4.6) also satisfies (4.3), and vice versa.

Proposition 4.1 Suppose f is of the form (4.4), then L satisfies the Lipschitz constant con-

dition (4.6) with

L ≤
∥
∥
∥
∥
∥
Diag

(√
γ1
m
, · · · ,

√
γm
m

)

A

∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
Diag

(√
γ1
m
, · · · ,

√
γm
m

)
∥
∥
∥
∥
∥

2

‖A‖2 ≤ γ

m
‖A‖2,

where γi is the Lipschitz constant of φi for i = 1, 2, . . . ,m and γ , max{γ1, γ2, . . . , γm}.

116Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

Proof See Proposition 2.1 in [QR14].

Proposition 4.1 provides an upper bound for L, where γ is the maximum Lipschitz constant of

the loss functions, and it is usually known or easy to compute. For example, it is known that

γ = 1 for quadratic loss functions, and γ = maxi b
2
i /4 for logistics loss functions.

The upper bound of L is tight for the class of ERM problems. We can prove that by considering

the example of least squares, where we have γ = 1 and

L =
γ

m
‖A‖2 = 1

m
‖A‖2.

In order to derive the lower bound of L, we need the following assumption.

Assumption 4.2 The loss function φi is a strongly convex function, for i = 1, 2, . . . ,m. That

is, there exists a positive constant τ > 0 such that

φi(x) + φ′
i(x)(y − x) +

τ

2
|y − x|2 ≤ φi(y), ∀x, y ∈ R,

for i = 1, 2, . . . ,m.

The above assumption requires the loss function φi to be strongly convex, which is not restrictive

in practical setting. In particular, the quadratic loss function satisfies Assumption 4.2, and the

logistics loss function satisfies Assumption 4.2 within a bounded box [−b, b] for any positive

b ∈ R+. With the above assumption, we derive the lower bound of L using A.

Proposition 4.3 Suppose f is of the form (4.4) with φi satisfying Assumption 4.2 for i =

1, 2, . . . ,m, then L satisfies the Lipschitz constant condition (4.6) with

τλmin(A
TA)

m
≤ L.

Proof By Assumption 4.2, for i = 1, 2, . . . ,m,

φi(e
T
i Ay) ≥ φi(e

T
i Ax) + φ′

i(e
T
i Ax)(eTi Ay − eTi Ax) +

τ

2
|eTi Ay − eTi Ax|2.

4.3. Complexity Analysis using Random Matrix Theory 117

Therefore,

f(y) ≥ 1

m

m∑

i=1

(

φi(e
T
i Ax) + φ′

i(e
T
i Ax)(eTi Ay − eTi Ax) +

τ

2
|eTi Ay − eTi Ax|2

)

,

= f(x) +
1

m

m∑

i=1

(

eTi Aφ
′
i(e

T
i Ax)(y − x) +

τ

2
|eTi Ay − eTi Ax|2

)

,

= f(x) + 〈∇f(x),y − x〉+ τ

2m
‖Ay −Ax‖2,

≥ f(x) + 〈∇f(x),y − x〉+ τλmin(A
TA)

2m
‖y − x‖2.

From Proposition 4.1 and 4.3, we bound L using the largest and lowest eigenvalues of ATA.

Even though A can be completely different for different dataset, the statistical properties of A

can be obtained via random matrix theory.

4.3 Complexity Analysis using Random Matrix Theory

In this section, we will study the statistical properties of ‖A‖2 = ‖ATA‖ = λmax(A
TA) as

well as λmin(A
TA). Recall that A is an m × n matrix containing m observations, and each

observation contains n measurements which are independent samples from n random variables,

i.e. we assume the rows of the matrix A are samples from a vector of n random variables

ξT = (ξ1, ξ2, · · · , ξn) with covariance matrix Σ. To simplify the analysis, we assume, without

loss of generality, that the observations are normalized, and so all the random variables have

mean zero and unit variance. Therefore, E[ξi] = 0 for i = 1, 2, · · · , n, the diagonal elements of

Σ are all 1’s, and Σ = E
[
ξξT

]
. This assumption is useful and simplifies the arguments and the

analysis of this section but it is not necessary. The results from this section could be generalized

without the above assumption, but it does not give further insights for the purposes of this

section. In particular, this assumption will be dropped for the proposed stepsize strategy PUG,

and so PUG is vaild for all the datasets used in practice.

118Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

4.3.1 Statistical Bounds

We will derive both the upper and lower bounds for the expected ‖A‖2, and show that the

average ‖A‖2 increases nearly linearly in both m and n. The main tools for the proofs below

can be found in Chapter 2 and [Tro12].

Lower Bounds

We will start by proving the lower bound in the general setting, where the random variables

are correlated with general covariance matrix Σ; then, we will add assumptions on Σ to derive

lower bounds in different cases.

Theorem 4.4 Let A be an m×n random matrix in which its rows are independent samples of

some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0 for i = 1, 2, · · · , n, and covariance

matrix Σ. Denote µmax = λmax(Σ). Then

mµmax = mλmax (Σ) ≤ E
[
‖A‖2

]
. (4.7)

In particular, if ξ1, ξ2, · · · , ξn are some random variables with zero mean and unit variance,

then

max{mµmax, n} ≤ E
[
‖A‖2

]
. (4.8)

Proof We first prove (4.7). Denote aT
i as the ith row of A. We can rewrite ATA as

ATA =
m∑

k=1

aka
T
k ,

where aka
T
k ’s are independent random matrices with E

[
aka

T
k

]
= Σ. Therefore, by Jensen’s

inequality

E
[
λmax

(
ATA

)]
= E

[

λmax

(
m∑

k=1

aka
T
k

)]

≥ λmax

(
m∑

k=1

E
[
aka

T
k

]

)

= mλmax (Σ) .

4.3. Complexity Analysis using Random Matrix Theory 119

In order to prove (4.8), we use the fact that

E
[
‖A‖2

]
= E

[
‖AT‖2

]
= E

[
‖AAT‖

]
≥ ‖E

[
AAT

]
‖,

where the last inequality is obtained by applying Jensen’s inequality. We can write AAT as

AAT =
m∑

i=1

m∑

j=1

aT
i ajYi,j,

where Yi,j ∈ Rm×m is a matrix such that (Yi,j)p,q = 1 if i = p and j = q, and otherwise

(Yi,j)p,q = 0. By the assumption that each entry of A is a random variable with zero mean

and unit variance, we obtain

E
[
aT
i ai

]
= E

[
a2i,1 + a2i,2 + · · ·+ a2i,n

]
= E

[
a2i,1
]
+ E

[
a2i,2
]
+ · · ·+ E

[
a2i,n
]
= n,

for i = 1, 2, · · · ,m, and for i 6= j,

E
[
aT
i aj

]
= E [ai,1]E [aj,1] + E [ai,2]E [aj,2] + · · ·+ E [ai,n]E [aj,n] = 0.

Therefore,

E[‖A‖2] ≥ ‖E[AAT]‖ =
∥
∥
∥
∥
∥
E

[
m∑

i=1

m∑

j=1

aT
i ajYi,j

]∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

m∑

i=1

nYi,i

∥
∥
∥
∥
∥
= ‖nIn‖ = n.

Theorem 4.4 provides a lower bound for the expected ‖ATA‖. The inequality in (4.7) is

a general result and makes minimal assumptions on the covariance Σ. Note that the lower

bound is independent of n. The reason is that this general setting covers cases where Σ is not

full rank: some ξi’s could be fixed 0’s instead of having unit variance. In fact, when all ξi’s are

0’s for i = 1, 2, · · · , n, which implies Σ = 0n×n, the bound (4.7) is tight because A = 0m×n. For

the setting that we consider in this chapter, equation (4.8) is a tighter bound than (4.7) and

depends on both m and n. In the case where all variables are independent, we could simplify

120Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

the results above into the following.

Corollary 4.5 Let A be an m×n random matrix in which its rows are independent samples of

some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0, E[ξ2i] = 1, and ξi’s are independent

for i = 1, 2, · · · , n, then

max{m,n} ≤ E
[
‖A‖2

]
. (4.9)

Proof Since all random variables are independent, Σ = In and so µmax = λmax(Σ) = 1.

Upper Bounds

In order to compute an upper bound for the expected ‖ATA‖, we first compute its tail bounds.

The idea of the proof is to rewrite the ATA as a sum of independent random matrices, and

then use the existing results in random matrix theory to derive the tail bounds of ‖ATA‖. We

then compute the upper bound for the expected value. Notice that our approach for computing

the tail bounds, in principle, is the same as in [Tro12]. However, we present a tail bound that

is easier to be integrated into the upper bound of the expected ‖ATA‖. That is, the derived

bound can be directly used to bound ‖ATA‖ without any numerical constant.

Lemma 4.6 Let A be an m× n random matrix in which its rows are independent samples of

some random variables ξT = (ξ1, ξ2, · · · , ξn) with covariance matrix Σ. Denote µmax = λmax(Σ)

and suppose

λmax

[
ξξT

]
≤ R almost surely. (4.10)

Then, for any θ, t ∈ R+,

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θt+m log

(
1 + (eθR − 1)µmax/R

)]
. (4.11)

In particular,

P
{
λmax

(
ATA

)
≥ t
}
≤ n

[
µmax(mR− t)
t(R− µmax)

] t
R
[

1 +
t− µmaxm

mR− t

]m

. (4.12)

4.3. Complexity Analysis using Random Matrix Theory 121

Proof Denote aT
i as the ith row of A. We can rewrite ATA as

ATA =
m∑

k=1

aka
T
k .

Notice that aka
T
k ’s are independent, random, positive-semidefinite matrices, and E

[
aka

T
k

]
= Σ,

for k = 1, 2, · · · ,m. Also, Using the Lemma 2.13, for any θ > 0, we have

P
{
λmax

(
ATA

)
≥ t
}

= P

{

λmax

(
m∑

k=1

aka
T
k

)

≥ t

}

,

≤ n exp

[

−θt+m log λmax

(

1

m

m∑

k=1

Eeθaka
T
k

)]

.

Notice that λmax(aka
T
k) ≤ R, by rescaling on Lemma 2.12, we have,

E

[

eθ̃(1/R)(aka
T
k)
]

4 In + (eθ̃ − 1)
(
E
[
(1/R)

(
aka

T
k

)])
, for any θ̃ ∈ R,

and thus

E

[

eθ(aka
T
k)
]

4 In +
(eθR − 1)

R
E
[
aka

T
k

]
= In +

(eθR − 1)

R
Σ, for any θ ∈ R.

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[

−θt+m log λmax

(

1

m

m∑

k=1

In +
(eθR − 1)

R
Σ

)]

,

= n exp
[
−θt+m log

(
1 + (eθR − 1)λmax(Σ)/R

)]
,

= n exp
[
−θt+m log

(
1 + (eθR − 1)µmax/R

)]
,

where the penultimate equality is valid since

λmax(In +Σ) = 1 + λmax(Σ).

Using standard calculus, the upper bound is minimized when

θ⋆ =
1

R
log

[
t(R− µmax)

µmax(mR− t)

]

.

122Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

Therefore,

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
−θ⋆t+m log

(
1 + (eθ

⋆R − 1)µmax/R
)]
,

= n

[
µmax(mR− t)
t(R− µmax)

] t
R
[

1 +
t− µmaxm

mR− t

]m

.

We emphasize that Assumption (4.10) in Lemma 4.6 does not hold for unbounded random

variables; however, in practice, assumption (4.10) is mild due to the fact that datasets that are

used in the problem (4.1) are usually normalized and bounded. Therefore, it is reasonable to

assume that an observation will be discarded if its magnitude is larger than some constant.

We clarify that the tail bound (4.11) is only meaningful when t is sufficiently large; otherwise

the right hand side would be greater than or equal to one. The tail bound (4.12) is the tightest

bound over all possible θ’s in (4.11), but it is difficult to interpret the relationships between

the variables. The following lemma takes a less optimal θ in (4.11), but yields a bound that is

easier to understand.

Lemma 4.7 In the same setting as Lemma 4.6, we have

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[
2mµmax − t

R

]

. (4.13)

In particular, for ǫ ∈ R, we have

P

{

λmax

(
ATA

)
≤ 2mµmax −R log

(ǫ

n

)}

≥ 1− ǫ. (4.14)

Proof Using equation (4.11), and the fact that log(y) ≤ y − 1, ∀y ∈ R+, we have

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[

−θt+ mµmax

R
(eθR − 1)

]

. (4.15)

4.3. Complexity Analysis using Random Matrix Theory 123

The above upper bound is minimized when θ = (1/R) log [t/(mµmax)], and so

P
{
λmax

(
ATA

)
≥ t
}
≤ n exp

[

− t

R
log

[
t

mµmax

]

+
mµmax

R

(
t

mµmax

− 1

)]

,

= n exp

[
t

R

(

− log

[
t

mµmax

]

+mµmax

(
1

mµmax

− 1

t

))]

,

= n exp

[
t

R

(

log
[mµmax

t

]

+ 1− mµmax

t

)]

,

= n exp

[
t

R

(

log
[mµmaxe

t

]

− mµmax

t

)]

,

≤ n exp

[
t

R

(mµmaxe

t
− 1− mµmax

t

)]

,

= n exp

[
1

R
(mµmax(e− 1)− t)

]

,

≤ n exp

[
1

R
(2mµmax − t)

]

.

Set ǫ = n exp

[
1

R
(2mµmax − t)

]

, we obtain t = 2mµmax −R log
(ǫ

n

)

.

The bound in (4.14) follows directly from (4.13) and shows that with high probability 1 − ǫ

(for small ǫ), λmax

(
ATA

)
is less than 2mµmax + R log(n) − R log (ǫ). Applying the results in

Lemma 4.7 provides the upper bound for the expected ‖ATA‖.

Theorem 4.8 In the same setting as Lemma 4.6, we have

E
[
λmax(A

TA)
]
≤ 2mµmax +R log (n) +R. (4.16)

Proof Using the equation (4.13), and the fact that

1 ≤ n exp

[
2mµmax − t

R

]

when t ≤ 2mµmax −R log

[
1

n

]

,

124Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

we have

E
[
λmax(A

TA)
]

=

∫ ∞

0

P{λmax(A
TA) > t} dt, (see [Bil12] for details)

≤
∫ 2mµmax−R log[1n]

0

1 dt+

∫ ∞

2mµmax−R log[1n]
n exp

[
2mµmax − t

R

]

dt,

= 2mµmax −R log

[
1

n

]

+R.

Therefore, for a matrix A which is constructed by a set of normalized data, we obtain the

bound

max{mµmax, n} ≤ E
[
‖A‖2

]
≤ 2mµmax +R log (n) +R. (4.17)

The result in (4.17) might look confusing because for small m and large n, the lower bound is

of the order of n while the upper bound is of the order of log(n). The reason is that we have

to take into account the factor of dimensionality in the constant R. To illustrate this, we prove

the following corollary.

Corollary 4.9 Let A be an m×n random matrix in which its rows are independent samples of

some random variables ξT = (ξ1, ξ2, · · · , ξn) with E[ξi] = 0 for i = 1, 2, · · · , n, and covariance

matrix Σ = E
[
ξξT

]
. Denote µmax = λmax(Σ) and suppose |ξi| ≤ c almost surely for i =

1, 2, · · · , n. Then

λmax

[
ξξT

]
≤ c2n almost surely. (4.18)

and so

max{mµmax, n} ≤ E
[
‖A‖2

]
≤ 2mµmax + c2n log (n) + c2n (4.19)

Proof Since ξξT is a symmetric rank 1 matrix, we have

λmax(ξξ
T) = ‖ξξT‖ ≤ n‖ξξT‖max = n max

1≤i,j≤n
{|ξiξj|} ≤ c2n almost surely.

4.3. Complexity Analysis using Random Matrix Theory 125

Therefore, R increases linearly in n for bounded ξ. Recall that the lower bound of the expected

‖A‖2 is linear in both m and n, and the upper bound in (4.19), is almost linear in both m and

n. Therefore, our results on the bounds for the expected Lipschitz constant are nearly-optimal

up to some constant.

On the other hand, in order to obtain the lower bound of L, we also need tail bound of

λmin(A
TA), which is provided in the following theorem.

Theorem 4.10 Let A be an m×n random matrix in which its rows are independent samples of

some random variables ξT = (ξ1, ξ2, · · · , ξn) with covariance matrix Σ. Denote µmin = λmin(Σ)

and suppose |ξi| ≤ c almost surely for i = 1, 2, . . . , n.

Then, if µmin 6= 0, for any ǫ ∈
(
n exp

[
−mµmin

2nc2

]
, n
)

P

{

λmin

(
ATA

)
≤
√

2c2nmµmin log
(n

ǫ

)

+mµmin

}

≤ ǫ.

Proof Suppose |ξi| ≤ c almost surely for i = 1, 2, . . . , n. Then using Corollary 4.9 we have

λmax

[
ξξT

]
≤ c2n = R almost surely.

Using the Theorem 1.1 from [Tro12], for any θ ∈ (0, 1) we have

P
{
λmin

(
ATA

)
≤ θmµmin

}
≤ n

[
exp[θ − 1]

θθ

]mµmin/R

,

= n exp
[

(−(1− θ)− θ log(θ))
(mµmin

R

)]

.

Notice that θ > 0 and

2 log(θ) ≥ 2

(

1− 1

θ

)

=
2(θ − 1)

θ
≥ (θ + 1)(θ − 1)

θ
=
θ2 − 1

θ
,

126Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

and so

P
{
λmin

(
ATA

)
≤ θmµmin

}
≤ n exp

[

(−(1− θ)− θ log(θ))
(mµmin

R

)]

,

≤ n exp

[(

−(1− θ)− θθ
2 − 1

2θ

)(mµmin

R

)]

,

= n exp

[

−1

2
(θ − 1)2

(mµmin

R

)]

.

For µmin 6= 0, we let ǫ = n exp
[
− (θ − 1)2 mµmin

2R

]
and obtain,

θ =

√

2R

mµmin

log
(n

ǫ

)

+ 1.

Therefore,

P

{

λmin

(
ATA

)
≤
√

2Rmµmin log
(n

ǫ

)

+mµmin

}

≤ ǫ,

for ǫ ∈
(
n exp

[
−mµmin

2R

]
, n
)

For the tail bound in Theorem 4.10 to be meaningful, m has to be sufficiently large com-

pared to n. Also, µmin is required to be non-zero, which implies that all independent variables

(ξi’s) are linearly independent. In such cases, the smallest eigenvalue λmin

(
ATA

)
is at least

O(√nm log n+m) with high probability.

4.3.2 Complexity Analysis

In this section, we will use the probabilistic bounds of L to study the complexity of solving

ERM. We focus only on FISTA for illustrative purpose and clear presentation of the idea of

the proposed approach. But the approach developed in this section can be applied to other

algorithms as well.

By the assumption that A is a random matrix, we also have the solution x⋆ as a random

vector. Notice that the study of randomization of x⋆ is not covered this chapter. In particular,

if the statistical properties of x⋆ can be obtained, existing optimization algorithms might not be

needed to solve the ERM problem. Therefore, in this chapter, we remove this consideration by

4.3. Complexity Analysis using Random Matrix Theory 127

denoting a constantM such that ‖x0−x⋆‖2 ≤M . In such case, we have the FISTA convergence

rate

F (xk)− F (x⋆) ≤
2ηLM

(k + 1)2
, (4.20)

where x⋆ is the solution of (4.1), and η > 1 is the parameter which is used in the backtracking

stepsize strategy.

By Corollary 4.9, we know

max
{

γµmax,
γn

m

}

≤ γ

m
E
[
‖A‖2

]
≤ 2γµmax +

γ

m
(c2n log (n) + c2n), (4.21)

and we are now in the position for the following theorem.

Theorem 4.11 Consider the composite program (4.2) with f that is in the form of (4.4),

where A is an m×n random matrix in which its rows are independent samples of some random

variables ξT = (ξ1, ξ2, · · · , ξn) with covariance matrix Σ. Suppose |ξi| ≤ c almost surely for i =

1, 2, · · · , n and ‖x0 − x⋆‖2 ≤ M for some positive constant M . Then the expected convergence

of FISTA with backtracking stepsize strategy is

E[F (xk)− F (x⋆)] ≤
2ηM

(k + 1)2

(

2γµmax +
γ

m
(c2n log (n) + c2n)

)

, (4.22)

where µmax = λmax(Σ), η > 1 is the parameter which is used in the backtracking stepsize

strategy, and the expectation is taken with respect to the uncertainty of A.

Proof This result can be obtained by combining results in Proposition 4.1, Corollary 4.9, and

(4.20) (or equivalently see (4.5)).

In (4.21), the lower bound of (γ/m)E [‖A‖2] is linear in n/m, and upper bound is nearly-

linear in n/m. This suggests that the average complexity of ERM is bounded by the ratio of

the dimensions to the amount of data. In particular, problems with overdetermined systems

(m≫ n) can be solved more efficiently than problems with underdetermined systems (m < n).

128Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

Another critical factor of the complexity is µmax = λmax(Σ), where Σ is the covariance matrix

of the rows of A. In the ideal situation of regression analysis, all inputs should be statistically

linearly independent. In such cases, since we assume the diagonal elements of Σ are 1’s,

µmax = 1. It is, however, almost impossible to ensure this situation for practical applications.

In practice, since Σ ∈ Rn×n, µmax = λmax(Σ) = ‖Σ‖ is likely to increase as n increases.

Similarly we can compute the probabilistic lower bound of L in the case that m is sufficiently

larger than n. Using Theorem 4.10, we can show that L is bounded above by

O
(√

(n log n)/m+ µmin

)

.

We emphasize the lower bound of L is not equivalent to the lower bound of the complexity.

However, since the stepsize of first order method algorithms is proportional to 1/L, this result

indicates that high dimensional problems might have smaller stepsize in order to guarantee

convergence.

4.4 PUG: Probabilistic Upper-bound Guided stepsize

strategy

The tail bounds in Section 4.3, as a by-product of the upper bound in Section 4.3.1, can also

be used in algorithms. As mentioned in the introduction, L is an important quantity in the

stepsize strategy since the stepsize is usually inversely proportional to L. However, in large

scale optimization, the computational cost of evaluating ‖A‖2 is very expensive. One could use

backtracking techniques to avoid the evaluation of the Lipschitz constant; in each iteration, we

find a large enough constant L̃ such that it satisfies the properties of the Lipschitz constant

locally. In the case of FISTA [BT09], for the kth iteration with incumbent xk one has to find a

L̃ such that

F (pL̃(xk)) ≤ QL̃ (pL̃(xk),xk) , (4.23)

4.4. PUG: Probabilistic Upper-bound Guided stepsize strategy 129

where,

QL̃(x,y) , f(y) + 〈x− y,∇f(y)〉+ L̃

2
‖x− y‖2 + g(x),

and pL̃(y) , argminx{QL̃(x,y) : x ∈ Rn}. Equation (4.23) is identical to the Lipschitz

constant condition (4.6) with specifically y = pL̃(xk) and x = xk. Therefore, (4.23) is a less

restrictive condition compared to the Lipschitz constant condition (4.6). This indicates that

L̃ could be much smaller than L, and so it yields to a larger stepsize. On the other hand, for

L̃ ≥ L, it is guaranteed that the local Lipschitz constant condition will be satisfied. In both

cases, when L is intractable, we would not be able to distinguish the two cases by just having

L̃ that satisfies (4.23).

As we can see, finding a good L̃ involves a series of function evaluations. In the next section,

we will review the commonly used stepsize strategies.

4.4.1 Current Stepsize Strategies

To the best of our knowledge, current strategies fall into four categories:

(i). A fixed stepsize from estimation of ‖A‖2.

(ii). Backtracking-type methods with initial guess L̃0, and monotonic increases L̃ = ηpL̃0 when

it does not satisfy the Lipschitz condition locally (η > 1, p = 0, 1, . . .). See [BT09] for

details.

(iii). Adaptive-type methods with initial guess L̃0. Suppose L̃k is used for the kth iteration,

then find the smallest p such that L̃k+1 = 2pL̃k satisfies the Lipschitz condition locally

(p = −1, 0, 1, . . .). See Nesterov’s universal gradient methods [Nes15] for details.

(iv). Adaptive stepsize strategies for a specific algorithm. See [GK13] for example.

Theorem 4.12 Suppose L̃ is used as an initial guess for the kth iteration, and we select the

smallest q ∈ N such that L̃k = ηqL̃ satisfies the local condition, for η ≥ 1. To guarantee

130Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

convergence, it requires

q ≥ max

{

1

log η

(

logL− log L̃
)

, 0

}

,

which is also the number of function evaluations required. We have

L ≤ L̃k ≤ ηL, if L̃ ≤ L,

L ≤ L̃k = L̃, if L ≤ L̃.

Proof To guarantee convergence, it requires q such that L̃k = ηqL̃ ≥ L. If L̃ ≤ L, q should

be selected such that ηqL̃ ≤ ηL; otherwise q − 1 will be large enough to be selected, i.e.

L̃k = ηq−1L̃ ≥ L.

Theorem 4.12 covers the setting of choice (i)-(iii), also referred to as the fixed stepsize strat-

egy, backtracking method, and Nesterov’s adaptive method, respectively. For fixed stepsize

strategies, L̃ ≥ L is selected for all iterations, which yields q = 0, and thus checking the local

condition is not required [BT09]. For backtracking methods, L̃ = L̃k−1 and η > 1 is a param-

eter of the strategy. Since L̃k is monotonically increasing in k, q is monotonically decreasing.

Therefore, q at the kth iteration is equivalent to the total number of (extra) function evaluations

for the rest of the iterations.

On the other hand, for Nesterov’s adaptive method, L̃ = L̃k−1/2 and η = 2. L̃k is not

monotonically increasing in k, and in each iteration, q is the number of function evaluations in

the worst case. Notice that once the worst case occurs (having q function evaluations) in the

kth iteration, q will be smaller since L̃k is sufficiently large. In Nesterov’s universal gradient

methods [Nes15], Nesterov proved that for k iterations, the number of function evaluations is

bounded by O(2k).

Theorem 4.12 illustrates the trade-off between three aspects: aggressiveness of initial guess L̃,

recovering rate η, and the convergence rate. Methods with small (aggressive) initial guess L̃

have the possibility to result in larger stepsize. However, it will yield a larger q, the number

of function evaluations in the worst case. One could reduce q by setting a larger η, and so L̃

could scale quickly towards L, but it will generate a slower rate of convergence (ηL). If one

4.4. PUG: Probabilistic Upper-bound Guided stepsize strategy 131

wants to preserve a good convergence rate (small η) with small number of function evaluations

(small q), then L̃ could not be too small. In that case one has to give up on the opportunity

of having large stepsizes. The fixed stepsize strategy is the extreme case of minimizing q by

giving up the opportunity of having larger stepsizes.

The proposed stepsize strategy PUG tries to reduce L̃ as (iii), but guides L̃ to increase reason-

ably and quickly when it fails to satisfy the local condition. In particular, by replacing L with

its probabilistic upper bound, aggressive L̃ and fast recovering rate are allowed without slowing

the convergence. This above feature does not obey the trade-off that constrains choice (i)-(iii).

Also, PUG is flexible compared to (iv). It can be applied to all algorithms that require L, as

well as mini-batch and block-coordinate-type algorithms which require submatrix of A.

4.4.2 PUG

In this section, we will use the tail bounds to develop PUG. Using equation (4.14), we first

define the upper bound at different confidence level,

L ≤ U(ǫ) , 2γµmax −
γR

m
log
(ǫ

n

)

, (4.24)

with probability of at least 1− ǫ. We point out that the probabilistic upper bound (4.14) does

not rely on the assumption that the dataset is normalized with mean zero and unit variance,

and so it is applicable to all types of datasets. The basic idea of PUG is to use the result in

the following theorem.

Theorem 4.13 Suppose L̃ is used as an initial guess for the kth iteration, and we denote

ηPUG,N =

(U(ǫ)
L̃

)1/N

,

where U(ǫ) is defined as in (4.24). If we select the smallest q ∈ N such that L̃k = ηq
PUG,N L̃

satisfies the local condition, then with probability of at least 1−ǫ, it requires q = N to guarantee

132Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

Algorithm 4.1 PUG

Input: L̃k from last iteration
Initialization: Set L̃ = L̃k/2, ǫ = min{0.1, ǫ0} (Require: ǫ0 small enough such that U(ǫ) >
L̃)

Set ηPUG =
√

U(ǫ)/L̃
while L̃ does not satisfy Lipschitz constant condition locally do
Set L̃ = ηPUGL̃

end while
Output: Lipschitz constant L̃k+1 = L̃

convergence. In particular, we have

L ≤ L̃k ≤ U(ǫ), if L̃ ≤ L,

L ≤ L̃k = L̃, if L ≤ L̃,

with probability of at least 1− ǫ.

Proof To guarantee convergence, it requires q such that L̃k = ηqPUG,N L̃ ≥ L. When q = N ,

L̃k = U(ǫ) ≥ L with probability of at least 1− ǫ.

Theorem 4.13 shows the potential advantage of PUG. With any initial guess L̃, PUG is able

to scale L̃ quickly towards L without interfering with the probabilistic convergence rate. This

unique feature allows an aggressive initial guess L̃ as Nesterov’s adaptive strategy without low

recovering rate nor slow convergence rate. Algorithm 4.1 provided details of PUG with N = 2,

which is chosen in order to be comparable with the Nesterov’s adaptive method. We point out

that,

U(ǫ)→∞ as ǫ→ 0.

Therefore, the convergence of FISTA is guaranteed with PUG, even in the extreme case that

L ≤ U(ǫ) with ǫ ≈ 0.

4.4. PUG: Probabilistic Upper-bound Guided stepsize strategy 133

In the case where computing µmax is impractical, it could be bounded by

µmax = λmax(Σ) =
∥
∥E[ξξT]

∥
∥ ≤ E

[∥
∥ξξT

∥
∥
]
= E

[
ξTξ

]
=

n∑

i=1

E
[
ξ2i
]
=

n∑

i=1

(
Var(ξi) + (E[ξi])

2) .

(4.25)

With the assumption that ξi’s have zero mean and unit variance, µmax ≤ n. For A that does

not satisfy these assumptions due to different normalization process of the data, (4.25) could

be used to bound µmax. For the R in (4.24), one could use c2n as in Corollary 4.9, or maxi a
T
i ai

since λmax

[
ξξT

]
= ‖ξξT‖ = ξTξ.

4.4.3 Convergence Bounds: Regular Strategies vs. PUG

Different stepsize strategies would lead to different convergence rates even for the same al-

gorithm. Since PUG is based on the probabilistic upper bound U(ǫ) in (4.24), it leads to a

probabilistic convergence of FISTA.

Theorem 4.14 Consider the composite program (4.2) with f that is in the form of (4.4),

where A is an m×n random matrix in which its rows are independent samples of some random

variables ξT = (ξ1, ξ2, · · · , ξn) with covariance matrix Σ. Suppose |ξi| ≤ c almost surely for

i = 1, 2, · · · , n and ‖x0 − x⋆‖2 ≤ M for some positive constant M . Then the convergence of

FISTA with PUG (Algorithm 4.1) is

F (xk)− F (x⋆) ≤
2M

(k + 1)2

(

2γµmax −
γR

m
log
(ǫ

n

))

, (4.26)

with probability at least 1− ǫ, where µmax = λmax(Σ).

Proof This result can be obtained by combining results in Proposition 4.1, Lemma 4.7, and

the same argument as in the proof of convergence in [BT09].

When using regular stepsize strategies, FISTA results in convergence rates that are in the form

of (4.20) with different η’s (η > 1). For a backtracking strategy, η would be an user-specified

134Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

parameter. It is clear from (4.20) that convergence is better when η is close to 1. However,

it would take more iterations and more function evaluations to find a satisfying stepsize, and

these costs are not captured in (4.20). In the case of Nesterov’s adaptive strategy [Nes15],

η = 2. Using the same analysis as in Section 4.3.2, L should be replaced with the upper bound

in (4.21) for the average case, or U(ǫ) in (4.24) for the probabilistic case. For the probabilistic

case, those convergences are of the same order as in the case of using PUG, as shown in (4.26).

Therefore, PUG is competitive compared to other stepsize strategies in the probabilistic case.

The strength of PUG comes from the fact that it is adaptive with strong theoretical guarantee

that with high probability, L̃k will quickly be accepted at each iteration.

4.4.4 Mini-batch Algorithms and Block-coordinate Algorithms

For mini-batch algorithms, each iteration is performed using only a subset of the whole training

set. Therefore, in each iteration, we consider a matrix that contains the corresponding subset.

This matrix is a submatrix of A with the same structure, and therefore it is also a random

matrix with smaller size m̄-by-n, where m̄ < m. Using the existing results, we can conclude that

the associated U(ǫ) in each iteration would be larger than those in full-batch algorithms. As

a result, the guaranteed stepsize for mini-batch algorithms tends to be smaller than full-batch

algorithms.

On the other hand, block-coordinate algorithms do not update all dimensions at once in each

iteration. Rather, a subset of dimensions will be selected to perform the update. In such a

setting, we only consider the variables (columns of A) that are associated with the selected

coordinates. We should consider a submatrix that is formed by columns of A. This submatrix

itself is also a random matrix with smaller size m-by-n̄, where n̄ < n. Using the existing results,

the guaranteed stepsize for block-coordinate algorithms tends to be larger.

Thus, with minor modifications PUG can be applied to mini-batch and block-coordinate algo-

rithms.

4.5. Numerical Experiments 135

m

A
v
g
er

a
g
e

L
ip

sc
h
it
z

C
o
n
st

a
n
t

100 102 104100

101

102

103

Sample Avg. L

Lower Bound

Upper Bound

Figure 4.1: Case I, m = n

m

A
v
g
er

a
g
e

L
ip

sc
h
it
z

C
o
n
st

a
n
t

100 102 104100

101

102

103

Sample Avg. L

Lower Bound

Upper Bound

Figure 4.2: Case II, 2m = n

m

A
v
g
er

a
g
e

L
ip

sc
h
it
z

C
o
n
st

a
n
t

100 102 104102

103

104

Sample Avg. L

Lower Bound

Upper Bound

Figure 4.3: Case III, n = 1024

4.5 Numerical Experiments

In the first part of this section, we will apply the bounds from Section 4.3 to illustrate the

relationship between different parameters and L. Then, we will perform the PUG on two

regression examples.

4.5.1 Numerical Simulations for Average L

We consider three cases, and in each case we simulate A’s in different dimension m’s and n’s.

Each configuration is simulated with 1000 instances, and we study the sample average behaviors

of L.

In the first case, we consider the most complicated situation and create random vector such

that its entries are not identical nor independent. We use a mixture of three types of random

variables (exponential, uniform, and multivariate normal) to construct the matrix A ∈ Rm×n.

The rows of A are independent samples of ξT = (ξ1, ξ2, · · · , ξn). We divide A into three parts

with n1, n2, and n3 columns. Note that n1 = n2 = n3 = n/3 up to rounding errors. We assign

ξ with the elements where

ξj ∼

Exp(1)− 1 if j ≤ n1,

U(−
√
3,
√
3) if n1 < j ≤ n1 + n2,

(4.27)

and (ξn1+n2+1, ξn1+n2+2, · · · , ξn) ∼ N (0n3×1, Σ̂). Σ̂ is a n3 × n3 matrix with 1 on the diagonal

136Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

and 0.5 otherwise. ξ1, ξ2, · · · , ξn1+n2
are independent.

The scaling factors of the uniform distribution and exponential distribution are used to normal-

ize the uniform random variables ξj such that E[ξj] = 0, and E[ξ2j] = 1. Some entries of A are

normally distributed or exponentially distributed, and we approximate the upper bound of the

entries with c = 3. From statistics, we know that with very high probability, this approximation

is valid.

In Figure 4.1, we plot the sample average Lipschitz constant over 1000 instances. As expected,

the expected Lipschitz constant is “trapped” between its lower and upper bound. We can

see that the expected L increases when m and n increases with the ratio n/m is fixed. This

phenomenon is due the fact that µmax = λmax(Σ) increases as n increases.

To further illustrate this, we consider the second case. The setting in this case is the same as

the first case except that we replace Σ̂ with In. So, all the variables are linearly independent.

In the case, µmax = 1 regardless the size of the A. The ratio n/m = 2 is fixed in this example.

From Figure 4.2, the sample average L does not increase rapidly as the size of A increases.

These results match with the bound (4.21).

In the last case, we investigate the effect of the ratio n/m. The setting is same as the first case,

but we keep n = 1024 and experiment with different m’s. From Figure 4.3, the sample average

L decreases as m increases. This result suggests that a large dataset is favorable in terms of

complexity, especially for large-scale (large n) ERM problems.

4.5.2 Regularized Logistics Regression

We implement FISTA with three different stepsize strategies (i) the regular backtracking step-

size strategy, (ii) the Nesterov’s adaptive stepsize strategy, and (iii) the proposed adaptive

stepsize strategy PUG. We compare the three strategies with an example in a ℓ1 regularized

logistic regression problem, in which we solve the convex optimization problem

min
x∈Rn

1

m

m∑

i=1

log(1 + exp(−bixTai)) + ω‖x‖1.

4.5. Numerical Experiments 137

Backtracking Nesterov PUG

T 1.00x 0.31x 0.28x

nIter 1.00x 0.21x 0.25x

nFunEva 1.00x 0.28x 0.27x

Avg. L̃ 1.00x 0.16x 0.24x

Table 4.1: Gisette

Backtracking Nesterov PUG

T 1.00x 1.04x 0.78x

nIter 1.00x 0.69x 0.61x

nFunEva 1.00x 0.92x 0.71x

Avg. L̃ 1.00x 0.54x 0.68x

Table 4.2: YearPredictionMSDt

We use the dataset gisette for A and b. Gisette is a handwritten digits dataset from the NIPS

2003 feature selection challenge. The matrix A is a 6000× 5000 dense matrix, and so we have

n = 5000 and m = 6000. The parameter ω is chosen to be the same as [LSS14, YHL12]. Gisette

can be found at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. We chose L̃0 = 1 for

all three stepsize strategies. For the backtracking stepsize strategy, we chose η = 1.5.

Table 4.1 shows the performances of the three stepsize strategies. T is the scaled computa-

tional time, nIter is the scaled number of iterations, nFunEva is the scaled number of function

evaluations, and Avg. L̃ is the average of L̃ used. This result encourages the two adaptive step-

size strategies as the number of iterations needed and the computational time are significantly

smaller compared to the regular backtracking algorithm. This is due to the fact that L̃ could

be a lot smaller than the Lipschitz constant L in this example, and so the two adaptive strate-

gies provide more efficient update for FISTA. As shown in Table 4.1, even though Nesterov’s

strategy yields smaller numbers of iterations, it leads to higher numbers of function evaluations

and so it takes more time than PUG.

138Chapter 4. Empirical Risk Minimization: Probabilistic Complexity and Stepsize Strategy

4.5.3 Regularized Linear Regression

We also compare the three strategies with an example in a ℓ1 regularized linear regression

problem, a.k.a LASSO, in which we solve the convex optimization problem

min
x∈Rn

1

2m

m∑

i=1

(xTai − bi)2 + ω‖x‖1.

We use the dataset YearPredictionMSDt (testing dataset) for A and b. YearPredictionMSDt

has a 51630× 90 dense matrix A, and so we have n = 90 and m = 51630. The parameter ω is

chosen to be 10−6. YearPredictionMSD can be found at

https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets.

We chose L̃0 = 1 for all three stepsize strategies. For the backtracking stepsize strategy, we

chose η = 1.5.

Table 4.2 shows the performance of the three stepsize strategies, and the structure is same

as Table 4.1. Unlike Gisette, adaptive strategies failed to provide small L̃ compared to L.

Nesterov’s strategy could not take the advantage of its adaptive feature. In particular, compared

to backtracking strategy, even though Nesterov’s strategy yielded a 31% reduction in terms of

number of iterations, the number of function evaluations is only 8% better than the backtracking

strategy. This explains the reason why Nesterov’s strategy did not outperform the backtracking

strategy in this example. PUG, on the other hand, maintains good performance due to the fact

that it requires fewer numbers of iterations.

4.6 Conclusions and Perspectives

The analytical results in this chapter show the relationship between the Lipschitz constant and

the training set of an ERM problem. These results provide insightful information about the

complexity of ERM problems, as well as opening up opportunities for new stepsize strategies

for optimization problems.

4.6. Conclusions and Perspectives 139

One interesting extension could be to apply the same approach to different machine learning

models, such as neural networks, deep learning, etc.

Chapter 5

Multilevel Methods for Unconstrained

Convex Optimization

Life is like riding a bicycle. To keep

your balance you must keep moving.

Albert Einstein

Building upon multigrid methods, the framework of multilevel optimization methods was

developed to solve structured optimization problems, including problems in optimal control

[GMS+10], image processing [PLRR], etc. In this chapter, we give a broader view of the mul-

tilevel framework and establish some connections between multilevel algorithms and the other

approaches. An interesting case of the so called Galerkin model is further studied. By study-

ing three different case studies of the Galerkin model, we take the first step to show how the

structure of optimization problems could improve the convergence of multilevel algorithms.

5.1 Introduction

Multigrid methods are considered as the standard approach in solving differential equations

[BHM00, Hac03, HYB17, Str07, TOS01, Wes92]. When solving a differential equation using

140

5.1. Introduction 141

numerical methods, an approximation of the solution is obtained on a mesh via discretization.

The computational cost of solving the discretized problem, however, varies and it depends on

the choice of the mesh size used. Therefore, by considering different mesh sizes, a hierarchy of

discretized models can be defined. In general, a more accurate solution can be obtained with a

smaller mesh size chosen, which results in a discretized problem in higher dimensions. We shall

follow the traditional terminologies in the multigrid community and call a fine model to be the

discretization in which its solution is sufficiently close to the solution of the original differential

equation; otherwise we call it coarse model [BHM00]. The main idea of multigrid methods

is to make use of the geometric similarity between different discretizations. In particular,

during the iterative process of computing a solution of the fine model, one replaces part of

the computations with the information from coarse models. The advantages of using multigrid

methods are twofold. Firstly, coarse models are in the lower dimensions compared to the fine

model, and so the computational cost is reduced. Secondly and interestingly, the directions

generated by coarse model and fine model are in fact complementary. It has been shown that

using the fine model is effective in reducing the high frequency components of the residual

(error) but ineffective in reducing and alternating the low frequency components. Those low

frequency components, however, will become high frequency after dimensional reduction. Thus,

they could be eliminated effectively using coarse models [BHM00, Str07].

This idea of multigrid was extended to optimization. Nash [Nas00] proposed a multigrid frame-

work for unconstrained infinite-dimensional convex optimization problems. Examples of such

problems could be found in the area of optimal control. Following the idea of Nash, many multi-

grid optimization methods were further developed [Nas00, Nas14, LN13, LN05, KM16, WG09,

GST08]. In particular, Wen and Goldfarb [WG09] provided a line search-based multigrid op-

timization algorithm under the framework in [Nas00], and further extended the framework to

nonconvex problems. Gratton et al. [GST08] provided a sophisticated trust-region version

of multigrid optimization algorithms, in which they called it multiscale algorithm, and in the

later developments [WG09], the name multilevel algorithm is used. In this chapter, we will

consistently use the name multilevel algorithms for all these optimization algorithms, but we

emphasize that the terms multilevel, multigrid, and multiscale were used interchangeably in

142 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

different literatures. On the other hand, we keep the name multigrid methods for the conven-

tional multigrid methods that solve linear or nonlinear equations that are discretizations arising

from partial differential equations (PDEs).

It is worth mentioning that different multilevel algorithms were developed beyond infinite-

dimensional problems, see for example Markov decision processes [HP14] (Chapter 3 in the

thesis), image deblurring [PLRR], and face recognition [HPZ15]. The above algorithms all

have the same aim: to speed up the computations by making use of the geometric similarity

between different models in the hierarchy.

The numerical performance of multilevel algorithms has been satisfying. In particular, both of

the line-search based [WG09] and trust-region based [GMS+10] algorithms outperform standard

methods when solving infinite-dimensional problems. Numerical results show that multilevel

algorithms can take the advantage of the geometric similarity between different discretizations

just as the original multigrid methods.

However, to the best of our knowledge, no theoretical result is able to show the advantages of

using multilevel optimization algorithms. For the line-search based algorithm, Wen and Gold-

farb [WG09] proved a sublinear convergence rate for strongly convex problems and convergence

for nonconvex problems. Gratton et al. [GST08] proved that their trust-region based multilevel

algorithm requires the same order of number of iterations as compared to the gradient descent.

Building upon the above developments, in this chapter, we aim to address three fundamental

issues with the current multilevel optimization framework. Firstly, under the general framework

of multilevel optimization, could we connect classical optimization algorithms with the recently

developed multilevel optimization algorithms? Secondly, could we extend the current analysis

and explain why multilevel optimization algorithms outperform standard methods for some

classes of problems (e.g. infinite-dimensional problems)? Thirdly, how do we construct a

coarse model when the hierarchy is not obvious?

The contributions of this chapter are:

❼ We provide a more complete view of line search multilevel algorithms, and in particular,

5.1. Introduction 143

we connect the general framework of the multilevel algorithm with classical optimization

algorithms, such as variable metric methods and block-coordinate type methods. We

also make a connection with the stochastic variance reduced gradient (SVRG) algorithm

[JZ13].

❼ We analyze the multilevel algorithm with the Galerkin model. The key feature of the

Galerkin model is that a coarse model is created from the first and second order infor-

mation of the fine model. The name “Galerkin model” is given in [GST08] since this

is related to the Galerkin approximation in algebraic multigrid methods [Stü01]. We

will call this algorithm the Galerkin-based Algebraic Multilevel Algorithm (GAMA).

A global convergence analysis of GAMA is provided.

❼ We propose to use the composite rate for analysis of the local convergence of GAMA. As

we will show later, neither linear convergence nor quadratic convergence is suitable when

studying the local convergence due to the broadness of GAMA.

❼ We study the composite rate of GAMA in a case study of infinite dimensional optimization

problems. We show that the linear component of the composite rate is inversely propor-

tional to the smoothness of the residual, which agrees with the findings in conventional

multigrid methods.

❼ We show that GAMA can be set up as Newton’s method in lower dimensions with low

rank approximation to Hessians. This is done by a low rank approximation method called

the näıve Nyström method. We show how the dimensions of the coarse model and the

spectrum of the eigenvalues would affect the composite rate.

❼ GAMA can also be set up as Newton’s method with block-diagonal approximation of the

Hessians. We define a class of objective functions with weakly-connected Hessians. That

is, the Hessians of the function have the form of a linear combination of a block-diagonal

matrix and a general matrix which its entries are in O(δ), for δ ≪ 1. We show how

δ would vary the composite rate, and at the limit δ → 0, GAMA would achieve the

quadratic rate of convergence.

144 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

The rest of this chapter is structured as follows: In Section 5.2 we provide background material

and introduce different variants of multilevel algorithms. We also show that several existing

optimization algorithms are in fact special cases under the general framework of multilevel

algorithms. In Section 5.3, we study the convergence of GAMA. We first derive the global

convergence rate of GAMA, and then show that GAMA exhibits composite convergence when

the current incumbent is sufficiently close to the optimum. Composite convergence rate is

defined as a linear combination of linear convergence and quadratic convergence, and we denote

r1 and r2 as the coefficient of linear rate and quadratic rate, respectively. Using these results,

in Section 5.4 we derive the complexity of both GAMA and Newton’s method. When r1 is

sufficiently small, we show that GAMA has less complexity compared to Newton’s method. In

Sections 5.5-5.7, three special cases of GAMA are considered. We compute r1 in each case and

show the relationship between r1 and the structure of the problem. In Section 5.5, we study

problems arising from discretizations of one-dimensional PDE problems; in Section 5.6 we study

problems where the low rank approximations of Hessians are sufficiently accurate; in Section 5.7

we study problems where the Hessians of the objective function are nearly block-diagonal. In

Section 5.8 we illustrate the convergence of GAMA using several numerical examples, including

variational optimization problems and machine learning problems.

5.2 Multilevel Models

In this section a broad view of the general multilevel framework will be provided. We start

with basic settings and the core idea of multilevel algorithms in [GST08, LN05, WG09], then we

show that the general multilevel framework covers several optimization algorithms, including the

variable metric methods, block-coordinate descent, and stochastic variance reduced gradient.

At the end of this section we provide the settings and details of the core topic of this chapter -

Galerkin model.

5.2. Multilevel Models 145

5.2.1 Basic Settings

In this chapter we are interested in solving,

min
xh∈RN

fh(xh), (5.1)

where xh ∈ RN , and function fh : RN → R is continuous, differentiable, and strongly convex.

We first clarify the use of the subscript h. Throughout this chapter, the lower case h represents

that this is associated with the fine (exact) model. To use multilevel methods, one needs to

formulate a hierarchy of models, and models with lower dimensions (resolutions) called the

coarse models. To avoid the unnecessary complications, in this chapter we consider only two

models in the hierarchy: fine and coarse. In the same manner of using subscript h, we assign

the upper case H to represent the association with coarse model. We assign N and n (n ≤ N)

to be the dimensions of the fine model and the coarse model, respectively. For instance, any

vector that is within the space RN is denoted with subscript h, and similarly, any vector with

subscript H is within the space Rn.

Assumption 5.1 There exists constants µh, Lh, and Mh such that

µhI 4 ∇2fh(xh) 4 LhI, ∀xh ∈ RN , (5.2)

and

‖∇2fh(xh)−∇2fh(yh)‖ ≤Mh‖xh − yh‖, ∀xh,yh ∈ RN . (5.3)

Equation (5.2) implies

‖∇fh(xh)−∇fh(yh)‖ ≤ Lh‖xh − yh‖, ∀xh,yh ∈ RN .

The above assumption of the objective function will be used throughout this chapter, and it is

common when studying second order algorithms.

146 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Multilevel methods require mapping information across different dimensions. To this end, we

define a matrix P ∈ RN×n to be the prolongation operator which maps information from coarse

to fine, and we define a matrix R ∈ Rn×N to be the restriction operator which maps information

from fine to coarse. We make the following assumption on P and R.

Assumption 5.2 The restriction operator R is the transpose of the prolongation operator P

up to a constant c. That is,

P = cRT , c > 0.

Without loss of generality, we take c = 1 throughout this chapter to simplify the use of notation

for the analysis. We also assume any useful (non-zero) information in the coarse model will not

become zero after prolongation and make the following assumption.

Assumption 5.3 The prolongation operator P has full column rank, and so

rank(P) = n.

Notice that Assumption 5.2 and 5.3 are standard assumptions for multilevel methods [BHM00,

Hac03, WG09]. Since P has full column rank, we define the pseudoinverse and its norm

P+ = (RP)−1R, and νL = ‖P+‖. (5.4)

The coarse model is constructed in the following manner. Suppose in the kth iterations we have

an incumbent solution xh,k and gradient ∇fh,k , ∇fh(xh,k). Then the corresponding coarse

model is,

min
xH∈Rn

φH(xH) , fH(xH) + 〈vH ,xH − xH,0〉, (5.5)

where,

vH , −∇fH,0 +R∇fh,k,

xH,0 = Rxh,k, and fH : Rn → R. Similar to ∇fh,k, we denote ∇fH,0 , ∇fH(xH,0) and

5.2. Multilevel Models 147

∇φH,0 , ∇φH(xH,0) to simplify notation. Similar notation will be used consistently unless it

is specified otherwise. We emphasize the construction of coarse model (5.5) is common in the

line of multilevel optimization research and it is not original in this chapter. See for example

[GST08, LN05, WG09]. Note that when constructing the coarse model (5.5), one needs to add

an additional linear term on fH(xH). This linear term ensures the following is satisfied,

∇φH,0 = R∇fh,k. (5.6)

For infinite-dimensional optimization problems, one can define fh and fH using discretization

with different mesh sizes. In general, fh is the function that is sufficiently close to the original

problem, and that can be achieved using small mesh sizes. Based on geometric similarity

between discretizations with different meshes, fh ≈ fH even though n ≤ N .

However, we want to emphasize fh ≈ fH is not a necessary requirement when using multilevel

methods. In principle, fH(xH) can be any function. Galerkin model, as we will show later, is

a quadratic model where fH is chosen to be an approximation of the Hessian of fh.

5.2.2 The General Multilevel Algorithm

The main idea of multilevel algorithms is to use the coarse model to compute search directions.

We call such direction the coarse correction step. When using coarse correction steps, we

compute the direction by solving the corresponding coarse model (5.5) and perform the update

xh,k+1 = xh,k + αh,kd̂h,k,

with

d̂h,k , P(xH,⋆ − xH,0), (5.7)

where xH,⋆ is the solution of the coarse model, and αh,k ∈ R+ is the stepsize. We clarify that

the “hat” in d̂h,k is used to identify a coarse correction step. The subscript h in d̂h,k is used

because d̂h,k ∈ RN .

148 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

We should emphasize that xH,⋆ in (5.7) can be replaced by xH,r for r = 1, 2, . . . , i.e. the

incumbent solution of the coarse mode (5.5) after rth iterations. However, for the purpose of

this chapter and simplicity, we ignore this case unless there is extra specification, and we let

(5.7) be the coarse correction step.

It is known that the coarse correction step d̂h,k is a descent direction if fH is convex. The

following lemma states this argument rigorously. Even though the proof is provided in [WG09],

we provide it with our notation for the completeness of this chapter.

Lemma 5.4 ([WG09]) If fH is a convex function, then the coarse correction step is a descent

direction. In particular, in the kth iteration,

∇fT
h,kd̂h,k ≤ φH,⋆ − φH,0 ≤ 0.

Proof

∇fT
h,kd̂h,k = ∇fT

h,kR
T (xH,⋆ − xH,0)

= (R∇fh,k)T (xH,⋆ − xH,0)

= ∇φT
H,0 (xH,⋆ − xH,0)

≤ φH,⋆ − φH,0,

as required.

The last inequality holds because φH is a convex function. Even though Lemma 5.4 states that

d̂h,k is a descent direction, using coarse correction step solely is not sufficient to solve the fine

model (5.1).

Proposition 5.5 Suppose ∇fh,k 6= 0 and ∇fh,k ∈ null(R), then the coarse correction step

d̂h,k = 0.

Proof From (5.6), xH,⋆ = xH,0 when R∇fh,k = 0. Thus, d̂h,k = P(xH,⋆ − xH,0) = 0.

5.2. Multilevel Models 149

Recall that R ∈ Rn×N , and so for n < N , a coarse correction step could be zero and make no

progress even when the first order necessary condition ∇fh = 0 has not been satisfied.

Fine Correction Step

Two approaches can be used when the coarse correction step is not progressing nor effective.

The first approach is to compute directions using standard optimization methods. We call such

step the fine correction step. As opposed to coarse correction step d̂h,k, we abandon the use

of “hat” for all fine correction steps and denote them as dh,k’s.

Classical examples of dh,k’s are steps that are computed by standard methods such as gradient

descent method, quasi-Newton method, etc. We perform fine correction steps when coarse

correction steps are not effective. That is,

‖R∇fh,k‖ < κ‖∇fh,k‖ or ‖R∇fh,k‖ < ǫ, (5.8)

where κ ∈ (0,min(1, ‖R‖)), and ǫ ∈ (0, 1). The above criteria prevent using coarse model when

xH,0 ≈ xH,⋆, i.e. the coarse correction step d̂h,k is close to 0. We point out that these criteria

were also proposed in [WG09]. We also make the following assumption on the fine correction

step throughout this chapter.

Assumption 5.6 There exists strictly positive constants ζ1, ζ2 > 0 such that

‖dh,k‖ ≤ ζ1‖∇fh,k‖, and −∇fT
h,kdh,k ≥ ζ2‖∇fh,k‖2,

where dh,k is a fine correction step. As a consequence, there exists a constant Λh > 0 such that

fh,k − fh,k+1 ≥ Λh‖∇fh,k‖2,

where fh,k+1 is updated using a fine correction step.

As we will show later, Assumption 5.6 is not restrictive, and Λh is known for well-known cases

150 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

like gradient descent, Newton method, etc. Using the combination of fine and coarse correction

steps is the standard approach in multilevel methods, especially for PDE-based optimization

problems [GST08, LN05, WG09].

Multiple P’s and R’s

The second approach to overcome issue of ineffective coarse correction step is by creating

multiple coarse models with different P’s and R’s.

Proposition 5.7 Suppose R1,R2, . . . ,Rp are all restriction operators that satisfy Assumption

5.2 and 5.3, where Ri ∈ Rni×N for i = 1, 2, . . . , p. Denote S to be a set that contains the rows

of Ri’s in RN , for i = 1, 2, . . . , p. If

span(S) = RN ,

then for ∇fh,k 6= 0 there exists at least one Rj ∈ {Ri}pi=1 such that

d̂h,k 6= 0 and ∇fT
h,kd̂h,k < 0,

where d̂h,k is the coarse correction step computed using Rj.

Proof Since span(S) = RN , then for ∇fh,k 6= 0, there exists one Rj such that Rj∇fh,k 6= 0.

So the corresponding coarse model would have xH,⋆ 6= xH,0, and thus d̂h,kj 6= 0.

Proposition 5.7 shows that if the rows of the restriction operators Ri’s span RN , then at

least one coarse correction step from these restriction operators would be nonzero and thus

effective. In each iteration, one could use a similar idea as in (5.8) to rule out ineffective coarse

models. However, this checking process could be expensive for large scale problems with large p

(number of restriction operators). To omit this checking process, one could choose the following

alternatives.

5.2. Multilevel Models 151

i. Cyclical approach: choose R1,R2, . . . ,Rp in order at each iteration, and choose R1

after Rp.

ii. Probabilistic approach: assign a probability mass function with {Ri}pi=1 as a sample

space, and choose the coarse model randomly based on the mass function. The mass

function has to be strictly positive for each Ri.

We point out that this idea of using multiple coarse models is related to domain decomposition

methods, which solve (non-)linear equations arising from PDEs. Domain decomposition meth-

ods partition the problem domain into several sub-domains, and thus decompose the original

problem into several smaller problems. We refer the readers to [CS94] for more details about

domain decomposition methods.

In Section 5.2.3, we will show that using multiple P’s and R’s is not new in the optimization

research community. Using the above multilevel framework, one can re-generate the block-

coordinate descent.

5.2.3 Connection with Variable Metric Methods

Using the above multilevel framework, in the rest of this section we will introduce differ-

ent versions of multilevel algorithms: variable metric methods, block-coordinate descent, and

stochastic variance reduced gradient. At the end of this section we will introduce the Galerkin

model, which is an interesting case of the multilevel framework.

Recall that for variable metric methods, the direction dh,k is computed by solving

dh,k = argmin
d

1

2
〈d,Qd〉+ 〈∇fh,k,d〉,

= −Q−1∇fh,k. (5.9)

where Q ∈ RN×N is a positive definite matrix. When Q = I, dh,k is the gradient descent search

direction. When Q = ∇2fh,k, dh,k is the search direction by Newton’s method. When Q is an

approximation of the Hessian, then dh,k is the quasi-Newton search direction.

152 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

To show the connections between multilevel methods and variable metric methods, consider

the following fH .

fH(xH) =
1

2
〈xH − xH,0,QH(xH − xH,0)〉, (5.10)

where QH ∈ Rn×n, and xH,0 = Rxh,k as defined in (5.5). Applying the definition of the coarse

model (5.5), we obtain

min
xH∈Rn

φH(xH) =
1

2
〈xH − xH,0,QH(xH − xH,0)〉+ 〈R∇fh,k,xH − xH,0〉. (5.11)

Thus from the definition in (5.7), the associated coarse correction step is,

d̂h,k = P

arg min

dH∈Rn

1

2
〈dH ,QHdH〉+ 〈R∇fh,k,dH〉
︸ ︷︷ ︸

dH=xH−xH,0

= −PQ−1
H R∇fh,k. (5.12)

Therefore, with this specific fH in (5.10), the resulting coarse model (5.11) is analogous to

variable metric methods. In a näıve case where n = N and P = R = I, the corresponding coarse

correction step (5.12) would be the same as gradient descent direction, Newton direction, and

quasi-Newton direction for QH that is identity matrix, Hessian, and approximation of Hessian,

respectively.

5.2.4 Connection with Block-coordinate Descent

Interestingly, the coarse model (5.11) is also related to block-coordinate type methods. Suppose

we have p coarse models with prolongation and restriction operators, {Pi}pi=1 and {Ri}pi=1,

respectively. For each coarse model, we let (5.10) be the corresponding fH with QH = I, and

we further restrict our setting with the following properties.

1. Pi ∈ RN×ni , ∀i = 1, 2, . . . , p.

2. Pi = RT
i , ∀i = 1, 2, . . . , p.

3. [P1 P2 . . .Pp] = I.

5.2. Multilevel Models 153

From (5.12), the above setting results in d̂h,ki = −PiRi∇fh,k, where d̂h,ki is the coarse correction

step for the ith model. Notice that

(PiRi∇fh,k)j =

(∇fh,k)j if
i−1∑

q=1

nq < j ≤
i∑

q=1

nq,

0 otherwise .

Therefore, d̂h,ki is equivalent to a block-coordinate descent update [BT13]. When ni = 1, for

i = 1, 2, . . . , p, it becomes a coordinate descent method. When 1 < ni < N , for i = 1, 2, . . . , p,

it becomes a block-coordinate descent. When the Pi’s and Ri’s are chosen using the cyclical

approach, then it would be a cyclical (block)-coordinate descent. When the Pi’s and Ri’s

are chosen using the probabilistic approach, then it would be a randomized (block)-coordinate

descent method.

5.2.5 Connection with SVRG

The multilevel framework is also related to the Stochastic Variance Reduced Gradient (SVRG)

and its variants [GGR16, JZ13, MNJ16], which is a state-of-the-art algorithm for structured

machine learning problems. Suppose the fine model has the following form

min
xh∈RN

fh(xh) =
1

M

M∑

i=1

fi(xh).

We denote a set, SH ⊆ {1, 2, . . . ,M} with |SH | = m, and construct the following coarse model

min
xH∈RN

fH(xH) =
1

m

∑

i∈SH

fi(xH).

In this particular case where xh,xH ∈ RN , no dimension is reduced, and we let P = R = I. In

the kth iteration with incumbent xk, the coarse model is

min
xH∈Rn

1

m

∑

i∈SH

fi(xH) +

〈

− 1

m

∑

i∈SH

∇fi(xh,k) +
1

M

M∑

i=1

∇fi(xh,k),xH − xh,k

〉

.

154 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Suppose gradient descent is applied for K steps to solve the above coarse model, then

xH,j = xH,j−1 − αH,j

(

1

m

∑

i∈SH

∇fi(xH,j−1)−
1

m

∑

i∈SH

∇fi(xh,k) +
1

M

M∑

i=1

∇fi(xh,k)

)

,

for j = 1, 2, . . . , K. The above update is the key step in SVRG and its variants. In particular,

when m = Kd = 1, the above setting is the same as the original SVRG in [JZ13] with 1 inner

iteration. Even though the coarse model is in the same dimension as the fine model, the cost

of computing function values and gradients is much cheaper when m≪M .

5.2.6 The Galerkin Model

We end this section with the core topic of this chapter - the Galerkin model. The Galerkin

coarse model is a special case of (5.11) where,

QH = ∇2
Hfh,k , R∇2fh,kP, (5.13)

and so the Galerkin (coarse) model is,

min
xH∈Rn

φH(xH) =
1

2
〈xH − xH,0,∇2

Hfh,k(xH − xH,0)〉+ 〈R∇fh,k,xH − xH,0〉. (5.14)

According to (5.12), the corresponding coarse correction step is

d̂h,k = −P[R∇2fh,kP]−1R∇fh,k = −P[∇2
Hfh,k]

−1R∇fh,k. (5.15)

The Galerkin model is closely related to algebraic multigrid methods which solve (non-)linear

equations arising from PDEs. Algebraic multigrid methods are used when the computation or

implementation of fH is difficult (see e.g. [Stü01]). In the context of multilevel optimization, to

the best of our knowledge, this is first mentioned in [GST08] by Gratton, Sartenaer, and Toint.

In [GST08] a trust-region type multilevel method is proposed to solve PDE-based optimization

problems, and the Galerkin model is described as a “radical strategy”. In a later paper from

Gratton et al. [GMS+10], the trust-region type multilevel method is tested numerically, and

5.3. Convergence of GAMA 155

Galerkin model provides good numerical results.

It is worth mentioning that the above coarse correction step is equivalent to the solution of the

system of linear equations,

R∇2fh,kPdH = −R∇fh,k. (5.16)

which is the general case of the Newton’s method in which P = R = I. Using Assumption 5.3,

we can show that ∇2
Hfh,k is positive definite, and so equation (5.16) has a unique solution.

Proposition 5.8 R∇2fh(xh)P is positive definite, and in particular,

µhν
−2
L I � R∇2fh(xh)P � Lhν

2
UI

where νU , max{‖P‖, ‖R‖} and νL = ‖P+‖ as defined in (5.4). Lh and µh are defined in

Assumption 5.1.

Proof

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≤ Lh‖Px‖2 ≤ Lhν

2
U‖x‖2.

Also,

xT
(
R∇2fh(xh)P

)
x = (Px)T∇2fh(xh)(Px) ≥ µh‖Px‖2 ≥ µh

‖P+‖2‖x‖
2 =

µh

ν2L
‖x‖2.

So we obtain the desired result.

5.3 Convergence of GAMA

In this section we will analyze GAMA that is stated as Algorithm 5.1. The fine correction

steps in Algorithm 5.1 are deployed by variable metric methods, and an Armijo’s rule is used

as stepsize strategy for both fine and coarse correction steps. We emphasize that Algorithm

156 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Algorithm 5.1 GAMA

Input:κ, ǫ, ρ1 ∈ (0, 0.5), βls ∈ (0, 1),
P ∈ RN×n and R ∈ Rn×N which satisfy Assumption 5.2 and 5.3.

Initialization: xh,0 ∈ RN

for k = 0, 1, 2, . . . do
Compute the direction

d =

{

d̂h,k in (5.15) if ‖R∇fh,k‖ > κ‖∇fh,k‖ and ‖R∇fh,k‖ > ǫ,

dh,k in (5.9) otherwise.

Find the smallest q ∈ N such that for stepsize αh,k = βq
ls,

fh(xh,k + αh,kd) ≤ fh,k + ρ1αh,k∇Tfh,kd.

Update
xh,k+1 , xh,k + αh,kd.

end for

5.1 is the basic version of GAMA, but the general techniques of analysis in this section could

be applied to its variants which we introduced in Section 5.2. The results in this section will

be used in Section 5.3 to compare the complexity between GAMA and Newton’s method.

We will first show that Algorithm 5.1 achieves a sublinear rate of convergence. In particular,

we will show that for k = 0, 1, . . . ,

fh,k − fh,⋆ ≤
C

2 + k
,

for some constant C which we will specify later in this section. We then analyze the maximum

number of coarse correction steps that would be taken by Algorithm 5.1, and the condition under

which the coarse correction steps yield quadratic reduction in the gradients in the subspace. At

the end of this section, we will provide the composite convergence rate for the coarse correction

steps.

To provide convergence properties when coarse correction steps are used, the following quantity

will be used:

χH,k , [(R∇fh,k)T [∇2
Hfh,k]

−1R∇fh,k]1/2.

Notice that χH,k is analogous to the Newton decrement, which is used to study the convergence

5.3. Convergence of GAMA 157

of Newton’s method [BV04]. In particular, the defined χH,k has the following properties.

1. ∇fT
h,kd̂h,k = −χ2

H,k.

2. d̂T
h,k∇2fh,kd̂h,k = χ2

H,k.

We omit the proofs of the above properies since these can be done by using direct computation

and the definition of χH,k.

5.3.1 The Worst Case O(1/k) Convergence

We will show that Algorithm 5.1 will achieve a sublinear rate of convergence. We will deploy

the techniques from [BT13] and [BV04]. Starting with the following lemma, we state reduction

in function value using coarse correction steps. We would like to clarify that even though

GAMA is considered as a special case in [WG09], we take advantage of this simplification and

specification to provide analysis with results that are easier to interpret. In particular, the

analysis of stepsizes αh,k’s in [WG09] relies on the maximum number of iterations taken. This

result is unfavourable and unnecessary for the settings we consider.

Lemma 5.9 The coarse correction step d̂h,k in Algorithm 5.1 will lead to reduction in function

value

fh,k − fh(xh,k + αh,kd̂h,k) ≥
ρ1κ

2βlsµh

L2
h

‖∇fh,k‖2,

where ρ1, κ, and βls are user-defined parameters in Algorithm 5.1. Lh and µh are defined in

Assumption 5.1.

Proof By mean value theorem,

f(xh,k + αd̂h,k) ≤ fh,k + α〈∇fh,k, d̂h,k〉+
Lh

2
α2‖d̂h,k‖2,

≤ fh,k − αχ2
H,k +

Lh

2µh

α2χ2
H,k,

158 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

since

µh‖d̂h,k‖2 ≤ d̂T
h,k∇2f(xk)d̂h,k = χ2

H,k.

Notice that α̂ = µh/Lh, we have

−α̂ +
Lh

2µh

α̂2 = −α̂ +
Lh

2µh

µh

Lh

α̂ = −1

2
α̂,

and

f(xh,k + α̂d̂h,k) ≤ fh,k −
α̂

2
χ2
H,k,

≤ fh,k +
α̂

2
∇fT

h,kd̂h,k,

< fh,k + ρ1α̂∇fT
h,kd̂h,k,

which satisfies the Armijo’s rule. Therefore, the line search will return a stepsize αh,k ≥ α̂ =

(βlsµh)/Lh. Using the fact that

1

Lh

‖R∇f(xk)‖2 ≤ (R∇f(xk))T [∇2
Hf(xk)]

−1R∇f(xk) = χ2
H,k,

we obtain

f(xh,k + αh,kd̂h,k)− fh,k ≤ ρ1αh,k∇fT
h,kd̂h,k,

≤ −ρ1α̂χ2
H,k,

≤ −ρ1
βlsµh

L2
h

‖R∇fh,k‖2,

≤ −ρ1κ
2βlsµh

L2
h

‖∇fh,k‖2, (from (5.8))

as required.

Using the result in Lemma 5.9, we derive the guaranteed reduction in function value in the

following two lemmas.

5.3. Convergence of GAMA 159

Lemma 5.10 Let Λ , min

{

Λh,
ρ1κ

2βlsµh

L2
h

}

. Then the step d in Algorithm 5.1 will lead to

fh,k − fh,k+1 ≥ Λ‖∇fh,k‖2,

where ρ1, κ, and βls are user-defined parameters in Algorithm 5.1. Lh and µh are defined in

Assumption 5.1. Λh is defined in Assumption 5.6.

Proof This is a direct result from Lemma 5.9 and Assumption 5.6.

Lemma 5.11 Suppose

R(xh,0) , max
xh∈RN

{‖xh − xh,⋆‖ : fh(xh) ≤ fh(xh,0)}.

Then step in Algorithm 5.1 will guarantee

fh,k − fh,k+1 ≥
Λ

R2(xh,0)
(fh,k − fh,⋆)2 ,

where Λ is defined in Lemma 5.10.

Proof By convexity, for k = 0, 1, 2, . . . ,

fh,k − fh,⋆ ≤ 〈∇fh,k,xh,k − xh,⋆〉,

≤ ‖∇fh,k‖ ‖xh,k − xh,⋆‖,

≤ R(xh,0)‖∇fh,k‖.

Using Lemma 5.10, we have

fh,k − fh,⋆ ≤ R(xh,0)
√

Λ−1 (fh,k − fh,k+1),
(
fh,k − fh,⋆
R(xh,0)

)2

≤ Λ−1 (fh,k − fh,k+1) ,

Λ

(
fh,k − fh,⋆
R(xh,0)

)2

≤ fh,k − fh,k+1,

160 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

as required.

The constant Λ in Lemma 5.11 depends on Λh, which is introduced in Assumption 5.6. This

constant depends on both the fine correction step chosen and the user-defined parameter ρ1 in

Armijo’s rule. For instance,

Λh =

ρ1µh

L2
h

if dh,k = −[∇2fh,k]
−1∇fh,k,

ρ1
Lh

if dh,k = −∇fh,k.

In order to derive the convergence rate in this section, we use the following lemma on nonneg-

ative scalar sequences.

Lemma 5.12 ([BT13]) Let {Ak}k≥0 be a nonnegative sequence of the real numbers satisfying

Ak − Ak+1 ≥ γA2
k, k = 0, 1, 2, . . . ,

and

A0 ≤
1

qγ

for some positive γ and q. Then

Ak ≤
1

γ(k + q)
, k = 0, 1, 2, . . . ,

and so

Ak ≤
1

γk
, k = 0, 1, 2,

Proof see Lemma 3.5 in [BT13].

Combining the above results, we obtain the rate of convergence.

Theorem 5.13 Let {xk}k≥0 be the sequence that is generated by Algorithm 5.1. Then,

fh,k − fh,⋆ ≤
R2(xh,0)

Λ

1

2 + k
,

5.3. Convergence of GAMA 161

where Λ and R(·) are defined as in Lemma 5.10 and 5.11, respectively.

Proof Notice that by Lemma 5.11

fh,k − fh,k+1 ≥
Λ

R2(xh,0)
(fh,k − fh,⋆)2

and so

(fh,k − fh,⋆)− (fh,k+1 − fh,⋆) ≥
Λ

R2(xh,0)
(fh,k − fh,⋆)2 .

Also, we have

fh,0 − fh,⋆ ≤
Lh

2
‖xh,0 − xh,⋆‖2 ≤

Lh

2
R2(xh,0) ≤

L2
hR2(xh,0)

2µh

≤ L2
hR2(xh,0)

2µhβlsκ2ρ1
,

≤ R2(xh,0)

2Λ
,

where the first two inequalities hold because of descent lemma and the definition of R(·) in

Lemma 5.11, and the last inequality holds because of the definition of Λ in Lemma 5.10. We

also use the fact that µh ≤ Lh and βls, κ, ρ1 ≤ 1.

Let Ak , fh,k − fh,⋆, γ ,
Λ

R2(xh,0)
, and q , 2. By applying Lemma 5.12, we have

fh,k − fh,⋆ ≤
R2(xh,0)

Λ

1

2 + k
,

as required.

Theorem 5.13 provides the sublinear convergence of Algorithm 5.1. We emphasize that the

rate is inversely proportional to Λ = min{Λh, ρ1κ
2µh/L

2
h}, and so small κ would result in low

convergence. Therefore, even though κ could be arbitrary small, it is not desirable in terms of

worst case complexity. Note that κ is a user-defined parameter for determining whether coarse

correction step would be used. If κ is chosen to be too large, then it is less likely that the

coarse correction step would be used. In the extreme case where κ ≥ ‖R‖, coarse correction

162 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

step would not be deployed because

‖R∇fh,k‖ ≤ ‖R‖‖∇fh,k‖,

and so Algorithm 5.1 reduces to the standard variable metric method. Therefore, there is a

trade-off between the worst case complexity and the likelihood that coarse correction step would

be deployed.

Bear in mind that one can deploy GAMA without using any fine correction step, as stated in

Section 5.2.2. In this case the criterion (5.8) would not be used, but we clarify that the analysis

in this section is still valid as long as we assume there are constants κ, ǫ such that criterion

(5.8) is always satisfied.

5.3.2 Maximum Number of Iterations of Coarse Correction Step

We now discuss the maximum number of coarse correction steps in Algorithm 5.1. The following

lemma will state the sufficient conditions for not taking any coarse correction step.

Lemma 5.14 No coarse correction step in Algorithm 5.1 will be taken when

‖∇fh,k‖ ≤
ǫ

νU
,

where νU = max{‖P‖, ‖R‖}, and ǫ is a user-defined parameter in Algorithm 5.1.

Proof Recall that in Algorithm 5.1, the coarse step is only taken when ‖R∇fh,k‖ > ǫ. We

have,

‖R∇fh,k‖ ≤ νU‖∇fh,k‖ ≤ νU
ǫ

νU
= ǫ,

and so no coarse correction step will be taken.

The above lemma states the condition when the coarse correction step would not be performed.

We then investigate the maximum number of iterations to achieve that sufficient condition.

5.3. Convergence of GAMA 163

Lemma 5.15 Let {xk}k≥0 be a sequence generated by Algorithm 5.1. Then, ∀ǭ, k̄ > 0 such

that,

k̄ ≥
(
1

ǭ

)2 R2(xh,0)

Λ2
− 2,

we obtain

‖∇fh(xh,k̄)‖ ≤ ǭ,

where Λ and R(·) are defined as in Lemma 5.10 and 5.11, respectively.

Proof We know that

Λ‖∇fh,k‖2 ≤ fh,k − fh,k+1.

Also, we have,

fh,k − fh,⋆ ≤
R2(xh,0)

Λ

1

2 + k
.

Therefore,

‖∇fh,k‖2 ≤
1

Λ
(fh,k − fh,k+1) ,

≤ 1

Λ
(fh,k − fh,⋆) ,

≤ R2(xh,0)

Λ2

1

2 + k
.

For

k =

(
1

ǭ

)2 R2(xh,0)

Λ2
− 2,

we have

‖∇fh,k‖ ≤
√

R2(xh,0)

Λ2

1

2 + k
≤
√

R2(xh,0)

Λ2
(ǭ)2

Λ2

R2(xh,0)
= ǭ,

as required.

164 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

By integrating the above results, we obtain the maximum number of iterations to achieve

‖∇fh,k‖ ≤ ǫ/νU . That is, no coarse correction step will be taken after

(νU
ǫ

)2 R2(xh,0)

Λ2
− 2 iterations.

Notice that the smaller ǫ, the more coarse correction step will be taken. Depending on the

choice of dh,k, the choice of ǫ could be different. For example, if dh,k is chosen as the Newton

step where dh,k = −[∇2fh,k]
−1∇fh,k, one good choice of ǫ could be 3νU(1−2ρ1)µ

2
h/Lh if µh and

Lh are known. This is because Newton’s method achieves quadratic rate of convergence when

‖∇fh,k‖ ≤ 3(1 − 2ρ1)µ
2
h/Lh [BV04]. Therefore, for such ǫ, no coarse correction step would be

taken when the Newton method performs in its quadratically convergent phase.

5.3.3 Quadratic Phase in Subspace

We now state the required condition for the stepsize to achieve αh,k = 1, and then we will show

that when ‖R∇fh,k‖ is sufficiently small, the coarse correction step would reduce ‖R∇fh,k‖

quadratically. The results below are analogous to the analysis of the Newton’s method in

[BV04].

Lemma 5.16 Suppose the coarse correction step d̂h,k in Algorithm 5.1 is taken, then αh,k = 1

when

‖R∇fh,k‖ ≤ η =
3µ2

h

Mh

(1− 2ρ1),

where ρ1 is a user-defined parameter in Algorithm 5.1. Mh and µh are defined in Assumption

5.1.

Proof By Lipschitz continuity (5.3),

‖∇2fh(xh,k + αd̂h,k)−∇2fh,k‖ ≤ αMh‖d̂h,k‖,

5.3. Convergence of GAMA 165

which implies

‖d̂T
h,k(∇2fh(xh,k + αd̂h,k)−∇2fh,k)d̂h,k‖ ≤ αMh‖d̂h,k‖3.

Let f̃(α) = fh(xh,k + αd̂h,k). Then the above inequality can be rewritten as

|f̃ ′′(α)− f̃ ′′(0)| ≤ αMh‖d̂h,k‖3,

and so

f̃ ′′(α) ≤ f̃ ′′(0) + αMh‖d̂h,k‖3.

Since f̃ ′′(0) = d̂T
h,k∇2fh,kd̂h,k = χ2

H,k,

f̃ ′′(α) ≤ χ2
H,k + αMh‖d̂h,k‖3.

By integration,

f̃ ′(α) ≤ f̃ ′(0) + αχ2
H,k + (α2/2)Mh‖d̂h,k‖3.

Similarly, f̃ ′(0) = ∇fT
h,kd̂h,k = −χ2

H,k, and so

f̃ ′(α) ≤ −χ2
H,k + αχ2

H,k + (α2/2)Mh‖d̂h,k‖3.

Integrating the above inequality, we obtain

f̃(α) ≤ f̃(0)− αχ2
H,k + (α2/2)χ2

H,k + (α3/6)Mh‖d̂h,k‖3.

Recall that µh‖d̂h,k‖2 ≤ d̂T
h,k∇2fh,kd̂h,k = χ2

H,k; thus,

f̃(α) ≤ f̃(0)− αχ2
H,k +

α2

2
χ2
H,k +

α3Mh

6µ
3/2
h

χ3
H,k.

166 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Let α = 1,

f̃(1)− f̃(0) ≤ −χ2
H,k +

1

2
χ2
H,k +

Mh

6µ
3/2
h

χ3
H,k

= −
(

1

2
− Mh

6µ
3/2
h

χH,k

)

χ2
H,k.

Using the fact that

‖R∇fh,k‖ ≤ η =
3µ2

h

Mh

(1− 2ρ1)

and

χH,k = ((R∇fh,k)T [∇2
Hfh,k]

−1R∇fh,k)1/2 ≤
1√
µh

‖R∇fh,k‖,

we have

χH,k ≤
3µ

3/2
h

Mh

(1− 2ρ1) ⇐⇒ ρ1 ≤
1

2
− Mh

6µ
3/2
h

χH,k.

Therefore,

f̃(1)− f̃(0) ≤ −ρ1χ2
H,k = ρ1∇fT

h,kd̂h,k,

and we have αh,k = 1 when ‖R∇fh,k‖ ≤ η.

The above lemma yields the following theorem.

Theorem 5.17 Suppose the coarse correction step d̂h,k in Algorithm 5.1 is taken and αh,k = 1,

then

‖R∇fh,k+1‖ ≤
ν3Uν

4
LMh

2µ2
h

‖R∇fh,k‖2,

where Mh and µh are defined in Assumption 5.1, νU = max{‖P‖, ‖R‖} and νL = ‖P+‖.

5.3. Convergence of GAMA 167

Proof Since αh,k = 1, we have

‖R∇fh,k+1‖ = ‖R∇fh(xh,k + d̂h,k)−R∇fh,k +R∇2fh,kP[∇2
Hfh,k]

−1R∇fh,k‖

≤ ‖R‖ ‖∇fh(xh,k + d̂h,k)−∇fh,k −∇2fh,kd̂h,k‖

≤ νU

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ 1

0

(∇2fh(xh,k + td̂h,k)−∇2fh,k)d̂h,k dt

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ νU
Mh

2
‖d̂h,k‖2.

Notice that

‖d̂h,k‖ = ‖P[R∇2fh,kP]−1R∇fh,k‖

≤ ‖P‖ ‖[R∇2fh,kP]−1‖ ‖R∇fh,k‖

≤ νUν
2
L

µh

‖R∇fh,k‖.

Thus,

‖R∇fh,k+1‖ ≤
ν3Uν

4
LMh

2µ2
h

‖R∇fh,k‖2,

as required.

The above theorem states the quadratic convergence of ‖∇fh,k‖ within the subspace range(R).

However, it does not give insight on the convergence behaviour on the full space RN . To address

this, we study the composite rate of convergence in the next section.

5.3.4 Composite Convergence Rate

At the end of this section, we study the convergence properties of the coarse correction step

when the incumbent is sufficiently close to the solution. In particular, we deploy the idea of

composite convergence rate in [EM15], and consider the convergence of the coarse correction

step as a combination of linear and quadratic convergence.

The reason for proving composite convergence is due to the broadness of GAMA. Suppose in

the näıve case when P = R = I, then the coarse correction step in GAMA becomes Newton’s

168 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

method. In this case we expect quadratic convergence when the incumbent is sufficiently close

to the solution. On the other hand, suppose P is any column of I and R = PT , then the

coarse correction step is a (weighted) coordinate descent direction, as described in Section

5.2.4. One should expect not more than linear convergence in that case. Therefore, both

quadratic convergence and linear convergence are not suitable for GAMA, and one needs a

combination of them. In this chapter, we propose to use composite convergence, and show that

it can better explain the convergence of different variants of GAMA.

We would like to emphasize the difference between our setting and [EM15]. To the best of

our knowledge, composite convergence rate was used in [EM15] to study subsample Newton

methods for machine learning problems without dimensionality reduction. In this chapter, the

class of problems that we consider is not restricted to machine learning, and we focus on the

Galerkin model, which is a reduced dimension model. The results presented in this section are

not direct results of the approach in [EM15]. In particular, if the exact analysis of [EM15] is

taken, the derived composite rate would not be useful in our setting, because the coefficient of

the linear component would be greater than 1.

Theorem 5.18 Suppose the coarse correction step d̂h,k in Algorithm 5.1 is taken and αh,k = 1,

then

‖xh,k+1 − xh,⋆‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,⋆)‖

+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2, (5.17)

where Mh and µh are defined in Assumption 5.1, νU = max{‖P‖, ‖R‖} and νL = ‖P+‖. The

operator ∇2
H is defined in (5.13).

Proof Denote

Q̃ =

∫ 1

0

∇2f(xh,⋆ − t(xh,k − xh,⋆))dt,

5.3. Convergence of GAMA 169

we have

xh,k+1 − xh,⋆ = xh,k − xh,⋆ −P[∇2
Hfh,k]

−1R∇fh,k

= xh,k − xh,⋆ −P[∇2
Hfh,k]

−1RQ̃(xh,k − xh,⋆)

=
(

I−P[∇2
Hfh,k]

−1RQ̃
)

(xh,k − xh,⋆)

=
(
I−P[∇2

Hfh,k]
−1R∇2fh,k

)
(xh,k − xh,⋆)

+
(

P[∇2
Hfh,k]

−1R∇2fh,k −P[∇2
Hfh,k]

−1RQ̃
)

(xh,k − xh,⋆)

=
(
I−P[∇2

Hfh,k]
−1R∇2fh,k

)
(I−PR)(xh,k − xh,⋆)

+P[∇2
Hfh,k]

−1R
(

∇2fh,k − Q̃
)

(xh,k − xh,⋆),

where the last equality holds since

(
I−P[∇2

Hfh,k]
−1R∇2fh,k

)
PR = PR−P[∇2

Hfh,k]
−1R∇2fh,kPR = PR−PR = 0.

Note that

‖∇2fh,k − Q̃‖ =
∥
∥
∥
∥
∥
∇2fh,k −

∫ 1

0

∇2f(xh,⋆ − t(xh,k − xh,⋆))dt

∥
∥
∥
∥
∥
≤ Mh

2
‖xh,k − xh,⋆‖.

Therefore,

‖xh,k+1 − xh,⋆‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,⋆)‖

+‖P[∇2
Hfh,k]

−1R‖Mh

2
‖xh,k − xh,⋆‖2,

≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,⋆)‖

+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2,

as required.

Theorem 5.18 provides the composite convergence rate for the coarse correction step. However,

some terms remain unclear, in particular ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖. Notice that in the case

170 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

when rank(P) = N (i.e. P is invertible),

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖I−P[R∇2fh,kP]−1R∇2fh,k‖,

= ‖I−PP−1[∇2fh,k]
−1R−1R∇2fh,k‖,

= 0.

It is intuitive to consider that ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ should be small and less than 1 when

rank(P) is close to but not equal to N . However, the above intuition is not true, and we prove

this in the following lemma.

Lemma 5.19 Suppose rank(P) 6= N , then

1 ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ≤
√

Lh

µh

,

where Lh and µh are defined in Assumption 5.1. The operator ∇2
H is defined in (5.13).

Proof Since ∇2fh,k is a positive definite matrix, consider the eigendecomposition of ∇2fh,k,

∇2fh,k = UΣUT ,

where Σ is a diagonal matrix containing the eigenvalues of ∇2fh,k, and U is a orthogonal matrix

where its columns are eigenvectors of ∇2fh,k.

In this proof, we rely on results in orthogonal projection for real matrices (see [HMT11] for

more details). An orthogonal projector is an symmetric matrix such that Γ2 = Γ, which implies

0 � Γ � I. For a full column rank matrix M, it unique orthogonal projector is

ΓM = M(MTM)−1MT ,

with range(ΓM) = range(M). The matrix I− ΓM is also an orthogonal projector.

5.3. Convergence of GAMA 171

Using the above results and definitions, we have

I−P[∇2
Hfh,k]

−1R∇2fh,k

= I−P[R∇2fh,kP]−1R∇2fh,k,

= UΣ−1/2Σ1/2UT −UΣ−1/2Σ1/2UTP[RUΣ1/2Σ1/2UTP]−1RUΣ1/2Σ1/2UT ,

(by eigendecomposition)

= UΣ−1/2Σ1/2UT

−UΣ−1/2(Σ1/2UTP)[(Σ1/2UTP)T (Σ1/2UTP)]−1(Σ1/2UTP)TΣ1/2UT ,

(grouping (Σ1/2UTP)’s to be in the form of orthogonal projector)

= UΣ−1/2(I− ΓΣ1/2UTP)Σ
1/2UT ,

where ΓΣ1/2UTP is the orthogonal projection operator onto the range of Σ1/2UTP, and so

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖UΣ−1/2(I− ΓΣ1/2UTP)Σ
1/2UT‖,

= ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖.

For the upper bound, we have

‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖ ≤ ‖Σ−1/2‖‖(I− ΓΣ1/2UTP)‖‖Σ1/2‖ ≤

√

Lh

µh

,

since I−ΓΣ1/2UTP is an orthogonal projector and ‖(I−ΓΣ1/2UTP)‖ ≤ 1. For the lower bound,

we have

‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖ = ‖Σ−1/2(I− ΓΣ1/2UTP)(I− ΓΣ1/2UTP)Σ

1/2‖,

= ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2Σ−1/2(I− ΓΣ1/2UTP)Σ

1/2‖,

≤ ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖‖Σ−1/2(I− ΓΣ1/2UTP)Σ

1/2‖,

= ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖2.

The assumption rank(P) 6= N implies that range(P) 6= range(I) and so range(ΓΣ1/2UTP) 6=

172 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

range(I). Thus,

I 6= ΓΣ1/2UTP and ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖ 6= 0.

Therefore, 1 ≤ ‖Σ−1/2(I− ΓΣ1/2UTP)Σ
1/2‖, as required.

Lemma 5.19 clarifies the fact that the term ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ is at least 1 when n < N .

This fact reduces the usefulness of the composite convergence rate in Theorem 5.18. In Section

5.5-5.7, we will investigate different Galerkin models, and show that ‖(I−PR)(xh,k − xh,⋆)‖ is

sufficiently small in those cases.

5.4 Complexity Analysis

In this section we will perform the complexity analysis for both the Newton’s method and

GAMA. Our complexity analysis for Newton’s method is a variant of the results in [BV04,

Kan52, Pol87]. The main difference is that in this chapter we focus on the complexity that

yield ‖xh,k − xh,⋆‖ ≤ ǫh accuracy instead of ‖∇fh,k‖ ≤ ǫh. This choice is made for simpler

comparison with GAMA. At the end of this section, we compare the complexity of Newton’s

method and GAMA, and we will state the condition for which GAMA has lower complexity.

5.4.1 Complexity Analysis: Newton’s Method

It is known that for Newton’s method, the algorithm enters its quadratic convergence phase

when αh,k = 1, with

‖xh,k+1 − xh,⋆‖ ≤
Mh

2µh

‖xh,k − xh,⋆‖2.

The above equation, however, does not guarantee that ‖xh,k+1 − xh,⋆‖ is a contraction. To

obtain this guarantee, it requires

Mh

2µh

‖xh,k − xh,⋆‖ < 1 ⇐⇒ ‖xh,k − xh,⋆‖ <
2µh

Mh

. (5.18)

5.4. Complexity Analysis 173

Moreover, αh,k = 1 when

‖∇fh,k‖ ≤ 3(1− 2ρ1)
µ2
h

Lh

. (5.19)

In what follows we will first prove the number of iterations needed to satisfy condition (5.18)-

(5.19) (called the damped Newton phase), and we will then compute the number of iterations

needed in the quadratically convergent phase. To this end, we define the following two variables:

❼ kd: The number of iterations in the damped Newton phase.

❼ kq: The number of iterations in the quadratically convergent phase.

Thus, the total number of iterations needed is kd + kq.

Lemma 5.20 Suppose Newton’s method is performed. Then conditions (5.18)-(5.19) are sat-

isfied after

kd ≥
(

1

ǫN

)2 R2(xh,0)

Λ2
N

− 2

iterations, where

ǫN , min

{
3

2
(1− 2ρ1), δ

}

︸ ︷︷ ︸

,ηN

2µ2
h

Mh

, ∀δ ∈ (0, 1), ΛN ,
ρ1βlsµh

L2
h

.

Note that ρ1 and βls are user-defined parameters in Armijo’s rule as Algorithm 5.1; Mh, Lh,

and µh are defined in Assumption 5.1; R(·) is defined in Lemma 5.11.

Proof It is known that for Newton’s method

fh,k+1 − fh,k ≤ −ΛN‖∇fh,k‖2.

Using the above equation together with the proofs of Lemma 5.11 and Theorem 5.13, we obtain

fh,k − fh,⋆ ≤
R2(xh,0)

ΛN

1

2 + k
.

174 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Therefore, using the proof of Lemma 5.15, it takes a finite number of iterations, kd, to achieve

‖∇fh,kd‖ ≤ ǫN for ǫN > 0, and

kd ≤
(

1

ǫN

)2 R2(xh,0)

Λ2
N

− 2.

By convexity and the definition of ǫN , we obtain

‖xh,kd − xh,⋆‖ ≤
1

µh

‖∇fh,kd‖ ≤
1

µh

ǫN =
1

µh

min

{
3

2
(1− 2ρ1), δ

}
2µ2

h

Mh

<
2µh

Mh

.

So we obtain the desired result.

Lemma 5.20 gives kd, the number of iterations required in order to enter the quadratic phase.

In the following lemma we derive kq.

Lemma 5.21 Suppose Newton’s method is performed and ‖∇fh,0‖ ≤ ǫN , where ǫN is defined

in Lemma 5.20. Then, for ǫh and kq such that

ǫh ∈ (0, 1), and kq ≥
1

log 2
log

log
(

Mhǫh
2µh

)

log ηN

− 1,

we obtain ‖xh,kq −xh,⋆‖ ≤ ǫh. Note that Mh and ηN are defined in Assumption 5.1 and Lemma

5.20, respectively.

Proof Given that

‖xh,0 − xh,⋆‖ ≤
1

µh

‖∇fh,0‖ ≤
ǫN
µh

≤ ηN
2µh

Mh

,

5.4. Complexity Analysis 175

we have

‖xh,k+1 − xh,⋆‖ ≤
Mh

2µh

‖xh,k − xh,⋆‖2

≤
(
Mh

2µh

)(
Mh

2µh

)2

‖xh,k−1 − xh,⋆‖4

≤
(
Mh

2µh

)∑k
j=0

2j

‖xh,0 − xh,⋆‖2
k+1

=

(
Mh

2µh

)2k+1−1(

ηN
2µh

Mh

)2k+1

=
2µh

Mh

η2
k+1

N .

To achieve the desired accuracy, we require

2µh

Mh

η2
kq+1

N ≤ ǫh,

2kq+1 log ηN ≤ log

(
Mhǫh
2µh

)

,

(kq + 1) log 2 ≥ log

log
(

Mhǫh
2µh

)

log ηN

 ,

kq ≥
1

log 2
log

log
(

Mhǫh
2µh

)

log ηN

− 1.

So we obtain the desired result.

Combining the results in Lemma 5.20 and Lemma 5.21, we obtain the complexity of Newton’s

method.

Theorem 5.22 Suppose Newton’s method is performed and k = kd + kq, where kd and kq

are defined as in Lemma 5.20 and Lemma 5.21, respectively. Then we obtain the ǫh-accuracy

‖xh,k − xh,⋆‖ ≤ ǫh with the complexity

O
(
(kd + kq)N

3
)
.

Proof The total complexity is the number of iterations, kd + kq, multiply by the cost per

176 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

iteration, which is O (N3).

5.4.2 Complexity Analysis: GAMA

We follow the same strategy to compute the complexity of GAMA. In order to avoid unnecessary

complications in notations, in the section, we let r1 and r2 to be the composite rate in which

‖xh,k+1 − xh,⋆‖ ≤ r1‖xh,k − xh,⋆‖+ r2‖xh,k − xh,⋆‖2, (5.20)

when

‖R∇fh,k‖ ≤
3µ2

h

Mh

(1− 2ρ1). (5.21)

For ‖xh,k+1 − xh,⋆‖ in (5.20) to be a contraction, we need r1 < 1 and

‖xh,k − xh,⋆‖ <
1− r1
r2

. (5.22)

We clarify that the above form in (5.20) is not exactly in the same form of the composite rate

in Section 5.3.4, where ‖(I−PR)(xh,k −xh,⋆)‖ is used instead of ‖xh,k −xh,⋆‖. The latter case

is used solely for simpler analysis, and does not contradict with the results presented in Section

5.3.4; in particular, one can simply let

r1 = ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖
‖(I−PR)(xh,k − xh,⋆)‖

‖xh,k − xh,⋆‖
. (5.23)

In order to guarantee convergence, we simply assume one fine correction step is taken after a

fixed number of coarse correction steps. For the purpose of simplifying analysis, we make the

following assumptions on the fine correction step taken.

Assumption 5.23 The coarse correction step of Algorithm 5.1 has the following properties:

1. One fine correction step is taken for every KH coarse correction steps.

2. The computational cost of each fine correction step is O(Ch), for some Ch.

5.4. Complexity Analysis 177

3. When the composite rate (5.20) applies for the coarse correction steps, the fine correction

step satisfies

‖xh,k+1 − xh,⋆‖ ≤ ‖xh,k − xh,⋆‖.

Recall that GAMA only achieves the composite rate when condition (5.21) is satisfied, as

stated in Lemma 5.16 and Theorem 5.18. When (5.21) does not hold, a global sublinear rate

of convergence is still guaranteed, as concluded in Theorem 5.13. We shall call the former case

and the latter case as composite convergent phase and sublinear convergent phase, respectively.

In the following lemma, we compute the number of iterations needed for both composite con-

vergent phase and sublinear convergent phase. Similar to the case of Newton’s method, we

define the following notation:

❼ ks: The number of iterations in the sublinear convergent phase.

❼ kc: The number of iterations in the composite convergent phase.

Thus, the total number of iterations of GAMA would be ks + kc.

Lemma 5.24 Suppose Algorithm 5.1 is performed and Assumption 5.23 holds. Then condi-

tions (5.21)-(5.22) are satisfied after

ks ≥
(

1

ǫG

)2 R2(xh,0)

Λ2
− 2

iterations, where

ǫG , min

{
3µ2

h

νUMh

(1− 2ρ1), δ

}

, ∀δ ∈
(

0,
µh(1− r1)

r2

)

.

Note that ρ1 is a user-defined parameter in Algorithm 5.1; νU = max{‖P‖, ‖R‖}; Mh and µh

are defined in Assumption 5.1; Λ and R(·) are defined in Lemma 5.10 and 5.11, respectively;

r1 and r2 are defined in (5.20).

178 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Proof Using the result in Lemma 5.15, we obtain

‖∇fh,ks‖ ≤ ǫG.

We then show that the above condition is sufficient for αh,ks = 1. By definitions,

‖R∇fh,ks‖ ≤ νU‖∇fh,ks‖ ≤ νUǫG ≤ νU
3µ2

h

νUMh

(1− 2ρ1) =
3µ2

h

Mh

(1− 2ρ1).

By Lemma 5.16, αh,ks = 1. On the other hand,

‖xh,ks − xh,⋆‖ ≤
1

µh

‖∇fh,ks‖ <
1

µh

µh(1− r1)
r2

=
1− r1
r2

.

Therefore, we obtain the desired result.

Lemma 5.24 gives the number of iterations required in the sublinear convergent phase, ks. In

the following lemma, we derive kc.

Lemma 5.25 Suppose Algorithm 5.1 is performed, Assumption 5.23 holds, and

‖∇fh,0‖ ≤ ǫG,

where ǫG is defined in Lemma 5.24. Then for ǫh and kc such that

ǫh ∈ (0, 1), and kc ≥
1 + 1/KH

r1 − 1

log

(
µhǫh
ǫG

)

− log

(

r1 + r2
ǫG
µh

)

+
r2ǫG

µh log
(

r1 + r2
ǫG
µh

)

 ,

we obtain ‖xh,kc − xh,⋆‖ ≤ ǫh. Note that µh and KH are defined in Assumption 5.1 and

Assumption 5.23, respectively; r1 and r2 are defined in (5.20).

Proof Based on Assumption 5.23, if k coarse correction steps are needed, k/KH fine correction

steps would be taken. The total number of searches would then be k(1 + 1/KH). Therefore,

we first neglect the use of fine correction steps, and consider this factor at the end of the proof

by multiplying (1 + 1/KH).

5.4. Complexity Analysis 179

We obtain

‖xh,0 − xh,⋆‖ ≤
1

µh

‖∇fh,0‖ ≤
ǫG
µh

.

and ǫG
µh
< 1−r1

r2
, based on the definition of ǫG. Since ‖xh,k − xh,⋆‖ is a contraction,

‖xh,0 − xh,⋆‖ ≥ ‖xh,1 − xh,⋆‖ ≥ ‖xh,2 − xh,⋆‖ ≥ . . .

Based on the above notations, observations, and the fact that the composite rate holds, we

obtain

‖xh,k − xh,⋆‖ ≤ (r1 + r2‖xh,k−1 − xh,⋆‖) ‖xh,k−1 − xh,⋆‖

≤
(

r1 + r2
ǫG
µh

)

‖xh,k−1 − xh,⋆‖

≤
(

r1 + r2
ǫG
µh

)k

‖xh,0 − xh,⋆‖

=

(

r1 + r2
ǫG
µh

)k
ǫG
µh

.

We denote r(k) , r1 + r2

(

r1 + r2
ǫG
µh

)k
ǫG
µh

and we obtain

‖xh,k+1 − xh,⋆‖ ≤ r1‖xh,k − xh,⋆‖+ r2‖xh,k − xh,⋆‖2

≤ (r1 + r2‖xh,k − xh,⋆‖) ‖xh,k − xh,⋆‖

≤ r(k)‖xh,k − xh,⋆‖

≤
(

k∏

j=0

r(j)

)

‖xh,0 − xh,⋆‖

≤
(

k∏

j=0

r(j)

)

ǫG
µh

.

180 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Therefore, it is sufficient to achieve ǫh-accuracy when

(
k∏

j=0

r(j)

)

ǫG
µh

≤ ǫh,

k∏

j=0

(

r1 + r2

(

r1 + r2
ǫG
µh

)j
ǫG
µh

)

≤ µhǫh
ǫG

,

k∑

j=0

log

(

r1 + r2

(

r1 + r2
ǫG
µh

)j
ǫG
µh

)

≤ log

(
µhǫh
ǫG

)

,

k+1∑

j=1

log

(

r1 + r2

(

r1 + r2
ǫG
µh

)j−1
ǫG
µh

)

≤ log

(
µhǫh
ǫG

)

.

Using calculus, we know that

k+1∑

j=1

log

(

r1 + r2

(

r1 + r2
ǫG
µh

)j−1
ǫG
µh

)

(this is a monotonic series)

≤ log

(

r1 + r2
ǫG
µh

)

+

∫ k+1

1

log

(

r1 + r2
ǫG
µh

(

r1 + r2
ǫG
µh

)x−1
)

dx

≤ log

(

r1 + r2
ǫG
µh

)

+

∫ k+1

1

(r1 − 1) + r2
ǫG
µh

(

r1 + r2
ǫG
µh

)x−1

dx (log(x) ≤ x− 1)

≤ log

(

r1 + r2
ǫG
µh

)

+ k(r1 − 1) +
r2

ǫG
µh

r1 + r2
ǫG
µh

∫ k+1

1

(

r1 + r2
ǫG
µh

)x

dx

≤ log

(

r1 + r2
ǫG
µh

)

+ k(r1 − 1) +
r2

ǫG
µh

r1 + r2
ǫG
µh

(

r1 + r2
ǫG
µh

)x

log
(

r1 + r2
ǫG
µh

)

∣
∣
∣
∣
∣
∣

x=k+1

x=1

(from integration)

≤ log

(

r1 + r2
ǫG
µh

)

+ k(r1 − 1) +
r2

ǫG
µh

log
(

r1 + r2
ǫG
µh

)

(

r1 + r2
ǫG
µh

)k

−
r2

ǫG
µh

log
(

r1 + r2
ǫG
µh

)

≤ log

(

r1 + r2
ǫG
µh

)

+ k(r1 − 1)− r2ǫG

µh log
(

r1 + r2
ǫG
µh

)

(

since r1 + r2
ǫG
µh

< 1

)

.

5.4. Complexity Analysis 181

So, it is sufficient to achieve ǫh-accuracy if

log

(
µhǫh
ǫG

)

≥ log

(

r1 + r2
ǫG
µh

)

+ k(r1 − 1)− r2ǫG

µh log
(

r1 + r2
ǫG
µh

) ,

k(r1 − 1) ≤ log

(
µhǫh
ǫG

)

− log

(

r1 + r2
ǫG
µh

)

+
r2ǫG

µh log
(

r1 + r2
ǫG
µh

) ,

k ≥ 1

r1 − 1

log

(
µhǫh
ǫG

)

− log

(

r1 + r2
ǫG
µh

)

+
r2ǫG

µh log
(

r1 + r2
ǫG
µh

)

 .

So we obtain the desired result.

Although the result of Lemma 5.25 states the number of iterations needed for composite con-

vergent phase, the derived result is difficult to interpret. To this end, in the following lemma,

we study a special case of Lemma 5.25.

Lemma 5.26 Consider the setting as in Lemma 5.25 with

ǫG = min

{
3µ2

h

νUMh

(1− 2ρ1),
µh(1− r1)

2r2

}

.

Then for ǫh and kc such that

ǫh ∈ (0, 1) and kc ≥
1 + 1/KH

1− r1

(

log

(
3µh

νUMhǫh

)

+ 1

)

,

we obtain ‖xh,kc − xh,⋆‖ ≤ ǫh. Note that Mh and µh are defined in Assumption 5.1; KH is

defined in Assumption 5.23; r1 is defined in (5.20).

Proof By definition,

ǫG ≤
µh(1− r1)

2r2
⇒ r2

ǫG
µh

≤ 1− r1
2

and r1 + r2
ǫG
µh

≤ 1 + r1
2

.

Also,

ǫG ≤
3µ2

h

νUMh

(1− 2ρ1)⇒
ǫG
µh

≤ 3µh

νUMh

(1− 2ρ1) ≤
3µh

νUMh

.

182 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Thus, using the results in Lemma 5.25, it is sufficient when

kc ≥
1 + 1/KH

r1 − 1

(

log

(
νUMhǫh
3µh

)

− log

(
1 + r1

2

)

+
1− r1

2 log
(
1+r1
2

)

)

,

=
1 + 1/KH

1− r1

(

log

(
3µh

νUMhǫh

)

+ log

(
1 + r1

2

)

+
r1 − 1

2 log
(
1+r1
2

)

)

.

Since

r1 − 1

2 log
(
1+r1
2

) < 1 and log

(
1 + r1

2

)

< 0 for 0 < r1 < 1,

it is sufficient when

kc ≥
1 + 1/KH

1− r1

(

log

(
3µh

νUMhǫh

)

+ 1

)

.

So we obtain the desired result.

Lemma 5.26 provides a better picture of the convergence when composite rate holds. One can

see that the number of iterations required, kc, is clearly inverse proportional to 1− r1.

Theorem 5.27 Suppose Algorithm 5.1 is performed, Assumption 5.23 holds, and k = ks + kc,

where ks and kc are defined in Lemma 5.24 and 5.25. Then we obtain the ǫh-accuracy ‖xh,k −

xh,⋆‖ ≤ ǫh with complexity

O
(

ks + kc
1 + 1/KH

n3 +
1/KH(ks + kc)

1 + 1/KH

Ch

)

,

where KH and Ch are defined in Assumption 5.23.

Proof The total complexity is the number of iterations, ks+kc, multiply by the cost per itera-

tion. Based on Assumption 5.23, ks+kc
1+1/KH

coarse correction steps and 1/KH(ks+kc)
1+1/KH

fine correction

steps are taken. The computational cost of each coarse correction step and fine correction step

is O (n3) and O (Ch), respectively.

5.4. Complexity Analysis 183

5.4.3 Comparison: Newton v.s. Multilevel

Using the derived complexity results, we now compare the complexity of Newton’s method

and GAMA. We conclude this section by stating the condition for which GAMA has lower

complexity.

Theorem 5.28 Suppose Assumption 5.23 holds, then for sufficiently large enough N , the com-

plexity of Algorithm 5.1 is lower than the complexity of Newton’s method. In particular, if ǫG

in Lemma 5.24 is chosen to be

ǫG , min

{
3µ2

h

νUMh

(1− 2ρ1),
µh(1− r1)

2r2

}

,

then the complexity of Algorithm 5.1 is lower than the complexity of Newton’s method when

r1 ≤ 1−
(KHn

3 + Ch)(1 + 1/KH)
(

log
(

3µh

νUMhǫh

)

+ 1
)

N3(KH + 1)(kd + kq)− (KHn3 + Ch)ks
, (5.24)

for

N3(KH + 1)(kd + kq)− (KHn
3 + Ch)ks > 0.

Note that ρ1 is a user-defined parameter in Algorithm 5.1; νU = max{‖P‖, ‖R‖}; Mh and

µh are defined in Assumption 5.1; KH and Ch are defined in Assumption 5.23; r1 and r2 are

defined in (5.20); kd, kq, and ks are defined in Lemma 5.20, 5.21, and 5.24, respectively.

Proof When the complexity of Algorithm 5.1 is less than Newton’s method, we have

ks + kc
1 + 1/KH

n3 +
1/KH(ks + kc)

1 + 1/KH

Ch ≤ (kd + kq)N
3,

ksn
3 + kcn

3 +
1

KH

(ks + kc)Ch ≤
(

1 +
1

KH

)

(kd + kq)N
3,

ks

(

n3 +
Ch

KH

)

+ kc

(

n3 +
Ch

KH

)

≤
(

1 +
1

KH

)

(kd + kq)N
3,

(

1 +
1

KH

)

(kd + kq)N
3 − ks

(

n3 +
Ch

KH

)

≥ kc

(

n3 +
Ch

KH

)

.

184 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

From the first inequality we can see that it is satisfied when N is sufficiently large. Using the

definition of kc in Lemma 5.26, we obtain

1 + 1/KH

1− r1

(

log

(
3µh

νUMhǫh

)

+ 1

)

≤
(
(KH + 1)N3

KHn3 + Ch

)

(kd + kq)− ks,

1

1− r1
≤

(
(KH+1)N3

KHn3+Ch

)

(kd + kq)− ks
(1 + 1/KH)

(

log
(

3µh

νUMhǫh

)

+ 1
) ,

1− r1 ≥
(1 + 1/KH)

(

log
(

3µh

νUMhǫh

)

+ 1
)

(
(KH+1)N3

KHn3+Ch

)

(kd + kq)− ks
,

r1 ≤ 1−
(1 + 1/KH)

(

log
(

3µh

νUMhǫh

)

+ 1
)

(
(KH+1)N3

KHn3+Ch

)

(kd + kq)− ks
,

as required.

Theorem 5.28 shows that when the dimension of the fine model, N , is sufficiently large, GAMA

has lower computational complexity. The condition (5.24) requires a sufficiently small r1 in the

composite rate (5.20). This result agrees with the intuition with the following reasoning: when

r1 ≪ 1, it implies that GAMA converges with very fast linear rate, which could outperform

Newton’s method because of the cheaper per-iteration cost.

We shall further study the condition (5.24). Assume the cost of fine correction step is at most in

the same order of the coarse correction step, i.e. Ch = O(n3). Then, by fixing all the quantities

except N , the condition (5.24) can be recognized asymptotically as

r1 ≤ 1−O
(

1

N3

)

.

Thus, as N → ∞, the above condition holds even when r1 ≈ 1. This condition is relaxed

quickly because N grows in cube.

From equation (5.23), recall that r1 ≪ 1 is equivalent to

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ‖(I−PR)(xh,k − xh,⋆)‖ ≪ ‖xh,k − xh,⋆‖.

5.5. PDE-based Problems: One-dimensional Case 185

From the above expression, one can see that a small ‖(I − PR)(xh,k − xh,⋆)‖ is equivalent to

small r1. In the following three sections, we will consider three cases of GAMA and derive the

bounds for ‖(I−PR)(xh,k−xh,⋆)‖ for each case. In particular, we show how the magnitude of

‖(I−PR)(xh,k − xh,⋆)‖ varies depending on the structure of the problems and the parameters

chosen.

5.5 PDE-based Problems: One-dimensional Case

In this section, we study the Galerkin model that arises from PDE-based problems. We begin

with introducing the basic setting, and then we analyze the coarse correction step in this specific

case. Building upon the composite rate in Section 5.3.4, at the end of this section we re-derive

the composite rate with a more insightful bound of ‖(I−PR)(xh,k − xh,⋆)‖. As mentioned in

Section 5.3, this quantity is critical in analyzing the performance and complexity of GAMA.

Since the conventional multigrid methods were originally developed for solving (non-)linear

equations arising from PDEs, most research on multilevel optimization algorithms has been fo-

cusing on solving the discretizations of infinite-dimensional problems [GMS+10, GST08, KM16,

LN05, Nas00, WG09]. As mentioned before, the Galerkin model in optimization was first men-

tioned in [GST08] and later tested numerically in [GMS+10]. We point out that from a the-

oretical perspective, the Galerkin model has been only considered as one special case of the

general multilevel framework, and it has not been shown to have any particular advantage. For

the trust-region based multilevel algorithm in [GST08], it has the same order of complexity

bound as pure gradient descent. For the line-search based multilevel algorithm in [WG09], the

convergence rate was proven to be sublinear for strongly convex problems, which agrees with

our results in Section 5.3.

For the simplicity of the analysis, we consider specifically the one-dimensional case, i.e. the

decision variable of the infinite-dimensional problems is a functional in R. We further assume

that the decision variable is discretized uniformly over [0, 1] with value 0 on the boundary. We

would like to clarify that the approach of analysis in this section could be applied to more

186 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Figure 5.1: P in (5.25)

general and high dimensional settings.

5.5.1 Galerkin Model by One-dimensional Interpolations

Figure 5.2: R in (5.26)

For one-dimensional problems, we consider the standard linear prolongation operator and re-

striction operator. Based on the traditional setting in multigrid research, we define the following

Galerkin model.

❼ N is an even number,

❼ the (fine) discretized decision variable is in RN−1, and

❼ the coarse model is in RN/2−1.

5.5. PDE-based Problems: One-dimensional Case 187

For the interpolation operator P ∈ R(N−1)×(N/2−1), we consider

P =
1

2

1

2

1 1

2

1

. . . 1

2

1

, (5.25)

and the restriction operator

R =
1

2
PT ∈ R(N/2−1)×(N−1). (5.26)

Notice that the P and R in (5.25) and (5.26) have geometric meanings, and they are one of the

standard pairs of operators in multilevel and multigrid methods [BHM00]. As shown in Figure

5.1, P is an interpolation operator such that one point is interpolated linearly between every

two points. On the other hand, from Figure 5.2, R performs a restriction by doing weighted

average onto every three points. These two operators assume the boundary condition is zero

for both end points. We emphasize that the approach of convergence analysis in this section

is not restricted for this specific pair of P and R. We believe the general approach could be

applied to interpolation type operators, especially operators that are designed for PDE-based

optimization problems.

5.5.2 Analysis

With the definitions (5.25) and (5.26), we investigate the convergence behaviour of the coarse

correction step. The analytical tool we use in this section is Taylor’s expansion. To deploy this

technique, we consider interpolations over the elements of vectors. In particular, we consider

interpolations that are twice continuously differentiable with the following definition.

188 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Definition 5.29 For any vector r ∈ RN−1, we denote FN−1
r to be the set of twice continuously

differentiable functions such that ∀w ∈ FN−1
r ,

w(0) = w(1) = 0, and wi = w(yi) = (r)i,

where yi = i/N for i = 1, 2, . . . , N − 1.

Using the definitions (5.25) and (5.26), we can estimate the “information loss” via interpolations

using the following proposition.

Proposition 5.30 Suppose P and R are defined in (5.25) and (5.26), respectively. For any

vector rh ∈ RN−1, we denote (rh)0 = (rh)N = 0 and obtain

(PRrh)j =

1
4
((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,

1
8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd,

for j = 1, 2, . . . , N − 1.

Proof By the definition of R and P, we have

(Rrh)j =
1

4
((rh)2j−1 + 2(rh)2j + (rh)2j+1), 1 ≤ j ≤ n

2
− 1.

So

(PRrh)j = (Rrh)j/2 =
1

4
((rh)j−1 + 2(rh)j + (rh)j+1) if j is even,

and

(PRrh)j =
1

2

(
(Rrh)(j−1)/2 + (Rrh)(j+1)/2

)
,

=
1

8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2) if j is odd.

So we obtain the desired result.

Using the above proposition and Taylor’s expansion, we obtain the following lemma.

5.5. PDE-based Problems: One-dimensional Case 189

Lemma 5.31 Suppose P and R are defined in (5.25) and (5.26), respectively. For any vector

rh ∈ RN−1,

‖(I−PR)rh‖∞ ≤ min
w∈FN−1

rh

max
y∈[0,1]

|w′′(y)| 3

4N2
.

Note that the definition of FN−1
rh

follows from Definition 5.29.

Proof Using Proposition 5.30 and Taylor’s Theorem, in the case that j is even, we obtain

1

4
((rh)j−1 + 2(rh)j + (rh)j+1) =

1

4
(w (yj−1) + 2w (yj) + w (yj+1)) ,

= w (yj) +
w′′(yc1)

8

1

N2
+
w′′(yc2)

8

1

N2
,

= (rh)j +
w′′(yc1) + w′′(yc2)

8

1

N2
,

where w(·) ∈ FN−1
rh

, yj−1 ≤ yc1 ≤ yj, and yj ≤ yc2 ≤ yj+1. Similarly, in the case that j is odd,

we have

1

8
((rh)j−2 + 2(rh)j−1 + 2(rh)j + 2(rh)j+1 + (rh)j+2)

= (rh)j +
4w′′(yc3) + 2w′′(yc4) + 2w′′(yc5) + 4w′′(yc6)

16

1

N2
, (5.27)

where yj−2 ≤ yc3 ≤ yj, yj−1 ≤ yc4 ≤ yj, yj ≤ yc5 ≤ yj+1, and yj ≤ yc6 ≤ yj+2. Therefore,

‖(I−PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3

4N2
for ∀w(·) ∈ FN−1

rh
.

So we obtain the desired result.

Lemma 5.31 provides an upper bound of ‖(I− PR)rh‖∞, for any rh ∈ RN−1. This result can

be used to derive the upper bound of ‖(I − PR)(xh,k − xh,⋆)‖, where rh = xh,k − xh,⋆. As we

can see, if |w′′(y)| = O(1), where w ∈ FN−1
rh

, then ‖(I − PR)rh‖∞ = O(N−2). This can be

explained by the fact that when the mesh size is fine enough (i.e. large N), linear interpolation

and restriction provide very good estimations of the fine model.

190 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

In the following lemma, we provide an upper bound of |w′′| in terms of the original vector rh.

The idea is to specify the interpolation method in which we construct w, and we will use cubic

spline in particular. Cubic spline is one of the standard interpolation methods, and the output

interpolated function w satisfies the setting in Definition 5.29 and Lemma 5.31.

Lemma 5.32 Suppose P and R are defined in (5.25) and (5.26), respectively. For any vector

rh ∈ RN−1, we obtain

‖(I−PR)rh‖∞ ≤
9

4N2
‖Arh‖∞,

where

A = N2

2 −1

−1 2 −1

−1

. . . 2 −1

−1 2

.

Proof We follow the notation in Definition 5.29. For w ∈ FN−1
rh

that is constructed via cubic

spline, in the interval (yi, yi+1), we have

w(y) = Awi +Bwi+1 + Cw′′
i +Dw′′

i+1,

where

A =
yi+1 − y
yi+1 − yi

,

B =
y − yi
yi+1 − yi

,

C =
1

6
(A3 − A)(yi+1 − yi)2,

D =
1

6
(B3 − B)(yi+1 − yi)2.

It is known from [PTVF96] that

d2w

dy2
= Aw′′

i +Bw′′
i+1 (5.28)

5.5. PDE-based Problems: One-dimensional Case 191

and

yi − yi−1

6
w′′

i−1 +
yi+1 − yi−1

3
w′′

i +
yi+1 − yi

6
w′′

i+1 =
wi+1 − wi

yi+1 − yi
− wi − wi−1

yi − yi−1

(5.29)

for i = 1, 2, . . . , N − 1. Using the above equation (5.28), at the interval (yi, yi+1), we obtain

∣
∣
∣
∣
∣

d2w

dy2

∣
∣
∣
∣
∣
=
∣
∣Aw′′

i +Bw′′
i+1

∣
∣ =

∣
∣
∣
∣
∣

yi+1 − y
yi+1 − yi

w′′
i +

y − yi
yi+1 − yi

w′′
i+1

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

yi+1 − y
yi+1 − yi

∣
∣
∣
∣
∣
|w′′

i |+
∣
∣
∣
∣
∣

y − yi
yi+1 − yi

∣
∣
∣
∣
∣
|w′′

i+1|

≤ max{|w′′
i |, |w′′

i+1|}.

Suppose j ∈ argmaxi{|w′′
i |}i, then from (5.29) and the fact that yj+1 − yj = 1/N ,

yj+1 − yj−1

3
w′′

j =
wj+1 − wj

yj+1 − yj
− wj − wj−1

yj − yj−1

− yj − yj−1

6
w′′

j−1 −
yj+1 − yj

6
w′′

j+1,

2

3N
w′′

j = N(wj+1 − wj)−N(wj − wj−1)−
1

6N
w′′

j−1 −
1

6N
w′′

j+1,

2w′′
j = 3N2(wj+1 − 2wj + wj−1)−

1

2
w′′

j−1 −
1

2
w′′

j+1.

Thus,

|2w′′
j | ≤ 3N2|wj+1 − 2wj + wj−1|+

1

2
|w′′

j−1|+
1

2
|w′′

j+1|,

2|w′′
j | ≤ 3N2|wj+1 − 2wj + wj−1|+

1

2
|w′′

j |+
1

2
|w′′

j |,

|w′′
j | ≤ 3N2|wj+1 − 2wj + wj−1|.

Therefore,

|w′′
i | ≤ max

i
3N2|wi+1 − 2wi + wi−1|,

and so,

‖(I−PR)rh‖∞ ≤ max
y∈[0,1]

|w′′(y)| 3

4N2
≤ max

i

9|wi+1 − 2wi + wi−1|
4

=
9

4N2
‖Arh‖∞, (5.30)

as required.

192 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Lemma 5.32 provides the discrete version of the result presented in Lemma 5.31. The matrix

A is the discretized Laplacian operator, which is equivalent to twice differentiation using finite

difference with a uniform mesh.

5.5.3 Convergence

With all the results, we revisit the composite convergence rate with the following corollary.

Corollary 5.33 Suppose P and R are defined in (5.25) and (5.26), respectively. If the coarse

correction step d̂h,k in (5.15) is taken with αh,k = 1, then

‖xh,k+1 − xh,⋆‖ ≤
√

Lh

µh

min
w∈FN−1

xh,k−xh,⋆

max
y∈[0,1]

|w′′(y)| 3

4N3/2
+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2,

≤ 9

4N3/2

√

Lh

µh

‖A(xh,k − xh,⋆)‖+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2,

where A is defined in Lemma 5.32. Note that Mh, Lh, and µh are defined in Assumption 5.1,

νU = max{‖P‖, ‖R‖}, and νL = ‖P+‖.

Proof

‖xh,k+1 − xh,⋆‖ ≤ ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖‖(I−PR)(xh,k − xh,⋆)‖

+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2 (from Theorem 5.18)

≤
√

Lh

µh

min
w∈FN−1

xh,k−xh,⋆

max
y∈[0,1]

|w′′(y)| 3

4N3/2
+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2

(from Lemma 5.19 and Lemma 5.31)

≤ 9

4N3/2

√

Lh

µh

‖A(xh,k − xh,⋆)‖+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2 (from (5.30)),

as required.

Corollary 5.33 provides the convergence of using Galerkin model for PDE-based problems that

we considered. This result shows the complementarity of the fine correction step and the coarse

5.6. Low Rank Approximation using Nyström Method 193

correction step. Suppose the fine correction step can effectively reduce ‖A(xh,k − xh,⋆)‖, then

the coarse correction step could yield a major reduction based on the result shown in Corollary

5.33.

5.6 Low Rank Approximation using Nyström Method

In this section, we focus on the Galerkin model that is based on a low rank approximation of the

Hessian matrix. We begin with an introduction of low rank approximation and the Nyström

method. Then we make the connection between the Nyström method and the coarse correction

step in (5.15). Finally, we re-derive the composite rate with more insightful bounds of both

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ and ‖(I−PR)(xh,k − xh,⋆)‖.

Before introducing the obscure connection between low rank approximation and Galerkin model,

let’s start with the setting and consider a symmetric positive semi-definite matrix A ∈ RN×N .

The best low rank approximation of A with rank q can be obtained by solving the following

optimization problem

min
Aq∈RN×N

‖A−Aq‖, s.t. rank(Aq) = q. (5.31)

It is known that the above problem can be solved via eigendecomposition. However, eigende-

composition is computationally expensive. In the context of optimization, the cost for each

iteration of Newton’s method is not more expensive than performing eigendecomposition. If

a Galerkin model is constructed via eigendecomposition, one could apply Newton’s method

instead.

Although computing the exact solution of (5.31) is unfavorable, we could seek for its approxi-

mation. Nyström method was originally developed to numerically approximate eigenfunctions,

and the idea was applied later in the machine learning community for the low rank optimization

problem [WS01]. It provides a suboptimal solution of the low rank approximation with cheaper

computational cost.

Nyström method is performed by the column selection procedure. Consider a setQ = {1, 2, . . . , N},

194 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

and suppose a subset Q1 ⊆ Q with n elements. We denote qi as the ith element of Q1, for

i = 1, 2, . . . , n. Then one can approximate A ∈ RN×N using the following procedures.

1. Define a matrix A1 ∈ Rn×N such that the ith row of A1 is the qthi row of A.

2. Define a matrix A2 ∈ RN×n such that the ith column of A2 is the qthi column of A.

3. Define a matrix A3 ∈ Rn×n such that (A3)i,j is the element of A in qthi row and qthj

column.

4. Compute the pseudo-inverse A+
3 .

5. Compute the low rank approximation of A by A2A
+
3 A1.

Equivalently, the above procedure can be described by using a matrix S ∈ RN×n such that the

ith column of S is the qthi column of the identity matrix I. The output of the above procedure

is the same as

A ≈ A2A
+
3 A1 = AS[STAS]+STA. (5.32)

Much research have been focused on developing Nyström method based on different methods

on selecting the subset Q1 [DM05, Git13, SS00, WS01]. In this chapter, we consider the näıve

Nyström method in which elements in Q1 are selected uniformly without replacement from Q.

5.6.1 Galerkin Model by Näıve Nyström Method

Now we are in the position to show how Nyström method can be used to develop Galerkin

model. The approximation (5.32) is highly similar to the coarse correction step in a multilevel

algorithm.

Definition 5.34 Consider a set Q = {1, 2, . . . , N}, and an n elements subset Q1 in which

the elements are selected randomly, and uniformly without replacement from Q. Denote qi as

the ith element of Q1. Then the prolongation operator, P ∈ RN×n, and restriction operator,

R ∈ Rn×N , are generated using näıve Nyström method if

5.6. Low Rank Approximation using Nyström Method 195

i. The ith column of P is the qthi column of the identity matrix I.

ii. R = PT .

Definition 5.34 defines the prolongation and restriction operators that are based on näıve

Nyström method. One can see the analogy by substituting S = P, ST = R, and A = ∇2fh,k

in equation (5.32). Under the setting of näıve Nyström method, P is full column rank, and

so Assumption 5.3 is satisfied. Moreover, different from the assumption that A is positive

semi-definite in (5.32), ∇2fh,k is positive definite as stated in Assumption 5.1, and so it is

guaranteed to be invertible. Consider the low rank approximation (5.32) with S = P, ST = R,

and A = ∇2fh,k. Multiplying ∇2f−1
h,k from both left and right yields

∇2f−1
h,k ≈ P[R∇2fh,kP]+R = P[R∇2fh,kP]−1R,

and so

−∇2f−1
h,k∇fh,k ≈ −P[R∇2fh,kP]−1R∇fh,k = d̂h,k.

Thus, the coarse correction step d̂h,k is an approximation of Newton step. We emphasize that

näıve Nyström method is effective in practice, and computationally inexpensive to perform

(uniform sampling without replacement).

It is worth mentioning that the coarse correction step is highly related to block-coordinate

descent algorithms. In fact, P andR from Definition 5.34 can be used to derive block-coordinate

descent algorithms, as described in Section 5.2.4. The coarse correction step in this section

is different from first order block-coordinate descent type methods because GAMA uses the

Hessian ∇2fh,k instead of the identity matrix in the coarse model (5.11).

Interestingly, similar works have been done from the perspective of block coordinate methods

for machine learning problems. In particular, Gower et al. [GGR16] recently developed a

stochastic block BFGS for solving objective functions that have the form of sum of functions.

The coarse correction step we study in this section is a special case of the stochastic block

BFGS: when the previous approximated inverse Hessian is set to zero and when all functions

196 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

(in the summation) are used to compute Hessians. On the other hand, the proposed coarse

correction step is also studied by Qu et al. [QRTF15] for the dual formulation of empirical risk

minimization. In both cases, they provided (expected) linear convergence rates. Moreoever,

due to different sources of motivation, they did not mention that Nyström is used inherently

within the search direction.

5.6.2 Analysis

We are now in the position to analyze the two important factors in the composition convergence

rate, ‖I − P[∇2
Hfh,k]

−1R∇2fh,k‖ and ‖(I − PR)(xh,k − xh,⋆)‖. The analytical tool we use

is concentration inequality. The following Chernoff bounds will be used to analyze ‖(I −

PR)(xh,k − xh,⋆)‖.

Theorem 5.35 ([Tro11]) Let Q be a finite set of positive numbers, and suppose

max
q∈Q

q ≤ B.

Sample {q1, q2, . . . , ql} uniformly at random from Q without replacement. Compute

s = l · E(q1).

Then

P

{
∑

j

qj ≤ (1− σ)s
}

≤
(

e−σ

(1− σ)1−σ

)s/B

for σ ∈ [0, 1), and

P

{
∑

j

qj ≥ (1 + σ)s

}

≤
(

eσ

(1 + σ)1+σ

)s/B

for σ ≥ 0.

Proof See Theorem 2.1 from Tropp [Tro11].

Theorem 5.35 is useful to derive statistical bounds for ‖(I − PR)rh‖, for any rh ∈ RN . The

results are provided in the following lemma.

5.6. Low Rank Approximation using Nyström Method 197

Lemma 5.36 Suppose the prolongation operator P ∈ RN×n and the restriction operator R ∈

Rn×N are generated using the näıve Nyström method according to Definition 5.34 and rh ∈ RN .

Then ∀σ ∈ [0, 1), we obtain

P

{

‖(I−PR)rh‖ ≤
√

(1− σ)N − n
N
‖rh‖

}

≤
(

e−σ

(1− σ)1−σ

)N−n
N

‖rh‖
2/‖rh‖

2
∞

,

and ∀σ ≥ 0, we obtain

P

{

‖(I−PR)rh‖ ≥
√

(1 + σ)
N − n
N
‖rh‖

}

≤
(

eσ

(1 + σ)1+σ

)N−n
N

‖rh‖
2/‖rh‖

2
∞

.

Proof We denote Q = {1, 2, . . . , N} to be a set of indices, a subset Q1 ⊂ Q such that

range(P) = span ({ej : j ∈ Q1}) ,

and the complement Q2 = Q \ Q1.

These definitions lead to

‖(I−PR)rh‖2 =
∑

j∈Q2

(rh)
2
j ,

sinceQ2 is a set of indices that are associated with the selected coordinates in I−PR. Therefore,

Q2 contains N − n samples from Q that are distributed uniformly without replacement. By

applying Theorem 5.35, we obtain

max
j∈Q

(rh)
2
j = ‖rh‖2∞,

and

s = (N − n) 1
N

∑

j∈Q

(rh)
2
j =

N − n
N
‖rh‖2.

By direct substitutions, we obtain the desired result.

Lemma 5.36 provides bounds for ‖(I−PR)rh‖, for any rh ∈ RN . On the other hand, we bear in

mind that Nyström method is a method of computing low rank approximations. In the following

lemma, we will show that this feature is shown in the bound of ‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖.

198 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Lemma 5.37 Suppose the prolongation operator P ∈ RN×n and the restriction operator R ∈

Rn×N are generated using the näıve Nyström method according to Definition 5.34. For p ∈

{1, 2, . . . , N}, let the eigendecomposition of ∇2fh,k have the following form

∇2fh,k = UΣUT =

(

U1 U2

)

Σ1

Σ2

UT
1

UT
2

 ,

where Σ1 ∈ Rp×p, Σ2 ∈ R(N−p)×(N−p), U1 ∈ RN×p, and U2 ∈ RN×(N−p) are the sub-matrices of

Σ and U. Denote τ as the coherence of U1,

τ ,
N

p
max

i
(U1U

T
1)ii.

Then, for β, σ and n such that

β, σ ∈ (0, 1), and n ≥
2τp log

(
p

β

)

(1− σ)2 ,

we obtain

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ ≤
√

λp+1(∇2fh,k)

µh

(

1 +
N

nσ

)

,

with probability at least 1−β. Note that λp+1(∇2fh,k) is the p+1th largest eigenvalue of ∇2fh,k.

Proof Following from Lemma 5.19, we have

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖ = ‖UΣ−1/2(I− ΓΣ1/2UTP)Σ
1/2UT‖,

≤ ‖UΣ−1/2‖‖(I− ΓΣ1/2UTP)Σ
1/2UT‖,

≤
√

1

µh

‖(I− ΓΣ1/2UTP)Σ
1/2UT‖.

Using results from Gittens [Git11], Theorem 2,

‖(I− ΓΣ1/2UTP)Σ
1/2UT‖ ≤

√

λp+1(∇2fh,k)

(

1 +
N

nσ

)

,

5.6. Low Rank Approximation using Nyström Method 199

with probability at least 1− β.

In addition to Lemma 5.19, Lemma 5.37 provides a new alternative for bounding the term

‖I−P[∇2
Hfh,k]

−1R∇2fh,k‖. This is a direct result from the fact that Nyström is used inherently

with the P and R in Definition 5.34. As we will show later, this result would improve the

convergence rate if the Hessian can be well-approximated using low rank approximation.

As mentioned in [Git11, CR09], we would like to point out that the coherence τ defined in

Lemma 5.19 ranges from 1 to N/p. For an N × p random orthogonal matrix in which its

columns are selected uniformly among all families of p orthonormal vectors, its coherence is

bounded by O(max{p, logN}/p) with high probability [CR09].

5.6.3 Convergence

Using the above results, we obtain the following corollaries.

Corollary 5.38 Suppose P ∈ RN×n and R ∈ Rn×N are generated using the näıve Nyström

method according to Definition 5.34, and τ is the coherence as defined in Lemma 5.37. If the

coarse correction step d̂h,k is taken with αh,k = 1, then ∀σ2 ≥ 0,

‖xh,k+1 − xh,⋆‖ ≤
√

Lh

µh

(1 + σ2)
N − n
N
‖xh,k − xh,⋆‖+

Mhν
2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2,

with probability at least

1− (Φ(σ2))
N−n
N

‖xh,k−xh,⋆‖
2/‖xh,k−xh,⋆‖

2
∞ for Φ(σ2) =

eσ2

(1 + σ2)1+σ2
. (5.33)

Note that Lh,Mh, and µh are defined in Assumption 5.1, νU = max{‖P‖, ‖R‖} and νL = ‖P+‖.

Proof The result can be obtained by combining results from Lemma 5.36 with rh = xh,k−xh,⋆,

Lemma 5.19, and Theorem 5.18.

200 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Corollary 5.38 provides the probabilistic composite convergence rate. As expected, the coef-

ficient of the linear component goes to 0 as n → N . We point out that when n = N , the

probability in (5.33) is equal to zero since (N − n)/N = 0. Thus, Corollary 5.38 is not mean-

ingful at the exact limit of n = N . However, in this case, no dimension is reduced, and so based

on Theorem 5.18, the quadratic convergence is obtained.

0 2 4 6 8 10
10!8

10!6

10!4

10!2

100

<2

)(
< 2

)

Figure 5.3: Φ(σ2) in (5.33)

Figure 5.3 shows the value of Φ(σ2) in (5.33), and one can see that with reasonably small σ2,

Φ(σ2)≪ 1. Also, since ‖xh,k − xh,⋆‖2 is the sum of squares of the error in each dimension, it is

reasonable to expect that it is in O(N). Therefore, one could expect that

N − n
N

‖xh,k − xh,⋆‖2
‖xh,k − xh,⋆‖2∞

∼ O(N − n),

and so for n < N , the power coefficient above should reduce Φ(σ2) further.

While Corollary 5.38 illustrates how ‖(I − PR)(xh,k − xh,⋆)‖ varies with respect to n, it does

not show that using the prolongation and restriction operators that are inspired by Nyström

method has any advantage when Hessians have the low rank structure. By combining result in

Lemma 5.37, we obtain the following corollary.

Corollary 5.39 Suppose P ∈ RN×n and R ∈ Rn×N are generated using näıve Nyström method

according to Definition 5.34, and τ is the coherence as defined in Lemma 5.37. If the coarse

5.6. Low Rank Approximation using Nyström Method 201

correction step d̂h,k is taken with αh,k = 1, then ∀β, σ1σ2, p, n such that

β, σ1 ∈ (0, 1), σ2 ≥ 0, p ∈ {1, 2, . . . , N}, and n ≥
2τp log

(
p

β

)

(1− σ1)2
,

we obtain

‖xh,k+1 − xh,⋆‖ ≤
√

λp+1(∇2fh,k)

µh

(

1 +
N

nσ1

)

(1 + σ2)
N − n
N
‖xh,k − xh,⋆‖

+
Mhν

2
Uν

2
L

2µh

‖xh,k − xh,⋆‖2,

with probability at least

(1− β)
(

1− (Φ(σ2))
N−n
N

‖xh,k−xh,⋆‖
2/‖xh,k−xh,⋆‖

2
∞

)

for Φ(σ2) =
eσ2

(1 + σ2)1+σ2
.

Note that Lh,Mh, and µh are defined in Assumption 5.1; νU = max{‖P‖, ‖R‖} and νL = ‖P+‖;

λp+1(∇2fh,k) is the p+ 1th largest eigenvalue of ∇2fh,k.

Proof The result can be obtained by combining results from Lemma 5.36 with rh = xh,k−xh,⋆,

Lemma 5.37, and Theorem 5.18.

Compared to Corollary 5.38, Corollary 5.39 replaces the largest eigenvalue of ∇2fh,k, Lh, with

the scaled p + 1th largest eigenvalue, λp+1(∇2fh,k), with high probability. It provides a clear

advantage when there is a large gap between the pth and p+1th eigenvalue, in particular, when

µh ≤ λN(∇2fh,k) ≤ · · · ≤ λp+1(∇2fh,k)≪ λp(∇2fh,k) ≤ λ1(∇2fh,k) ≤ Lh.

We point out that the concentration inequality is not only useful for getting a composite

convergence rate, but also useful for bounding the parameter κ in Algorithm 5.1.

Lemma 5.40 Suppose the prolongation operator P ∈ RN×n and the restriction operator R ∈

Rn×N are generated using the näıve Nyström method according to Definition 5.34. Then ∀rh ∈

202 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

RN , ∀σ ∈ [0, 1), we obtain

P

{

‖PRrh,k‖ ≤
√

(1− σ) n
N
‖rh,k‖

}

≤
(

e−σ

(1− σ)1−σ

) n
N
‖rh,k‖

2/‖rh,k‖
2
∞

,

and ∀σ ≥ 0, we have

P

{

‖PRrh,k‖ ≥
√

(1 + σ)
n

N
‖rh,k‖

}

≤
(

eσ

(1 + σ)1+σ

) n
N
‖rh,k‖

2/‖rh,k‖
2
∞

.

Proof The proof is exactly the same as in Lemma 5.36 with consideration of Q1 as a sample

set instead.

Lemma 5.40 provides the fact that with high probability

‖R∇fh,k‖ = ‖PR∇fh,k‖ ≥ O
(√

n

N

)

‖∇fh,k‖.

Note that in the analysis in Section 5.3, when the coarse correction step is taken, we assume

‖R∇fh,k‖ > κ‖∇fh,k‖ for some constant κ. As stated in Lemma 5.10 and Theorem 5.13, the

square of this κ is proportional to Λ, which is inversely proportional to the rate of convergence.

Therefore, we shall conclude that in the setting considered in this section, with high probability

the rate of convergence is inversely proportional to O (n/N), or equivalently, proportional to

O (N/n).

5.7 Block Diagonal Approximation

In this section, we focus on the case that the Hessian ∇2fh,k is approximated by block diagonal

approximation. The structure of this section is similar to the last two sections: we introduce

and formally define block diagonal approximation, perform analysis, and finally re-derive the

composite rate in this setting.

5.7. Block Diagonal Approximation 203

Definition 5.41 Suppose ∇2fh,k ∈ RN×N and n1, n2, . . . , nq ∈ N such that n1+n2+ · · ·+nq =

N . Then the q-block diagonal approximation of ∇2fh,k is defined as ∇2
B
fh,k where

(∇2
B
fh,k)i,j =

(∇2fh,k)i,j if
m−1∑

p=1

np < i, j ≤
m∑

p=1

np, for any m = 1, 2, . . . , q,

0 otherwise.

Definition 5.41 states the formal definition of block diagonal approximation of a Hessian. That

is, we only preserve the elements which are located in block diagonal positions, and set all the

other elements to zeros. Recall that even though Newton’s method is one of the best algorithms

with quadratic convergence rate, the trade-off, however, goes into the high computational cost

at each iteration: solving an N -by-N system of linear equations. By replacing the Hessian with

its q-block diagonal approximation, the corresponding N -by-N system of linear equations can

be decomposed by q smaller systems of linear equations, and thus lower computational cost is

required.

The above block diagonal approximation approach is a special case of the incomplete Hessian

Newton minimization method proposed by Xie and Ni [XN09]. In the case where n1 = n2 =

· · · = nN = 1, this diagonal approximation is also considered in [FT15]. While it is clear that

the block diagonal approximation contains partial second order information and one should

expect that it performs better than first order algorithms, no theoretical indication has pointed

in this direction.

5.7.1 Multiple Galerkin Models

We will show that q-block diagonal approximation from Definition 5.41 could be formulated

using multiple Galerkin models. We denote the prolongation operators as Pi ∈ RN×ni , for

i = 1, 2, . . . , q. Notice that n1 + n2 + · · ·+ nq = N , and we assume

[P1 P2 . . .Pq] = I.

204 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

We also denote the corresponding restriction operators as Ri = PT
i , for i = 1, 2, . . . , q. Then,

the block diagonal approximation can be expressed as

∇2
Bfh,k = diag(R1∇2fh,kP1,R2∇2fh,kP2, . . . ,Rq∇2fh,kPq),

and the corresponding coarse correction step is defined as

d̂h,k = −[∇2
Bfh,k]

−1∇fh,k =
q
∑

i=1

−Pi[Ri∇2fh,kPi]Ri∇fh,k. (5.34)

5.7.2 A Counterexample for General Functions

We start with a counterexample to show that it is impossible to be as good as the classical

Newton’s method for general functions in term of convergence. Suppose we have the following

problem

min
xh∈R2

fh(xh) ,
1

2
xT
h

1 −
√
0.5

−
√
0.5 1

xh + xT

h

1

1

 .

The above quadratic program (QP) has the positive definite Hessian

1 −
√
0.5

−
√
0.5 1

 =

1

−
√
0.5

(

1 −
√
0.5

)

+

0
√
0.5

(

0
√
0.5

)

.

Therefore, the above function is a strongly convex function. In this example we assume 2-

blocks approximation is performed, with n1 = n2 = 1. Notice that the classical Newton’s

method solves the above QP in one iteration. The coarse correction step, on the other hand,

fails to do so; in fact, the diagonal of the Hessian has only 1’s, which implies that in this

particular example, the coarse correction step is equivalent to gradient descent.

5.7. Block Diagonal Approximation 205

5.7.3 Weakly connected Hessian

We now introduce a specific class of problems in which the coarse correction step could be as

good as Newton’s method in the limit.

Definition 5.42 Consider a twice continuously differentiable strongly convex function fh which

satisfies Assumption 5.1. fh is said to have (δ, q)-weakly connected Hessians if

∇2fh(xh) = Qh(xh) + δQ̂h(xh), (5.35)

where Qh(xh) = diag(Qh,1(xh),Qh,2(xh), . . . ,Qh,q(xh)) is a block diagonal matrix with q blocks,

with Qh,i(xh) ∈ Rni×ni and
∑q

j=1 nj = N for i = 1, 2, . . . , q. All Qh,i(xh)’s are positive definite,

and there exists positive constants µh,q, µh,q̂, Lh,q, Lh,q̂ such that

µh,qI 4 Qh(xh) 4 Lh,qI

µh,q̂I 4 Q̂h(xh) 4 Lh,q̂I

Definition 5.42 defines the specific structure we consider in this section. The defined (δ, q)-

weakly connected Hessian provides a connection between the block diagonal matrix and general

positive definite matrix. Suppose when δ = 0, then the (δ, q)-weakly connected Hessian is

exactly a block diagonal matrix. Similarly, when δ = O(1), then the (δ, q)-weakly connected

Hessian is a general positive definite matrix.

Notice that when δ = 0, the coarse correction step (5.34) is exactly same as Newton’s method.

In what follows, we will consider fh which has (δ, q)-weakly connected Hessians and show how

the performance of coarse correction step (5.34) converges to quadratic convergence when δ → 0.

5.7.4 Analysis

In order to analyze the convergence of the coarse correction step (5.34), we relate it to the

classical Newton’s step and derive the difference using the following propositions.

206 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Proposition 5.43 ([TS86]) For matrices A,B,C,D, suppose A, C, and A+BCD are non-

singular, then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

Proof See [TS86].

Proposition 5.44 Suppose the Hessian ∇2fh,k is (δ, q)-weakly connected as defined in Defini-

tion 5.42, then
(

1

Lh,q̂

+
δ

Lh,q

)

I 4 Q̂−1 + δQ−1 4

(
1

µh,q̂

+
δ

µh,q

)

I,

and so
(

1

µh,q̂

+
δ

µh,q

)−1

I 4 (Q̂−1 + δQ−1)−1 4

(
1

Lh,q̂

+
δ

Lh,q

)−1

I,

where
(

1

Lh,q̂

+
δ

Lh,q

)−1

=
Lh,q̂Lh,q

Lh,q + δLh,q̂

and

(
1

µh,q̂

+
δ

µh,q

)−1

=
µh,q̂µh,q

µh,q + δµh,q̂

.

The constants µh,q, µh,q̂, Lh,q, Lh,q̂ are defined in Definition 5.42.

Proof This can be obtained via direct computation.

Proposition 5.45 Suppose the Hessian ∇2fh,k is (δ, q)-weakly connected as defined in Defini-

tion 5.42, then

Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1 = I− δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1,

and for any rh ∈ RN

1

Lh,q̂

µh,q̂µh,q

µh,q + δµh,q̂

‖rh‖ ≤ ‖Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh‖.

Proof

I = (Q̂−1
h,k + δQ−1

h,k)(Q̂
−1
h,k + δQ−1

h,k)
−1,

= Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1 + δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1,

5.7. Block Diagonal Approximation 207

and thus,

I− δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1 = Q̂−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1.

For the second part,

‖Q̂−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh‖2 = rTh (Q̂

−1
h,k + δQ−1

h,k)
−1Q̂−1

h,kQ̂
−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1rh,

≥ 1

L2
h,q̂

rTh (Q̂
−1
h,k + δQ−1

h,k)
−1(Q̂−1

h,k + δQ−1
h,k)

−1rh,

≥ 1

L2
h,q̂

(
µh,q̂µh,q

µh,q + δµh,q̂

)2

‖rh‖2.

So we obtain the desired result.

We derive the difference between the classical Newton’s step and the coarse correction step in

the following lemma.

Lemma 5.46 Suppose the function fh(xh) has (δ, q)-weakly connected Hessians as defined in

Definition 5.42. Let

dN

h,k = −[∇2fh,k]
−1∇fh,k,

dB

h,k = −[Qh,k]
−1∇fh,k. (5.36)

Then

dN

h,k = dB

h,k − δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1dB

h,k.

Proof The Newton’s step is

dN
h,k = −[∇2fh,k]

−1∇fh,k = −[Qh,k + δQ̂h,k]
−1∇fh,k.

208 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

Using Proposition 5.43, we have

[Qh,k + δQ̂h,k]
−1 = [Qh,k + I(δQ̂h,k)I]

−1,

= Q−1
h,k −Q−1

h,k(δ
−1Q̂−1

h,k +Q−1
h,k)

−1Q−1
h,k,

= Q−1
h,k −Q−1

h,k(δI)(δI)
−1(δ−1Q̂−1

h,k +Q−1
h,k)

−1Q−1
h,k,

= Q−1
h,k − δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1Q−1

h,k.

Therefore,

dN
h,k = −

(

Q−1
h,k − δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1Q−1

h,k

)

∇fh,k,

= dB
h,k − δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1dB

h,k,

as required.

5.7.5 Convergence

Using Proposition 5.45 and Lemma 5.46, we derive the composite convergence rate.

Theorem 5.47 Suppose the function fh(xh) has (δ, q)-weakly connected Hessians defined in

Definition 5.42. Suppose dB

h,k in (5.36) is taken and αh,k = 1, then

‖xh,k+1 − xh,⋆‖ ≤ δ
µh,q + δµh,q̂

µh,q̂µ2
h,q

L2
h,q̂Lh,q

Lh,q + δLh,q̂

‖xh,k+1 − xh,k‖

+Lh,q̂
µh,q + δµh,q̂

µh,q̂µh,q

Mh

2µh

‖xh,k − xh,⋆‖2.

Proof Using Lemma 5.46, we obtain

xh,k+1 − xh,⋆ = xh,k − xh,⋆ + dB
h,k,

= xh,k − xh,⋆ + dB
h,k + dN

h,k − dN
h,k,

=
(
xh,k − xh,⋆ + dN

h,k

)
+ δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1dB

h,k,

=
(
xh,k − xh,⋆ + dN

h,k

)
+ δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,k).

5.7. Block Diagonal Approximation 209

Using the fact that

Q−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,k)

= Q−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1(xh,k+1 − xh,⋆)−Q−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k − xh,⋆),

we have

(I− δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1)(xh,k+1 − xh,⋆)

=
(
xh,k − xh,⋆ + dN

h,k

)
− δQ−1

h,k(Q̂
−1
h,k + δQ−1

h,k)
−1(xh,k − xh,⋆). (5.37)

Using Proposition 5.45, we have

1

Lh,q̂

µh,q̂µh,q

µh,q + δµh,q̂

‖xh,k+1 − xh,⋆‖ ≤ ‖(I− δQ−1
h,k(Q̂

−1
h,k + δQ−1

h,k)
−1)(xh,k+1 − xh,⋆)‖,

≤ ‖xh,k − xh,⋆ + dN
h,k‖

+δ‖Q−1
h,k‖‖(Q̂−1

h,k + δQ−1
h,k)

−1‖‖xh,k − xh,⋆‖,

≤ Mh

2µh

‖xh,k − xh,⋆‖2

+
δ

µh,q

Lh,q̂Lh,q

Lh,q + δLh,q̂

‖xh,k − xh,⋆‖.

Therefore,

‖xh,k+1 − xh,⋆‖ ≤ Lh,q̂
µh,q + δµh,q̂

µh,q̂µh,q

Mh

2µh

‖xh,k − xh,⋆‖2

+Lh,q̂
µh,q + δµh,q̂

µh,q̂µh,q

δ

µh,q

Lh,q̂Lh,q

Lh,q + δLh,q̂

‖xh,k − xh,⋆‖,

as required.

Theorem 5.47 shows that the coefficient of ‖xh,k − xh,⋆‖ is in O(δ). As expected, as δ → 0,

the composite rate in Theorem 5.47 will recover the quadratic convergence, and the linear

component of composite rate decays at least linearly with δ.

210 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

5.8 Numerical Experiments

In this section, we will first verify our convergence results with three numerical examples. Each

example will correspond to each of the settings in Section 5.5-5.7. The first example corresponds

to Section 5.5, and it is an one-dimensional Poisson’s equation, which is a standard example in

numerical analysis and multigrid algorithms. In the second example, considered in Section 5.6,

we use regularized logistic problem to be the illustrative example. In the third example, we

consider a synthetic example to study the case in Section 5.7. We investigate the convergence

by varying the parameter δ.

In the second part of this section, we will compare GAMA with other algorithms. We emphasize

that the goal of this chapter is to gain understanding in the Galerkin-based multilevel algorithm,

which apparently is closely related to many existing algorithms: ranging from conventional

multigrid algorithms to machine learning-driven algorithms. The use of this section is to show

the potential of Galerkin model, and we are not trying to claim that GAMA outperforms the

state-of-the-art algorithms, including variants of GAMA.

5.8.1 Poisson’s Equation

We consider an one-dimensional Poisson’s equation

− d2

dq2
u = w(q) in [0, 1], u(0) = u(1) = 0,

where w(q) is chosen as

w(q) = sin(4πq) + 8 sin(32πq) + 16 sin(64πq).

We discretize the above problem and denote x,b ∈ RN−1 , where (x)i = u(i/N) and (b)i =

w(i/N), for i = 1, 2, . . . , N − 1. By using finite differences, we approximate the above equation

with

min
x∈RN−1

1

2
xTAx− bTx, (5.38)

5.8. Numerical Experiments 211

100 101 102

10!10

10!6

10!2

Iterations

kx
h
;k
!

x
h
;?
k

N = 100
N = 1000
N = 5000

Figure 5.4: Convergence of solving Poisson’s
equation with different N ’s

0 10 20 30
10!6

10!3

10!0

103

Iterations

kA
(x

h
;k
!

x
h
;?
)k

N = 100
N = 1000
N = 5000

Figure 5.5: The smoothing effect with differ-
ent N ’s

where A is defined as in Lemma 5.32, which is a discretized Laplacian operator.

Figure 5.4 shows the convergence results of solving (5.38) with different N ’s. In this example

we use the prolongation and restriction operators that are defined in (5.25) and (5.26). Since

there is only one pair of P and R, we follow the traditional multigrid approach in which we

combine the coarse correction step with the fine correction step. Gradient descent is used to

compute the fine correction step. The pink stars in Figure 5.4 and Figure 5.5 indicate where

coarse correction steps were used.

As expected from Corollary 5.33, the performance of convergence is inversely proportional to

the discretization level N . More interestingly, one can see the complementary of fine correction

step and coarse correction step. From Figure 5.4, fine correction steps are often deployed

after coarse correction steps. Each pair of fine and coarse correction steps provides significant

improvement in convergence. Figure 5.5 shows the smoothing effect of the fine correction step

by looking at the quantity ‖A(xh,k − xh,⋆)‖, where A is the discretized Laplacian operator, as

defined in Lemma 5.32. As opposed to coarse correction steps, fine correction steps are effective

in reducing ‖A(xh,k−xh,⋆)‖. Once the error is smoothed, coarse correction steps provide large

reduction in error, as shown in Figure 5.4.

212 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

5.8.2 Regularized Logistic Regression

We study the Galerkin model that is generated via näıve Nyström method and consider an

example in ℓ1 regularized logistic regression,

min
x∈RN

1

m

m∑

i=1

log(1 + exp(−bixTai)) + ω1‖x‖1,

where ω1 ∈ R+, and {(ai, bi)}mi=1 is a training set with m instances. For i = 1, 2, . . . ,m, ai ∈ RN

is an input and bi ∈ R is the corresponding output.

Notice that the above formulation involves the non-differentiable function ‖x‖1, and so the

above problem is beyond the scope of the setting in this chapter. To overcome this issue,

we replace the ‖x‖1 with its approximation, the pseudo-Huber function [FG16], and solve the

following formulation.

min
x∈RN

1

m

m∑

i=1

log(1 + exp(−bixTai)) + ω1

N∑

i=1

(
(µ2

r + x2
i)

1/2 − µr

)
, (5.39)

where µr ∈ R+ is a parameter, and it provides good approximation of the ℓ1 norm when µr is

small.

The dataset gisette is used for {(ai, bi)}mi=1. Gisette is a handwritten digits dataset from the

NIPS 2003 feature selection challenge. In this example N = 5000, m = 6000, and we choose

parameter ω1 from [LSS14, YHL12] and µr = 0.001. One can find and download gisette at

https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets.

Notice that when P ∈ RN×n and R ∈ Rn×N are generated using näıve Nyström method

according to Definition 5.34, n is a user-defined parameter, and the probabilistic approach

mentioned in Section 5.2 is used to generate multiple P’s and R’s. That is, a pair of P and

R is sampled uniformly over
(
N
n

)
possible coarse models. This setting satisfies the condition

stated in Proposition 5.7, and so no fine correction step is needed.

Figure 5.6 shows the convergence results. As expected from Corollary 5.38 and 5.39, the

performance of convergence is proportional to n.

5.8. Numerical Experiments 213

0 100 200

10!3

10!1

101

Iterations

kx
h
;k
!

x
h
;?
k

n = 50%N
n = 70%N
n = 90%N

Figure 5.6: The ℓ1 regularized logistic regression example.

5.8.3 A Synthetic Example for Block Diagonal Approximation

To study the case of block diagonal approximation in Section 5.7, we construct an artificial

example with weakly connected Hessian. In particular, we solve

min
x∈RN

1

2
xT
(

Qh + δQ̂h

)

x+ bTx, (5.40)

where δ ∈ R+, Qh = diag(Qh,1,Qh,2, . . . ,Qh,p) is a block diagonal matrix with p blocks, with

Qh,i(xh) ∈ Rni×ni and
∑p

i=1 ni = n for i = 1, 2, . . . , p. In this example, we have N = 1000,

p = 10, n1 = n2 = · · · = n10 = 100. We construct Q̂h via

Q̂h =
N∑

j=1

vjuju
T
j ,

where vj ∈ R+ is sampled uniformly from [vδ, 1 + vδ], and uj ∈ RN is a random orthonormal

vectors, for j = 1, 2, . . . , N . Each Qh,i is also constructed similar to Q̂h but in the smaller

dimension Rni×ni , for i = 1, 2, . . . , p. vδ = 0.0001 in this example.

We consider the optimization problem in (5.40) with different δ’s. As expected from Theo-

214 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

100 101 102 10310!6

10!3

100

103

Iterations

kx
h
;k
!

x
h
;?
k

/ = 10!1

/ = 10!2

/ = 10!3

/ = 10!4

Figure 5.7: Block diagonal approximation.

rem 5.47, Figure 5.7 shows that the performance of convergence is inversely proportional to

δ.

5.8.4 Numerical Performance: PDE Test Cases

We now compare the numerical performance of GAMA with the conventional unconstrained

optimization algorithms as well as conventional line search multilevel/multigrid algorithm in

[WG09]. We focus on PDE-based optimization problems in this section.

We test algorithms on five examples from [WG09, GMS+10], and all of them are discretized 2-

dimensional variational problems over the unit square S2 , [0, 1]× [0, 1]. The decision variable,

u(x, y), obeys the boundary condition, u = 0 on ∂S2, for all problems. The five problems are

listed in the following.

1. Problem DSSC:

min
u∈S2

∫

S2

1

2
‖∇u(x, y)‖2 − λ exp(u(x, y)), where λ = 6.

5.8. Numerical Experiments 215

2. Problem WEN:

min
u∈S2

∫

S2

1

2
‖∇u(x, y)‖2 + λ exp

[
u(x, y)

]
(u(x, y)− 1)− γ(x, y)u(x, y),

where λ = 6 and

γ(x) =

[
(

9π2 + λ exp
[(
x2 − x3

)
sin(3πy)

]) (
x2 − x3

)
+ 6x− 2

]

sin (3πy) .

3. Problem BRATU:

min
u∈S2

∫

S2

‖∆u(x, y)− λ exp(u(x, y))‖2, where λ = 6.8.

4. Problem POSSION2D:

min
x

1

2
xTAx− bTx,

where A and b are the discretizations of the Laplacian and the function γ(x, y) = 2(y(1−

y) + x(1− x)), respectively.

5. Problem IGNISC:

min
u∈S2

∫

S2

(u(x, y)− z)2 + β

2

∫

S2

(exp[u(x, y)]− exp[z])2

+
ζ

2

∫

S2

‖∆u(x, y)− δ exp(u(x, y))‖2,

where δ = β = 6.8, ζ = 10−5, and z = 1/π2.

Table 5.1 shows the numerical performance of different algorithms, i.e., the CPU time (Time)

needed to achieve a small ‖∇fh,k‖ (Accuracy). We denote the COnventional Multilevel Algo-

rithm as COMA. For both GAMA and COMA, we denote “-NT” and “-qNT” when Newton’s

method and L-BFGS are used for the fine correction steps, respectively. For all five examples, we

choose the fine models to be the discretization with mesh size ∆x×∆y, where ∆x = ∆x = 1/210,

and the standard five-point finite differences are used. We point out that all the algorithmic

216 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

DSSC WEN BRATU
Time Accuracy Time Accuracy Time Accuracy

L-BFGS 5524.9 9.5164e-06 1048.7 9.9788e-06 44355 12.449
Newton 59.01 1.3351e-07 47.6 4.3493e-08 565.79 2.0853e-06
GAMA-NT 21.8 1.153e-13 21.26 4.6412e-12 180.19 1.9028e-06
COMA-NT 20.13 1.1531e-13 20.19 4.6412e-12 161.52 1.9027e-06
GAMA-qNT 13 7.2882e-06 5.1 7.9565e-06 840.47 0.0021644
COMA-qNT 12.52 9.4619e-06 6.43 7.3332e-06 860.4 37.708

POSSION2D IGNISC
Time Accuracy Time Accuracy

L-BFGS 1105.7 7.815e-06 50274 0.00039108
Newton 15.99 7.2561e-15 124.93 2.1409e-06
GAMA-NT 20.93 0 77.58 2.0008e-11
COMA-NT 20.92 0 77.69 2.0008e-11
GAMA-qNT 1.28 8.1249e-06 62.81 9.0643e-06
COMA-qNT 1.46 8.1304e-06 43.13 9.1113e-06

Table 5.1: PDE-based text examples

settings are the same as in [WG09], including line search strategy, stopping criteria, and choice

of parameters.

For both GAMA and COMA, we follow the same strategy as in [WG09], and the standard full

multilevel scheme is deployed. Suppose level j is denoted as the discretization with mesh size

∆x × ∆y, where ∆x = ∆y = 1/2j. For j = 3, 4, . . . , 9, we compute the solution xj,⋆ in level

j, and use Pj+1
j xj,⋆ as the initial guess for level j + 1. Pj+1

j is denoted as the prolongation

operator from level j to level j + 1.

From Table 5.1, we can see that the multilevel algorithms clearly outperform the conventional

algorithms. The performance of GAMA is comparable with COMA and is more robust due

to the use of second order information. In the problem BRATU, first order algorithms (i.e.

L-BFGS, GAMA-qNT, and COMA-qNT) are not efficient, but GAMA-qNT is able to achieve

much better accuracy. Therefore, GAMA is empirically competitive against the conventional

multilevel algorithm, and yet more robust with a more understandable rate of convergence.

5.8. Numerical Experiments 217

fi’s N m ω1 ω2

YearPredictionMSDt Quadratic 90 51630 10−6 10−6

log1pE2006test Quadratic 4272226 3308 10−6 10−6

w8at Logistic 300 14951 0 1/m
Gisette Logistic 5000 6000 1/(0.25m) 0
epsilon normalizedt Logistic 2000 100000 0 1/m

Table 5.2: Details of ERM Test Examples

5.8.5 Numerical Performance: Machine Learning Test Cases

We now study the performance of GAMA that is generated by Nyström method. Suppose

we have the training set {(ai, bi)}mi=1, we use GAMA to solve the empirical risk minimization

(ERM) problem

min
x∈RN

1

m

m∑

i=1

fi(a
T
i x) + ω1‖x‖1 +

ω2

2
‖x‖22,

where ω1, ω2 ∈ R and ai ∈ RN , for i = 1, 2, . . . ,m. Special cases of fi include

1. Quadratic loss function: fi(x) =
1
2
(x− bi)2.

2. Logistic loss function: fi(x) = log(1 + exp(−xbi)).

In the case where w2 = 0 and fi’s are logistic loss functions, we yield the ℓ1 regularized logistic

regression considered in Section 5.8.2. Similar to Section 5.8.2, we replace the ‖x‖1 with the

pseudo-Huber function.

The numerical test is conducted over five examples. All dataset/training set can be download

at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/. Table 5.2 provides details of the

test examples. We point out that for logistics regression, we select the choice of ω1 and ω2

based on [LSS14, GGR16]. For linear regression, we simply select ω1 = ω2 = 10−6, which is a

commonly used value.

Figure 5.8-5.12 show the numerical performance of GAMA, compared to Newton’s method and

L-BFGS. Over these five examples, GAMA only performs coarse correction steps, and n is

chosen to be 10%N , 20%N , and 30%N . An exception can be found in log1pE2006test because

these choices of n’s are too large to be traceable. The performance of Newton’s method is

218 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

also missing for log1pE2006test because computing its search direction is intractable due to

the size of N . From Figure 5.8 and 5.10, we can see that when N is small, Newton’s method

outperforms the other methods. This is not surprising since the per-iteration cost is cheap for

small N and yet Newton’s method enjoys the quadratic convergence. When N is sufficiently

large, as showed in Figure 5.9 and 5.11, GAMA is competitive compared to both Newton’s

method and L-BFGS.

In Figure 5.12, we can see that the performance of GAMA is better than Newton’s method and

similar to L-BFGS. From Table 5.2, N = 2000 and it is a reasonably good size for Newton’s

method. The poor performance of Newton’s method is due to the large m, which is 100000.

For large m, the evaluation of Hessians becomes the computational bottleneck. To further

illustrate this, in Figure 5.13, we perform Newton’s method and GAMA with sub-sampling.

For subsample Newton’s method, at each iteration, we evaluate the Hessian based on
√
m

data points in the training set. Data points are sampled uniformly without replacement. For

GAMA, we deploy the idea of SVRG, sample
√
m data points at each coarse correction step,

and create a coarse model with

fH(x) =
1√
m

∑

i∈SH

fi(a
T
i x) + ω1

N∑

i=1

(
(µ2

r + x2
i)

1/2 − µr

)
+
ω2

2
‖x‖22,

where µr = 0.001 and SH is the set of the samples. We call the coarse model with above fH

the intermediate coarse model. When solving the intermediate coarse model, we apply the

Galerkin-model that is generated by Nyström method, and apply five coarse correction steps.

The incumbent solution of the intermediate coarse model is then prolonged to the fine model

and results in a coarse correction step on the fine model. We clarify that this algorithmic

procedure follows the idea of SVRG, as introduced in Section 5.2.5. As shown in Figure 5.13,

great improvements are achieved for both (subsample) Newton’s method and GAMA. The

computational bottleneck of evaluating Hessians is removed by subsampling data points. Since

solving a system of 2000 linear equations can be managed easily, Newton’s method outperforms

all the other method in this case. Notice that since the Hessians are not evaluated exactly in

this case, Newton’s method and GAMA no longer enjoy quadratic rate and composite rate,

5.9. Comments and Perspectives 219

respectively. The theoretical performance of these methods are beyond the scope of this chapter.

5.9 Comments and Perspectives

We showed the connections between the general multilevel framework and the conventional

optimization methods. The case of using Galerkin model (GAMA) is further studied, and the

local composite rate of convergence is derived. When the coefficient of the linear component in

composite rate is sufficiently small, then GAMA is superior to Newton’s method in complexity.

This linear component is then studied in three different cases, and we showed how the structure

in each case would improve the rate of convergence.

This work advances research in multilevel optimization algorithms in several non-exploited

directions. Firstly, the connections between multilevel framework and standard optimization

methods would motivate systematic designs in optimization algorithms, and the multilevel

framework could be used beyond the traditional linesearch multilevel method in [WG09].

Secondly, we take the first step towards showing how the structure of problems could improve

the convergence. We expect that similar manner of thinking could be applied beyond GAMA,

and we believe this line of research could motivate more developments in multilevel algorithms

when one tries to tackle problems with specific structure.

We believe the results presented in this chapter can be generalized and refined. For example,

the local composite rate of convergence when solving PDE-based optimization can be extended

to cases beyond one-dimensional problems or uniform discretization. These extensions would

require more careful and tedious algebra, but the general approach presented in Section 5.5 can

be applied. On the other hand, one can extend results in Section 5.6 by considering different

versions of Nyström method, or even different methods in low rank approximation in general.

These generalizations could be done under the general approach of this chapter.

220 Chapter 5. Multilevel Methods for Unconstrained Convex Optimization

0 400 800
10!10

100

1010

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 9
GAMA, n = 18
GAMA, n = 27
Newton

Figure 5.8: YearPredictionMSDt

0 600 1200
10!4

10!1

102

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 103

GAMA, n = 5# 103

GAMA, n = 104

Figure 5.9: log1pE2006test

0 10 20 30
10!6

10!3

100

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 30
GAMA, n = 60
GAMA, n = 90
Newton

Figure 5.10: w8at

0 600 1200
10!6

10!2

102

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 500
GAMA, n = 1000
GAMA, n = 1500
Newton

Figure 5.11: Gisette

0 600 1200
10!4

10!3

10!2

10!1

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 200
GAMA, n = 400
GAMA, n = 600
Newton

Figure 5.12: epsilon normalizedt

0 600 1200
10!6

10!4

10!2

CPU Time

kr
f h

;k
k

L-BFGS
GAMA, n = 200
GAMA, n = 400
GAMA, n = 600
sub-Newton

Figure 5.13: epsilon normalizedt (subsample)

Chapter 6

Discussion

We can only see a short distance ahead,

but we can see plenty there that needs to

be done.

Alan Turing

Solving optimization problems efficiently could be a difficult or maybe even an impossible

task. One obvious bottleneck could be caused by the size of the problem, and many different

approaches have been proposed to improve the computational performance. In this thesis, we

concentrate on making use of the inherent structure of problems to improve the computation

performance. By taking a close look at the structure presented, we are able to design algorithms

to tackle problems with special structures.

6.1 Summary

In Chapter 3, we considered MDPs with multiscale structure, which we called MMDPs. We

showed that the multiscale stucture causes the ill-conditioning when solving MMDPs. Using

the existing aggregation techniques, we designed a multilevel algorithm in which part of the

computations is replaced by using approximations of the exact MMDPs. We show that the

221

222 Chapter 6. Discussion

proposed algorithm is able to circumvent the ill-conditioning of this class of problems, and thus

has lower complexity.

In Chapter 4, the class of ERM problems was considered. First order methods are considered

to be the standard approach when solving ERMs. Although the existing literature considers

the complexity of first order method as “dimension-free”, we showed that the complexity of

solving ERMs in fact depends on the statistics of the training data. This was achieved by

applying random matrix theory to derive bounds for Lipschitz constant of the empirical risk.

The results were also used to design a new stepsize strategy for first order algorithms.

Chapter 5 concerns the unconstrained twice continuously differentiable convex programs. The

connections between standard optimization methods and the general multilevel framework were

discussed. By considering the Galerkin model, we conducted case studies on infinite-dimensional

optimization, low rank models, and models with weakly connected Hessians, and we showed

how the structure of each case could affect the convergence.

6.2 Future Work

There are many exciting unexplored research directions related to this thesis. The general mul-

tilevel framework, in our opinion, could be applied beyond the traditional setting of geometric

structure. In Chapter 5, we showed that the general multilevel framework could be reduced to

some state-of-the-art algorithms for machine learning applications, including block-coordinate

gradient descent and SVRG. One interesting extension could be applying state-of-the-art sketch-

ing methods to approximate the training set with a smaller matrix and create a coarse model

with a smaller dataset. A multilevel algorithm is then created using the general framework,

and operations such as function evaluations and gradient evaluations would be much cheaper

when the coarse model is used.

Similar ideas could be applied to block-coordinate gradient descent methods. The core idea

of these methods is to partition the updates of the decision variables in blocks. However, this

partitioning process ignores the correlation among variables and thus these algorithms require

6.2. Future Work 223

a larger number of iterations. Using the same idea of sketching methods, we can “sketch” the

variables that are not selected in the block for each update, add them to the updating block,

and so the correlations among variables are preserved.

We believe the general multilevel framework can also be used to design distributed and parallel

algorithms. Using a similar idea as SVRG, one can subsample the data into many sub-datasets,

and each sub-data would correspond to one coarse model. All coarse models could be solved in

a distributed or parallel manner. Since all solutions of the coarse models would provide descent

directions, the sum of them will guarantee a descent direction. One would expect that the

direction generated by this distributed algorithm will be more robust, compared to using only

one coarse model.

In conclusion, we believe the general approach taken in this thesis can be used to tackle struc-

tured problems in many applications.

Bibliography

[BCW14] A. Belloni, V. Chernozhukov, and L. Wang. Pivotal estimation via square-root

Lasso in nonparametric regression. The Annals of Statistics, 42(2):757–788, 2014.

[Ber95] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

[Ber07] D. P. Bertsekas. Dynamic Programming and Optimal Control: 2. Athena Scientific,

2007.

[BF95] J. V. Burke and M. C. Ferris. A Gauss-Newton method for convex composite

optimization. Mathematical Programming, 71(2, Ser. A):179–194, 1995.

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM,

2000.

[Bil12] P. Billingsley. Probability and measure. Wiley Series in Probability and Statistics.

John Wiley & Sons, Inc., Hoboken, NJ, 2012. Anniversary edition [of MR1324786],

With a foreword by Steve Lalley and a brief biography of Billingsley by Steve

Koppes.

[BL11] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer

Series in Operations Research and Financial Engineering. Springer, New York,

second edition, 2011.

[BM08] M. Bard and C. March. Multiscale singular perturbations and homogenization of

optimal control problems. Series on Advances in Mathematics for Applied Sci-

ences, 76:1–27, 2008.

224

BIBLIOGRAPHY 225

[Bot98] L. Bottou. On-line learning in neural networks. chapter On-line Learning and

Stochastic Approximations, pages 9–42. Cambridge University Press, New York,

NY, USA, 1998.

[Bot12] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Statistical learning and data science, Computer Science and Data Analysis Series,

pages 17–25. CRC Press, Boca Raton, FL, 2012.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[BT13] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type

methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[BTMN01] A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent

optimization method with applications to tomography. SIAM Journal on Opti-

mization, 12(1):79–108 (electronic), 2001.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

New York, NY, USA, 2004.

[Cal10] G. C. Calafiore. Random convex programs. SIAM Journal on Optimization,

20:3427–3464, 2010.

[CC05] G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions

and confidence levels. Mathematical Programming, 102(1, Ser. A):25–46, 2005.

[Chr09] P. D. Christofides. Control and Optimization of Multiscale Process Systems.

Birkhuser, 2009.

[CL06] F. Chung and L. Lu. Complex graphs and networks, volume 107 of CBMS Regional

Conference Series in Mathematics. Published for the Conference Board of the

Mathematical Sciences, Washington, DC; by the American Mathematical Society,

Providence, RI, 2006.

226 BIBLIOGRAPHY

[CR09] E. J. Candès and B. Recht. Exact matrix completion via convex optimization.

Foundations of Computational Mathematics, 9(6):717–772, 2009.

[CR16] D. Csiba and P. Richtárik. Importance sampling for minibatches. CoRR,

abs/1602.02283, 2016.

[CRT06] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete

and inaccurate measurements. Communications on Pure and Applied Mathemat-

ics, 59(8):1207–1223, 2006.

[CS94] T. F. Chan and B. F. Smith. Domain decomposition and multigrid algorithms

for elliptic problems on unstructured meshes. In Domain decomposition methods

in scientific and engineering computing (University Park, PA, 1993), volume 180

of Contemporary Mathematics, pages 175–189. American Mathematical Society,

Providence, RI, 1994.

[CT91] C.-S. Chow and J. N. Tsitsiklis. An optimal one-way multigrid algorithm

for discrete-time stochastic control. IEEE Transactions on Automatic Control,

36(8):897–914, 1991.

[DBLJ14] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 27, pages 1646–1654. Curran

Associates, Inc., 2014.

[DES82] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM

Journal on Numerical Analysis, 19:400–408, 1982.

[dFVR04] D. P. de Farias and B. Van Roy. On constraint sampling in the linear program-

ming approach to approximate dynamic programming. Mathematics of Operations

Research, 29:462–478, 2004.

[DM77] J. E. Dennis, Jr. and J. J. Moré. Quasi-Newton methods, motivation and theory.

SIAM Review, 19(1):46–89, 1977.

BIBLIOGRAPHY 227

[DM05] P. Drineas and M. W. Mahoney. On the Nyström method for approximating a

Gram matrix for improved kernel-based learning. Journal of Machine Learning

Research, 6:2153–2175, 2005.

[Don06] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, 2006.

[EM15] M. A. Erdogdu and A. Montanari. Convergence rates of sub-sampled newton

methods. In Advances in Neural Information Processing Systems 28: Annual

Conference on Neural Information Processing Systems 2015, December 7-12, 2015,

Montreal, Quebec, Canada, pages 3052–3060, 2015.

[EY36] C. Eckart and G. Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3):211–218, 1936.

[FG16] K. Fountoulakis and J. Gondzio. A second-order method for strongly convex ℓ1-

regularization problems. Mathematical Programming, 156(1-2, Ser. A):189–219,

2016.

[FT15] K. Fountoulakis and R. Tappenden. A Flexible Coordinate Descent Method for

Big Data Applications. ArXiv e-prints, July 2015.

[GGR16] R. M. Gower, D. Goldfarb, and P. Richtárik. Stochastic Block BFGS: Squeezing

More Curvature out of Data. ArXiv e-prints, March 2016.

[Git11] A. Gittens. The spectral norm error of the näıve Nystrom extension. ArXiv e-

prints, October 2011.

[Git13] A. Gittens. Topics in Randomized Numerical Linear Algebra. ProQuest LLC, Ann

Arbor, MI, 2013. Thesis (Ph.D.)–California Institute of Technology.

[GK13] C. C. Gonzaga and E. W. Karas. Fine tuning Nesterov’s steepest descent algorithm

for differentiable convex programming. Mathematical Programming, 138(1-2, Ser.

A):141–166, 2013.

228 BIBLIOGRAPHY

[GMS+10] S. Gratton, M. Mouffe, A. Sartenaer, P. L. Toint, and D. Tomanos. Numerical

experience with a recursive trust-region method for multilevel nonlinear bound-

constrained optimization. Optimization Methods and Software, 25(3):359–386,

2010.

[GS97] K. Golabi and R. Shepard. Pontis: A system for maintenance optimization and

improvement of us bridge networks. Interfaces, 27(1):71–88, 1997.

[GST08] S. Gratton, A. Sartenaer, and P. L. Tonint. Recursive trust-region methods for

multiscale nonlinear optimization. SIAM Journal on Optimization, 19:414–444,

2008.

[Hac03] W. Hackbusch. Multi-Grid Methods and Applications. Springer, 2003.

[HL15] Y. Huang and H. Liu. A Barzilai-Borwein type method for minimizing composite

functions. Numerical Algorithms, 69(4):819–838, 2015.

[HMT11] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with random-

ness: probabilistic algorithms for constructing approximate matrix decomposi-

tions. SIAM Review, 53(2):217–288, 2011.

[HP14] C. P. Ho and P. Parpas. Singularly perturbed Markov decision processes: a mul-

tiresolution algorithm. SIAM Journal on Control and Optimization, 52(6):3854–

3886, 2014.

[HPZ15] V. Hovhannisyan, P. Parpas, and S. Zafeiriou. MAGMA: Multi-level accelerated

gradient mirror descent algorithm for large-scale convex composite minimization.

ArXiv e-prints, September 2015.

[HYB17] J. Han, Y. Yang, and H. Bi. A new multigrid finite element method for the

transmission eigenvalue problems. Applied Mathematics and Computation, 292:96–

106, 2017.

[JZ13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

BIBLIOGRAPHY 229

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26,

pages 315–323. Curran Associates, Inc., 2013.

[Kan52] L. V. Kantorovich. Functional analysis and applied mathematics. NBS Rep. 1509.

U. S. Department of Commerce, National Bureau of Standards, Los Angeles, Calif.,

1952. Translated by C. D. Benster.

[KKO87] P. Kokotovic, H. K. Khali, and J. O’reilly. Singular perturbation methods in control:

analysis and design, volume 25. SIAM, 1987.

[KM15] V. Koltchinskii and S. Mendelson. Bounding the smallest singular value of a ran-

dom matrix without concentration. International Mathematics Research Notices.

IMRN, (23):12991–13008, 2015.

[KM16] M. Kočvara and S. Mohammed. A first-order multigrid method for bound-

constrained convex optimization. Optimization Methods and Software, 31(3):622–

644, 2016.

[KRC+15] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola,

S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: Hybrid centralized

and distributed scheduling in large shared clusters. In Proceedings of the 2015

USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15,

pages 485–497, Berkeley, CA, USA, 2015. USENIX Association.

[KSHdM02] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approx-

imation method for stochastic discrete optimization. SIAM Journal on Optimiza-

tion, 12(2):479–502, 2001/02.

[LN05] R. M. Lewis and S. G. Nash. Model problems for the multigrid optimization of sys-

tems governed by differential equations. SIAM Journal on Scientific Computing,

26(6):1811–1837 (electronic), 2005.

[LN13] R. M. Lewis and S. G. Nash. Using inexact gradients in a multilevel optimization

algorithm. Computational Optimization and Applications, 56(1):39–61, 2013.

230 BIBLIOGRAPHY

[LPRR16] D. V. N. Luong, P. Parpas, D. Rueckert, and B. Rustem. A Weighted Mirror

Descent Algorithm for Nonsmooth Convex Optimization Problem. Journal of

Optimization Theory and Applications, 170(3):900–915, 2016.

[LSS14] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for

minimizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443,

2014.

[Mey08] S. P. Meyn. Control techniques for complex networks. Cambridge University Press,

2008.

[Mir60] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quar-

terly Journal of Mathematics, 11:50–59, 1960.

[MKC13] L. Mai, E. Kalyvianaki, and P. Costa. Exploiting time-malleability in cloud-based

batch processing systems. In Workshop on Large-Scale Distributed Systems and

Middleware (LADIS’13). ACM, November 2013.

[MNJ16] P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic L-

BFGS algorithm. In Proceedings of the 19th International Conference on Artificial

Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages

249–258, 2016.

[Nas00] S. G. Nash. A multigrid approach to discretized optimization problems. Opti-

mization Methods and Software, 14(1-2):99–116, 2000. International Conference

on Nonlinear Programming and Variational Inequalities (Hong Kong, 1998).

[Nas14] S. G. Nash. Properties of a class of multilevel optimization algorithms for equality-

constrained problems. Optimization Methods and Software, 29(1):137–159, 2014.

[Nes04] Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer

Academic Publishers, Boston, MA, 2004.

[Nes13] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical

Programming, 140(1, Ser. B):125–161, 2013.

BIBLIOGRAPHY 231

[Nes15] Y. Nesterov. Universal gradient methods for convex optimization problems. Math-

ematical Programming, 152(1-2, Ser. A):381–404, 2015.

[NW06] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations

Research and Financial Engineering. Springer, New York, second edition, 2006.

[Nys30] E. J. Nyström. Über Die Praktische Auflösung von Integralgleichungen mit An-

wendungen auf Randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

[PGD+15] R. Patel, T. A. Goldstein, E. L. Dyer, A. Mirhoseini, and R. G. Baraniuk. oASIS:

Adaptive Column Sampling for Kernel Matrix Approximation. ArXiv e-prints,

May 2015.

[PJ92] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[PLRR] P. Parpas, D. V. N. Luong, D. Rueckert, and B. Rustem. A multilevel proximal

algorithm for large scale composite convex optimization, Working paper.

[Pol87] B. T. Polyak. Introduction to optimization. Translations Series in Mathematics

and Engineering. Optimization Software, Inc., Publications Division, New York,

1987. Translated from the Russian, With a foreword by Dimitri P. Bertsekas.

[Pow11] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality. Wiley, 2011.

[Pri07] J.L. Prigent. Portfolio Optimization and Performance Analysis. Chapman and

Hall/CRC Financial Mathematics Series. CRC Press, 2007.

[PTVF96] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

recipes: the art of scientific computing. Code CD-ROM v 2.06 with Windows, DOS,

or Macintosh single-screen license. Cambridge University Press, Cambridge, 1996.

[PW14] P. Parpas and M. Webster. A stochastic multiscale model for electricity generation

capacity expansion. European Journal of Operational Research, 232(2):359 – 374,

2014.

232 BIBLIOGRAPHY

[QR14] Z. Qu and P. Richtarik. Coordinate descent with arbitrary sampling ii: expected

separable overapproximation. arXiv:1412.8063, 2014.

[QRTF15] Z. Qu, P. Richtárik, M. Takác, and O Fercoq. SDNA: Stochastic Dual Newton

Ascent for Empirical Risk Minimization. CoRR, abs/1502.02268, 2015.

[QSG13] Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algo-

rithms for the group Lasso. Mathematical Programming Computation, 5(2):143–

169, 2013.

[Ros06] S. M. Ross. Introduction to Probability Models. Academic Press Inc, 2006.

[RR95] G. Rothwell and J. Rust. A dynamic programming model of U.S. nuclear power

plant, Operations Discussion Paper 410, 1995.

[RT16] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data

optimization. Mathematical Programming, 156(1-2, Ser. A):433–484, 2016.

[RV10] M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: ex-

treme singular values. In Proceedings of the International Congress of Mathemati-

cians. Volume III, pages 1576–1602. Hindustan Book Agency, New Delhi, 2010.

[SA61] H. A. Simon and A. Ando. Aggregation of variables in dynamic systems. Econo-

metrica, 29(2):pp. 111–138, 1961.

[SNW12] S. Sra, S. Nowozin, and S.J. Wright. Optimization for Machine Learning. Neural

information processing series. MIT Press, 2012.

[SS00] A. J. Smola and B. Schökopf. Sparse greedy matrix approximation for machine

learning. In Proceedings of the Seventeenth International Conference on Machine

Learning, ICML ’00, pages 911–918, San Francisco, CA, USA, 2000. Morgan Kauf-

mann Publishers Inc.

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From

Theory to Algorithms. Understanding Machine Learning: From Theory to Algo-

rithms. Cambridge University Press, 2014.

BIBLIOGRAPHY 233

[SSJL99] J. Subramanian, S. Stidham Jr., and C. J. Lautenbacher. Airline yield management

with overbooking, cancellations, and no-shows. Transportation Science, 33(2):147–

167, February 1999.

[ST13] A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic coordinate

descent methods. SIAM Journal on Optimization, 23(1):576–601, 2013.

[Str07] G. Strang. Computational science and engineering. Wellesley-Cambridge Press,

Wellesley, MA, 2007.

[Stü01] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied

Mathematics, 128(1-2):281–309, 2001. Numerical analysis 2000, Vol. VII, Partial

differential equations.

[SWH12] C. Schutte, S. Winkelmann, and C. Hartmann. Optimial control of molecular

dynamics using markov state models. Mathematical Programming, 134(1, Ser.

B):259–282, 2012.

[SZ94] S. P. Sethi and Q. Zhang. Hierarchical decision making in stochastic manufacturing

systems. Birkhauser Verlag, 1994.

[SZ13] T. Sun and C.-H. Zhang. Sparse matrix inversion with scaled lasso. Journal of

Machine Learning Research, 14:3385–3418, 2013.

[TBI97] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

[TH12] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a run-

ning average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 2012.

[TOS01] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,

Inc., San Diego, CA, 2001. With contributions by A. Brandt, P. Oswald and K.

Stüben.

234 BIBLIOGRAPHY

[Tro11] J. A. Tropp. Improved analysis of the subsampled randomized Hadamard trans-

form. Advances in Adaptive Data Analysis. Theory and Applications, 3(1-2):115–

126, 2011.

[Tro12] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations

of Computational Mathematics, 12(4):389–434, 2012.

[Tro15] J. A. Tropp. An Introduction to Matrix Concentration Inequalities. ArXiv e-prints,

January 2015.

[TS86] D.J. Tylavsky and G.R.L. Sohie. Generalization of the matrix inversion lemma.

Proceedings of the IEEE, 74(7):1050–1052, July 1986.

[Wes92] P. Wesseling. An introduction to multigrid methods. Pure and Applied Mathemat-

ics (New York). John Wiley & Sons, Ltd., Chichester, 1992.

[WG09] Z. Wen and D. Goldfarb. A line search multigrid method for large-scale nonlinear

optimization. SIAM Journal on Optimization, 20(3):1478–1503, 2009.

[WS01] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel

machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in

Neural Information Processing Systems 13, pages 682–688. MIT Press, 2001.

[Wu96] Z. Wu. The effective energy transformation scheme as a special continuation ap-

proach to global optimization with application to molecular conformation. SIAM

Journal on Optimization, 6(3):748–768, 1996.

[XN09] D. Xie and Q. Ni. An incomplete Hessian Newton minimization method and

its application in a chemical database problem. Computational Optimization and

Applications, 44(3):467–485, 2009.

[YCYA12] A. Yalaoui, H. Chehade, F. Yalaoui, and L. Amodeo. Optimization of Logistics.

ISTE. Wiley, 2012.

BIBLIOGRAPHY 235

[YFI89] E. Yamakawa, M. Fukushima, and T. Ibaraki. An efficient trust region algorithm

for minimizing nondifferentiable composite functions. SIAM Journal on Scientific

and Statistical Computing, 10(3):562–580, 1989.

[YHL12] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved glmnet for l1-regularized

logistic regression. Journal of Machine Learning Research, 13(1):1999–2030, June

2012.

[YZ13] G. Yin and Q. Zhang. Continuous-time Markov chains and applications. Springer

New York, 3rd edition, 2013.

