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Abstract 

Liver disease affects approximately 600,000 people in England and Wales 

and is the third biggest cause of premature death. Acute and chronic liver 

injury occur due to a number of aetiologies and affect the function of the liver 

in the short and long term through pathological inflammation and fibrosis. 

Given the variety of aetiologies and growing burden of disease in the 

population, there is a need to find universal therapies that alter the 

progression of liver injury and fibrosis beyond the initiating insult. 

 

This work focuses on investigating the role of the coagulation cascade, 

specifically Tissue Factor Pathway Inhibitor (TFPI), in liver injury and it’s use 

as a potential therapeutic target for altering the progression of acute and 

chronic liver injury.  

 

Using two transgenic strains of mice, expressing TFPI in a cell specific 

manner I have shown that TFPI decreases the extent and progression of liver 

injury in models of acute liver injury but does not modify the development of 

liver fibrosis in a model of chronic liver injury. 

 

In the models of acute liver injury there was decreased liver injury associated 

with decreased fibrin deposition, decreased hepatic stellate cell activation, 

decreased total liver macrophage content and decreased PAR2 expression. 

The pattern of changes suggests that TFPI acts early in the injury process, 

limiting total hepatocyte injury and resulting in a decrease in hepatic stellate 

cell activation and macrophage recruitment, rather than the other way round. 
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Further work should focus on defining the inflammatory cytokine profile of the 

liver of these transgenic mice in acute liver injury with the aim of describing 

the biological mechanism for the action of TFPI in acute liver injury and taking 

forward the trial of TFPI administration to control mice in a manner that could 

be carried forward to human studies. 
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Project hypotheses 

This work sought to investigate the role of TFPI in liver injury using transgenic 

mice that selectively expressed TFPI creating local, cell specific over 

expression. 

 

The overall hypothesis was: 

Cell specific expression of TFPI in acute and chronic liver injury would limit 

the progression and extent of liver injury. 

 

Specifically that: 

 

1. Expression of TFPI on αSMA positive cells in the liver would decrease 

the degree of acute hepatocellular injury and fibrosis via PAR associated 

modification of hepatic stellate cell activity and decreased microvascular 

clot formation.  

 

2. Expression of TFPI on CD31 positive cells in the liver would decrease 

the degree of acute hepatocellular injury and fibrosis via PAR associated 

modification of CD31 positive myeloid cell activity and decreased 

microvascular clot formation. 
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• IL-1, etc Interleukin-1, 8, etc 
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• IP3  Inositol 1,45-triphosphate 

• IPEC  Immortalised porcine endothelial cells 

• LACI  lipoprotein-associated coagulation inhibitor 

• LPS  Lipopolysaccharide 

• LRP  lipoprotein receptor-related protein 

• LSEC  Liver sinusoidal endothelial cells 

• MAPK  Mitogen-activated protein kinase 

• MCM4  Minichromosome maintenance complex component 4 

• MCP-1 Monocyte chemo-attractant protein-1 (also known as CCL2) 

• MHV  Mouse hepatitis virus 

• MIP  Macrophage inflammatory protein (MIP-1α and 2α also known 

as CCL3 and CXCL2 respectively) 

• MMP  Matrix metalloproteinase 

• NADPH Nicotinamide adenine dinucleotide phosphate, reduced 

• NAPQI N-acetyl-p-benzoquinone imine 

• NF-kB  Nuclear factor kappa beta 

• NK cell Natural Killer cell 

• NKG2D Natural killer group 2D 

• NO  Nitric oxide 

• PAI-1  Plasminogen activator inhibitor-1 

• PAR  Protease Activated Receptors 

• PBS  Phosphate buffered solution 

• PCA  Pro-coagulant activity 

• PCNA  Proliferating cell nuclear antigen 

• PDGF  Platelet derived growth factor 
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• PMA  Phorbol myristate acetate 

• Rac1  Ras-related C3 botulinum toxin substrate 1 

• RGB  Red green blue 

• RhoA  Ras homolog gene family, member A 

• RNA  Ribonucleic acid 

• ROI  Region of interest 

• RT  Reverse transcriptase 

• TAA  Thioacetamide 

• TAFI  Thrombin-activatable fibrinolysis inhibitor 

• TAT  Thrombin-anti-thrombin complex 

• TBST  Tris-buffered saline and Tween 20 

• TF  Tissue Factor 

• TF / FVIIa Tissue Factor – Factor VIIa complex 

• TFI  tissue factor inhibitor 

• TFPI  Tissue Factor Pathway Inhibitor 

• TGF-β1 Transforming growth factor beta 1 

• TIMP  Tissue inhibitor of matrix metalloproteinase 

• TM  Thrombomodulin 

• TNF-α  Tumour necrosis factor alpha 

• TRAIL  TNF-related apoptosis inducing ligand 

• Vol  Volume 

• αSMA  alpha smooth muscle actin 
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1. Introduction 

Approximately 60,000 people in England and Wales have cirrhosis and ten 

times that have some form of liver disease. Liver disease is currently the third 

biggest cause of premature mortality in England and Wales and worryingly 

mortality rates from liver disease have been increasing over the past 30 years 

(Williams et al. 2014). Acute and chronic liver injury occurs due to a number of 

aetiologies. Acute liver injury can immediately affect the function of the liver 

and in chronic liver injury a state of chronic inflammation initiates pathological 

repair where damaged functional tissue is replaced by fibrous scar tissue. 

This scaring process can then affect the function of the liver in the longer term. 

Given the variety of aetiologies and growing burden of disease in the 

population, there is a need to find universal therapies that alter the 

progression of liver injury and fibrosis beyond the initiating insult. 

 

Epidemiological studies on a variety of populations have demonstrated that 

procoagulant / prothrombotic states are associated with more advanced liver 

fibrosis (of varying aetiology) compared to age/sex matched controls. 

(Papatheodoridis et al. 2003; Papatheodoridis et al. 2009; Wright et al. 2003; 

Poujol-Robert, Rosmorduc, et al. 2004; Poujol-Robert, Boelle, et al. 2004). 

Subsequent animal studies have confirmed that mouse models with pro-

thrombotic tendencies also demonstrate accelerated fibrosis. In mouse 

models it has also been shown that anticoagulation can be used to alter/halt 

the progression of liver fibrosis (Anstee et al. 2008). A discussion of the role of 

the coagulation cascade in chronic liver injury is covered in more detail in 

section 1.4. 
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In humans the role of the coagulation cascade in the progression of acute 

liver injury has not been widely researched and animal models have 

predominantly been used to investigate the role of the coagulation cascade in 

acute liver injury due to specific causative agents. A discussion of the role of 

the coagulation cascade in acute liver injury is covered in more detail in 

section 1.3. 

 

This body of work sought to further the understanding of role of the 

coagulation cascade, specifically Tissue Factor Pathway Inhibitor (TFPI), and 

it’s potential as a therapeutic target in the progression of acute and chronic 

liver injury.  

 

TFPI is a serine protease inhibitor that regulates the activation of the extrinsic 

arm of the coagulation cascade. The first part of this introduction provides 

background information on the coagulation cascade and TFPI (section 1.1) 

before exploring the existing literature on the role of the coagulation cascade 

in acute and chronic liver injury (sections 1.2, 1.3, 1.4). The final part of this 

introduction covers the mouse models used in this body of work, including 

models of liver injury (section 1.5) and the transgenic strains of mice unique to 

this work (section 1.6). 
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1.1. The coagulation cascade 

 

The coagulation cascade describes a series of reactions where a precursor of 

a serine protease and it’s glycoprotein co-factor are activated, catalyzing the 

next reaction and creating a cascade of subsequent reactions resulting in 

fibrin clot formation. The cascade is traditionally split into an intrinsic or 

contact activation pathway and an extrinsic or tissue factor pathway, both 

converging on a common factor X activating pathway (Figure 1-1). 

 

The extrinsic pathway is associated with clot formation after vascular injury 

(and is measured using prothrombin time). The intrinsic pathway associated 

with clot formation secondary to contact with charged surfaces in disease 

states such as inflammation and in the propagation of clot formation after 

cessation of extrinsic pathway activation. The intrinsic pathway is measured 

using the activated partial thromboplastin time (aPTT). (Gailani & Renné 

2007; van Montfoort & Meijers 2013). 

 

In-vivo it is useful to consider the coagulation cascade split into the functional 

steps of initiation and propagation because of the considerable overlap in 

activation of the intrinsic and extrinsic pathways. Initiation of clotting occurs 

after vascular injury when the tissue factor - factor VIIa (TF / FVIIa) complex 

initiates activation of factor X. At the same time it activates factor IX (at a 

similar rate to factor X). After initiation there is propagation of factor X 

activation through factor IXa and thrombin (Mann, Krudysz-Amblo, & Butenas, 

2012; Osterud & Rapaport, 1977) (Figure 1-1). 
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After activation, homeostatic control of the coagulation cascade is dependent 

upon regulators that inhibit the serine protease factors. These regulators 

include Protein C, antithombin and TFPI. Fibrinolytic agents such as plasmin 

are also important in homeostasis. 
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Figure 1-1: Schematic of the coagulation cascade 
Blue arrow / Text – coagulation cascade activation.  
Green arrow, broken line – thrombin propagation of coagulation cascade 
activation.  
Red arrow, solid line – Inhibitors / Regulators of the coagulation cascade, 
direction of action.  
Red broken line – Site of inhibition. 
Purple – fibrinolytic system. 
‘a’ denotes the activated form of the factor. 
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1.1.1. Tissue factor (TF) 

Tissue factor (also known as thromboplastin) is a transmembrane 

glycoprotein. Structurally the extracellular domain of tissue factor is composed 

of 219 residues with fibronectin type 3 domains containing 3 potential 

glycosylation sites and multiple residues important to its interaction with factor 

VIIa and factor X. The factor VIIa interaction sites are near the tip of the 

molecule and the factor X interaction sites are near the membrane attachment 

site (Drake et al. 1989; Mann et al. 2012; Spicer et al. 1987). 

 

Tissue factor (TF) is expressed on adventitial fibroblasts where it forms the 

haemostatic envelope (Drake et al. 1989). These cells are not normally 

exposed to flowing blood but when there is damage to the intimal endothelial 

lining they are exposed to blood that contains low levels of circulating factor 

VIIa (approximately 1% of circulation factor VII is present in its cleaved, 

activated, protease form). The binding of Factor VIIa (in the presence of 

calcium ions) to the extracellular portion of TF forms a complex that 

proteolytically cleaves factor X to Xa. This reaction simultaneously triggers the 

expression of TFPI which forms an inactivating quaternary complex with the 

TF / VIIa / Xa complex (Broze  Jr. 1995). 

 

As well as expression on adventitial fibroblasts TF is found on circulating 

activated monocytes. Un-activated macrophages are negative for TF (Osterud 

2010; Drake et al. 1989). TF is also expressed on microparticles and in 

certain disease settings the proportion of microparticles carrying TF is 

elevated (Owens  3rd & Mackman 2011). The activity of the circulating blood 
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cell / microparticle bound TF is dependent upon cofactors and oxidation 

associated conformational change (V. M. Chen et al. 2006; Mann et al. 2012). 

Literature describing the expression of TF on platelets, neutrophils and 

eosinophils is not conclusive (Osterud 2010; Drake et al. 1989). 

 

Tissue factor is also expressed in a large number of tissues outside of the 

vasculature, including low-levels of expression in the liver. In the liver TF is 

expressed on hepatocytes, bile duct epithelial cells, hepatic stellate cells and 

Kupffer cells (Sullivan et al. 2013; Stephenne et al. 2007; Willingham & 

Matschiner 1989; Arai et al. 1995; Luyendyk et al. 2009; Flossel et al. 1994; 

Bataller et al. 2005; Mackman et al. 1993; Drake et al. 1989). The main role of 

TF in the liver physiology is not completely understood.  In injury states, the 

literature suggests that TF is responsible for the majority of coagulation 

cascade activation with liver.  Importantly, 90% of the TF expressed on 

hepatocytes is ‘encrypted’ and unable to activate the clotting cascade prior to 

un-encryption. This encryption is likely to be vital to maintaining coagulation 

cascade homeostasis in the uninjured liver as plasma (carrying coagulation 

factors) passes freely through the fenestrations of the liver sinusoidal 

epithelial cells and interacts with hepatocytes which are a major source of 

many coagulation factors including factor VII (Sullivan et al. 2013; Kopec & 

Luyendyk 2014). 

 
The role of TF in liver injury is discussed in more detail in sections 1.3.3 and 
1.4.3. 
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1.1.2. Tissue factor pathway inhibitor (TFPI) 

Tissue factor pathway inhibitor (TFPI) was first described in the 1950’s and 

sequenced in 1987. The molecule was initially called lipoprotein-associated 

coagulation inhibitor (LACI) and has also been known as anti-convertin, 

extrinsic pathway inhibitor (EPI), tissue factor inhibitor (TFI) and TFPI-1. TFPI 

is a 32-38-kDa plasma glycoprotein composed of three tandem kunitz-type 

domains flanked by a negatively charged N-terminal region and a positively 

charged c-terminal tail (Wun et al. 1988). 

 

TFPI is a serine protease inhibitor and the main homeostatic brake that is able 

to immediately inhibit the tissue factor (TF) dependant initiation phase of the 

coagulation cascade (Lwaleed & Bass 2006). In the coagulation cascade 

tissue factor, factor VIIa and factor Xa form a large complex (TF / VIIa / Xa) 

anchored by tissue factor to a plasma membrane. Each TFPI molecule 

irreversibly binds a TF / VIIa / Xa complex. First the second kunitz-type 

domain binds to factor Xa, this then facilitates the binding of the first kunitz-

type domain to the active site of TF / Xa. The TFPI / TF / VIIa / Xa quaternary 

molecule prevents further interaction of the bound TF, VIIa and Xa in the 

coagulation cascade (McVey 1994; Broze  Jr. et al. 1988; Girard et al. 1989).  

 

The third kunitz-type domain is probably involved in the association with 

lipoproteins or cell surface localization but its exact function is not known 

(Abumiya et al. 1995; Piro & Broze  Jr. 2004). The c-terminal is required for 

the binding of TFPI to cell surfaces and allows for the internalisation and 
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degradation of factor X and down regulation of TF / VIIa activity (Lwaleed & 

Bass 2006; Han et al. 1999). 

 

TFPI is found in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα is 

the full length protein described above and TFPIβ lacks the third kunitz-type 

domain and contains an alternative c-terminal region that contains a 

glycophosphatidylinositol (GPI) attachment signal. Both bind TF / VIIa in a 

factor Xa dependent manner (Broze  Jr. et al. 1988; Girard et al. 1989). TFPIα 

is a soluble form of TFPI and TFPIβ is exclusively found anchored to the cell 

membrane (Piro & Broze  Jr. 2005; Zhang et al. 2003). TFPIβ accounts for 

20% of total surface TFPI (Piro & Broze  Jr. 2005). Importantly, although 

TFPIα and TFPIβ mRNA is found in the mouse (with a similar tissue 

distribution) TFPIβ protein has not been detected in the mouse (Chang et al. 

1999). 

 

In the circulation TFPI is distributed in three pools – the endothelium, platelets 

and the plasma. Approximately 80-85% of TFPI is constitutively produced by 

microvascular endothelium and expressed on their luminal surface (with 

expression also noted in the Golgi apparatus and endocytic compartments) 

(Hansen et al. 1997). This is the most biologically active pool of TFPI and is 

predominantly TFPIα (Mast et al. 2000; Ameri et al. 1992).  

 

Between 2-10% of TFPI is present in platelets and expression on the platelet 

surface is seen in un-activated platelets and following activation by collagen 
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and thrombin (Novotny et al. 1988; Maroney & Mast 2008; Ott et al. 2001; 

Werling et al. 1993). Again, this is predominantly TFPIα. 

 

Approximately 10% of TFPI is found in the blood plasma. Circulating TFPI is 

almost exclusively TFPIα (Zhang et al. 2003). Most (80-90%) of the circulating 

TFPI is bound to lipoproteins (HDL, LDL and VLDL) and only a small 

proportion is uncomplexed and freely circulating (Novotny et al. 1989; 

Lwaleed & Bass 2006; Werling et al. 1993; Sandset 1996). The uncomplexed 

plasma TFPI has greater anticoagulant activity than the complexed TFPI and 

there is evidence that this (uncomplexed) fraction is responsible for the 

anticoagulant activity of TFPI in plasma (Lindahl et al. 1992; Hansen et al. 

1997; Broze  Jr. et al. 1994). The uncomplexed TFPI is likely to originate from 

TFPI released by endothelial cells and platelets (Novotny et al. 1988; Ameri et 

al. 1992). 

 

In addition to these three pools, vascular smooth muscle cells have been 

shown to demonstrate expression of TFPI (Bajaj, Kuppuswamy, et al. 1999; 

Wojtukiewicz et al. 1999). Un-activated monocytes (and macrophages) 

demonstrate weak TFPI expression and bone marrow megakaryocytes also 

show TFPI expression (Ott et al. 2001; Werling et al. 1993). TFPI expression 

has not been seen on erythrocytes, neutrophils and lymphocytes, although in 

atherosclerotic lesions T cell expression of TFPI has been identified (Caplice, 

Mueske, Kleppe & Simari 1998; Crawley et al. 2000; Bajaj, Steer, et al. 1999; 

Osterud et al. 1995).  TFPI expression has also been identified in laryngeal 
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squamous epithelial cells, astrocytes and in small amounts in lung fibroblasts 

(Bajaj, Kuppuswamy, et al. 1999; Wojtukiewicz et al. 1999). 

 

Examination of a range of human tissues shows that expression of TFPI 

varies in different organs.  High levels of TFPI mRNA are found in both the 

lung and heart while the liver (hepatocytes and bile duct epithelial cells) 

express moderate amounts of TFPI (Bajaj, Kuppuswamy, et al. 1999; 

Shimokawa et al. 2000; Uhlén et al. 2015). In-vitro TFPI expression has been 

detected on the human hepatoma cell line HepG2 but is not seen in cultured 

hepatocytes (Broze  Jr. & Miletich 1987; Bajaj et al. 1990). 

 

Phorbol myristate acetate (PMA), endotoxin, interleukin-1, TNF-α, epidermal 

growth factor, platelet-derived growth factor and heparin are all upregulators 

of TFPI expression in-vitro and thrombin is associated with the cell surface 

expression and release of TFPI from cultured endothelium (Lupu, Kruithof, et 

al. 1999; Lupu, Poulsen, et al. 1999; Lupu et al. 1995; Caplice, Mueske, 

Kleppe, Peterson, et al. 1998; Ameri et al. 1992). 

 

Therapeutically, heparins and tissue plasminogen activator stimulate this 

release of TFPI into the plasma from endothelium and platelets and total 

plasma TFPI is increased 1.5-to 3-fold. This occurs without depleting the cell 

surface membrane, suggesting rapid replacement of membrane TFPI by 

intracellular stores (Lupu, Poulsen, et al. 1999; Hansen et al. 2000; McVey 

1994; Sandset et al. 1988; Gori et al. 1999). 
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TFPI is cleared by the liver and the kidneys. In hepatocytes the low density 

lipoprotein receptor-related protein (LRP), a cell surface glycoprotein, 

mediates the endocytosis and degradation of TFPI (Palmier et al. 1992; 

Warshawsky et al. 1994). 

 

While the role of the liver in the homeostasis of TFPI is understood, there is 

very little literature on the role of TFPI in liver homeostasis and liver disease.  

In the uninjured liver, TFPI is likely to play a role in coagulation cascade 

homeostasis.  In patients with cirrhosis and cirrhosis with portal vein 

thrombosis, plasma levels of TFPI are known to be reduced compared to 

controls (Oksuzoglu et al. 1997).  This body of work sought to address this 

gap in the literature. 

 

Of note, TFPI is not to be confused with TFPI-2. TFPI-2 is also a kunitz-type 

serine protease inhibitor with weak inhibition of TF / VIIa, factor Xa and other 

serine proteases. However it is encoded by TFPI2 on chromosome 7 

(compared to TFPI which is encoded by TFPI on chromosome 2) and its main 

function is as a tumour suppressor gene. This body of work refers to TFPI, not 

TFPI-2. 
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1.2. The Coagulation cascade and liver injury 

 

Since the 1980’s the coagulation cascade has been linked with the 

progression of liver injury (Levy et al. 1982; Levy et al. 1983; Wanless, Liu, et 

al. 1995; Wanless, Wong, et al. 1995). These early papers correlated the 

extent of microthrombi in the hepatic microcirculation with severity of liver 

fibrosis and the term parenchymal extinction was coined by Wanless et al to 

describe the replacement of areas of functional parenchyma with fibrous 

tissue between veno-occlusive lesions (Wanless, Wong, et al. 1995). Later, 

the role of receptors activated by coagulation cascade proteases (Protease 

Activated Receptors, PAR) were added to the pathogenesis of the coagulation 

cascade in liver injury. 
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1.2.1. Parenchymal extinction 

Levy et al observed microthrombi, microcirculatory changes and associated 

tissue necrosis in the livers of mice infected with mouse hepatitis virus (MHV). 

They noted that one strain of mouse (A/J) did not develop these changes and 

that this appeared to be related to this strains’ lack of expression of a pro-

coagulant protein on monocytes in response to MHV infection. The protein 

(later identified as Fibrinogen-like protein 2, FgL2) cleaved prothrombin to 

thrombin and resulted in fibrin microthrombi formation in other strains (Levy et 

al. 1982; Levy et al. 1983). 

 

Later Wanless et al studied post-mortem and ex-planted cirrhotic human livers, 

mapping veno-occlusive lesions and areas of fibrous septa. He found that 

hepatic vein veno-occlusive lesions mapped to areas with dense fibrous 

tissue replacing parenchyma. He also found that the extent of these fibrous 

lesions was proportional to the frequency and extent of medium sized hepatic 

vein veno-occlusive lesions. He termed this appearance parenchymal 

extinction (Wanless, Wong, et al. 1995). 

 

Wanless proposed that the patchy distribution of veno-occlusive lesions in 

hepatic veins was due to multiple associated thrombotic events starting in the 

sinusoids and propagating into the hepatic veins causing local tissue 

ischaemia, hepatocellular loss and fibrosis. Wanless theorised that the 

sinusoidal thrombi occurred due to stasis or vascular injury caused by 

parenchymal inflammation. (Wanless, Liu, et al. 1995; Wanless, Wong, et al. 

1995).  
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1.2.2. Protease Activated Receptors (PAR) 

Protease activated receptors (PAR) are G-protein linked transmembrane 

receptors. The receptors are activated by the irreversible cleavage of an 

extracellular amino-terminal by a protease, often a coagulation cascade 

protease. This exposes another amino-terminal (called the tethered ligand) 

that acts intra-molecularly to activate downstream intracellular signalling. 

 

The intracellular signalling cascades activated by PAR are dependent upon 

G-protein subunits (and β-arrestin in PAR-2). Intracellular signalling cascades 

activated by PAR include (Adams et al. 2011):  

• Phospholipase C generation of diacyl glycerol and inositol 1,45-

triphosphate (IP3) and the mobilisation of calcium from the endoplasmic 

reticulum into the cytosol (seen in conjunction with PAR-1 and PAR-2 

in fibroblasts (Ossovskaya & Bunnett 2004)).  

• Mitogen-activated protein kinase (MAPK) pathway proliferative activity. 

• Nuclear factor-kB (NF-kB) pathway inflammation (most prominent in 

PAR-2 signalling). 

• RhoA GTPase or Rac1 activation induced focal adhesion kinase (FAK) 

tyrosine phosphorylation dependant cell migration. 

• Transactivation of other receptor systems such as ErB2, HER2 and 

EGFR.  

• G-protein independent signalling via β-arrestin1 and 2 resulting in 

regulation/termination of G-protein signalling and ERK1/2 pathway 

activation. 
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There are four known PAR, PAR-1 to 4 (see Table 1-1). PAR 1-4 are 

detectable (mRNA and protein) in the uninjured liver (Jesmin et al. 2006).  

 

PAR-1 is constitutively expressed in the liver (on sinusoidal endothelium) and 

is upregulated during liver injury with expression in non-parenchymal cells 

associated with portal infiltrates and areas of regeneration (Marra et al. 1998; 

Fiorucci et al. 2004; Gaca et al. 2002). The principle activator of PAR-1 is 

thrombin. 

 

PAR-2 is activated by the TF / VIIa complex and by TF / VIIa generated Xa. In 

addition PAR-2 can be trans-activated by the interaction of thrombin with 

PAR-1 (Brien et al. 2000). In the uninjured liver PAR-2 expression is seen in 

hepatocytes, hepatic stellate cells, Kupffer cells, the endothelium of large 

vessels and bile duct epithelium (Knight et al. 2012; Borensztajn et al. 2008). 

 

PAR-3 is expressed on platelets and neutrophils but work has so far not 

identified liver specific staining (Coughlin 2000; Rullier et al. 2006). In the 

mouse it is likely that PAR-3 does not independently transduce intracellular 

signalling but acts as a co-factor for PAR-4 activation (Nakanishi-Matsui et al. 

2000). 

 

PAR-4 is expressed on platelets, macrophages, B cells, endothelial cells and 

in the injured liver, activated hepatic stellate cells (Fiorucci et al. 2004; Gaca 

et al. 2002; Rullier et al. 2006; Miyakawa et al. 2015; Rezaie 2014). PAR-4 is 
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important in the thrombin mediated activation of platelets (Miyakawa et al. 

2015). 

 

The wide range of cells that PAR are expressed upon, their reliance on 

proteases for activation and the range of intracellular signalling cascades 

initiated by PAR activation means that their role in normal tissue is difficult to 

define, as demonstrated by a lack of published literature on the topic.  

Conversely, the role of PAR in disease states has been widely investigated, 

particularly with the aid of mouse models.  The role of PAR in acute and 

chronic liver injury is covered in detail in sections 1.3.3, 1.3.4, 1.4.3 and 1.4.4. 
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PAR Protease interaction 
(Adams et al. 2011) 

Liver expression 

1 Activating 
Thrombin 
Plasmin 
Factor Xa 
tissue kallikreins 
Activated protein C 
endothelial receptor 
complex 
Granzyme A 
Cathepsin G 
MMP-1 
 
Disarming 
Plasmin 
Tissue kallikreins 
Elastase 
Cathepsin G 

Hepatic stellate cells (quiescent and activated) 
(Fiorucci et al. 2004; Gaca et al. 2002; Marra et 
al. 1998)(Rullier et al. 2006) 
 
Endothelial cells (Martinelli et al. 2008)(Rullier et 
al. 2006) 
 
Macrophages (Kallis et al. 2014) 
Monocytes (Martinelli et al. 2008) 
Dendritic cells (Martinelli et al. 2008) 
T cells (Rullier et al. 2006) 
 
 
Not present on mouse platelets (is present on 
human platelets) (Coughlin 2000) 
 

2 Activating 
TF/VIIa complex 
TF/VIIa generated Xa 
Tissue kallikreins 
 
Disarming 
Plasmin 
Elastase 
Protease 3 
Cathepsin G 

Hepatocytes (Knight et al. 2012; Borensztajn et 
al. 2008) 
Hepatic stellate cells (Knight et al. 2012; Fiorucci 
et al. 2004) 
Bile duct epithelium (Knight et al. 2012; 
Borensztajn et al. 2008) 
 
Kupffer cells (Knight et al. 2012; Borensztajn et 
al. 2008) 
 
Endothelial cells of large vessels (Knight et al. 
2012; Borensztajn et al. 2008) 
 

3 Activating 
Thrombin 
 
Disarming 
Cathepsin G 

Mouse platelets (Coughlin 2000) 
 
Occasional neutrophils (Rullier et al. 2006) 

4 Activating 
Thrombin 
Plasmin 
Factor Xa 
tissue kallikreins 
Cathepsin G 
 
Disarming 
KLK14 (Kallikrein) 

Activated hepatic stellate cells (Fiorucci et al. 
2004; Gaca et al. 2002) 
 
Platelets (Miyakawa et al. 2015; Coughlin 2000) 
 
Macrophages (Rullier et al. 2006) 
B cells (Rullier et al. 2006) 
 
Endothelial cells (Rezaie 2014) 

Table 1-1: Protease activate receptors, activating proteases and liver specfic 
expression  
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1.3. The coagulation cascade in acute liver injury 

Drug induced liver injury is the main cause of acute liver failure in the 

developed world. In the UK (as well as northern Europe and the US) 

paracetamol toxicity induced liver injury is the most common cause of acute 

liver failure. Prescription drugs, over the counter and herbal medications are 

also associated with drug induced acute liver failure but diseases such as 

autoimmune hepatitis, viral hepatitis (Hepatitis A-E, EBV, varicella zoster, 

CMV), HELLP syndrome, Wilson’s Disease and Budd-Chiari syndrome can 

also cause acute liver failure. In 15% of cases the cause is never elucidated 

(Singanayagam & Bernal 2015). 

 

In humans the role of the coagulation cascade in the progression of acute 

liver injury has not been widely researched, probably due to the coagulopathy 

seen in acute liver injury and the difficulty this presents in dissecting out 

effector pathways and molecules. In addition patients with acute liver failure 

often present in extremis with either an unknown cause for their liver injury or 

with multiple confounding causes (e.g. multi-drug overdoses). These 

limitations are reflected in the variable outcomes in trials of anti-coagulants in 

acute liver failure. Papers from the 1970’s and 1980’s describes benefits of 

anti-coagulant (heparin and antithrombin III) treatment of patients with acute 

liver failure (Rake et al. 1971; Weerasinghe et al. 2011; Fujiwara et al. 1988) 

whereas a paper from the 1990’s describes a lack of effect of anticoagulation 

(using antithrombin III) on mortality in fulminant hepatic failure (Langley et al. 

1993). 
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1.3.1. Coagulopathy of acute liver injury 

The focus of this work is the role of the coagulation cascade in the 

propagation and progression of liver injury, not the role of liver injury in 

coagulopathy. However as this may be drawn into the discussion of the work; 

I have summarised two recent studies comparing the coagulation factors and 

clotting potential of blood from patients with acute liver injury as a brief 

overview. 

 

During acute liver injury there is a marked coagulopathy. The cause and effect 

are not clear-cut and there are a number of theories regarding the 

coagulopathy in acute liver injury (reduced synthesis of coagulation factors, 

increased consumption, reduced clearance).  

 

Kerr et al and Habib et al found that when blood from patients with acute liver 

failure (paracetamol toxicity only and all causes, respectively) was compared 

to healthy controls, there were consistent decreases in factors II (thrombin), V, 

VII, and X but elevated levels of factor VIII and decreased functional anti-

thrombin (Kerr 2003; Habib et al. 2014).  

 

Kerr also found relative preservation of factors IX and XI levels, elevated 

levels of soluble tissue factor (TF) but also elevated thrombin-anti-thrombin 

(TAT) complexes. He hypothesized that the relative preservation of factors IX 

and XI and increased factor VIII suggested that synthesis of coagulation 

factors was not impaired by liver damage and that, along with normal platelet 

counts and levels of fibrinogen, disseminated intravascular coagulation 
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associated consumption was also unlikely. Rather, the increase in soluble TF 

and decrease in factors activated (directly or indirectly) by TF supported the 

central role of TF generation in acute liver injury with a predominantly 

thrombin mediated amplification of fibrin deposition (decreased functional anti-

thrombin and increased TAT complexes) (Kerr 2003). 

 

Later Habib et al focused on thrombin generation and found that despite the 

low levels of clotting factors, low fibrinogen, low platelets and the resulting low 

endogenous thrombin potential (ETP), the endogenous thrombin potential in 

the presence of thrombomodulin (ETP+TM) was preserved and the ETP ratio 

(ETP : ETP+TM) actually elevated. This provided evidence for Kerr’s 

hypothesis and the theory of re-balanced coagulation seen in acute liver injury 

(Habib et al. 2014). 
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1.3.2. Effector cells in acute liver injury 

The pattern, progression and biological pathways involved in acute liver injury 

vary greatly depending on the cause of the injury. However activation of the 

immune system, the production of inflammatory cytokines, recruitment of 

monocytes, T cells, B cells, NK cells, and neutrophils to the liver plus 

activation of tissue resident macrophages (Kupffer cells), hepatic stellate cells 

and sinusoidal endothelial cells is universally seen. 

 

An in depth review of these effector cells goes beyond the scope of this work 

(centred on tissue factor pathway inhibitor (TFPI) and tissue factor (TF) 

dependent activation of the coagulation cascade), however below I have 

briefly summarised the current role of some key effector cells with reference 

to more comprehensive review articles. 
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Neutrophils 

Neutrophils represent the early immune response to liver injury. Neutrophil 

invasion of the liver during acute liver injury often exacerbates liver injury. 

After hepatocyte injury and death, neutrophils accumulate in the liver 

sinusoids under the influence of TNFα, IL-1 and CXC chemokines. 

Neutrophils then extravasate into the surrounding liver along a chemotactic 

gradient of CXC chemokines (IL-8 and MIP-2), complement, reactive oxygen 

species and contact with fragments of apoptotic hepatocyte fragments. 

Activated neutrophils then release potent chemotactic agents (such as 

Leukotriene B4), recruiting more neutrophils to the site of injury (Ramaiah & 

Jaeschke 2007). 

 

Neutrophils engage with their target through β2 integrins, releasing NADPH 

oxidase, myeloperoxidase and serine proteases that directly and indirectly 

contribute to hepatocyte damage and trigger pro-inflammatory cytokine 

production by macrophages. Thus creating a self perpetuating pro-

inflammatory microenvironment and cycle of liver parenchymal damage 

(Ramaiah & Jaeschke 2007). 

 

  



 45 

Macrophages and monocytes 

After acute liver injury there is expansion of the hepatic macrophage 

population through recruitment of circulating monocytes. By 48 hours after the 

initial insult macrophages account for 10-12% of total hepatic cells. This 

recruitment is predominantly due to Kupffer cell and injured hepatocyte 

expression of Monocyte chemo-attractant protein-1 (MCP-1) in the first 12 

hours after injury. MCP-1 is a chemokine that acts on chemokine receptor 2 

(CCR2) expressed on monocytes, macrophages, T cells and NK cells 

(Possamai 2010).  

 

Hepatic macrophages (recruited or tissue resident) appear to then be 

activated to either an inflammatory phenotype or a pro-resolution phenotype 

(see 1.4.2 for more detailed description of these phenotypes) (Zimmermann et 

al. 2012). 
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T cells 

The role of T cells in acute liver injury varies considerably depending on the 

mode of injury and the T cell subset. Cytotoxic T cells are a key effector cell in 

virus (hepatitis B, etc) associated acute liver injury and regulatory T cells play 

a role in controlling the immune response to TGFβ dependent pathways (Wu 

et al. 2010). 

 

B cells 

The role of B cells in acute liver injury is not well understood and much of the 

work is based on mice with combined immune deficiencies. It was previously 

thought that B cells and immunoglobulin production (IgM) were important in 

shaping the response to acute liver injury, however a recent paper suggest 

that the impact of IgM and B cells is dependent upon their interplay with T 

cells (Richards et al. 2015). 

 

NK cells 

In acute liver injury NK cells are regulated by Kupffer cell / macrophage 

derived cytokines (IL-12, IL-18) and produce IFNγ. NK cells modulate T cell 

responses and can promote cell death / lysis in endothelial cells, hepatic 

stellate cells and hepatocytes through death receptor and perforin / granzyme 

pathways (Wu et al. 2010). 
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Hepatic stellate cells 

The activation of hepatic stellate cells (HSC) results ultimately in the 

production of collagen that, unchecked can lead to a fibrotic response to liver 

injury. Although the role of the HSC in the extent of acute liver injury is unclear 

many of the activated / recruited effector cells initiate HSC activation and HSC 

secrete a number of cytokines that amplify the inflammatory response (Scott L 

Friedman 2008). 

 

Liver sinusoidal endothelial cells 

As well as acting as a barrier between blood borne factors and the hepatic 

parenchyma, liver sinusoidal endothelial cells (LSEC) also clear pro-

inflammatory substances (such as LPS) through production of anti-

inflammatory mediators and reduced expression of adhesion molecules. 

LSEC also induce T cell tolerance. Loss of LSEC and their protective function 

is thought to contribute to acute parenchymal liver injury (Wu et al. 2010). 
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1.3.3. TF and PAR-2 in acute liver injury 

Tissue factor (TF) expression in the liver is low compared to other organs 

such as the lung (Mackman et al. 1993). In the liver TF is found on 

hepatocytes (Sullivan et al. 2013; Stephenne et al. 2007; Willingham & 

Matschiner 1989), bile duct epithelial cells (Luyendyk et al. 2009; Flossel et al. 

1994), hepatic stellate cells (Bataller et al. 2005) and Kupffer cells (Arai et al. 

1995).  

 

In a paracetamol model of acute liver injury the pro-coagulant activity (PCA, a 

measure of TF activity) of the liver initially increases (at 30 minutes) but 

returns to normal after 2 hours. In contrast plasma thrombin-anti-thrombin 

(TAT) levels only increase after 2 hours and return to normal after 6 hours. 

PAI-1 (the major inhibitor of fibrinolysis) increases after paracetamol 

administration, reaching significant levels at 6 hours. Parenchymal fibrin 

deposition occurs from 2 hours after paracetamol administration and an 

increase in fibrin deposition was associated with increased liver parenchymal 

injury (Ganey et al. 2007).  

 

In a paracetamol model of acute liver injury low-TF mice and HPC∆TF mice 

(with hepatocyte specific TF inactivation) have lower thrombin generation at 2 

hours than control mice. In combination this suggests that TF is key to early 

coagulation cascade activation in early paracetamol induced liver injury and 

that hepatocytes are the major source of TF in a paracetamol model of acute 

liver injury (Sullivan et al. 2013; Ganey et al. 2007).  

 



 49 

Low-TF mice also demonstrate a reduction in liver injury in the first 6 hours 

after paracetamol administration. However they reach the same level of injury 

by 24 hours as control mice. These low-TF mice do have some expression of 

TF and therefore fibrin deposition still occurs with time. These results 

suggests that the delay in liver injury seen in low-TF mice is due to the role of 

TF dependent coagulation in early acute liver injury but that with time and 

fibrin accumulation there is progression of the liver injury independent of low 

levels of TF (Ganey et al. 2007). 

 

In a cholestatic model (alpha-napthiosthiocyanate, ANIT) of acute liver injury 

there is increased TF expression, thrombin generation (plasma TAT), fibrin 

deposition and increased plasma fibrinogen associated with elevation in 

serum ALT, ALP and bile acid levels (at 24 hours and increasing at 48 hours). 

Thrombocytopenia is observed at 48 hours after the initial coagulation 

cascade activation and is associated with liver parenchymal platelet 

accumulation (Sullivan, Wang, et al. 2010; Luyendyk et al. 2011; Luyendyk et 

al. 2009). Of note, liver parenchymal injury in this model is thought to be 

driven by neutrophils following the initiating bile duct injury from direct ANIT 

toxicity as opposed to direct hepatocyte injury seen in the paracetamol model 

of acute liver injury (Kodali et al. 2006). 

 

In a cholestatic model of acute liver injury, low-TF mice demonstrate less liver 

injury, less thrombin generation, less hepatic parenchymal fibrin deposition 

and less elevation in serum ALT, ALP and bile acids compared to control mice. 

The difference was most pronounced at 48 hours after ANIT administration 
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(Luyendyk et al. 2009). This suggests that TF contributes to the later 

progression of acute liver injury in acute cholestatic liver injury. 

 

In addition to causing cellular injury and initiating the coagulation cascade 

activation, paracetamol and ANIT are known to have additive effects that 

worsen the pro-coagulant state of the liver in a TF dependant manner. 

Glutathione binds the extracellular sulfhydryl group of TF, impairing its activity 

(Reinhardt et al. 2008; Stephenne et al. 2007). Paracetamol and ANIT deplete 

glutathione levels (Carpenter-Deyo et al. 1991; Jaeschke & Bajt 2006), 

thereby removing inhibitory binding of TF and increasing the potential for TF 

dependent coagulation. 

 

PAR-2 is expressed by hepatocytes, Kupffer cells, large vessel endothelium 

and bile duct epithelium in the uninjured liver. PAR-2 activation is associated 

with a pro-inflammatory, pro-proliferation and pro-migratory response (Adams 

et al. 2011). During acute (LPS induced) liver injury PAR-2 expression is 

strongly increased in Kupffer cells and weakly increased in endothelium and 

bile duct epithelium. PAR-2 is activated by the TF/VIIa complex and TF/VIIa 

generated Xa (Adams et al. 2011) and it has been suggested (in chronic liver 

injury models) that PAR-2 is responsible for the pro-inflammatory effect of 

factor Xa  (Borensztajn et al. 2010). 

 

There is little published work on the role of PAR-2 in xenobiotic induced acute 

liver injury. Kataoka et al demonstrated that PAR-2 deficient mice had a 

decreased neutrophilic infiltrate in paracetamol induced liver injury compared 
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to wild type mice. However no difference in the magnitude of liver injury or the 

recruitment of monocytes was seen (Kataoka et al. 2014). 

 

In a rat model of sepsis and mouse models of inflammation; inhibition or 

deficiency of PAR-2 reduced inflammation, limited TNF-α production and 

improved outcome (Jesmin et al. 2006). Together these results build on the 

chronic liver injury data and suggest that PAR-2 activation plays a pro-

inflammatory role in acute liver injury.  
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1.3.4. Thrombin, PAR-1, -3 & -4 in acute liver injury 

Thrombin is one of the final steps in the coagulation cascade before fibrin clot 

formation. Thrombin activates PAR-1, 3 and 4 signalling.  

 

Inhibition of the action of thrombin through the administration of heparin (that 

potentiates the action of anti-thrombin), lepirudin (a thrombin inhibitor) or the 

loss of PAR-1 signalling (PAR-1 knockout mouse models) has been shown to 

limit early (< 6 hours) paracetamol induced liver injury damage associated 

with decreased fibrin deposition (Ganey et al. 2007; Miyakawa et al. 2015; 

Weerasinghe et al. 2011). This suggests a role for thrombin and PAR-1 

activation in early acute liver injury. 

 

However, at 24 hours after paracetamol administration, loss of PAR-1 

signalling and the inhibition of thrombin through heparin administration (as 

well as the low-TF model discussed above) is associated with control / wild 

type level fibrin deposition and liver injury. This suggests that, like TF and 

PAR-2, the role of thrombin and PAR-1 inhibition is limited to early acute liver 

injury and that this too is probably due to alternative thrombin generation and 

fibrin clot formation later in the progression of acute liver injury as well as 

alternate PAR activation and / or pro-inflammatory signalling (Ganey et al. 

2007).  

 

In work somewhat contrary to the work on TF, thrombin, PAR-1 and PAR-2, 

Hugenholtz et al demonstrated that a hyperfibrinolytic state caused by 

deficiency of thrombin-activatable fibrinolysis inhibitor (TAFI, a thrombin-
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thrombomodulin complex activated inhibitor of the fibrinolytic tissue 

plasminogen activator), resulted in reduced parenchymal necrosis and fibrin 

deposition at 6 hours but increased parenchymal necrosis (and control 

equivalent fibrin deposition) at 24 hours after paracetamol induced acute liver 

injury. The authors hypothesised that in early acute liver injury (six hours) the 

hyperfibrinolytic state protected the liver but, as the injury developed and the 

inflammatory cell infiltrate becomes more significant in disease progression, 

the loss of TAFI’s anti-inflammatory function outweighed the protective effects 

of a hyperfibrinolytic state (Hugenholtz et al. 2013). 

 

Also contrary to the literature on TF, thrombin, PAR-1 and PAR-2; Rullier et al 

found that in a carbon tetrachloride (CCl4) model of acute liver injury (with a 

similar reactive metabolite induced membrane damage mode of injury as 

paracetamol) there was no difference in the extent of liver injury when PAR-1 

deficient mice were compared to control mice (Rullier et al. 2008). However 

this work only looked at a single 48 hour time point and, as previous work has 

shown, the role PAR-1 is likely to be significant in early acute liver injury. 

 

In an ANIT model of acute liver injury PAR-1 deficiency was not found to 

protect against cholestatic liver injury at 24 and 48 hours (Luyendyk et al. 

2011) . The authors did not give a reason for the lack of effect in this model 

compared to other xenobiotic models, however it could be hypothesised that 

lack of expression of PAR-1 on bile duct epithelium (the cell type injured 

directly by ANIT) may be a factor.  
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The role of platelets in acute liver injury is complex and goes beyond this 

works centred on tissue factor pathway inhibitor (TFPI) and tissue factor (TF) 

dependent activation of the coagulation cascade. However, PAR-3 and PAR-4 

are expressed on mouse platelets and PAR-4 is responsible for thrombin 

mediated platelet activation.  

 

Platelet depletion (with an anti-CD41 antibody) and the global loss of PAR-4 

expression in PAR-4 knockout mice was associated with less platelet 

accumulation in the liver, less thrombin generation and a sustained reduction 

(up to 24 hours) in a paracetamol model of acute liver injury (Miyakawa et al. 

2015). Bone marrow chimera experiments showed that the importance of 

PAR-4 signalling in this model was not through platelet PAR-4 but was likely 

to be due to PAR-4 expressed on liver sinusoidal endothelial cells (Miyakawa 

et al. 2015). 

 

In an ANIT model of acute cholestatic liver injury inhibition of platelet 

activation through administration of clopidogrel (a P2Y12 receptor antagonist) 

was associated with reduced liver injury and reduced platelet and neutrophil 

accumulation at 48 hours. However, antibody mediated platelet depletion in 

the same model was associated with accelerated liver injury with increased 

parenchymal necrosis, peliosis and serum ALT (but no change in ALP) at 24 

hours but with little or no progression at 48 hours (by which time control mice 

had developed the same degree of liver injury) (Sullivan, Wang, et al. 2010). 

The authors attributed these opposing effects to the role of the coagulation 
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cascade (TF and thrombin) and PAR in modulating both platelet and effector 

immune cell activation and accumulation, independent of the platelets 

themselves. 

 

Later work partially confirmed this. Luyendyk et al demonstrates that global 

PAR-4 deficiency (PAR-4 knockout model) and early administration (2 hours 

after ANIT administration) of a PAR-4 inhibitor was associated with a similar 

pattern of accelerated liver injury in the ANIT model. However, when the PAR-

4 inhibitor was administered at 8 hours after ANIT administration the mice 

demonstrated less parenchymal injury at 24 and 48 hours (and reduced 

plasma ALP and bile acids). These results suggest that in cholestatic acute 

liver injury PAR-4 plays a protective role early on but is involved later on in the 

progression of injury (Luyendyk et al. 2011). 

 

There is little work on the role of PAR-3 in liver injury. Jesmin et al detail the 

gene and protein expression of PAR-3 in rat liver after LPS administration. 

They showed that PAR-3 protein and gene expression had an early peak at 1 

hour after LPS administration, decreased at 3 hours after LPS administration 

but then steadily increased thereafter (up to 10 hours, the end of their 

experiment) (Jesmin et al. 2006). They found that PAR-3 expression mirrored 

PAR-4 expression which corroborates the theory that, in the mouse, PAR-3 

does not independently transduce intracellular signalling but acts as a co-

factor for PAR-4 activation (Jesmin et al. 2006; Nakanishi-Matsui et al. 2000). 
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1.4. The coagulation cascade in chronic liver injury 

Approximately 60,000 people in England and Wales have cirrhosis and ten 

times that have some form of liver disease. The mortality rates from liver 

disease have been increasing over the past 30 years (Williams et al. 2014). 

 

Chronic liver injury occurs due to a number of aetiologies including chronic 

viral hepatitis, autoimmune hepatitis, biliary disease and drug / toxin induced 

damage. These disease processes create a state of chronic inflammation and 

pathological repair where damaged functional tissue is replaced by fibrous 

scar tissue. With chronicity there is progressive replacement of functional 

parenchyma by non-functional fibrous scar tissue (liver fibrosis). 

 

The fibrous scar tissue is composed of connective tissue / extra cellular matrix 

that is laid down and removed under the influence of a milieu of cells and 

cytokines. Hepatic fibrosis is reversible (Bonis et al. 2001; Desmet & 

Roskams 2004), but with on going injury and impaired resolution, can lead to 

cirrhosis. Histologically, cirrhosis of the liver describes nodules of hepatocytes 

surrounded by fibrous bands. Functionally the liver is impaired and features of 

end stage liver disease may be present, including portal hypertension, ascites, 

encephalopathy and impaired synthetic and metabolic activity. 

 

Epidemiological studies on a variety of populations have demonstrated that 

procoagulant states (protein C deficiency/resistance, anti-thrombin III 

deficiency, plasminogen deficiency and factor V Leiden) are associated with 

more advanced liver fibrosis (of varying aetiology) compared to age / sex 
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matched controls (Papatheodoridis et al. 2003; Papatheodoridis et al. 2009; 

Wright et al. 2003; Poujol-Robert, Rosmorduc, et al. 2004; Poujol-Robert, 

Boelle, et al. 2004).  

 

Subsequent animal studies have confirmed that mouse models with the 

prothrombotic Factor V Leiden mutation demonstrate accelerated fibrosis and 

that anticoagulation can be used to counter this (Anstee et al. 2008). 

 

However, these findings are not universal and one study of 210 women who 

contracted Hepatitis C from a single contaminated batch of anti-D 

immunoglobulin showed no significant correlation between liver fibrosis status 

and thrombophilia (Goulding et al. 2007). The reason for this may be due to 

the low rates of factor V Leiden and prothrombin mutation in this group and 

the all female gender. Wright et al showed that when individuals with 

prothrombotic tendencies were separated by gender there was a strong 

significant association with fibrosis progression in males but a non-significant 

association in females (Wright et al. 2003).  

 

Martinelli et al studied the relationship between liver fibrosis and three known 

protease activated receptor 1 (PAR-1) polymorphisms, one of which (-506I/D) 

has been shown to be protective against thromboembolism and one (IVS-

14A/T) which results in decreased PAR-1 expression. Both of these 

polymorphisms showed no effect on rates of fibrosis, however the third 

polymorphism (-1426C/T) showed a link between allele type and rate of 
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fibrosis in males (Martinelli et al. 2008). As with the work by Wright et al, this 

association was present but not as strong in females. 

 

The recognition of the difference in liver fibrosis progression between males 

and females is not specific to coagulation status and large cohort studies has 

previously identified that male gender is a risk factor for fibrosis progression 

(Poynard et al. 1997; Poynard et al. 2001). The cause for this difference has 

been attributed to the antifibrogenic / protective effect of female sex hormones 

(oestrogen and progesterone) as demonstrated in carbon tetrachloride 

induced liver fibrosis in rats (Xu et al. 2002; Shimizu 2003) and in menopausal 

women with hepatitis C (Codes et al. 2007). Equally, it has been 

demonstrated that endometrial PAR-1 gene expression is down-regulated by 

progestogens (Hague et al. 2002). This led me to conduct all the work in male 

mice only.  
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1.4.1. Coagulopathy of chronic liver injury 

The focus of this work is the role of the coagulation cascade in the 

propagation and progression of liver injury. However humans with cirrhosis 

have multiple defects in a variety of coagulation cascade factors and as this 

may be drawn into the discussion of the work I have given a brief overview of 

these defects below. 

 

In the cirrhotic patient defects in the coagulation cascade resulting in a 

relative procoagulant phenotypes include elevated thrombin generation with 

resistance to thrombomodulin, elevated levels of factor VIII and reduced 

levels of protein C, protein S and antithrombin (Tripodi et al. 2009; Muciño-

Bermejo et al. 2013). However relative anticoagulant phenotypes are also 

present such as decreased production of fibrinogen, factors II, V, X, VII, IX, XI, 

XII and hyperfibrinolysis due to increased plasma tissue-plasminogen 

activator (t-PA) and decreased plasma thrombin activated fibrinolysis inhibitor 

(TAFI) (Ferro et al. 2009; Muciño-Bermejo et al. 2013). The reason for a 

deficiency in coagulation cascade factors could be due to decreased 

hepatocellular production of these factors, secondary to the decrease in the 

functional hepatocyte mass in cirrhosis. However factor VIII shows an 

opposite trend, possibly because it is also produced by pulmonary vascular 

endothelium, and there may be an increase in production from this source as 

a compensatory mechanism (Jacquemin et al. 2006). 

 

Defects in the coagulation system are not limited to the coagulation cascade. 

Briefly, cirrhotic patients have also been found to have features of reduced 
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platelet plug formation with decreased plasma thrombopoietin, accelerated 

platelet turnover, and reduced platelet production indicating both increased 

platelet clearance (consumption) and impaired thrombopoiesis (Pradella et al. 

2011). Again, this is countered by features of a pro-thrombotic / pro-platelet 

plug formation phenotype with increased levels of von Willebrand factor and 

reduced levels of ADAMTS13 that may counteract this relative platelet 

deficiency (Mannucci et al. 2001). 
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1.4.2. Effector cells and mechanisms of liver fibrosis 

Key effector cells in liver fibrosis are the collagen producing activated hepatic 

stellate cell and cells of the innate and adaptive immune system. An in depth 

review of these effector cells goes beyond the scope of this work (centred on 

TFPI and TF dependent activation of the coagulation cascade), however 

below I have briefly summarised the current role of some key effector cells 

with reference to more comprehensive review articles. 

 

Hepatic stellate cells 

In the normal liver hepatic stellate cells (also known as the Ito cell or Vitamin 

A cell) are found in the perisinusoidal space of Disse. Hepatic stellate cells 

store retinoids (including vitamin A). At rest, hepatic stellate cells express glial 

fibrillary protein and desmin (cytoskeletal proteins). 

 

During chronic liver injury the hepatic stellate cell is activated to a 

myofibroblast phenotype and is the major source of the extra cellular matrix 

that forms the fibrous scar tissue in liver fibrosis. Other cells undergoing 

myofibroblast differentiation in the context of chronic liver injury include bone 

marrow derived cells, portal fibroblast and fibroblasts derived from epithelial-

mesenchymal transition (Lemoinne et al. 2013). 

 

Activation of the hepatic stellate cell to a myofibroblast phenotype has been 

split into two phases, initiation and perpetuation (overview from (S L Friedman 

2008)).  
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Initiation is the ‘pre-inflammatory stage’ where early change in gene 

expression and phenotype make the cells responsive to other stimuli. 

Paracrine signalling (including reactive oxygen species and apoptotic cell 

fragments from damaged hepatocytes and Kupffer cells, TGF-β1 from Kupffer 

cells and endothelial cells, fibronectin from endothelial cells and PDGF, TGF-

β1 and EGF from platelets) is the major stimulatory factor in initiation. 

 

Perpetuation of hepatic stellate cell activation involves six cell behaviours:  

1. Proliferation. 

2. Chemotaxis (release of chemo-attractants from inflammatory cells and 

other hepatic stellate cells). 

3. Fibrogenesis (increasing collagen I production). 

4. Contractility. 

5. Matrix degradation.  

6. Retinoid loss (observed but of unknown significance). 

 

Resolution of hepatic stellate cell activation is associated with cessation of 

extracellular matrix deposition and the reversal of fibrosis. Resolution of 

hepatic stellate cell activation occurs in two ways (overview from (S L 

Friedman 2008)): 

1. Reversion of the activated hepatic stellate cell to a quiescent state 

2. Apoptosis of the activated hepatic stellate cell. NK cells appear to be 

the main effector cell in this step and this has been attributed to TRAIL-

mediated pathways and the expression of the NK cell activating 

NKG2D receptor (Radaeva et al. 2006). 
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Intimately, although not exclusively, associated with hepatic stellate cells are 

the matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of 

metalloproteinases, TIMPs). MMPs and TIMPs are involved in the progression 

and resolution of collagen deposition in the liver. MMP-1 (not found in mice, 

but murine MMP-13 amino acid sequence and function is similar), MMP-2, 

MMP-3, MMP-9, MMP-14, TIMP-1 and TIMP-2 have all been identified as 

important in liver fibrosis. Three of these, MMP-2, MMP-9 and TIMP-1 were 

examined in this work and therefore I have given a brief overview of their 

function in liver fibrosis (overview from (Hemmann et al. 2007) with additional 

key references). 

 

MMP-2 (also known as gelatinase A) is responsible for extra-cellular matrix 

degradation. MMP-2 is not readily identified in the normal liver, however 

during liver injury and fibrosis it is expressed by activated hepatic stellate cells. 

MMP-2 expression increases and stays elevated in fibrosis. As well as its role 

in extracellular matrix degradation MMP-2 has a number of autocrine 

regulatory functions in hepatic stellate cells including proliferation, migration 

and apoptosis (Hartland et al. 2009). 

 

MMP-9 (also known as gelatinase B) is responsible for extracellular matrix 

degradation. MMP-9 is expressed by Kupffer cells, hepatic stellate cells, 

lymphocytes and neutrophils during liver fibrosis. The expression of MMP-9 

appears to be affected by the duration and frequency of liver injury as a single 

dose of CCl4 has been shown to increase MMP-9 activity (but not mRNA 
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expression) at 24 hours whereas in chronic CCl4 administration no change in 

MMP-9 activity or mRNA expression from baseline is seen (Knittel et al. 

2000)(Hemmann et al. 2007).  MMP-9 is important in the activation of hepatic 

stellate cells, as it is able to activate latent TGF-β that results in collagen 

production by hepatic stellate cells. It is also likely that MMP-9 has an 

autocrine and paracrine role in the down regulation of further MMP-9 

expression. 

 

TIMP-1 is a tissue inhibitor of matrix metalloproteinases. TIMP-1 is 

predominantly expressed by activated hepatic stellate cells, although 

expression by Kupffer cells has also been described. During liver fibrosis 

TIMP-1 up regulation inhibits MMPs leading to the accumulation of 

extracellular matrix. As well as its role in extracellular matrix turnover TIMP-1 

also inhibits programmed cell death in hepatic stellate cells via its MMP 

inhibition (Murphy et al. 2002)(Hemmann et al. 2007). TIMP-1 has also been 

shown to inhibit apoptosis in B cells (Arthur 2000). 
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Macrophages and monocytes 

Macrophages have been described as a Jekyll and Hyde cell as they play 

major roles in both the promotion and resolution of liver injury and fibrosis 

(Duffield 2003). Two types of macrophage have been described based on in 

vitro work. The classically activated, pro-inflammatory M1 macrophage and 

the alternatively activated, immune-modulatory M2 macrophage.  

 

The pro-inflammatory macrophage releases pro-inflammatory cytokines and 

chemokines such as TNF, IL-1β, IL-12 and reactive oxygen species. It is 

associated with extracellular matrix breakdown. The immune-modulatory 

macrophage secretes mediators such as TGFβ, IL-10, IL-4 and IL-13 and is 

associated with extracellular matrix deposition through its close association 

with hepatic stellate cells (activated hepatic stellate cell M-CSF secretion = 

recruitment and activation of macrophages, macrophage TGFβ secretion = 

activation of hepatic stellate cells) (Henderson & Iredale 2007; Tacke & 

Zimmermann 2015; Wynn & Barron 2010). 

 

In the setting of liver fibrosis the in vitro work has not translated directly to the 

in vivo model. Current understanding of the diverse role of the macrophage in 

liver fibrogenesis and resolution in mouse models is succinctly summed up in 

a review article by Pellicoro et al (Pellicoro et al. 2014). They define a pro-

fibrotic macrophage with high Ly6C expression that is responsible for: 

• Recruitment, activation (TGFβ driven), proliferation (PDGF driven) and 

survival (TNF and IL-1β driven) of hepatic stellate cells. 

• Recruitment of inflammatory cells (TNF and IL-1β driven).  
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This macrophages population can subsequently undergo a phenotypic switch 

to become pro-resolution macrophages with low expression of Ly6C that are 

responsible for: 

• Promotion of hepatic stellate cell apoptosis (TRAIL and MMP-9 driven). 

• Extracellular matrix breakdown (MMP-12 and MMP-13 driven). 

• Phagocytosis of profibrogenic stimuli (cellular debris, etc). 

 
Neutrophils 

Although neutrophils play an important role in acute liver injury, their role in 

chronic liver injury and fibrosis is less well defined, with many studies 

suggesting that they do not significantly impact fibrogenesis (Henderson & 

Iredale 2007). 

 

T cells 

There is evidence to suggest that the balance of T cell subsets (TH1 to TH2) 

might influence liver fibrosis. TH2 subsets are pro-fibrogenic, predominantly 

through IL-13 signalling and TH1 subsets are anti-fibrotic through IFNγ and IL-

12 signalling. However, the expansion of the vast array of T cell subsets 

including TH17, TReg and cytotoxic T cells has produced an often conflicting 

view of the role of these cells depending on the stage of liver injury and the 

initiating insult (Pellicoro et al. 2014). 
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B cells 

Mice deficient in B cells have shown decreased collagen deposition after 

chronic carbon tetrachloride and α-naphthylisothiocyanate administration. 

This is likely to be due to lack of autoantibodies and other antibody 

independent mechanisms such as secretion of pro-fibrotic cytokines (IL-4, IL-

6, IL-13) and direct cell-cell interaction with other immune cells (CD40 

mediated) (Marra et al. 2009). 

 

NK cells 

NK cells have a primarily pro-resolution role in liver fibrosis via IFNγ 

production and their role in killing activated hepatic stellate cells (Pellicoro et 

al. 2014; Marra et al. 2009). 
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1.4.3. TF and PAR-2 in chronic liver injury 

Tissue factor (TF) expression in the liver is low compared to other organs 

such as the lung (Mackman et al. 1993). In the liver TF is found on 

hepatocytes (Sullivan et al. 2013; Stephenne et al. 2007; Willingham & 

Matschiner 1989), bile duct epithelial cells (Luyendyk et al. 2009; Flossel et al. 

1994), hepatic stellate cells (Bataller et al. 2005) and Kupffer cells (Arai et al. 

1995).  

 

In an α-naphthylisothiocyanate (ANIT) model of chronic cholestatic liver injury, 

mice with low levels of tissue factor (low-TF mice) demonstrated reduced 

coagulation cascade activation and decreased liver fibrosis. The mechanism 

of action was demonstrated to be decreased MCP-1 expression, decreased 

integrin β6 mRNA expression and decreased αVβ6 dependent activation of 

TGFβ signalling (as demonstrated by decreased SMAD2 phosphorylation but 

not related to decreased TGFβ expression). These results were recapitulated 

when wild type mice were administrated a function blocking anti-αVβ6 

antibody and a recombinant fusion protein that decreased TGFβ signalling, 

confirming the role of TGFβ and αVβ6 integrin signalling in chronic cholestatic 

liver injury and as a possible mechanism for the role of TF in liver fibrosis 

(Sullivan, Weinreb, et al. 2010).  

 

Although this group looked into the mechanistic pathway of these results they 

concluded that the impact of TF was through the generation of thrombin and 

PAR-1 activation (see below) but did not explore the possibility of the role of 

TF and PAR-2 signalling. 
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PAR-2 is expressed by hepatocytes, Kupffer cells, large vessel endothelium 

and bile duct epithelium in the uninjured liver. However, during liver fibrosis 

PAR-2 expression stays static in hepatocytes but increases in proliferating 

bile duct epithelial cells, proportional to the degree of fibrosis. PAR-2 

expression is also seen in the endothelium, vascular smooth muscle, some 

inflammatory cells and myofibroblasts of fibrous liver septa. This differs from 

the PAR-2 expression profile in acute liver injury. PAR-2 activation on a 

variety of cell types in the liver during fibrosis results in the production of pro-

inflammatory cytokines (IL-6, IL-8, MCP-1), sinusoidal endothelial 

capilarisation and activation of hepatic stellate cells and portal fibroblasts to a 

myofibroblast phenotype. PAR-2 activation is thought to be responsible for the 

profibrotic effect of factor Xa (Borensztajn et al. 2010; Borensztajn et al. 2008). 

 

PAR-2 exerts its regulatory effect on hepatic stellate cells by promoting 

proliferation, migration and collagen production via activation of the MAP 

kinase cascades (ERK1/2 phosphorylation) and FAK/Src pathway and 

promoting TGFβ expression (Gaca et al. 2002; Knight et al. 2012). This 

correlates with findings in fibroblast cell lines and other models of tissue 

fibrosis and remodelling (Borensztajn et al. 2008). 

 

In a carbon tetrachloride model (CCl4) of liver fibrosis PAR-2 knockout mice 

developed fibrosis at a similar rate to controls over a five week time frame but 

did not demonstrate progression beyond this when the model was continued 

to eight weeks (unlike the control mice who developed more severe fibrosis). 

This was associated with a similar pattern of hepatic stellate cell activation 
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(αSMA expression) and number of CD68 positive hepatic macrophages 

(same at 5 weeks, less at 8 weeks). In addition, there were less F4/80+ 

macrophages in the livers of PAR-2 knockout mice at both 5 and 8 weeks. In 

keeping with these findings, at eight weeks PAR-2 knockout mice 

demonstrated less TGFβ expression and decreased MMP2 and TIMP1 gene 

expression than controls. The time dependent progression of liver fibrosis was 

attributed to a compensatory increase in PAR-1 expression (pro-fibrotic) in 

PAR-2 knockout mice during the first five weeks of injury only. (Knight et al. 

2012).  

 

 

1.4.4. Thrombin, PAR-1, -3 & -4 in chronic liver injury 

Thrombin generation in chronic liver injury is associated with fibrosis 

progression. Duplantier et al demonstrated that, using a thrombin antagonist 

in rats, liver fibrosis and hepatic stellate cell activation were decreased after 

seven weeks of CCl4. They also showed that in rats culled earlier in disease 

progression (3 weeks of CCl4) there was a decrease in hepatic stellate cell 

activation and TIMP1 gene expression but no difference in fibrosis (Duplantier 

et al. 2004). 

 

Thrombin activates PAR including PAR-1. PAR-1 activation in a variety of cell 

types (in and outside the liver) promotes inflammatory cell recruitment and a 

pro-fibrotic microenvironment. In a bile duct ligation model of chronic liver 

injury PAR-1 (as well as PAR-2 and PAR-4) expression was upregulated in 

activated hepatic stellate cells. PAR-1 exerts a regulatory effect on hepatic 
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stellate cells, promoting proliferation and collagen production via Shc 

phosphorylation, Shc / Grb2 complex formation and activation of the MAP 

kinase cascade and ERK1/2 phosphorylation (Fiorucci et al. 2004; Gaca et al. 

2002). 

 

As mentioned above, Sullivan et al explored the mechanism linking 

coagulation cascade proteases, PAR signalling and liver fibrosis using a low-

TF mouse model (discussed above) and a PAR-1 knockout model. The PAR-

1 knockout model, like the low-TF model, demonstrated decreased liver 

fibrosis in an ANIT model of chronic cholestatic liver injury associated with 

decreased MCP-1 expression, decreased integrin β6 mRNA expression and 

decreased αVβ6 dependent activation of TGFβ signalling (Sullivan, Weinreb, 

et al. 2010). 

 

Rullier et al and Kallis et al also demonstrated decreased fibrosis and hepatic 

stellate cell activation / less myofibroblasts in PAR-1 knockout mice after CCl4 

induced chronic liver injury. Kallis et al noted that in this model, PAR-1 

knockout mice had a reduced number of scar associated macrophages. Using 

a bone marrow transplant model and in vitro migration assays they concluded 

that this was due to the role of PAR-1 on bone marrow derived macrophages 

and their recruitment / migration from the bone marrow to the liver after injury. 

They concluded that this occurred independent of MCP-1 signalling and that 

PAR-1 played no role in macrophage proliferation (Kallis et al. 2014). Rullier 

et al noted that PAR-1 knockout mice had a significant decrease in liver T cell 

infiltrate (Rullier et al. 2008). 
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There is very little in the published literature relating to the role of PAR-3 and 

PAR-4 in chronic liver injury. Recently Joshi et al demonstrated that PAR-4 

exerted a protective effect in ANIT induced chronic cholestatic liver injury, via 

its role in platelet activation. They demonstrated that, compared to wild type 

controls, PAR-4 knockout mice developed increased liver fibrosis and 

demonstrated increased hepatic expression of profibrogenic factors 

(collagen1α1, ITGB6 and TIMP-1) as well as more activated hepatic stellate 

cells (α SMA expression). PAR-4 knockout mice also demonstrated increased 

serum bilirubin, ALT and ALP as well as worse bile duct proliferation and 

accumulation of CD3+ lymphocytes in portal tracts compared to wild type 

controls (Joshi et al. 2015). 

 

Thrombin, in a complex with thrombomodulin, activates thombin-activatable 

fibrinolysis inhibitor (TAFI) that inhibits tissue plasminogen activator mediated 

fibrinolysis. Hugenholtz et al demonstrated that deficiency of TAFI (creating a 

hyperfibrinolytic state with initially normal levels of fibrin) resulted in 

accelerated fibrosis and liver injury (increase hepatic stellate cell activation, 

pro-collagen gene expression and plasma ALT) after three weeks of CCl4 

induced chronic liver injury. However, there was no difference in the fibrin 

deposition in the livers of TAFI deficient mice compared to wild type controls 

and a more marked infiltrate of neutrophils was identified in TAFI deficient 

mice compared to wild type controls. This led the authors to conclude that the 

major role for TAFI in chronic liver injury was not via its potentially protective 
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fibrinolytic properties, but via it’s known anti-inflammatory properties. 

(Hugenholtz et al. 2013).   
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1.5. Murine models of liver injury 

1.5.1. Comparative physiology, anatomy and histology of the liver  

The liver in the mouse and human has a similar physiological role and in 

general the anatomy and histology are also similar. The main anatomical 

differences are the more prominent lobation of the mouse liver compared to 

humans and the increase in percentage of total body weight in mice (2% vs. 

6% in humans and mice respectively).  

 

The main histological differences are: 

• More prominent central and portal veins and less conspicuous portal 

tracts in mice compared to humans. 

• Less connective tissue (in health and disease) in the livers of mice 

compared to humans. 

 

There are a number of murine models of acute and chronic liver injury. Four 

models of liver injury, two chronic and two acute, were used in this work. Their 

mechanisms of cellular injury are detailed below.  
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1.5.2. Acute liver injury model: Paracetamol toxicity 

Paracetamol, also known as acetaminophen, N-acetyl-p-aminophenol or 

APAP is a commonly used, over the counter analgesic. Paracetamol 

overdose accounts for 54% of cases of acute liver failure in the UK (O’Grady 

2005). The mechanisms of cellular injury in paracetamol toxicity centres on 

the cytochrome P450 pathway and glutathione antioxidant activity. 

 

Cytochrome P450 enzymes located in the smooth endoplasmic reticulum of 

hepatocytes metabolise paracetamol to the highly reactive N-acetyl-p-

benzoquinone imine (NAPQI). This is then detoxified by conjugation with 

glutathione. The conjugation of NAPQI by glutathione prevents it from binding 

to other cellular proteins. Glutathione is an antioxidant with a reducing thiol 

group that acts to reduce unstable molecules such as NAPQI, free radicals 

and reactive oxygen species. Cells can synthesise glutathione de novo from 

amino acids but recycling of reduced and oxidized forms plays an important 

role in maintaining physiological levels. 

 

Where there is an excess of the starting molecule to be metabolised (as in 

paracetamol overdose) this pathway becomes overwhelmed/saturated and 

the unstable NAPQI causes cellular damage. The mitochondria of a cell are 

particularly vulnerable and increased mitochondrial membrane permeability 

from NAPQI damage decreases their functionality and leads to the release of 

more reactive oxygen species. This further increases oxidative stress and 

limits the cells ability to produce ATP resulting in cell death/necrosis and 

apoptosis via the pro-apoptotic BAX protein (Jaeschke et al. 2014; Hinson et 
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al. 2010). NAPQI also forms the basis of the hapten model of cell death in 

paracetamol toxicity. In this model antigen presenting cells present NAPQI-

protein adducts via the human leukocyte antigen (HLA), activating T cells. 

Cytotoxic T cells in turn express FasL and release TNF-α, perforin and 

granzyme, mediating apoptosis in target cells (hepatocytes) (Krenkel et al. 

2014). 

 

In the mouse, administration of high levels of paracetamol causes 

hepatocellular damage and cell death. In addition to hepatocellular damage 

there is injury to liver sinusoidal endothelium. The pattern of hepatocellular 

damage can vary from centrilobular hepatocellular swelling, to circumscribed 

centrilobular necrosis and finally confluent necrosis of large areas of liver 

parenchyma.  

 

1.5.3. Acute liver injury model: Alpha-naphthylisothiocyanate (ANIT) 

Alpha-naphthylisothiocyanate (ANIT) is an isothiocyanate that is commonly 

used as an insecticide. When administered to rodents it produces a 

cholangiolitic hepatitis resembling that seen in humans with drug induced 

cholestatic injury. Morphological changes in portal bile duct lining epithelial 

cells precede morphological changes in hepatocytes (described in rats). Six 

hours after treatment with ANIT the first features of damage are evident by 

light microscopy; there is some portal edema and loss of gamma-glutamyl 

transpeptidase (γGT) activity from the bile duct lining cells. Eight hours after 

treatment many ducts show clear-cut damage, with bile plug formation and 

cells exfoliating into the ducts. Twenty-four hours after treatment the majority 
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of bile ducts are destroyed and there is focal hepatocellular necrosis 

(Connolly et al. 1988). 

 

The damage to bile ducts and liver parenchyma is accompanied by a marked 

neutrophilic inflammatory cell infiltrate. In the setting of experimental induced 

neutropenia there is virtually no liver damage after ANIT treatment, indicating 

the central role of neutrophils in this form of experimental acute liver injury 

(Dahm et al. 1991; Kodali et al. 2006). 

 

ANIT induced liver injury, like paracetamol induced liver injury, involves 

glutathione. However, unlike paracetamol induced liver injury decreased 

glutathione levels are associated with decreased ANIT associated liver injury 

and vice versa. In ANIT induced liver injury glutathione forms a reversible 

conjugate with ANIT that allows it to be transported from the bloodstream, 

through hepatocytes, leading to concentration in the bile where it causes toxic 

damage to bile duct epithelium (Dahm & Roth 1991; Carpenter-Deyo et al. 

1991). 
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1.5.4. Chronic liver injury model: Carbon tetrachloride (CCl4) 

Carbon tetrachloride (CCl4) is a commonly used hepatotoxin for the 

experimental induction of liver injury in mice. CCl4 administration leads to 

hepatocellular damage through its metabolism by the cytochrome P450 

pathway to toxic trichloromethyl that causes cell membrane damage. 

Membrane damage to Kupffer cells results in the secretion of pro-

inflammatory mediators such as TNF-α, IL-1, IL-6, IL-8, IL-18, eicosanoids, 

and NO. These factors promote the recruitment and activation of inflammatory 

cells (Liu et al. 2013; Novobrantseva et al. 2005). The resulting damage has a 

centrilobular distribution and repeated dosing leads to progressive hepatic 

fibrosis. 

 

Progressive hepatic fibrosis in this model relies on repeated dosing (repeated 

acute insults). Cessation of the acute insult results in resolution. In order to 

study the role of experimental interventions in this resolution phase animals 

need to be culled at different time points after the last dose. Ramachandran et 

al have described the pattern of hepatic stellate cell activation and fibrosis 

progression and resolution in C57BL6 mice in the CCl4 model of chronic liver 

injury up to 256 hours after the last dose of CCl4, Figure 1-2 summarises their 

findings (Ramachandran et al. 2012).  
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Myofibroblast activation occurs between the start of injury and 96 hours after 
cessation of the injury, maximal activation occurs between 48 and 72 hours 
with maximal fibrogenesis at 24 hours. 
 
Maximal extracellular matrix deposition occurs between 48 and 72 hours.  
 
Scar resolution occurs after reduction in liver injury (decreased plasma ALT 
and AST) and is associated with reduced IL-1β, MCP-1, MIP-1α and MIP-2α  
(suggesting a change in macrophage phenotype). 
 
Figure 1-2: Resolution of liver fibrosis after chronic CCl4 induced liver injury 
Graphs created from data published in Ramachandran et al (Ramachandran 
et al. 2012). 
  

injury 24hrs 48hrs 72hrs 96hrs 168hrs 256hrs 

Myofibroblast activation (aSMA expression) 

injury 24hrs 48hrs 72hrs 96hrs 168hrs 256hrs 

Fibrosis Scar resolution 
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1.6. The Transgenic Mouse Model 

This section details the development of two transgenic mouse models that 

were utilised in this work. The mice express TFPI in a cell specific manner 

and have been used in tissue inflammation and injury research previously. 

 

1.6.1. Development of in vitro transgenic TFPI expression 

Initially human TFPIα, modified by the addition of a membrane anchor 

consisting of domains 3 and 4 plus the carboxy-terminal sequence of human 

CD4, was successfully expressed in mouse fibroblasts. This was achieved by 

fusing cDNA coding for TFPI (full-length or truncated - lacking the third kunitz 

domain and the C-terminal) with cDNA coding for domains 3 and 4 and the C-

terminal of human CD4 using a cassette cloning strategy. Surface expression 

and functionality (factor Xa, factor VIIa and TF binding assays) of the 

transfected TFPI was confirmed by flow cytometry (Riesbeck et al. 1997). 

 

Later, the construct was successfully transvected into immortalised porcine 

endothelial cells (IPEC) and modified by the addition of P-selectin to the CD4 

cytoplasmic tail of the construct (Riesbeck et al. 1998; Chen, Reisbeck, 

McVey, et al. 1999; Chen, Reisbeck, Kemball-Cook, et al. 1999). P-selectin is 

a membrane glycoprotein found in secretory granules of platelets (α-granules) 

and endothelial cells (Weibel-Palade bodies). After platelet/cellular activation 

the membrane of these granules fuse with the plasma membrane, releasing 

their contents and resulting in surface expression of P-selectin (Johnston et al. 

1989). This modification allowed for the intracellular storage of the fusion 

protein with expression only on activated cell; avoiding (anti-coagulant) 
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complications associated with constitutive expression. The successful 

intracellular storage and expression of the fusion protein, as well as the ability 

of the fusion protein to inhibit human and non-human, free and membrane 

bound coagulation factors, including TF was confirmed in a series of in vitro  

experiments (Chen, Reisbeck, McVey, et al. 1999; Chen, Reisbeck, Kemball-

Cook, et al. 1999).  

 

Finally, sub-fragments of human CD31 or α-smooth muscle actin (αSMA) 

were added to the construct. These acted as promoters to target transgene 

expression to CD31 or αSMA expressing cells respectively (Chen, 

Giannopoulos, et al. 2004; Daxin Chen et al. 2006). 

 

CD31 (also known as platelet endothelial expression molecule, PECAM-1) is 

a protein expressed on the surface of platelets, monocytes, macrophages, 

Kupffer cells, megakaryocytes, neutrophils and some T cells and makes up 

part of the endothelial cell intercellular junction. It is a member of the 

immunoglobulin super family and is involved in leukocyte migration, 

angiogenesis and integrin activation (Pruitt et al. 2012). 

 

αSMA (also known as actin, alpha-actin-2, ACTA2) is a protein expressed 

predominantly on vascular smooth muscle. It is a member of the actin family 

of proteins that play a role in cell motility, structure and integrity. αSMA is a 

major constituent of the contractile apparatus of a cell. αSMA is also a marker 

of myofibroblast differentiation. 
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1.6.2. Development of in vivo transgenic murine models 

Using these P-selectin-CD4-TFPI constructs transgenic founder mice were 

generated by microinjection (herein referred to as αSMA-TFPI mice and 

CD31-TFPI mice). The background strain was C57BL/6. Both heterozygous 

and homozygous mice were viable, bred normally and had normal baseline 

bleeding times. No circulating soluble anticoagulant activity was detected 

(Chen, Giannopoulos, et al. 2004; Daxin Chen et al. 2006).  

 

1.6.3. αSMA-TFPI mice 

In the αSMA-TFPI mice ex vivo cultured vascular smooth muscle cells 

expressed the fusion protein and inhibited clotting in recalcified mouse plasma. 

The smooth muscle cells also failed to show normal proliferation after 

incubation with activated clotting factors, indicating that the fusion protein was 

biologically active (Daxin Chen et al. 2006). 

 

In a neointimal (wire-induced) injury model the αSMA-TFPI mice 

demonstrated a markedly decreased macrophage infiltrate in acute injury and 

were resistant to post-injury neointimal hyperplasia compared to controls. 

Bone marrow reconstitution/chimera studies identified that the lack of 

neointimal hyperplasia was attributable to the expression of the transgenic 

TFPI on infiltrating bone marrow-derived αSMA expressing neointimal CD34+ 

cells (Daxin Chen et al. 2006).  

 

Investigation of the mechanistic pathway behind this finding revealed that in 

control mice circulating CD34+ cells, present after wire-induced vascular 
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injury, expressed TF and protease activated receptors (PAR) 1, 2 and 4. In 

addition it was demonstrated that thrombin acted directly on these cells to 

cause intimal hyperplasia and that the cell type found in the neointima was a 

mixed phenotype CD34+ αSMA+ CD31+ progenitor cell population which was 

actively recruited to the neointima from the bone marrow. Selective 

antagonism of PAR-1 and PAR-4 and CXCR4 suggested that these thrombin-

induced changes were at least partly mediated by PAR-1. In αSMA-TFPI mice 

the absence of these cells suggested that expression of the transgenic TFPI 

promoted their maturation to endothelial cell or vascular smooth muscle cell 

phenotypes and in turn promoted the regenerative repair of the damaged 

arteries (Chen et al. 2008). 

 

This was confirmed in an aortic transplantation model. Recipient αSMA-TFPI 

mice did not develop the intimal hyperplasia seen in recipient control mice 

despite the same adaptive and innate immune response. This was associated 

with a lack of TF expression on αSMA+ cells compared to control mice. 

However the transgenic TFPI expression did not prevent or delay graft 

rejection. Bone marrow reconstitution/chimera models showed that bone 

marrow derived cells from αSMA-TFPI mice, PAR-1 deficient (knockout) mice 

or cells incubated with a PAR-1 antagonist prior to transplantation had the 

same effect on intimal hyperplasia in aortic transplantation models using 

control mice. Reduced intimal hyperplasia was also seen with bone marrow 

reconstitution from PAR-4 deficient (knockout) mice, but to a lesser extent 

(Chen et al. 2012). 
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In addition circulating CD34+ cells in the αSMA-TFPI mice had the same 

proportion of TF, PAR-1, αSMA and CD31 expression but there were 

significantly fewer CD45+ myeloid progenitors (CD45+, CD68+, F4/80+, 

Ly6C+, CD11b+ and CD115+ cells) compared to controls. This difference was 

ameliorated by the administration of anti-hTFPI or anti-PAR-1 antibodies (but 

not anti-PAR-2 antibodies), suggesting that in the αSMA-TFPI mice TFPI 

inhibition of TF altered the proportion of circulating CD45+ myeloid 

progenitors via PAR-1 signalling (Chen et al. 2012). 

 

1.6.4. CD31-TFPI mice 

In the CD31-TFPI mice resting endothelial cells were negative for the fusion 

protein however ex vivo cytokine activated endothelial cells inhibited clot 

formation in clotting assays with recalcified mouse plasma. Activation of 

platelets and monocytes (with thrombin and LPS) also lead to expression of 

the fusion protein in this strain. Activated (concanavalin A stimulated) CD31 

negative splenic immune cells did not express the fusion protein (Chen, 

Giannopoulos, et al. 2004). 

 

In a LPS-endotoxaemia model these CD31-TFPI mice demonstrated a 

modified response compared to control mice, with less thrombocytopenia, 

consumptive coagulopathy and intravascular thrombosis. This was thought to 

be due to limitation of the propagation phase of the coagulation cascade in 

the transgenic mice, mostly associated with expression of the transgenic TFPI 

on endothelial cells (Chen, Giannopoulos, et al. 2004). In a 

xenotransplantation model of acute humoral rejection (mouse-heart-to-rat 
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model) CD31-TFPI mice showed delayed xenograft rejection compared to 

controls. This was attributed to the inhibition of systemic xenograft induced 

intravascular coagulation in the transgenic mice {Chen, 2004 #499} (Chen, 

Weber, et al. 2004). 
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1.7. Project hypotheses 

This work sought to investigate the role of TFPI in liver injury using transgenic 

mice (described in section 1.6) that selectively expressed TFPI creating local, 

cell specific over expression. 

 

The overall hypothesis for the work was: 

Cell specific expression of TFPI in acute and chronic liver injury would limit 

the progression and extent of liver injury. 

 

On review of the literature and given the data gathered from these mice in the 

models discussed above, it was hypothesised that: 

 

3. Expression of TFPI on αSMA positive cells in the liver would decrease 

the degree of acute hepatocellular injury and fibrosis via PAR associated 

modification of hepatic stellate cell activity and decreased microvascular 

clot formation.  

 

4. Expression of TFPI on CD31 positive cells in the liver would decrease 

the degree of acute hepatocellular injury and fibrosis via PAR associated 

modification of CD31 positive myeloid cell activity and decreased 

microvascular clot formation. 
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2. Methods 

2.1. Animal husbandry 

All research using live animals was approved by the local ethics committee 

and carried out under Home Office supervision in accordance with the Animal 

(Scientific Procedures) Act 1986. 

 

All animals were housed under standard conditions (12 hour light/dark cycle, 

21+/-2°C temperature, 55+/- 10% humidity, with a standard diet and access to 

drinking water ad libitum).	
  

 

2.2. Transgenic mouse colonies 

Breeding trios of two transgenic strains was gifted from Prof Dorling at Kings 

College London. Breeding colonies were established and inbred to optimise 

the number of male transgene positive animals available for experimentations. 

After 4-5 generations transgenic animals were backcrossed with bought in 

wild type controls (C57/BL6 J, Harlan UK) to limit genetic drift from the 

background control animal strain. 
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2.2.1. Genotyping transgenic mice 

Carriage of the transgene was confirmed using DNA extracted from ear 

biopsies and polymerase chain reaction (PCR) followed by gel electrophoresis 

of the PCR product. 

 

Primer pairs were specific to the unique region of the transgene construct that 

coded for the human TFPI - CD4 - P-selectin fusion protein. 

 

2.2.1.1. DNA extraction 

Ear punch biopsy samples (maximum 3mm diameter) were digested in 100µL 

of buffer solution made up of 100mMTrisHCl (pH8), 5mM EDTA, 200mM NaCl 

and 0.1% SDS (all Sigma-Aldrich); plus 2µL of 20mg/mL proteinase K (Life 

Technologies). Samples were placed in a thermomixer (Fisher Scientific) 

overnight at 55°C and 400rpm. After digestion samples were centrifuged 

(Sorvall Biofuge Fresco) at 13,000rpm for 5 minutes at 4°C followed by 

Proteinase K inactivation by heating to 95°C for 5 minutes. 

 

2.2.1.2. PCR and Gel electrophoresis 

PCR conditions were optimised to custom made primer specific conditions 

(see table Table 2-1). 1µL of ear biopsy DNA was added to a mixture of PCR 

primers (custom oligos, Sigma-Aldrich) and master mix (GoTaqⓇ Green 

Master Mix, Promega) and placed in a thermocycler (Applied Biosystems). 
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Primer 
name 

Sequence, 5’-3’ Product 
length 

Conc in 
PCR mix 

Annealing 
temp and 
cycles Forward: Reverse 

(complementary): 

XCON 
1/2 

atgtggcagtgtctgctgag aggatccggacaggtctctt 350 1.2µM 55°C 
30 cycles 

XCON 
3/4 

tccctgactccgcaatcaac tcgtggtgctagctttccag 384 1.2µM 55°C 
35 cycles 

XCON 
5/6 

tcgtccgaatggtttccagg ggggaacaggtggagttctc 852 1.2µM 55°C 
35 cycles 

ActB cccatctacgagggctatgc atgtcacgcacgatttccct 146 1µM 55°C 
30 cycles 

GAPDH accacagtccatgccatcac caccaccctgttgctgtagcc 450 1.2µM 55°C 
30 cycles 

Table 2-1: Genotyping PCR primer information. 
Conc = concentration; temp = temperature 

 

PCR product was run on a 2% agarose (w/v, Invitrogen) gel made with 1x 

TAE buffer and 4% ethidium bromide at 140A for 30 minutes. Gels were 

viewed on a UV illuminator and the presence or absence of a band at the 

appropriate molecular weight was recorded. 
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2.3. Animal models of liver injury 

A power calculation based on pilot data or experience from researchers in the 

group was used to calculate the number of animals required per experimental 

arm. The following calculation was used: 

n = 1+2C(s/d)2 

n = number per group 

s = standard deviation 

d = difference to be detected (2 standard deviations) 

C = constant, calculated based upon the ⍺ (probability of a type I error) and 1-

β (probability of making a type II error) values. For this study ⍺ = 0.05 and 1-β 

= 0.9 and C = 10.51 (Dell et al. 2002). 
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2.3.1. Acute liver Injury 

2.3.1.1. Paracetamol induced liver injury 

Under Home Office Licence 70/7578, 8-10 week old transgenic and 

background strain matched wild type controls (C57BL6/J, Harlan UK) were 

fasted (with free access to water) overnight for twelve hours prior to 

administration of 300-325mg/kg of paracetamol (Sigma) dissolved in 0.9% 

saline (Baxter UK) at a concentration of 20mg/mL. The solution was 

administered by intraperitoneal injection. 

 

Mice maintained for less than 24 hours were administered 325mg/kg and 

mice maintained for 24 hours or more were administered 300mg/kg. This 

dosing regimen was based on work carried out by Dr Lucia Possamai looking 

at the strain dependant susceptibility of mice to paracetamol (Possamai 2015). 

 

Vehicle only treated mice were administered saline only. 

 

Mice were monitored frequently using minimally invasive parameters 

(observation of body condition, minimal handling) and in accordance with 

guidance set out in the licence. 

 

Mice were culled at set time points as defined by the experimental conditions 

and within the remit of the licence. 

 

A power calculation based on early cohort liver hepatocellular necrosis data 

suggested 6 animals per experimental arm.  
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2.3.1.2. Alpha-naphtylisothiocyanate (ANIT) induced liver injury 

Under Home Office Licence 70/7578, 8-10 week old transgenic and 

background strain matched wild type controls (C57BL6/J, Harlan UK) were 

fasted (with free access to water) overnight for twelve hours prior to 

administration of 60mg/kg of ANIT (Sigma) dissolved in corn oil (Mazola) at a 

concentration 6mg/mL. The solution was administered by oral gavage. 

 

ANIT dosing was determined by existing literature (Luyendyk et al. 2011; 

Sullivan, Weinreb, et al. 2010). Strain tolerance to the hepatotoxin at this dose 

was tested in a small number of animals (n=2 per strain) and this data was 

included in subsequent experiments to reduce the number of animals used 

overall. 

 

Vehicle only treated mice were administered corn oil only. 

 

Mice were monitored frequently using minimally invasive parameters 

(observation of body condition, minimal handling) and in accordance with 

guidance set out in the licence. 

 

Mice were culled at set time points as defined by the experimental conditions 

and within the remit of the licence. 

 

A power calculation based on early cohort liver hepatocellular injury data 

suggested 6 animals per experimental arm.  
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2.3.2. Chronic Liver Injury 

2.3.2.1. Carbon tetrachloride (CCl4) induced liver injury 

Under Home Office Licence 70/6493 and 70/8060, 6-8 week old transgenic 

and background strain matched wild type controls (C57BL6/J, Harlan UK) 

administered CCl4 (Sigma) dissolved in corn oil (Mazola).  

 

Initial work administering 2mL/kg of a solution containing 33.3% v/v CCl4 (a 

dose of 0.5mL/kg of CCl4) [personal communication - Dr F Oakley, (Moles A 

Fau - Sanchez et al. 2013)] was poorly tolerated by the transgenic and wild 

type strains of mice. An incremental dosing regimen over 4 weeks, based on 

previous work by Dr Anstee (Anstee et al. 2008), was better tolerated. 

 

In the incremental regimen mice were administered 4mL/kg of a solution by 

intraperitoneal injection 3 times a week. The solution was changed on a 

weekly basis, each week containing a greater dose of CCl4 than the last. 

Week 1 solution contained 3.2% v/v CCl4 (a dose of 0.125mL/kg of CCl4); 

week 2 solution contained 6.7% v/v CCl4 (a dose of 0.25mL/kg of CCl4); week 

3 solution contained 14.3% v/v CCl4 (a dose of 0.5mL/kg of CCl4) and week 4 

solution contained 33.3% v/v CCl4 (a dose of 1mL/kg of CCl4).  

 

Vehicle only treated mice were administered corn oil only. 

 

Mice were monitored using minimally invasive parameters (observation of 

body condition and weight, minimal handling) and in accordance with 

guidance set out in the licence. 
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Mice were culled at set time points after the last dose of CCl4 as defined by 

the experimental conditions and within the remit of the licence. These time 

points were guided by the literature and based on the phases of hepatic 

stellate cell activation, development and resolution of fibrosis as described in 

Figure 1-2. Briefly, after administration of CCl4, myofibroblast / hepatic stellate 

cell activation is seen to increase to a maxima around 72 hours, returning to a 

baseline level of activation around 96-168 hours. Intrinsically linked to this is 

the deposition of collagen to produce fibrous scar tissue (peak deposition at 

72 hours) and the resolution of this scar tissue (peak 72-96 hours). These 

measurable parameters provide reproducible indices for assessing any 

changes in the liver microenvironment. 

 

A power calculation based on pilot cohort Sirius red collagen staining data 

suggested 6 animals per experimental arm.  
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2.4. Tissue and blood harvest, processing and storage 

2.4.1. Tissue and blood harvest 

Mice were culled with an overdose of pentobarbitone administered by 

intraperitoneal injection. 

 

2.4.1.1. Tissue and blood harvest without fresh liver collection 

A midline incision was made to visualise the abdominal and thoracic cavity. 

Cardiac puncture (right ventricle) was performed with a 23 gauge needle and 

at least 200µL of blood collected. The blood was transferred into heparinised 

container (Sarstedt) for later processing. 

 

The liver was isolated and removed from the abdominal cavity and dissected 

as shown in Figure 2-1. 

 

Any other organs required for control tissue were harvested at the same time 

and stored/processed as detailed below. 

  



 96 

2.4.1.2. Tissue and blood harvest with fresh liver collection 

A midline incision was made to visualise the abdominal and thoracic cavity. 

Cardiac puncture (right ventricle) was performed with a 23 gauge needle and 

at least 200µL of blood collected. The blood was transferred into heparinised 

container (Sarstedt) for later processing. 

 

The left ventricle was then cannulated with a 23 gauge needle and 30mL of 

PBS perfused through the entire circulation. 

 

The liver was isolated and removed from the abdominal cavity and dissected 

as shown in Figure 2-1. 

 

Any other organs required for control tissue were harvested at the same time 

and stored/processed as detailed below. 
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Figure 2-1: Liver tissue harvest 
Based on diagram from plate 60 from the web adapted version of the The 
Anatomy of the Laboratory Mouse by Margaret J. Cook (Mouse Genome 
Informatics 2008). 
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2.4.2. Blood processing 

Heparinised tubes containing up to 200µL of blood were centrifuged at 

3,000rpm for 10 minutes. The blood plasma supernatant was removed and 

stored at -20°C. 

 

The analysis and interpretation of the small volumes of plasma harvested 

from mouse models requires specialist expertise. Within the research group 

there was an existing relationship with Dr Tertius Hough at the Clinical 

Pathology Laboratory, Medical Research Council Harwell (Oxford), an 

institute specialising in mouse genetics and phenotyping and a member of the 

International Mouse Phenotyping Consortium (IMPC). Blood plasma samples 

were batched and sent to Dr Hough to be analysed on a Beckman Coulter 

AU680 clinical chemistry analyser. 

 

2.4.3. Frozen tissue processing 

Tissue for RNA and protein extraction was snap frozen in liquid nitrogen and 

stored at -80°C. 

 

2.4.4. Formalin fixed tissue processing 

Tissue for paraffin embedding and sectioning was fixed in 10% formalin. Fixed 

tissue was processed on a tissue processor for automated dehydration and 

paraffin infiltration before embedding in paraffin blocks. 

 

Tissue sections were cut at 5-8µm on a microtome with one section per slide. 

Slides were placed in a drying oven at 65°C for at least 30 minutes.  
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2.4.5. Fresh tissue processing and liver immune cell isolation 

Fresh liver was collected for immune cell isolation. Fresh liver was placed in 

chilled PBS and transported on ice. 

 

Immune cell isolation was carried out in a sterile cell culture environment. 

 

The fresh liver from each mouse was individually processed. 

 

Fresh liver was placed in a petri-dish with PBS and dissociated using a 

scalpel and forceps. This solution was then passed through a 100µm filter into 

a 50mL tube. The solution was centrifuged at 60g for 1 minute to pellet the 

hepatocytes/parenchymal cells. The supernatant was transferred to a new 

tube and centrifuged at 1400rpm to pellet the non-parenchymal cells. 

 

The non-parenchymal cell pellet was resuspended in 10mL of PBS and 

carefully layered over 5mL of a 27% optiprep (v/v with PBS, Sigma-Aldrich) 

solution in a 15mL tube and centrifuged at 800rpm for 15mins at 22°C (brake 

off). This created a density gradient to separate non-viable cells (bottom 

fraction) from viable cells (top fraction). The top fraction was harvested and 

transferred to a fresh tube and centrifuged at 1400rpm to pellet the viable 

non-parenchymal cells. 

 

ACK lysis buffer (Lonza) was added to the pellet to lyse red blood cells. After 

1 minute PBS was added to stop the ACK lysis reaction and cells were 

centrifuged twice at 1400rpm to wash and pellet the non-parenchymal cells. 
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The non-parenchymal cell pellet was then resuspended in 500µL of PBS and 

the cells counted using a Malassez haemocytometer and trypan blue (Life 

Technologies). 
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2.5. Histochemical staining of FFPE sections 

2.5.1. Deparafinisation 

Paraffin sections were deparaffinsed and rehydrated by passing through 

xylene and ethanol at varying concentrations. 

 

2.5.2. Haematoxylin and Eosin staining 

After deparafinisation sections were stained using an automated Tissue Tek 

staining machine. Briefly the protocol was: 

• Nuclear staining with Harris haematoxylin (CellPath), 5 minutes. 

• Wash in tap water. 

• Differentiate with 1% acid alcohol (1% HCl, 70% alcohol, Sigma), 30 

seconds or as required. 

• Wash in tap water. 

• ‘Blue’ in Scotts water (Sodium bicarbonate, Magnesium sulphate 7-

hydrate, tap water), 30 seconds or as required. 

• Wash in tap water. 

• Stain with 1% eosin Y (1% v/v in tap water), 5 minutes. 

• Wash in tap water. 

• Dehydrate by passing through varying concentrations of ethanol. 

• Clear in xylene (Sigma)  

• Mount using automated cover-slipping machine (Tissue Tek). 
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2.5.3. Sirius Red staining 

After deparafinisation sections were stained with Sirius red (Sigma) for 1 hour. 

Sections were then washed and blotted dry before dehydration in industrial 

methylated spirit and clearing in xylene. Sections were covered slipped by 

hand using a resin-based mounting media (DPX mountant, Sigma). 
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2.6. Immunohistochemistry on FFPE tissue sections 

Immunohistochemical staining was optimised to individual antibodies (see 

Table 2-2) however the outline protocol was as follows: 

 

2.6.1. Deparafinisation 

Paraffin sections were deparaffinsed and rehydrated by passing through 

xylene and ethanol or industrial methylated spirit at varying concentrations. 

 

2.6.2. Antigen retrieval 

Where required antigen retrieval was performed using heat-induced epitope 

retrieval in a suitable buffer: 

• 1mM EDTA, pH8 (Sigma) 

• or 10mM Sodium Citrate with 0.05% Tween 20, pH 6.0 (Sigma) 

 

2.6.3. Endogenous peroxidase and other protein block 

Where required endogenous peroxidase block was performed using a 

hydrogen peroxide buffer solution (hand staining, Abcam; automated staining, 

Leica Bond Max). 

 

Where required non-specific protein binding was blocked by incubating the 

sections with a suitable protein block: 

• 1% Bovine serum albumin in PBS or TBST,(Sigma) 

• or Abcam Rodent block (Abcam)  
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2.6.4. Indirect immunolabelling 

After washing, sections were incubated with primary antibody. 

 

2.6.5. Detection systems 

After washing, sections were incubated with secondary antibody (specific to 

the host species of the primary antibody). In some cases the secondary 

antibody was biotinylated for use with a streptavidin-biotin complex (LSAB) 

detection system (biotinylated secondary plus streptavidin-peroxidase) and 

other secondary antibodies were directly conjugated with horseradish 

peroxidase (immunoenzyme method). 

 

After washing, the chromogen 3,3’ Diaminobenzidine (DAB) was applied. DAB 

forms a brown precipitate in the presence of peroxidase enzymes that is 

insoluble in alcohol. 

 

2.6.6. Counter staining 

After washing, sections were counterstained with haematoxylin (Harris 

haematoxylin followed by blueing agents, acid alcohol and Scotts Water, 

various suppliers see 2.5.2), dehydrated (by passing through varying 

concentrations of ethanol and xylene) and coverslipped by hand or using an 

automated coverslipper (Tissue Tek). 
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2.6.7. Controls 

Appropriate controls are important to ensuring quality control of 

immunohistochemical staining. For each batch of staining a positive control 

and a secondary only control were used.  

 

Positive controls were used to confirm that the staining had worked, ensuring 

that negative staining represented true negative results. Positive controls 

were either sections of tissue known to stain positive with the antibody 

(placenta in fibrin immunohistochemistry), internal positive controls (blood 

vessel smooth muscle αSMA immunohistochemistry) or sections positive in 

previous batches.  

 

Secondary only controls are a form of negative control that ensures that there 

is no non-specific staining due to cross-reaction with the secondary antibody 

and tissue antigens. It is expected that these sections will not show any 

positive staining. In each batch a known positively staining section, preferable 

of the same tissue type, went through the entire immunohistochemical 

staining process but the primary antibody solution was replaced with a dilutent 

only solution. 

 

Additional positive and negative controls were used in the TFPI 

immunohistochemistry.  As well as a tissue positive and secondary only 

control, a known transgene negative and transgene positive control were 

processed with each batch. 
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Primary 
antibody 

Antigen 
retrieval 

Primary 
antibody 
incubation 
conditions* 

Secondary 
antibody  
 

Chromogen Notes 

⍺SMA 
Abcam, 
ab5694 
Rabbit 
polyclonal 
anti-human 

HIE with 
citrate 
buffer  
 
20 
minutes 

0.0005mg/mL 
(1 in 400 
dilution) 
 
60 minutes 
incubation 

DAKO 
REAL 
Envision 
HRP rabbit/ 
mouse 
 
10 minutes 
 

DAB 
 
10 minutes 

Copper 
sulphate 
enhancement 
 
2 minutes 

MCM4 
Abcam, 
ab84153 
Rabbit 
polyclonal 
anti-human 

HIE with EDTA buffer 
Primary antibody 1 in 100 dilution 
Leica (Leica Bond Max) automated 
immunohistochemistry system – Mouse 30 program 
 

Copper 
sulphate 
enhancement 
 
2 minutes 

F4/80 
Santa Cruz, 
sc-25830 
Rabbit 
polyclonal 
anti-mouse 
F4/80 (M-
300) 

HIE with 
EDTA 
buffer 
 
20 
minutes 

0.002mg/mL 
(1 in 100 
dilution) 
 
Overnight 
incubation at 
4°C 

DAKO 
REAL 
Envision 
HRP rabbit/ 
mouse 
 
15 minutes 
 

DAB 
 
15 minutes 

Copper 
sulphate 
enhancement 
 
2 minutes 

TFPI 
Abcam, 
ab117628 
Mouse 
monoclonal 
anti-human 

HIE with 
citrate 
buffer 
 
(20 
minutes, 
water 
bath at 
95°C) 

0.01 mg/mL 
 
Overnight 
incubation at 
4°C 

Abcam 
mouse on 
mouse HRP 
polymer 
 
60 minutes 

DAB 
 
10 minutes 

TBST 
wash/diluent 

Fibrin 
Sekisui, 
REF 350 
Mouse 
monoclonal 
anti-human 
fibrin β 
chain 

None 0.02 mg/mL 
 
60 minutes 
incubation 

Abcam 
mouse on 
mouse HRP 
polymer 
 
60 minutes 

DAB 
 
10 minutes 

 

Table 2-2: Immunohistochemistry conditions by primary antibody. 
* Incubation at room temperature unless otherwise stated. HIE = heat induced 
epitope retrieval.  
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2.7. Histology section image analysis 

Histology section images were acquired using the Nuance multispectral 

imaging system 3.0.2 (PerkinElmer) and a light microscope (Olympus BX50).  

 

2.7.1. Nuance multispectral imaging system 

The Nuance multispectral imaging system works using a high resolution CCD 

image sensor (CCD = charge coupled device; the light sensitive element 

found in modern digital cameras, the ‘digital retina’) with a unique solid state 

liquid crystal wavelength tuning element. This liquid crystal wavelength tuning 

element acts like an emission filter in fluorescent microscopy and can be 

applied to transmitted bright field microscopy. The liquid crystal wavelength 

tuning element allows transmitted visible light to be recorded on the CCD in 

more than the standard 3 channels (Red/Green/Blue).  

 

The liquid crystal wavelength tuning element allows for multiple colours with a 

similar transmission spectrum to be individually defined by narrowing the 

portion of the visible light spectrum detected and increasing the number of 

portions of the visible light spectrum that are recorded (e.g. data acquired at 

10nm steps throughout a defined wavelength range). The data collected from 

this acquisition is called an image cube. 

 

The image analysis software accompanying the system can use the data from 

the image cube to identify specific portions of the visible light spectrum 

recorded and manipulate the image using false colours to enhance detection 
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and quantification of differentially stained elements within the imaged sections 

(PerkinElmer 2012).  

 

In some instances (e.g. use of immunohistochemical chromogens in dual 

staining that are close in the visible light spectrum) this allows for a more 

detailed analysis of images compared to a standard RGB image where data is 

recorded at only the 3 standard Red/Green/Blue wavelengths (450nm, 530nm 

and 610nm approximately). 

 

When acquiring a cube the multispectral imaging system allows the user to 

define the binning (the combining of pixel data to reduce exposure time and 

image size but reducing resolution), region of interest (ROI) from the entire 

field of interest, the wavelength range for acquisition and the exposure time. 

In this work the default settings for an image cube were: 

• Binning – 1x1 (i.e. no reduction in pixels) 

• ROI – 2/3 

• Wavelength range – 420nm to 720nm, narrow band mode, 10nm steps 

• Exposure - autoexposure 

 

A 2/3 (two-thirds) ROI was used for technical reasons. Briefly, the adaptor 

used to attach the Nuance imaging system to the microscope was slightly too 

short, creating a circular ‘shadow’ around the edge of the acquired images. To 

eliminate this artefact the inner two-thirds of the CCD sensor (2/3 ROI) was 

selected for image acquisition.  
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2.7.2. Sirius red staining image analysis 

Sirius red histochemical staining detects type I and Type III collagen in 

formalin fixed paraffin embedded (FFPE) tissue on light microscopy. Collagen 

is the predominant extracellular matrix protein deposited in liver (during health 

and disease) and as such is often used as a surrogate for liver fibrosis. Other 

methods of detecting fibrosis in the liver include trichrome stains and 

immunohistochemistry using antibodies to specific collagen types. However 

Sirius red is generally favoured in the published literature and quantification of 

collagen via image analysis of tissue stained with Sirius red has been shown 

to correlates with hepatic hydroxyproline content (James et al. 1990). 

Technically the contrast between the red stained collagen fibres and the 

yellow non-collagen containing tissue in Sirius red stained tissue is good for 

digital image analysis. 

 

To quantify Sirius red staining in both the carbon tetrachloride and 

thioacetamide models of chronic liver injury Sirius red stained sections of 

FFPE liver were photographed using the Nuance multispectral imaging 

system with a x4 light microscope objective (x40 magnification). 

 

RGB images were acquired and saved as JPEG files. Images were analysed 

using ImageJ (1.46r (Rasband 2014)). Images were converted into RGB 

stacks and the Green image selected for analysis. The ImageJ Threshold tool 

was used to select regions of the tissue stained red and the overall area of 

tissue in each section in a semi-automated method. See Figure 2-2. 
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Field diameter and image quality were used to calculate a scale of 201.3 

pixels : 1mm and therefore each image a field area of 15.76mm2. The area of 

Sirius red staining (collagen) was determined as a percentage of tissue 

present in each section. 

 

A cumulative mean calculation was performed on two samples, one with 

extensive Sirius red staining and one with less pronounced staining. Taking 

into account results from both samples, the cumulative mean showed that 

images of two entire sections of liver were required. 

 

Figure 2-2: ImageJ quantification of Sirius Red staining 

See over for figures. 

Figure legend 

All images x40 original magnification 

Image 1: Sirius Red stained liver section in a αSMA-TFPI mouse, 72 hours 
after last administration of CCl4. 
 
Image 2: ImageJ RGB stacked images, Green channel image used for 
threshold quantification. 
 
Image 3: ImageJ threshold image and automated quantification of red stained 
(collagen) area. 
 
Image 4: ImageJ threshold image and automated quantification of total tissue 
in image. 
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Image 1 

 
Image 2 

 
 
Image 3 

 

Image 4 

 
Figure 2-2: ImageJ quantification of Sirius Red staining 
See previous page for figure legend. 
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2.7.3. Percentage liver parenchymal (hepatocellular) injury 

To quantify liver parenchymal hepatocellular injury in both the paracetamol 

and ANIT models of acute liver injury H&E stained sections of FFPE liver 

were photographed using the Nuance multispectral imaging system with a x10 

light microscope objective (x100 magnification). 

 

RGB images were acquired and saved as JPEG files. Images were analysed 

using ImageJ (1.46r (Rasband 2014)). The ImageJ Region of Interest (ROI) 

Manager was used to manually delineate and measure areas of necrosis (see 

Figure 2-3). This method was also used to manually delineate and quantify 

non-hepatocellular tissue (e.g. central vein lumen). 

 

Field diameter and image quality were used to calculate a scale of 502.57 

pixels : 1mm and therefore each image a field area of 2.52mm2. The area of 

necrosis was determined as a percentage of liver hepatocellular tissue 

present in each section. Liver hepatocellular tissue was defined as the total 

field area minus non-hepatocellular tissue. 

 

A cumulative mean calculation was performed on two samples, one with 

extensive parenchymal injury and one with less pronounced parenchymal 

hepatocellular injury. Taking into account results from both samples, the 

cumulative mean plateaued at 15 consecutive x10 objective fields. 

  



 113 

Image 1 – Original Image 
 

 

Image 2 

 
Image 3 

 

Image 4 

 
Image 5 

 

Image 6 

 
 
Figure 2-3: ImageJ quantification of hepatocellular necrosis 
Images and figure legend continued on next page. 
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Image 7 

 

Image 8 

 
 
Figure 2-3: ImageJ quantification of hepatocellular necrosis, continued 
 
All images, original x100 magnification. 
 
Image 1: Paracetamol induced liver injury in a αSMA-TFPI mouse, 6 hours 
after administration of paracetamol. Original image. 
 
Image 2 and 3: Manual delineation of area of hepatocellular injury. 
(Highlighted with yellow overlay). 
 
Image 4 and 5: ImageJ ROI manager automated quantification of area of 
hepatocellular necrosis based on manually selected area. (Yellow overlay 
removed, original ImageJ outline blue). 
 
Image 6: ImageJ ROI manager automated quantification of area of 
hepatocellular necrosis based on all manually selected area. (Original ImageJ 
outline blue). 
 
Image 7: ANIT induced liver injury in a CD31-TFPI mouse, 48 hours after 
administration of ANIT. Original image. 
 
Image 8: Using ImageJ manual delineation of area of hepatocellular injury 
and ROI manager automated quantification of area. (Original ImageJ outline 
blue). 
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2.7.4. αSMA Immunohistochemical staining image analysis 

Activated hepatic stellate cells are the predominant collagen producing cell in 

the liver during homeostasis and fibrosis. Activated hepatic stellate cells 

express ⍺SMA. Immunohistochemistry for ⍺SMA in FFPE liver tissue sections 

is widely used in the literature as a surrogate for hepatic stellate cell activation. 

Other markers, including desmin, GFAP and Vitamin A, are expressed by 

hepatic stellate cells but ⍺SMA has been described as the “single most 

reliable marker of stellate cell activation” because in both normal and injured 

liver the only other cell type known to express it is the vascular smooth 

muscle cell (Scott L Friedman 2008). These have a characteristic vascular 

distribution that can be easily distinguished from activated hepatic stellate 

cells. 

 

To quantify the proportion of cells staining positive for αSMA in chronic liver 

injury models sections of FFPE liver stained with αSMA were photographed 

using the Nuance multispectral imaging system with a x40 light microscope 

objective (x400 magnification). 

 

Images cubes were acquired. Spectra for haematoxylin and DAB were 

defined using sections individually stained with haematoxylin or DAB. This 

spectral library was used to unmix the image cube. False colouring of the two 

elements and the formation of a composite image allowed for better definition 

and identification of DAB positive (αSMA positive) cells. 
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The unmixed composites were saved as a JPEG files and analysed using 

ImageJ (Rasband 2014). As the aim of this test was to quantify the number of 

αSMA positive activated hepatic stellate cells the ImageJ cell counter was 

used to manually select (and automatically count) positive cells so that αSMA 

positive vascular smooth muscle cells could be excluded from the count. 

Results were expressed as DAB positive (αSMA positive) cells per high power 

field (HPF). 

 

A cumulative mean calculation was performed on two samples, one with 

many DAB positive (αSMA positive) cells and one with few positive cell. 

Taking into account results from both samples, the cumulative mean 

plateaued at 10 consecutive x40 objective fields. 
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2.7.5. MCM4 immunohistochemical staining image analysis 

Mini-chromosome maintenance (MCM) proteins are essential for cellular 

replication. MCM4 forms part of the MCM complex that has DNA helicase 

activity. Immunohistochemistry for MCM4 in liver FFPE sections is used to 

identify cells that are in a pre-replication state. Increased MCM4 staining can 

be used as a surrogate marker for increased cellular proliferation. Other 

cellular markers of proliferation include Ki-67 (present throughout cellular 

replication) and PCNA (proliferating cell nuclear antigen, present during the 

synthesis stage of cellular replication). Automated immunohistochemcal 

staining produces a more consistent staining pattern and both Ki-67 and 

MCM4 markers of cell proliferation have been optimised for automated 

immunohistochemical staining in the research group. Ki-67 staining can be 

affected by formalin fixation (Hitchman et al. 2011) and therefore MCM4 was 

selected as the preferred proliferation marker for this work.  

 

To quantify MCM4 nuclear staining in the paracetamol acute liver injury model 

sections of FFPE liver stained with MCM4 were photographed using the 

Nuance multispectral imaging system with a x40 light microscope objective 

(x400 magnification). 

 

RGB images were acquired and saved as JPEG files. Images were analysed 

using ImageJ (1.46r (Rasband 2014)). The ImageJ Find Maxima tool was 

used to automatically count peaks in DAB staining. Results were expressed 

as DAB positive (MCM4 positive) cells per high power field (HPF). 
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A cumulative mean calculation was performed on two samples, one with 

many DAB positive (MCM4 positive) cells and one with few positive cells. 

Taking into account results from both samples, the cumulative mean 

plateaued at 10 random x40 objective fields. 
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Image 1 

 
Image 2 

 
 
Figure 2-4: ImageJ quantification of MCM4 nuclear staining 
 
All images original x400 magnification. 
 
Image 1: MCM4 DAB stained section of liver in control mouse, 24 hours after 
administration of paracetamol. 
 
Image 2: ImageJ Find Maxima selection of darkly stained nuclei (blue/white 
mark on image) and automated count (“64 maxima” in “Find Maxima” box).  
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2.7.6. F4/80 immunohistochemical staining image analysis 

A single marker for macrophages in injured and uninjured FFPE liver was 

required for the screening of models in this work. CD68, CD163 and F4/80 are 

cell surface markers commonly used in the detection of macrophages by 

immunohistochemistry. All are expressed on most tissue macrophages in the 

mouse (Murray & Wynn 2011; Rehg et al. 2012). CD68 or macrosialin in mice 

is a glycoprotein that binds low density lipoprotein. Some studies have shown 

that it is expressed on non-myeloid cells including lymphocytes and fibroblasts 

(Gottfried et al. 2008). CD163 is scavenger receptor expressed on monocytes 

and resident macrophages of normal tissues, high levels of expression are 

seen in liver Kupffer cells (Schaer et al. 2001). F4/80 is a cell surface marker 

encoded by Emr1. It is widely used in the identification of monocytes and 

macrophages in mice and variation in expression has been used to define 

monocyte / macrophage subsets in flow cytometry (Holt et al. 2008; Zigmond 

et al. 2014; Yona et al. 2013; Ramachandran et al. 2012; Murray & Wynn 

2011).  Therefore F4/80 was selected as the FFPE marker of choice in this 

work because of its specificity and overlap with work carried out by flow 

cytometry. 

 

To quantify F4/80 staining, sections of FFPE liver stained with F4/80 were 

photographed using the Nuance multispectral imaging system with a x40 light 

microscope objective (x400 magnification). 

 

Images cubes were acquired. Spectra for haematoxylin and DAB were 

defined using sections individually stained with haematoxylin or DAB. This 
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spectral library was used to unmix the image cube. False colouring of the two 

elements and the formation of a composite image allowed for better definition 

and identification of DAB positive (F4/80 positive) cells. 

 

The unmixed composites were saved as a JPEG files and analysed using 

ImageJ (Rasband 2014). The ImageJ cell counter was used to manually 

select and automatically count positive cells. Results were expressed as DAB 

positive (F4/80 positive) cells per high power field (HPF). 

 

A cumulative mean calculation was performed on two samples, one with 

many DAB positive (F4/80 positive) cells and one with few positive cell. 

Taking into account results from both samples, the cumulative mean 

plateaued at 10 random x40 objective fields. 

 

2.7.7. Fibrin immunohistochemical staining image analysis 

To quantify fibrin deposition sections of FFPE liver stained with a fibrin 

antibody were photographed using the Nuance multispectral imaging system 

with a x4 light microscope objective (x40 magnification). 

 

RGB images were acquired and saved as JPEG files. Images were analysed 

using ImageJ (1.46r (Rasband 2014)). The ImageJ Threshold tool was used, 

with color space Lab. Adjustment of the L threshold was used to determine 

the liver tissue area in each image and the b threshold was used to determine 

the DAB stained fibrin area in each image. 
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Field diameter and image quality were used to calculate a scale of 201.3 

pixels : 1mm and therefore each image a field area of 15.76mm2. The area of 

fibrin staining was determined as a percentage of tissue present in each 

section. 

 

Taking into account the similarities between this method for analysing fibrin 

staining and the analysis of Sirius red staining, two entire sections of liver 

were used to calculate the percentage fibrin staining. 
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2.8. Flow Cytometry 

Flow cytometry was performed on isolated live liver cells using a BD 

LSRFortessa™ cell analyser. Panels of primary conjugated fluorophore 

labelled antibodies was used to phenotype cell populations. 

 

2.8.1. Staining protocol 

After the immune cells had been isolated as described previously (Section 

2.4.1.2) the cells were incubated with 1% normal mouse serum for 20 minutes 

at 4°C to block non-specific protein binding by antibodies. 

 

After blocking the cells were washed twice and resuspended at a 

concentration of 100,000 cells per 100µL PBS. Alliquots of 200,000 cells were 

separated from each sample for the panels described below (Section 2.8.2) 

and any remaining cells were pooled for control staining. 

 

Cells were incubated with antibody panels as described below for 30 minutes 

at 4°C. Where Fixed Viability Dye was used cells were pre-stained with this 

(at a concentration of 1µL of Dye per 1mL of cell solution) and washed prior to 

incubation with antibodies. 

 

Beads were used for compensation controls (ArC Amine Reactive beads for 

Fixed Viabilty Dye and OneComp beads for all antibodies) and incubated as 

per manufacturer instructions. 
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Fluorescence minus one (FMO) controls were used for 

antibodies/fluorochromes where data spread from other flurochromes in a 

panel affected gating boundaries. 

 

After incubation with antibody panels, cells were washed and resuspended in 

FACs staining buffer (BD) before analysing on the flow cytometer. 
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2.8.2. Flow cytometry phenotyping panels 

Over the course of this work the flow cytometry phenotyping panel was 

developed. Below are the panels used as defined by the experimental model 

being assessed. 

 

2.8.2.1. Chronic liver injury immune cell phenotyping panel v.1 

Laser Filter Fluorochrome Antibody Titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 

405-
525/50 eFluor 506 

Fixed 
Viability 
Dye 

1µL/mL eBioscience 
65-0866 

405-
610/20 

Brilliant Violet 
605 Ly6G 5 BD 

563005 

Blue 
(488nM) 

488-
530/30 

AlexaFluor 
488 F4/80 1 Serotec 

MCA497A488T 
488-
780/60 PE-Cy7 Ly6C 1 eBioscience 

25-5932 

Red 
(640nM) 

640-
670/14 APC CD11B 1 eBioscience 

17-0112 
640-
780/60 

APC-eFluor 
780 CD3 1 eBioscience 

47-0032 
Table 2-3:Flow cytometry chronic liver injury immune cell phenotyping panel 
v.1, macrophage and T-cells 
Titrated vol = titrated volume per sample 

 

Laser Filter fluorochrome Antibody titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 

405-
525/50 eFluor 506 

Fixed 
Viability 
Dye 

1µL/mL eBioscience 
65-0866 

Red 
(640nM) 

640-
780/60 

APC-eFluor 
780 NK1.1 1 eBioscience 

47-5941 
Table 2-4: Flow cytometry chronic liver injury immune cell phenotyping panel 
v.1, NK-cell panel 
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Laser Filter fluorochrome Antibody titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 
405-
525/50 eFluor 506 Fixed 

Viability Dye 1µL/mL 
eBioscience 
65-0866 

Red 
(640nM) 

640-
780/60 

APC-eFluor 
780 B220/CD45R 1 eBioscience 

47-0452 
Table 2-5: Flow cytometry chronic liver injury immune cell phenotyping panel 
v.1, B-cell panel 
 

2.8.2.2. Chronic liver injury immune cell phenotyping panel v.2 

Laser Filter fluorochrome Antibody titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 

405-
525/50 eFluor 506 Fixed 

Viability Dye 1µL/mL eBioscience 
65-0866 

405-
610/20 

Brilliant Violet 
605 Ly6G 5 BD 

563005 

Blue 
(488nM) 

488-
530/30 

AlexaFluor 
488 F4/80 1 Serotec 

MCA497A488T 
488-
695/40 

PerCP-
Cyanine5.5 NK1.1  eBioscience 

45-5941 
488-
780/60 PE-Cy7 Ly6C 1 eBioscience 

25-5932 

Red 
(640nM) 

640-
670/14 APC CD11B 1 eBioscience 

17-0112 
640-
730/45 AF700 B220/CD45R  eBioscience 

56-0452 
640-
780/60 

APC-eFluor 
780 CD3 1 eBioscience 

47-0032 
Table 2-6: Flow cytometry chronic liver injury immune cell phenotyping panel 
v.2, combined immune cell phenotyping panel 
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2.8.2.3. Acute liver injury immune cell phenotyping panels 

Cell death was determined in a separate proportion of the isolated cells from 

each sample using Fixed Viability Dye labelled with eFluor 506 (eBioscience 

65-0866). 

Laser Filter fluorochrome Antibody titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 
405-
610/20 

Brilliant Violet 
605 Ly6G 5 BD 

563005 

Blue 
(488nM) 

488-
530/30 

AlexaFluor 
488 F4/80 1 Serotec 

MCA497A488T 
488-
575/26 PE CD64 5 BD 

558455 
488-
610/20 PE-CF594 CD11B 1 BD 

562317 
488-
780/60 PE-Cy7 Ly6C 1 eBioscience 

25-5932 
Red 
(640nM) 

640-
670/14 APC MerTK 10 R&D 

FAB5912A 
Table 2-7: Flow cytometry acute liver injury immune cell phenotyping panel, 
macrophage panel 
Titrated vol = titrated volume per sample 

 

Laser Filter fluorochrome Antibody titrated 
vol (µL) 

Supplier 
information 

Violet 
(405nM) 

405-
450/50 eFluor 450 CD45.2 1 eBioscience 

48-0454 
405-
610/20 

Brilliant Violet 
605 Ly6G 5 BD 

563005 
488-
610/20 PE-CF594 CD11B 1 BD 

562317 
Blue 
(488nM) 

488-
695/40 

PerCP-
Cyanine5.5 NK1.1  eBioscience 

45-5941 

Red 
(640nM) 

640-
670/14 APC CD11B 1 eBioscience 

17-0112 
640-
730/45 AF700 B220/CD45R  eBioscience 

56-0452 
640-
780/60 

APC-eFluor 
780 CD3 1 eBioscience 

47-0032 
Table 2-8: Flow cytometry acute liver injury immune cell phenotyping panel, 
non-macrophage immune cell panel 
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2.8.3. Rationale for flow cytometry immune cell phenotyping panels 

2.8.3.1. Background 

The innate immune system is composed of a number of different cells that 

provide a generic response to infection and inflammation that includes the 

recruitment of immune cells, activation of complement, phagocytosis and 

antigen presentation to cells of the adaptive immune system. 

 

Monocytes and macrophages are one of the major constituents of the innate 

immune response. They are highly plastic cells that carry out a variety of 

functions depending on the stimulus and their surroundings. Due to their 

plasticity, defining different macrophage / monocyte populations based on 

their surface protein expression or even their gene expression is a highly 

contentious area of research. 

 

Prior dogma categorised macrophages as classically activated pro-

inflammatory ‘M1’or alternatively activated imunoregulatory ‘M2’ macrophages 

with the M2 category being sub-divided further into more specific groups such 

as tumour-associated macrophages. In the mouse the M1 macrophage 

expresses CD11b, F4/80, CD62L, CCR2, high levels of Gr-1 (an antibody to 

Ly6C/G) and low levels of CX3CR1. The M2 macrophage expresses CD11b, 

F4/80, low levels of Gr-1 and high levels of CX3CR1 but not CD62L and 

CCR2. However much of this classification system is based on in-vitro studies 

and it is now more widely accepted that in-vivo monocytes and macrophages 

exist in a spectrum of activation phenotypes and are able to class-switch from 

one phenotype to another (Murray & Wynn 2011)(Tacke & Randolph 2006). 
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In acute and chronic liver injury monocytes and macrophages have been 

shown to play a key role in initiation, propagation and resolution. In the liver 

these cells are categorised based on their origin (resident Kupffer cells with 

primitive derivation versus infiltrating monocytes and monocyte derived 

macrophages of bone marrow derivation) and / or their function associated 

cell surface markers and gene expression (Ramachandran et al. 2012)(Holt et 

al. 2008; Yona et al. 2013; Zigmond et al. 2014; Murray & Wynn 2011). 

However, these classification systems and their translation are still the basis 

of much research and debate. 

 

2.8.3.2. Markers used and rationale for their selection 

CD45 is a cell surface marker encoded by ptprc. It is also known as leukocyte 

common antigen (LCA) and is a protein tyrosine phosphatase receptor. CD45 

is widely used to identify haematopoietic cells. Mice show strain dependant 

variations in nucleotide sequences resulting in amino acid changes in the 

extracellular domain. C57BL6/J used in this work are known to express the b 

variant of this gene/protein (Smith et al. 2014), also known as CD45.2. This 

marker (clone 104) was selected to identify immune cells from whole liver 

non-parenchymal cell isolates. 

 

NK1.1 is a cell surface marker encoded by Klrb1c. It is killer cell lectin-like 

receptor subfamily B member 1c and is expressed on natural killer (NK) cells 

in some strains of mouse, including C57BL6/J used in this work (Smith et al. 
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2014). This marker (clone PK136) was selected to identify NK1.1+ NK cells in 

CD45.2+ liver immune cells (Table 2-9). 

 

CD3 is a cell surface protein complex composed of ɣ, δ and ε chains. The 

CD3 complex is required for expression and function of the TCR complex. 

CD3 is expressed on thymocytes and all mature T-cells. This marker (clone 

17A2) was selected to identify CD3+ T-cells in the CD45.2+ liver immune cells 

(Table 2-9). 

 

CD45R/B220 is a cell surface marker encoded by ptprc. The specific antibody, 

CD45R/B220 (clone RA3-6B2) recognises an isoform of the protein that is 

expressed on B-cells (immature and mature) and some activated T-cells. This 

marker was selected to identify B-cells in the CD45.2+ liver immune cells 

(Table 2-9). 

 

CD11b is a cell surface marker encoded by Itgam. It is a protein subunit of an 

integrin commonly known as Mac-1 that is involved in the complement system. 

It is expressed on all myeloid lineage cells. This marker (clone M1/70) was 

selected to identify myeloid cells in the CD45.2+ selected population. In 

addition, variations in expression of CD11b have been used in the 

identification of monocyte / macrophage subsets (Holt et al. 2008; Zigmond et 

al. 2014; Yona et al. 2013; Ramachandran et al. 2012; Murray & Wynn 2011). 

 

Ly6G is a cell surface marker encoded by Ly6g. It is a lymphocyte antigen 6G 

or granulocyte differentiation antigen 1 and is expressed on granulocyte and 
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neutrophil populations. This marker (clone 1A8) was selected to identify 

CD11b+ neutrophils from other CD11b+ myeloid cells. 

 

F4/80 is a cell surface marker encoded by Emr1. It is widely used in the 

identification of monocytes and macrophages in mice and variation in 

expression has been used to define monocyte / macrophage subsets. This 

marker (clone A3-1) was selected to identify monocytes and macrophages in 

CD11b+ myeloid cells. In the literature high expression of CD11b with low 

expression of F4/80 (CD11b hi F4/80 lo) has been used to define infiltrating 

monocyte derived macrophages and intermediate / low expression of CD11b 

with high expression of F4/80 (CD11b int F4/80 hi) has been used to define 

tissue resident macrophages or Kupffer cells (Holt et al. 2008; Zigmond et al. 

2014; Yona et al. 2013; Ramachandran et al. 2012; Murray & Wynn 2011).  

 

However in this work I was unable to identify a live CD11b int F4/80 hi 

population in an isolation process that did not use collagenase. Therefore, 

within the limits of this work, I used F4/80 expression to define macrophages 

and infiltrating monocyte-derived macrophages isolated from the liver as a 

single population. I have called this population “macrophages” as they were 

isolated from perfused tissue. This population is however, likely to be 

composed of resting tissue resident macrophages, activated tissue resident 

macrophages and infiltrating monocyte derived macrophages.  In later work I 

used the expression of CD64 and MerTK to define a mature, tissue 

macrophage subset that was most likely to represent Kupffer cells. 
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CD64 is a cell surface marker encoded by Fcgr1. It is also known as FcɣR1 

and is an immunoglobulin receptor. Protein and gene expression studies has 

shown that CD64 expression is greatest in tissue macrophages (with some 

expression in dendritic cells) (Ikarashi et al. 2013; Gautier et al. 2012). This 

marker (clone X54-5/7.1) was selected to identify mature tissue macrophages 

in conjunction with MerTK. 

 

MerTK is a cell surface marker encoded by Mertk. It is tyrosine kinase 

involved in efferocytosis. Protein and gene expression in F4/80+ cells has 

been associated with mature, possibly tissue resident macrophages and 

dendritic cells (Ikarashi et al. 2013; Gautier et al. 2012). This marker (clone 

108928) was selected to identify mature tissue macrophages in conjunction 

with CD64. 

 

Ly6C is a cell surface marker encoded by Ly6c1. It is lymphocyte antigen 6C 

and is enriched on monocytic myeloid cells. High expression of Ly6C on 

monocytes is associated with expression of CCR2. CCR2 is the receptor for 

CCL2 which is a chemokine associated with myelopoiesis and migration of 

monocytes from the bone marrow to the site of inflammation. This marker 

(clone HK1.4) was selected to phenotype “macrophages” isolated from 

perfused liver. 

 

In acute liver injury liver macrophages with high expression of Ly6C (Ly6Chi) 

have a pro-inflammatory phenotype and gene expression profile previously 

associated with the classically activated M1 phenotype. In chronic liver injury 
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Ly6Chi cells have been associated with a pro-fibrotic phenotype. Ly6Chi cells 

predominate during early acute liver injury and fibrogenesis and are therefore 

considered to be effector cells in the pro-inflammatory and pro-fibrotic phases 

of injury response (Murray & Wynn 2011; Zigmond et al. 2014; 

Ramachandran et al. 2012; Karlmark et al. 2009). Ly6Chi cells have been 

shown to switch to low expression of Ly6C (Ly6Clo) and at baseline Ly6Chi 

cells are only seen transiently as they enter the tissue before they switch to 

Ly6Clo expression (Zigmond et al. 2014; Ramachandran et al. 2012)(Yona et 

al. 2013). 

 

Ly6Clo expression is associated with loss of CCR2 expression and high 

expression of CX3CR1. CX3CR1 is the fractalkine receptor involved in cell 

adhesion and migration and Ly6Clo macrophages have been defined as 

having a ‘patrolling’ function (Geissmann et al. 2010)(Yona et al. 2013). In 

acute and chronic liver injury Ly6Clo cells also have a pro-resolution 

phenotype and gene expression profile (Zigmond et al. 2014; Ramachandran 

et al. 2012) and are therefore considered to be effector cells in the resolution 

phase of injury response.  

 

In the literature there is a confusing array of definition of Ly6C expression by 

flow cytometry. In earlier work, Tacke et al, using the less specific Gr-1 

antibody, producing a histogram with well defined peaks of low Ly6C 

expression and high expression with a trough of intermediate expression 

between the two – however this work was based only on blood monocytes 

(Tacke & Randolph 2006). Tackes’ later work focuses onto two subsets – 
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Ly6Chi and Ly6Clo but gating strategies are not covered (Tacke & 

Zimmermann 2015; Ju & Tacke 2016). Karlmark et al also segregate cells as 

Gr-1(Ly6C)hi or Gr-1(Ly6C)lo. Their paper shows only an overlay of Ly6C 

expression in CD11b+ F4/80+ or F4/80- negative cells and does not 

demonstrate their Ly6C gating strategy (Karlmark et al. 2009). Zigmond et al 

also refer to Ly6Chi and Ly6Clo populations but their paper also does not 

demonstrate their Ly6C gating strategy (Zigmond et al. 2014). Ramachandran 

et al refer to Ly6Chi and Ly6Clo populations and select a subset of cells with 

very high expression of Ly6C as their Ly6Chi population and everything else is 

termed Ly6Clo (Ramachandran et al. 2012). Yona et al refer to Ly6C+ or 

Ly6C- cells. Their Ly6C+ cells are functionally defined in similar fashion to 

Ly6Chi cells described by Karlmark, Tacke and Zigmond. Likewise, their 

Ly6C- cells seem to represent the Ly6Clo populations of the other authors. 

Figures and supplementary data in the paper by Yona et al demonstrate a 

scatter plot gating strategy where quadrants and box gates are used to define 

Ly6C expression and they appear to select a subset of cells with high 

expression of Ly6C, like Ramachandran et al as their Ly6C+ cells with 

everything else defined as Ly6C- (Yona et al. 2013). 

 

In this work I chose to define Ly6C expression using the gating strategy 

demonstrated in Figure 2-6. I used an FMO to define Ly6C negative cells. 

Ly6C positive cells were divided into two groups, Ly6Chi and Ly6Cint/lo based 

on scatter plot grouping and histogram peaks. 
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Cell Surface Marker 
Combination 

Cell Type 
Called 

Notes 

CD45+ NK1.1+ NK cells Co-expression of NK1.1 and CD3 
was seen in some cells likely to 
represent NK/T cells. 
Some NK1.1 cells were positive for 
CD11b, indicting their myeloid origin. 
However these cells were F4/80 
negative. 

CD45+ CD3+ T cells Co-expression of NK1.1 and CD3 
was seen in some cells likely to 
represent NK/T cells. 

CD45+ B220+ B cells  
CD45+ CD11b+ Ly6G+ Neutrophils  
CD45+ CD11b+ Ly6G- 
F4/80+ 

Macrophages This marker combination is likely to 
identify both macrophages and 
infiltrating monocytes isolated from 
the liver after perfusion. 

CD45+ CD11b+ Ly6G- 
F4/80+ Ly6Chi 

Pro-
inflammatory or 
Pro-fibrotic 
macrophage 

As Macrophages. 

CD45+ CD11b+ Ly6G- 
F4/80+ Ly6Cint/lo 

Pro-resolution 
or patrolling 
macrophage 

As Macrophages. 

CD45+ CD11b+ Ly6G- 
CD64+ MerTK+ 

Mature tissue 
macrophages 

 

Table 2-9: Flow cytometry cell surface marker combinations used to identify 
immune cell subsets 
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Selection of single cells based on 
width and height to cells 
 
 
 

FSC = forward scatter 
W = width 
H = height 

 Selection of live cells based of 
live/dead marker staining 
 
 
SSC = side scatter 
A = area 
405-525/50-A = Channel used for 
detection of fixed viability dye with 
eFlour 506 fluorophore 

 

Selection of CD45+ cells 
 
 
 
 
 
405-450/50-A = Channel used for 
detection of CD45.2 antibody with 
eFluor 450 fluorophore 

Figure 2-5: Flow cytometry gating strategy, selection of CD45+ live population 
Pink / purple cells are CD45+ CD11b+ F4/80+ macrophages 
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Selection of CD11b+ cells 
 
 
SSC = side scatter 
A = area 
640-670/14-A = Channel used for 
detection of CD11B with APC 
fluorophore 
 
INSET: FMO used to determine gate 
boundaries 

 

Selection of CD11b+ Ly6G- cells 
 
 
 
405-610/20-A = Channel used for 
detection of Ly6G with Brilliant Violet 605 
fluorophore 
 
INSET: FMO used to determine gate 
boundaries 

 

Selection of CD11b+ Ly6G- F4/80+ 
cells 
 
 
488-530/30-A = Channel used for 
detection of F4/80 with AlexaFluor 488 
fluorophore 
 
INSET: FMO used to determine gate 
boundaries 

 

Histogram used to determineLy6C 
expression on CD11b+ Ly6G- F4/80+ 
cells 
 
 
488-780/30-A = Channel used for 
detection of Ly6C with PE-Cy7 
fluorophore 
 
INSET: FMO used to determine gate 
boundaries 

Figure 2-6: Flow cytometry gating strategy, selection of macrophages after 
CD45 selection (Figure 2-5) 
Pink / purple cells are CD45+ CD11b+ F4/80+ macrophages.  
FMO = fluorescence minus one. 
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Selection of NK cells 
 
SSC = side scatter 
A = area 
 
488-695/40-A = Channel used for 
detection of NK with PerCP-Cy5.5 
fluorophore 
 
INSET: FMO used to determine gate 
boundaries 

 

Selection of T cells 
 
 
 
640-780/60-A = Channel used for 
detection of CD3 with APC-eFluor 780 
fluorophore 
 
 
INSET: FMO used to determine gate 
boundaries 

 

Selection of B cells 
 
 
 
640-730/45-A = Channel used for 
detection of B220 with AF700 
fluorophore 
 
 
INSET: FMO used to determine gate 
boundaries 

Figure 2-7: Flow cytometry gating strategy, selection of non-macrophage 
immune cells after CD45 selection (Figure 2-5) 
Pink / purple cells are CD45+ CD11b+ F4/80+ macrophages.  
FMO = fluorescence minus one. 
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2.9. Hydroxyproline colorimetric assay for liver collagen content 

Hydroxyproline is an amino acid found in collagen and elastin. It is a direct 

measure of the amount of collagen or gelatin in the tissue examined. In the 

liver hydroxyproline has been found to correlate with quantification of Sirius 

red histochemical staining (James et al. 1990). 

 

Snap frozen liver tissue was weighed and homogenised in 100µL of tissue for 

every 10mg of tissue in heat and acid resistant vials (Nunc cryovial) using a 

Fisherbrand™ disposable pestle system. 

 

Samples were hydrolysed by adding equal volumes of concentrated 

hydrochloric acid (approximately 12N) to the homogenate and heating at 

120°C for 3 hours. 

 

After hydrolysis samples were allowed to cool and then spun at 10,000rpm for 

3 minutes to pellet sediment. 10µL of the supernatant was placed in a 1.5mL 

microcentrifuge tube and placed in a vacuum concentrator at 60°C until the 

samples had evaporated to dryness. 

 

Chloramine T concentrate and an oxidation buffer from the BioVision 

Hydroxyproline Colorimetric Assay Kit (K555-100) were combined and 100µL 

of this added to each dry sample for 5 minutes at room temperature. Each 

sample was transferred to a 96 well flat bottom microplate, suitable for use in 

a microplate reader. 
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DMAB concentrate and a perchloric acid/Isopropanol solution from the 

BioVision Hydroxyproline Colorimetric Assay Kit (K555-100) were combined 

and 100µL of this added to each sample and incubated at 60°C for 90 

minutes. The plate was placed in a microplate reader and absorbance at 

560nm recorded. 

 

Sample absorbance was compared to a standard curve produced using serial 

dilutions (see Table 2-10) of a 1mg/mL hydroxyproline standard supplied with 

the BioVision Hydroxyproline Colorimetric Assay Kit (K555-100) that was pre-

diluted to 0.1mg/mL with distilled water. 

 

Standard Concentration 
(µg/well) 

Vol (µL) of 0.1mg/mL Distilled Water (µL) 

0 0 50 
0.025 0.25 49.75 
0.05 0.5 49.5 
0.1 1 49 
0.2 2 48 
0.4 4 46 
0.6 6 44 
0.8 8 42 
1.0 10 40 

Table 2-10: Standard curve dilutions for Hydroxyproline colorimetric assay. 
 

The absorbance at 560nm was converted to µg/g using the straight line 

equation calculated from the standard curve (y=mx+b where m=gradient, 

x=sample absorbance and b=y intercept) in the equation: 

 

[(x-b)/y] x [total volume of sample/10] 
weight of tissue used in g 
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Samples and standard curve were run in at least duplicate. A coefficient of 

variance (CV) was calculated for sample replicates and samples with a CV 

>10 were repeated or excluded.  
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2.10. Gene expression 

Tissue RNA isolation, reverse transcription and PCR was used to quantify 

gene expression using a real time PCR system and semi-quantify gene 

expression in an end-point PCR product, gel electrophoresis band intensity 

analysis. 

 

Sample preparation in gene expression analysis was carried out within a 

laminar flow hood in a designated room. Molecular grade, RNase free water 

(Life Technologies), RNase and DNase free filtered pipette tips, pipettors, 

1.5mL microcentrifuge tubes and 0.2mL PCR tubes were UV irradiated prior 

to use. Where possible, reactions were carried out on ice or samples chilled to 

4°C.  

 

2.10.1. RNA isolation 

Approximately 5mg of snap frozen liver tissue harvested for RNA isolation 

was placed in 250µL of TRIzolⓇ (Life Technologies) and homogenised using 

the Fisherbrand™ disposable pestle system in a 1.5mL microcentrifuge tube. 

Samples were allowed to rest at room temperature for at least 5 minutes.  

 

50µL of chloroform was added to the TRIzolⓇ and tissue homogenate and 

vigorously shaken for 15 seconds before incubating at room temperature for 3 

minutes. Samples were then centrifuged at 13,000rpm for 15 minutes at 4°C. 
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The upper aqueous layer (containing isolated RNA) was aspirated and placed 

in a new microcentrifuge tube. 125µL of isopropanol (Sigma-Aldrich) was 

added to this, shaken gently and incubated at room temperature for 10 

minutes. Samples were then centrifuged at 12,000rpm for 10 minutes at 4°C, 

forming a small white pellet. 

 

The supernatant was aspirated and the pellet left to air dry for 10 minutes 

before resuspending in molecular grade, RNase free water (Life 

Technologies) and incubating at 55°C for 15 minutes. 

 

2.10.2. DNase treatment 

RNA solutions were treated with AmbionⓇ TURBO DNA-free™ kit (life 

Technologies). In a 0.2mL PCR tube, 1µL of 10X Turbo DNase buffer and 1µL 

of Turbo DNase was added to 10µL of RNA solution, gently mixed and 

incubated at 37°C for 30 minutes. The DNase reaction was halted by the 

addition of 1µL of DNase inactivation reagent. 

 

The DNase treated RNA sample was then centrifuged at 10,000rpm for 

90seconds and the supernatant transferred to a new 0.2mL PCR tube. 

 

RNA concentration and purity was assessed by spectrophotometry. RNA 

purity was determined by 260nm/280nm absorption ratios, with a value of 1.8-

2.0 indicating high purity RNA suitable for further experimentation. 
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RNA was diluted with molecular grade, RNase free water to produce a 

concentration of 1µg/µL. 

2.10.3. Reverse transcription 

Reverse transcription of the DNase treated RNA to cDNA was carried out 

using the Ambion™ RETROscriptⓇ Reverse Transcription Kit (Life 

Technologies). 2µL of Oligo dT and 7µL molecular grade, RNase free water 

were combined with 3µL of DNase treated RNA in a 0.2mL PCR tube and 

incubated for 3 minutes at 80°C. 

 

This mixture was combined with 2µL of 10X RT buffer, 4µL of dNTP mix, 1µL 

of RNase inhibitor and 1µL of MMLV-RT and incubated in a thermocycler at 

44°C for 60 minutes, 92°C for 10 minutes before cooling to 4°C. This cDNA 

mixture was used immediately in gene expression analysis or stored at -20°C 

until needed. 

2.10.4. Quantitative gene expression analysis 

Quantitative gene expression analysis was performed using TaqManⓇ assays 

and the StepOneⓇ real time PCR system. 

 

TaqManⓇ assays contain fluorogenic probes that produce a fluorescent signal 

only when the target DNA is amplified. 

 

A mastermix of 2X TaqManⓇ Gene expression Master Mix (Life 

Technologies), molecular grade, RNase free water (Life Technologies) and 2X 
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TaqManⓇ Gene Expression Assay were made and added to 1µL of cDNA in a 

MicroAmpⓇ 96 well plate (Life Technologies). Plates were sealed with 

MicroAmpⓇ optical adhesive film (Life Technologies). 

 

A comparative CT (ΔΔ CT) method of relative quantification was used for all 

assays and therefore plate set up was designed to include duplicates of two 

house-keeping genes and at least duplicates of genes of interest for each 

sample. 

 

Plates were placed in the StepOne real time PCR system (Applied 

biosystems, Life Technologies) and the StepOne software v2.2 (Applied 

biosystems, Life Technologies) programmed for comparative CT TaqMan 

assay quantification with cycle parameters as follows: UDG activation for 2 

minutes at 50°C. Polymerase activation for 10 minute at 95°C. Cycles of 

denaturation (15 seconds at 95°C) and annealing/extension (1 minute at 

60°C) repeated as optimised for the individual TaqManⓇ Gene Expression 

Assay (see Table 2-11). 

  



 146 

Gene 
(Protein) 

TaqManⓇ assay Labelled with Cycles 

GAPDH Mm99999915_g1 FAM-MGB As per gene of 
interest 

ActB 
(β actin) 

Mm00607939_s1 VIC-MGB As per gene of 
interest 

⍺SMA Mm00725412_s1 FAM-MGB 40 
Col1a1 Mm00801666_g1 FAM-MGB 40 
F2r 
(PAR1) 

Mm00438851_m1 FAM-MGB 40 

F2rII 
(PAR2) 

Mm00433160_m1 FAM-MGB 40 

MMP-2 Mm00439498_m1 FAM-MGB 40 
MMP-9 Mm00442991_m1 FAM-MGB 40 
TIMP-1 Mm00441818_m1 FAM-MGB 50 
Table 2-11: TaqManⓇ Gene Expression Assay and PCR cycle number 

 

2.10.4.1. Comparative CT method of quantification 

The comparative CT method of quantitative PCR analysis compares the CT 

value of a gene of interest for a given sample standardised to the CT value of 

a house-keeping (ubiquitously expressed, unaffected by experimental 

intervention) gene in the same sample. The CT value is Cycle Threshold, the 

number of cycles required for the fluoresecent signal in the well to cross the 

(background) threshold. The CT value is inversely proportional to the amount 

of target cDNA in the sample. This method assumes that the reaction 

efficiency is close to 100% in the house-keeping gene as well as the gene of 

interest.  

 

An alternative method for quantifying gene expression is the standard curve 

method where CT values of samples are compared to a standard curve 

created from known quantities of target gene cDNA. However the comparative 

CT method is useful where multiple genes of interest are to be examined in 

each sample as plate design allows for housekeeping genes to be used for 
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more than one gene of interest where a standard curve method requires a 

standard curve for each gene of interest on each plate. 

 

In the comparative CT method the difference between the house-keeping 

gene CT value is subtracted from the gene of interest CT value to give the ΔCT 

for each sample. 

ΔCT = gene of interest CT - house-keeping CT 

 

Once the ΔCT for each sample has been calculated then the experimental and 

control groups can be compared to calculate the ΔΔCT. 

ΔΔCT = experimental ΔCT - control ΔCT 

 

The ΔΔCT can then be expressed in terms of fold change from the control 

gene expression level by calculating the 2(-ΔΔC
T

) value. 

 

Graphical presentation and statistical analysis of this data, given that the ΔCT 

data represents a reading from a reaction with exponential (base 2) 

amplification is complex and debated within the literature. Schmittgen and 

Livak produced a simple and well illustrated paper published in Nature 

Protocols in 2008 and I chose this method of analysis (Schmittgen & Livak 

2008). Briefly, an individual 2-ΔC
T point for each animal or animal group was 

graphically presented on a Log 2 graph to demonstrate the level of gene 

expression.  These figures were then used in statistical analysis. In addition, 

fold change was also noted in the text for direct comparisons between certain 

groups.  
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2.11. Statistics 

Statistical analysis was performed using Microsoft Office for Mac 2011 Excel 

version 14.6.2 (last update) and Prism 6 for Mac OS X version 6.0 (last 

update). 

 

As the bulk of this work is based on small groups it was not assumed that 

data followed a Gaussian distribution and therefore nonparametric tests were 

selected. 
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3. αSMA targeted expression of TFPI in acute liver injury 

The genome of the transgenic mouse strain αSMA-TFPI contains a construct 

that initiates the expression of human TFPI when a cell expresses αSMA. The 

biological effect is therefore cell specific expression of TFPI beyond normal 

physiological expression. 

 

3.1. Baseline parameters 

The baseline (uninjured) liver phenotype of the αSMA-TFPI mice was defined 

to help analyse data from experimental studies.  

	
  

3.1.1. Plasma liver function tests 

Plasma markers of liver function are widely used as minimally invasive 

markers of liver injury and function. There were n=13 in the control group and 

n=14 in the αSMA-TFPI group (except for albumin values, where n=8 in the 

αSMA-TFPI group due to failed assays in one batch). 

 

Alanine aminotransferase (ALT) is released from injured hepatocytes. 

Average ALT levels in C57BL6/J mice aged 6-16 weeks are 42-80IU/L (Grubb 

et al. 2014). Median ALT values for αSMA-TFPI and control mice in this work 

were both below this range. 

 

There was no statistically significant difference in plasma ALT of αSMA-TFPI 

mice compared to control mice (Mann-Whitney U test, p=0.18. Figure 3-1. 

Graph A). 
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Alkaline phosphatase (ALP) is an enzyme produced by cholangiocytes and 

can be elevated when there is damage to these cells. Of note ALP is also 

produced by bone and can be elevated due to bone disease. Average ALP 

levels in C57BL6/J mice are 68-140IU/L (Grubb et al. 2014). Median ALP 

values for αSMA-TFPI and control mice in this work fell just below this range 

and there was no statistically significant difference in plasma ALP of αSMA-

TFPI mice compared to control mice (Mann Whitney test, p=0.30. Figure 3-1. 

Graph B). 

 

Total bilirubin measures unconjugated and conjugate bilirubin, the breakdown 

product of haemoglobin. The liver is responsible for conjugation and excretion 

of bilirubin. Elevated levels of total bilirubin suggest liver injury and decreased 

bilirubin metabolism, bile duct injury obstructing bilirubin excretion or 

increased breakdown of haemoglobin. Average total bilirubin levels in 

C57BL6/J mice aged 8-11 weeks are 0.48-1.35 µmol/L (Grubb et al. 2014). 

Median total bilirubin values for αSMA-TFPI and control mice in this work 

were above the normal range presented in the literature. However, there was 

no statistically significant difference in plasma total bilirubin of αSMA-TFPI 

mice compared to control mice (Mann Whitney test, p=0.28. Figure 3-1. 

Graph C). 

 

Decreased levels of albumin can indicate chronic impairment of the livers 

synthetic function. Average albumin levels in C57BL6/J mice aged 8-11 

weeks are 31-39g/L (Grubb et al. 2014). Median albumin values for αSMA-

TFPI and control mice in this work were below the normal range presented in 
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the literature and there was no statistically significant difference in plasma 

albumin of αSMA-TFPI mice compared to control mice (Mann Whitney test, 

p=0.87. Figure 3-1. Graph D). 
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Figure 3-1: Baseline plasma 
liver function test results 
Bars indicate median with 
interquartile range. 
 
Graph A: Plasma ALT 
(IU/L). Median 24IU/L and 
40IU/L in control and 
αSMA-TFPI strains 
respectively. 
 
Graph B: Plasma ALP 
(IU/L). Median 56IU/L and 
46IU/L in control and 
αSMA-TFPI strains 
respectively. 
 
Graph C: Plasma total 
bilirubin (µmol/L). Median 
4.6µmol/L and 3.8µmol/L in 
control and αSMA-TFPI 
strains respectively. 
 
Graph D: Plasma albumin 
(g/L). Median 24.4g/L and 
24.2g/L in control and 
αSMA-TFPI strains 
respectively. 
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3.1.2. Hepatic stellate cell activation 

Activated hepatic stellate cells are the predominant collagen producing cell in 

the liver during homeostasis and fibrosis. In the acute phase of liver injury 

there is initiation of hepatic stellate cells activation through paracrine 

stimulation from liver sinusoidal endothelial cells, liver macrophages, injured 

hepatocytes and platelets. The predominant mediators involved in this 

process are TGF- β, TRAIL and reactive oxygen species. Initiation of hepatic 

stellate cell activation is followed by perpetuation, where there is proliferation 

and migration of activated hepatic stellate cells accompanied by fibrogenesis 

(reviewed in (Scott L Friedman 2008)). Activated hepatic stellate cells express 

⍺SMA. Immunohistochemistry for ⍺SMA in FFPE liver tissue sections is used 

as a surrogate for hepatic stellate cell activation.  

 

Digital image analysis of FFPE liver sections stained using an antibody for 

⍺SMA showed no statistically significant difference in the number of activated 

hepatic stellate cells in the liver of αSMA-TFPI mice compared to C57BL6/J 

control mice (Mann Whitney test, p=0.10. Figure 3-2. Graph A). There were 

n=10 in the control group and n=11 in the αSMA-TFPI group. 
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Figure 3-2: Baseline αSMA 
immunohistochemistry 
Bars indicate median with 
interquartile range. 
 
HPF = High power field, x400 
magnification. 
 
Graph A: Number of activated 
hepatic stellate cells in liver 
FFPE tissue sections as 
determined by αSMA 
immunohistochemistry. 
Median 0.9 cells per HPF and 
0.4 cells per HPF in control 
and αSMA-TFPI strains 
respectively. 
 
Image 1: Liver FFPE sections 
stained with αSMA from 
control mice. Original x400 
magnification. 
 
Image 2: Liver FFPE sections 
stained with αSMA from 
αSMA-TFPI mice. Original 
x400 magnification. 
 

Image 1 

 
Image 2 

 
 
  

Control aSMA-TFPI
0

1

2

3

4

5
N

um
be

r o
f 

α
SM

A
 p

os
iti

ve
 c

el
ls

 p
er

 H
PF

A



 155 

 

3.1.3. Liver immune cell composition 

The immune cell composition of the liver has been shown to affect the rate 

and progression of liver injury. 

 

Macrophages are a key effector cell in acute and chronic liver injury. 

Immunohistochemistry for F4/80 in liver FFPE sections is used to identify 

macrophages.  

 

Digital image analysis of liver FFPE sections stained using an antibody for 

F4/80 showed no statistically significant difference in the number of F4/80 

positive cells in the livers of αSMA-TFPI mice compared to C57BL6/J control 

mice (Mann Whitney test, p=0.15. Figure 3-3. Graph A). There were n=5 in 

both the control and the αSMA-TFPI group. This was less than the power 

calculation sample number due to a failed assay in one batch and because 

flow cytometry was also used to determine the liver immune cell composition. 
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Figure 3-3: Baseline F4/80 
immunohistochemistry 
Bars indicate median with 
interquartile range. 
 
HPF = High power field, x400 
magnification. 
 
Graph A: Number of 
macrophages in liver FFPE 
tissue sections as determined 
by F4/80 
immunohistochemistry. 
Median 26 cells per HPF and 
23 cells per HPF in control 
and αSMA-TFPI strains 
respectively. 
 
Image 1: Liver FFPE sections 
stained with F4/80 from 
control mice. Original x400 
magnification. 
 
Image 2: Liver FFPE sections 
stained with F4/80 from αSMA 
-TFPI mice. Original x400 
magnification. 
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Flow cytometry of fresh cells isolated from mouse liver was used to identify 

macrophages, neutrophils, T cells, B cells and NK cells. There were n=9 in 

both the control and the αSMA-TFPI group, except for data relating to the liver 

T cell, B cell and NK cell composition where n=3 in each group. This reduced 

number was due to an error with fluorophore selection and detection channels 

that was not picked up initially. It was subsequently felt inappropriate to repeat 

the experiment on animal welfare grounds, as it would require escalation of 

breeding and buying / transporting animals. 

 

There was no statistically significant difference in the overall proportion of 

macrophages (CD45+ CD11b+ Ly6G- F4/80+ cells) in the livers of αSMA-

TFPI mice compared to control mice at baseline (Mann Whitney test, p=0.43). 

However, there was a statistically significant increase in the proportion of 

macrophages that had intermediate / low Ly6C (Ly6Cint/lo) expression within 

this population in the αSMA-TFPI mice at baseline (Mann Whitney test, 

p=0.03. Figure 3-4. Graphs A-C). 

 

There was no statistically significant difference in the proportion of mature 

macrophages (CD45+ CD11b+ Ly6G- CD64+ MerTK+ cells) in the livers of 

αSMA-TFPI mice compared to control mice at baseline (Mann Whitney test, 

p=0.18). There was no statistically significant difference in the proportions of 

mature macrophages with intermediate / low (Ly6Cint/lo) or high (Ly6Chi) Ly6C 

expression in αSMA-TFPI mice compared to control mice (Mann Whitney test, 

p=0.90 and p=0.18 respectively. Figure 3-4. Graphs D-F). 
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There was no statistically significant difference in the proportion of neutrophils 

in the livers of αSMA-TFPI mice compared to control mice (Mann Whitney test, 

p=0.16. Figure 3-5. Graph A). 

 

There was no statistically significant difference in the proportion of T cells, B 

cells or NK cells in the livers of αSMA-TFPI mice compared to control mice 

(Mann Whitney test, p=0.40, p=0.40 and p=0.10 respectively. Figure 3-5. 

Graphs B-D). Review of median and interquartile ranges for the data showed 

a trend towards decreased proportions of NK cells in αSMA-TFPI mice 

compared to control mice, however the numbers in each arm were small, 

limiting statistical analysis. 
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Figure 3-4: Baseline liver macrophage composition 
Bars indicate median with interquartile range. 
 
* p=<0.05 
 
Next page for figure legend. 

  

Control aSMA-TFPI
0

10

20

30

40
M

ac
ro

ph
ag

es
(C

D
11

b+
 L

y6
G

- F
4/

80
+)

%
 C

D
45

+ 
ce

lls

Control aSMA-TFPI
0

20

40

60

80

100

Ly
6C

 in
t/l

o 
ex

pr
es

si
on

%
 M

ac
ro

ph
ag

es
 

(C
D

11
b+

 L
y6

G
- F

4/
80

+)

*

Control aSMA-TFPI
0

20

40

60

80

Ly
6C

 h
i e

xp
re

ss
io

n
%

 M
ac

ro
ph

ag
es

 
(C

D
11

b+
 L

y6
G

- F
4/

80
+)

Control aSMA-TFPI
0

5

10

15

20

25

M
at

ur
e 

m
ac

ro
ph

ag
es

(C
D

11
b+

 L
y6

G
- C

D
64

+ 
M

er
TK

+)
%

 C
D

45
+ 

ce
lls

Control aSMA-TFPI
50

60

70

80

90

100

Ly
6C

 in
t/l

o 
ex

pr
es

si
on

%
 M

at
ur

e 
m

ac
ro

ph
ag

es
 

(C
D

11
b+

 L
y6

G
- C

D
64

+ 
M

er
TK

+)

Control aSMA-TFPI
0

10

20

30

40

50

Ly
6C

 h
i e

xp
re

ss
io

n
%

 M
at

ur
e 

m
ac

ro
ph

ag
es

 
(C

D
11

b+
 L

y6
G

- C
D

64
+ 

M
er

TK
+)

A D

B E

C F



 160 

Figure 3-4: Baseline liver macrophage populations 
 
Graph A: Macrophages (CD45+ CD11b+ Ly6G- F4/80+ cells) as a proportion 
of CD45+ (immune) cells. Median at baseline, 9% and 11% of CD45+ cells in 
control and αSMA-TFPI strains respectively. 
 
Graph B: Macrophage expression of intermediate / low levels of Ly6C as a 
proportion of macrophages. Median at baseline, 39% and 59% macrophages 
in control and αSMA-TFPI strains respectively. 
 
Graph C: Macrophage expression of high levels of Ly6C as a proportion of 
macrophages. Median at baseline, 32% and 40% of macrophages in control 
and αSMA-TFPI strains respectively. 
 
Graph D: Mature macrophages (CD45+ CD11b+ Ly6G- CD64+ MerTK+ 
cells) as a proportion of CD45+ (immune) cells. Median at baseline, 4.3% and 
7.4% of CD45+ cells in control and αSMA-TFPI strains respectively. 
 
Graph E: Mature macrophage expression of intermediate / low levels of Ly6C 
as a proportion of macrophages. Median at baseline, 76% and 72% of CD45+ 
cells in control and αSMA-TFPI strains respectively. 
 
Graph F: Mature macrophage expression of high levels of Ly6C as a 
proportion of macrophages. Median at baseline, 14% and 27% of CD45+ cells 
in control and αSMA-TFPI strains respectively. 
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Figure 3-5: Baseline liver 
neutrophil, T cell, B cell and 
NK cell composition 
Bars indicate median with 
interquartile range. 
 
Graph A: Neutrophils 
(CD45+ CD11b+ Ly6G+ 
cells) as a proportion of 
CD45+ (immune) cells. 
Median at baseline, 1.2% 
and 2.1% of CD45+ cells in 
control and αSMA-TFPI 
strains respectively. 
 
Graph B: T cells (CD45+ 
CD3+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at baseline, 38% 
and 26% of CD45+ cells in 
control and αSMA-TFPI 
strains respectively. 
 
Graph C: B cells (CD45+ 
B220+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at baseline, 25% 
and 19% of CD45+ cells in 
control and αSMA-TFPI 
strains respectively. 
 
Graph D: NK cells (CD45+ 
NK1.1+ cells) as a 
proportion of CD45+ 
(immune) cells. Median at 
baseline, 18% and 0.9% of 
CD45+ cells in control and 
αSMA-TFPI strains 
respectively. 
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3.1.4. Protease activated receptors 

Protease activated receptors (PAR) are transmembrane G-protein linked 

receptors that are activated when proteases cleave an extracellular amino-

terminal. Activation leads to intracellular signalling including IP3, MAPK and 

NF-κB pathways. 

 

PAR1 and PAR2 gene expression infers the amount of receptor actively being 

transcribed in the sample. Quantitative PCR of cDNA reverse transcribed from 

whole liver homogenate RNA showed no statistically significant difference in 

PAR1 or PAR2 gene expression in the livers of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p=0.78 and p=0.99 respectively. Figure 3-6. 

Graphs A and B). There were n=8 in both the control and the αSMA-TFPI 

group for PAR1 gene expression assays. There were n=4 in the control group 

and n=6 in the αSMA-TFPI group in PAR2 gene expression assays due to 

failed assays. 
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Figure 3-6: Baseline PAR 
gene expression 
Bars indicate median with 
interquartile range. 
 
Graph A: PAR1 gene 
expression in whole liver 
homogenates. At baseline 
the αSMA-TFPI strain had a 
1.2 fold change (increase) 
in PAR1 gene expression 
compared to controls. 
 
Graph B: PAR2 gene 
expression in whole liver 
homogenates. At baseline 
the αSMA-TFPI strain had a 
1.1 fold change (increase) 
in PAR2 gene expression 
compared to controls. 
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3.1.5. Baseline transgenic TFPI expression 

Genomic carriage of the transgene was confirmed by end point PCR and gel 

electrophoresis of PCR products. Only mice with proven genomic carriage of 

the transgene were termed αSMA-TFPI mice and used in experiments. 

 

Expression of the transgene was assessed using immunohistochemistry and / 

or PCR. Immunohistochemistry for human TFPI was performed on FFPE liver, 

kidney, spleen, lung and heart sections and end point PCR of cDNA reverse 

transcribed from whole liver homogenate DNAse treated RNA. 

 

The anti-human TFPI antibody used in the immunohistochemistry was specific 

to amino acids 29-44 in the human protein, a portion of the protein present in 

the transgene that has only 31.25% homology with the mouse TFPI protein. 

Specificity was confirmed by negative staining in tissue from C57BL6/J control 

mice. 

 

Strong DAB staining was seen in blood vessel walls in the FFPE liver, kidney, 

spleen and lung tissue (Figure 3-7, Image 1, 3, 4, 5). The distribution was 

consistent with transgenic TFPI expression in smooth muscle and associated 

with cellular αSMA expression (Figure 3-7. Image 1 and 2).  Staining carried 

out on control mice showed no evidence of TFPI expression in keeping with 

the specificity of the antibody. 

 

Gene expression was identified on gel electrophoresis of PCR products in 3/3 

liver homogenate RNA derived cDNA samples from baseline αSMA-TFPI 
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mice (Figure 3-7. Image 6).  The primer pairs used detect a unique portion of 

the transgenic fusion protein, preventing non-specific detection of non-

transgenic TFPI. 

 

The results from the immunohistochemistry and liver homogenate gene 

expression suggest a moderate amount of transgene expression in the livers 

of the αSMA-TFPI mice at baseline.   
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Image 1 

 

Image 2 

 
Image 3 

 

Image 4 

 

 

Image 5 

 

 

Image 6 
 

 

 

 

Figure 3-7: Baseline transgenic TFPI expression 
Next page for figure legend. 
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Figure 4-8: Baseline transgenic TFPI expression 
 
Previous page for figures. 
Arrow indicates typical staining pattern in vascular smooth muscle of vessels 
(Images 1-4, long arrow) or bronchial and oesophageal (Image 5, arrowheads 
and short arrow respectively). 
 

Image 1: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse. 
Kidney. Original x100 magnification. 
Image 2: Anti-αSMA immunohistochemistry – matched to Image 1. αSMA-
TFPI mouse. Kidney. Original x100 magnification. 
 
Both images demonstrate DAB staining in smooth muscle cells of kidney 
vasculature. Image 1 demonstrates TFPI staining and Image 2 demonstrates 
αSMA staining – confirming the distribution of the transgenic protein to cells 
expressing αSMA. 
 
Image 3: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse. Liver. 
Original x100 magnification. 
Image 4: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse. 
Spleen. Original x100 magnification. 
Image 5: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse. Lung 
and Oesophagus Original x20 magnification. 
 
All images demonstrate DAB staining of the transgenic TFPI protein in a 
distribution consistent with cells expressing αSMA, being predominantly 
smooth muscle. In the liver there is patchy staining of cells making up the wall 
of a large vessel in the centre of the image (Image 3). In the spleen there is 
strong staining of cells making up the wall of large vessels at the bottom and 
right of the image (Image 4). In the lung there is strong staining of cells 
making up the wall of the bronchi (off-centre of the image) and oesophagus 
(top left of the image, Image 5). 
 
Image 6: PCR product gel electrophoresis. αSMA-TFPI baseline samples 
(A44, A90 and A91). PCR of 1µL of cDNA transcribed from liver homogenate 
RNA. 
 
Pos = genomic DNA positive control. 
BL6 = control (C57BL6/J) liver homogenate cDNA (negative control). 
Blank = non-template control. 
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3.1.6. Summary – Baseline parameters 

The αSMA-TFPI mice showed moderate amounts of transgenic TFPI gene 

and / or protein expression in the liver and other major organs at baseline 

(without liver injury). However, it appears that this expression did not alter 

many physiological and biological parameters of interest in the investigation of 

liver injury as there were no differences between αSMA-TFPI and control 

mice in plasma liver function tests, measures of hepatic stellate cell activation 

or protease activated receptor (PAR) gene expression. This is in keeping with 

previous work that showed no effect of the transgene on baseline bleeding 

times and circulating anticoagulant activity (Chen, Giannopoulos, et al. 2004; 

D Chen et al. 2006). 

 

The reason for this, despite the moderate protein and gene expression seen, 

is likely to be because the transgenic construct was expressed on smooth 

muscle cells that were not in direct contact with the circulation (where clotting 

cascade factors are present at baseline) nor effector cells expressing PAR 

and thereby preventing biological activity. 

 

αSMA-TFPI mice did demonstrate a statistically significant increase in the 

proportion of macrophages (CD45+ CD11b+ Ly6G- F4/80+ cells) with 

intermediate / low expression of Ly6C (Ly6Cint/lo) compared to control mice at 

baseline. These are the patrolling macrophages with high levels of CX3CR1 

and a pro-resolution phenotype. This difference was only identified in the 

general macrophage population, not within the CD64+ MerTK+ sub-

population of mature tissue macrophages. Therefore the sub-set with the 



 169 

greater proportion of Ly6Cint/lo expression were the infiltrating, monocyte 

derived macrophages. This suggests that the transgenic TFPI expression 

might be affecting the recruitment of pro-resolution macrophages to the liver 

at rest, priming the liver for recovery after injury. 

 

In the existing literature I have not been able to identify baseline proportions 

of Ly6C expression in hepatic macrophages (CD11b+ F4/80+ cells). Review 

of the supplementary data provided by Ramachandran et al suggests that 

Ly6Cint/lo and Ly6Chi macrophages exist in a ratio of approximately 2:1 to 4:1 

at baseline, depending on gating strategies (Ramachandran et al. 2012). 

Transgenic mice had similar proportions of Ly6Chi macrophages compared to 

control mice at baseline and even with the statistically significant difference in 

proportion of Ly6Cint/lo macrophages, a ratio of approximately 2:1 was seen in 

control and transgenic mice. Therefore if the innate immune reaction to liver 

injury is determined by the balance of macrophage phenotype subsets and 

their ability to class switch in altered environments, then it may be that the 

differences seen between transgenic mice and control mice at baseline does 

not represent a biologically significant difference. Therefore I feel that the 

significance of this difference at baseline can only be interpreted in relation to 

liver injury models discussed later in this work. 

 

The transgenic mice also demonstrated a decreased proportion of NK cells 

within the CD45+ immune cell population at baseline compared to control 

mice. It is possible that this is due to the small numbers in each cohort (due to 

experimental error – discussed in section 3.1.3). However the numbers were 
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quite striking. I cannot formulate a reason for this from the data collected.  It is 

possible that the expression TFPI linked to αSMA positive activated hepatic 

stellate cells in the uninjured liver, acted to alter soluble and cell-cell ligand / 

receptor interactions, altering the NK cell population directly or via changes in 

the macrophage population discussed above. The cross talk between 

macrophages and NK cells is not well described in the published literature. 

Michel et al bring together a number of papers from studies in humans and 

mice in their review article, highlighting the role of cell-cell ligand / receptor 

interactions and soluble factors, concluding that the plasticity of macrophage 

phenotypes and tissue environments makes the understanding of the 

pathways implicated challenging (Michel et al. 2013).  

 

Further work quantifying the liver content of cytokines, soluble factors and cell 

ligand / receptor expression may help determine how the expression of TFPI 

on αSMA positive cells may have reduced the liver NK cell population in the 

transgenic mice. As above, the significance of this difference at baseline will 

be interpreted in relation to liver injury models discussed later in this work.  

 

Finally, both αSMA-TFPI and control mice in this study demonstrated plasma 

total bilirubin levels above the normal range. There was no indication that 

either strains of mice had bile duct injury (plasma ALP not elevated, no 

evidence of bile duct damage or bilirubinostasis on histology) and there was 

no identifiable reason for both strains to have an increased turnover of 

erythrocytes therefore the reason for the plasma total bilirubin result is likely to 

be associated with either diet or blood collection, processing and analysis 
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methods. Similarly the lower than normal range of plasma albumin levels seen 

in both αSMA-TFPI and control mice is likely to represent variation in either 

diet or blood collection, processing and analysis methods. As all mice were 

maintained on the same diet and all blood samples collected and processed 

in the same way it is unlikely that these findings would affect conclusions 

drawn from injury models. 
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3.2. Paracetamol induced acute liver injury 

Paracetamol toxicity induces centrilobular hepatocellular necrosis with a 

marked inflammatory cell infiltrate. 

 

300-350mg/kg of paracetamol was administered to mice via intraperitoneal 

injection. Mice were culled at 6, 12, 24, 48 and 72 hours after administration 

of paracetamol. 

 

3.2.1. Plasma liver function tests 

See Table 3-1and Figure 3-8, Graphs A-D. 

 

At 6 hours there were n=5 in both the control and the αSMA-TFPI group. At 

12 hours there were n=4 in both the control and the αSMA-TFPI group. At 24 

hours there were n=6 in the control group and n=5 in the αSMA-TFPI group. 

At 48 hours there were n=5 in both the control and the αSMA-TFPI group. At 

72 hours there were n=6 in the control group and n=4 in the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays. Baseline sample numbers were as 

previously noted in section 3.1. 

 

At 6 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma total bilirubin of αSMA-TFPI mice 

compared to C57BL6/J control mice (Mann Whitney test, p = 0.03). There was 

no statistically significant difference in the plasma ALT or ALP of αSMA-TFPI 
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mice compared to control mice (note: plasma albumin values were not 

recorded for this time point). 

 

At 12 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma ALP of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p = 0.03).  There was no statistically 

significant difference in the plasma ALT, total bilirubin or albumin of αSMA-

TFPI mice compared to control mice. 

 

At 24 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma ALT of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p = 0.03). There was no statistically 

significant difference in the plasma ALP, total bilirubin or albumin of αSMA-

TFPI mice compared to control mice. 

 

At 48 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma ALT of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p = 0.03). There was no statistically 

significant difference in the plasma ALP, total bilirubin or albumin of αSMA-

TFPI mice compared to control mice. 

 

At 72 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma ALT of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p = 0.04). There was no statistically 
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significant difference in the plasma ALP, total bilirubin or albumin of αSMA-

TFPI mice compared to control mice. 

 

Median plasma 
values in each strain 

(fold change from 
baseline) 

Base-
line 

6 
hours 

12 
hours 

24 
hours 

48 
hours 

72 
hours 

ALT 
IU/L 

Control 24 896 
(37) 

4399 
(183) 

2553 
(106) 

552 
(23) 

214 
(9) 

αSMA-TFPI 40 532 
(13) 

1306 
(33) 

418 
(10) 

118 
(3) 

66 
(1.7) 

ALP 
IU/L 

Control 56 112 
(2.0) 

154 
(2.8) 

126 
(2.3) 

116 
(2.1) 

81 
(1.5) 

αSMA-TFPI 46 76 
(1.7) 

95 
(2.1) 

76 
(1.7) 

70 
(1.5) 

86 
(1.9) 

Total 
bilirubin 
µmol/L 

Control 4.6 5.6 
(1.2) 

4.5 
(-1.0) 

8.7 
(1.9) 

5.4 
(1.2) 

4.1 
(-1.1) 

αSMA-TFPI 3.8 3.1 
(-1.2) 

7.6 
(2) 

5.8 
(1.5) 

3.6 
(-1.1) 

4.4 
(1.2) 

Albumin 
g/L 

Control 24.4  
 

28.5 
(1.2) 

26.9 
(1.1) 

25.2 
(1.0) 

26.1 
(1.1) 

αSMA-TFPI 24.2  27.0 
(1.1) 

23.4 
(-1.0) 

26.6 
(1.1) 

25.4 
(1.1) 

Table 3-1: Paracetamol induced acute liver injury, median plasma liver function 
tests values and fold change from baseline 
BOLD figures = statistically significant decrease in value in αSMA-TFPI mice 
compared to control mice. 
 
A fold change of 1.0 indicates a x1.0 increase in the value, or no change. 
A negative fold change indicates a decrease in the value. 
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Figure 3-8 Paracetamol 
induced acute liver injury, 
plasma liver function tests 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. 
 
See Table 3-1 for median 
values. 
 
Graph A: Plasma ALT 
(IU/L). 
Graph B: Plasma ALP 
(IU/L). 
 
Graph C: Plasma total 
bilirubin (µmol/L). 
 
Graph D: Plasma albumin 
(g/L).  
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3.2.2. Hepatocellular necrosis 

Digital image analysis of percentage area necrosis in H&E stained liver FFPE 

tissue sections showed a statistically significant decrease in αSMA-TFPI mice 

compared to C57BL6/J control mice at 24 and 48 hours after administration of 

paracetamol (Mann Whitney test, p = 0.008 at both time points. Figure 3-9. 

Graph A). Prior to this (at 2, 6 and 12 hours) there was no statistically 

significant difference in αSMA-TFPI mice compared to control mice. At 72 

hours after administration of paracetamol control mice still showed evidence 

of hepatocellular necrosis whereas αSMA-TFPI mice demonstrated little or no 

necrosis (median 3% and 0% in control and αSMA-TFPI mice respectively. 

Figure 3-9. Graph A). However the difference was no longer statistically 

significant.  
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Graph A 

 
Image 1 

 

Image 2 

 
Image 3 

 

Image 4 

 
 
Figure 3-9: Paracetamol induced acute liver injury, hepatocellular necrosis 
Symbols indicate median. Bars indicate interquartile range. 
** p=<0.01. 
Graph A: Percentage area necrosis in liver FFPE tissue sections. n=5 in each 
arm at each time point. 
Image 1: Hepatocellular necrosis at 24 hours. Control mouse. Original x100 
magnification. Image 2: Hepatocellular necrosis 24 hours. αSMA-TFPI mouse. 
Original x100 magnification. 
Image 3: Hepatocellular necrosis at 72 hours. Control mouse. Original x100 
magnification. Image 4: Hepatocellular necrosis at 72 hours. αSMA-TFPI 
mouse. Original x100 magnification. 
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3.2.3. Hepatic stellate cell activation 

Digital image analysis of FFPE liver sections stained using an antibody for 

⍺SMA showed a statistically significant increase in αSMA positive activated 

hepatic stellate cells in αSMA-TFPI mice at 12 hours after paracetamol 

administration (Mann Whitney test, p = 0.05. Figure 3-10. Graph A). This was 

followed by a reversal in trends with αSMA-TFPI mice subsequently 

demonstrating fewer αSMA positive activated hepatic stellate cells compared 

to controls (Table 3-2). This was statistically significant at 48 hours after 

administration of paracetamol (Mann Whitney test, p = 0.008. Figure 3-10. 

Graph A). 

 

At 12 hours there were n=5 in both the control and the αSMA-TFPI group. At 

24 hours there were n=4 in the control group and n=5 in the αSMA-TFPI 

group. At 48 hours there were n=5 in both the control and the αSMA-TFPI 

group. At 72 hours there were n=6 in the control group and n=4 in the αSMA-

TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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Median number of αSMA+ 
cells 

(fold change from baseline) 

Base-
line 

12 
hours 

24 
hours 

48 
hours 

72 
hours 

Control 0.9 0.8 
(-1.1) 

2.5 
(2.8) 

21.9 
(24) 

7.3 
(8) 

αSMA-TFPI 0.4 1.2 
(3) 

1.7 
(4) 

10.8 
(27) 

0.4 
(1) 

Table 3-2: Paracetamol induced acute liver injury, median number of activated 
hepatic stellate cells per HPF and fold change from baseline 
BOLD figures = statistically significant difference between αSMA-TFPI mice 
and control mice. 
 

Graph A 

 
Image 1 

 

Image 2 

 
Figure 3-10: Paracetamol induced acute liver injury, αSMA 
immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
* p=<0.05. ** p=<0.01. 
Graph A: Number of activated hepatic stellate cells in liver FFPE tissue 
sections as determined by ⍺SMA immunohistochemistry. 
Image 1: Anti-αSMA immunohistochemistry at 48 hours. Control mouse. 
Original x400 magnification. Image 2: Anti-αSMA immunohistochemistry at 48 
hours. αSMA-TFPI mouse. Original x400 magnification.  

Baseline 12hrs 24hrs 48hrs 72hrs
0

2

4

5
15
25
35

N
um

be
r o

f 
α

SM
A

 p
os

iti
ve

 c
el

ls
 p

er
 H

PF

Control
A

aSMA-TFPI  

*

**



 180 

3.2.4. Liver immune cell composition 

At baseline there were differences in the macrophage population phenotype 

(possibly due to gating strategies) and a trend towards decreased NK cells in 

αSMA-TFPI mice compared to C57BL6/J control mice (Section 3.1.3. Figure 

3-4 and Figure 3-5). 

 

Flow cytometry of fresh immune cells isolated from the liver showed that at 48 

hours after administration of paracetamol there was a statistically significant 

decrease in the overall proportion of macrophages (CD45+ CD11b+ Ly6G- 

F4/80+ cells) in αSMA-TFPI mice compared to control mice (Mann Whitney 

test p = 0.01 Figure 3-11. Graph A). However there was no statistically 

significant difference at prior or subsequent time points. Assessment of 

macrophage Ly6C expression in this population showed no statistically 

significant difference in proportions of macrophages with intermediate / low 

Ly6C expression (Ly6Cint/lo) or high ly6C expression (Ly6Chi) in the liver of 

αSMA-TFPI mice compared to control mice at any time point (Figure 3-11. 

Graphs B and C). 

 

At 24 hours there were n=5 in the control group and n=6 in the αSMA-TFPI 

group. At 48 hours there were n=4 in the control and n=6 in the αSMA-TFPI 

group. At 72 hours there were n=6 in both the control and the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays. Baseline sample numbers were as 

previously noted in section 3.1. 
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Assessment of mature macrophages (CD45+ CD11b+ Ly6G- CD64+ MerTK+ 

cells) showed a near significant decrease in the proportion of mature 

macrophages in αSMA-TFPI mice compared to control mice culled at 24 

hours after administration of paracetamol (Mann Whitney test p = 0.07. Figure 

3-12. Graph A). Assessment of macrophage Ly6C expression in this 

population showed a statistically significant decrease in the proportion of 

Ly6Cint/lo mature macrophages and an increase in Ly6Chi mature 

macrophages in αSMA-TFPI mice compared to control mice (Figure 3-12. 

Graphs B and C). However there was no statistically significant difference at 

prior or subsequent time points. 

 

At 24 hours there were n=7 in the control group and n=6 in the αSMA-TFPI 

group. At 48 hours there were n=4 in the control and n=6 in the αSMA-TFPI 

group. At 72 hours there were n=6 in both the control and the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays. Baseline sample numbers were as 

previously noted in section 3.1. 

 

Flow cytometry of fresh cells isolated from the liver showed no statistically 

significant difference in the proportions of neutrophils, T cells, B cells and NK 

cells in αSMA-TFPI mice compared to control mice culled any time point after 

administration of paracetamol (Figure 3-13. Graphs A-D). Review of median 

and interquartile ranges showed a trend towards an increased proportion of B 

cells in the livers of αSMA-TFPI mice compared to control mice culled at 24 
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hours after administration of paracetamol. However this did not reach 

statistical significance. 

 

At 24 hours there were n=5 in the control group and n=6 in the αSMA-TFPI 

group. At 48 hours there were n=4 in the control and n=6 in the αSMA-TFPI 

group. At 72 hours there were n=6 in both the control and the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays. Baseline sample numbers were as 

previously noted in section 3.1. 
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Figure 3-11: Paracetamol 
induced acute liver injury, 
macrophage populations 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. **p=<0.01. 
 
See Table 3-3 for median 
values. 
 
Graph A: Macrophages 
(CD45+ CD11b+ Ly6G- 
F4/80+ cells) as a 
proportion of CD45+ 
(immune) cells. 
 
Graph B: Macrophage 
expression of intermediate 
or low levels of Ly6C as a 
proportion of macrophages.  
 
Graph C: Macrophage 
expression of high levels of 
Ly6C as a proportion of 
macrophages.  
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Figure 3-12: Paracetamol 
induced acute liver injury, 
mature tissue macrophage 
populations 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. 
 
See Table 3-3 for median 
values. 
 
Graph A: Mature 
macrophages (CD45+ 
CD11b+ Ly6G- CD64+ 
MerTK+ cells) as a 
proportion of CD45+ 
(immune) cells. 
 
Graph B: Mature 
macrophage expression of 
intermediate / low levels of 
Ly6C as a proportion of 
mature macrophages.  
 
Graph C: Mature 
macrophage expression of 
high levels of Ly6C as a 
proportion of mature 
macrophages.  
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Figure 3-13: Paracetamol 
induced acute liver injury, 
liver neutrophil, T cell, B cell 
and NK cell populations 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
See Table 3-4 for median 
values. 
 
Graph A: Neutrophils 
(CD45+ CD11b+ Ly6G+ 
cells) as a proportion of 
CD45+ (immune) cells.  
 
Graph B: T cells (CD45+ 
CD3+ cells) as a proportion 
of CD45+ (immune) cells.  
 
Graph C: B cells (CD45+ 
B220+ cells) as a proportion 
of CD45+ (immune) cells.  
 
Graph D: NK cells (CD45+ 
NK1.1+ cells) as a 
proportion of CD45+ 
(immune) cells.  
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Median macrophage population 
proportions in each strain 

(fold change from baseline) 
Baseline 24 

hours 
48 

hours 
72 

hours 

Overall 
macrophage 
proportions 
(% CD45+ 

immune cells) 

Control 9 37 
(4.1) 

34 
(3.7) 

18 
(2.0) 

αSMA-TFPI 11 43 
(3.9) 

17 
(1.5) 

11 
(1.0) 

Proportion of 
cells with Ly6C 

int/lo expression 
(% 

macrophages) 

Control 39 31 
(-1.3) 

48 
(1.2) 

62 
(1.6) 

αSMA-TFPI 59 27 
(-2.2) 

55 
(-1.1) 

68 
(1.2) 

Proportion of 
cells with Ly6C 

hi expression (% 
macrophages) 

Control 32 67 
(2.1) 

48 
(1.5) 

29 
(-1.1) 

αSMA-TFPI 40 70 
(1.8) 

40 
(1.0) 

25 
(-1.6) 

Overall mature 
macrophage 
proportions 
(% CD45+ 

immune cells) 

Control 4.3 41 
(9.5) 

30 
(7.0) 

31 
(7.2) 

αSMA-TFPI 7.4 19 
(2.6) 

41 
(5.5) 

29 
(3.9) 

Proportion of 
cells with Ly6C 

int/lo expression 
(% mature 

macrophages) 

Control 76 22 
(-3.5) 

38 
(-2.0) 

63 
(-1.2) 

αSMA-TFPI 72 10 
(-7.2) 

53 
(-1.4) 

66 
(-1.1) 

Proportion of 
cells with Ly6C 

hi expression  (% 
mature 

macrophages) 

Control 14 75 
(5.4) 

57 
(4.2) 

26 
(1.9) 

αSMA-TFPI 27 88 
(3.3) 

37 
(1.4) 

26 
(-1.0) 

Table 3-3: Paracetamol induced acute liver injury, liver macrophage 
populations, median values and fold change from baseline 
BOLD figures = statistically significant decrease in value in αSMA-TFPI mice 
compared to control mice. 
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Median immune cell proportions in 
each strain 

(fold change from baseline) 
Baseline 24 

hours 
48 

hours 
72 

hours 

Overall 
neutrophil 

proportions 
(% CD45+ 

immune cells) 

Control 1.2 5.7 
(4.8) 

4.5 
(3.8) 

7.7 
(6.4) 

αSMA-TFPI 2.1 4.5 
(2.1) 

10 
(4.8) 

4.5 
(2.1) 

Overall T cell 
proportions 
(% CD45+ 

immune cells) 

Control 38 21 
(-1.8) 

22 
(-1.7) 

30 
(-1.3) 

αSMA-TFPI 26 20 
(-1.3) 

30 
(1.2) 

33 
(1.3) 

Overall B cell 
proportions 
(% CD45+ 

immune cells) 

Control 25 11 
(-2.3) 

18 
(-1.4) 

22 
(-1.1) 

αSMA-TFPI 19 13 
(-1.5) 

18 
(-1.1) 

25 
(1.4) 

Overall NK cell 
proportions 
(% CD45+ 

immune cells) 

Control 18 11 
(-1.6) 

13 
(-1.4) 

11 
(-1.6) 

αSMA-TFPI 0.9 11 
(12) 

16 
(18) 

13 
(14) 

Table 3-4: Paracetamol induced acute liver injury, liver immune cell 
populations, median values and fold change from baseline 
BOLD figures = statistically significant decrease in value in αSMA-TFPI mice 
compared to control mice. 
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3.2.5. Cellular proliferation in the liver 

Digital image analysis of liver FFPE sections stained using an antibody for 
MCM4 showed a statistically significant decrease in cellular proliferation at 24 
and 48 hours after paracetamol administration in αSMA-TFPI mice compared to 
C57BL6/J control mice (Mann Whitney test, p = 0.008 at both time points.  

Figure 3-14. Graph A). At 72 hours after paracetamol administration there was 
a decrease in cellular proliferation in αSMA-TFPI mice compared to control 
mice but this did not reach statistical significance (median 129 cells per HPF 
and 18.7 cells per HPF in control mice and αSMA-TFPI mice respectively.  

Figure 3-14. Graph A). 

 

At 12 hours there were n=4 in the control group and n=5 in the αSMA-TFPI 

group. At 24 and 48 hours there were n=5 in both the control the αSMA-TFPI 

group. At 72 hours there were n=6 in the control group and n=4 in the αSMA-

TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays.  
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Graph A 

 
Image 1 

 

Image 2 

 
 
Figure 3-14: Paracetamol induced acute liver injury, MCM4 
immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
** p=<0.01. 
 
Graph A: MCM4 expression in liver FFPE tissue sections. 
 
Image 1: Anti-MCM4 immunohistochemistry at 48 hours. Control mouse. 
Original x400 magnification. Image 2: Anti-MCM4 immunohistochemistry at 
48 hours. αSMA-TFPI mouse. Original x400 magnification. 
 
 
  

12hrs 24hrs 48hrs 72hrs
0

25

50

75

100

125

150

175

N
um

be
r o

f 
M

C
M

4 
po

si
tiv

e 
ce

lls
 p

er
 H

PF
Control
aSMA-TFPI  

**

**

p=0.07

A



 190 

3.2.6. Fibrin deposition 

Fibrin deposition in the liver is associated with progression of paracetamol 

induced liver injury. At baseline there is little or no parenchymal deposition of 

fibrin in the liver but as parenchymal necrosis progresses there is greater 

deposition of fibrin (Dhar 2011). 

 

Digital image analysis of liver FFPE sections stained using an anti-fibrin β 

chain antibody to identify fibrin deposition showed a statistically significant 

decrease in fibrin deposition in the livers of αSMA-TFPI mice compared to 

C57BL6/J control mice at 24 and 48 hours after paracetamol administration 

(Mann Whitney test, p = 0.03 and p = 0.008 respectively. Figure 3-15. Graph 

A). There was a trend towards less fibrin deposition at earlier (6 and 12 hours) 

time points, however this did not reach statistical significance. At 72 hours 

after the administration of paracetamol there was little or no fibrin deposition 

in either strains (both median 0% area fibrin staining). 

 

At 6 and 48 hours there were n=4 in the control group and n=5 in the αSMA-

TFPI group. At 12 hours there were n=3 in the control group and n=5 in the 

αSMA-TFPI group. At 24 hours there were n=4 in both the control the αSMA-

TFPI group. At 72 hours there were n=6 in the control group and n=4 in the 

αSMA-TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays.  
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Graph A 

 
Image 1 

 

Image 2 

 
Figure 3-15: Paracetamol induced acute liver injury, fibrin 
immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
* p=<0.05. ** p=<0.01. 
 
Graph A: Liver parenchymal fibrin deposition. 
 
Image 1: Anti-Fibrin immunohistochemistry at 24 hours. Control mouse. 
Original x40 magnification. Image 2: Anti-MCM4 immunohistochemistry at 24 
hours. αSMA-TFPI mouse. Original x40 magnification. 
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3.2.7. Protease activated receptors 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA showed no statistically significant difference in PAR1 gene expression in 

the livers of αSMA-TFPI mice compared to C57BL6/J control mice at any time 

point after the administration of paracetamol (Figure 3-16. Graph A). 

 

At 6 and 12 hours there were n=5 in both the control and the αSMA-TFPI 

group. At 24 hours there were n=6 in the control group and n=7 in the αSMA-

TFPI group. At 48 hours there were n=5 in the control and n=7 in the αSMA-

TFPI group. At 72 hours there were n=6 in both the control and the αSMA-

TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA showed a statistically significant difference in PAR2 gene expression the 

livers of αSMA-TFPI mice compared to control mice at 24 hours after the 

administration of paracetamol (Mann Whitney test, p = 0.02. Figure 3-16. 

Graph B).  

 

At 6 hours there were n=4 in the control group and n=5 in the αSMA-TFPI 

group. At 12 hours there were n=4 in both the control and the αSMA-TFPI 

group. At 24 hours there were n=6 in both the control and the αSMA-TFPI 

group. At 48 hours there were n=5 in the control and n=7 in the αSMA-TFPI 

group. At 72 hours there were n=5 in the control group and n=6 in the αSMA-

TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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Figure 3-16: Paracetamol 
induced acute liver injury, 
PAR gene expression 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. 
 
Graph A: PAR1 gene 
expression in whole liver 
homogenates. 
 
Graph B: PAR2 gene 
expression in whole liver 
homogenates. At 24 hours 
after administration of 
paracetamol αSMA-TFPI 
mice had a 11 fold change 
(increase) in PAR2 gene 
expression compared to 
baseline and control mice 
had a 47 fold change 
(increase) compared to 
baseline. 
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3.2.8. Transgenic TFPI expression 

Expression of the transgene was assessed using immunohistochemistry and 

PCR.  

 

No immunohistochemical staining was seen in 3/3 samples from αSMA-TFPI 

mice culled at 6 hours after administration of paracetamol. Of note, at this 

time point only liver sections were available for assessment and in baseline 

studies transgenic TFPI protein expression had been most easily identified in 

lung and large blood vessels. 

 

At 12 hours and 24 hours after administration of paracetamol transgene 

expression was identified by immunohistochemical staining in all (5/5 and 3/3 

respectively) samples from αSMA-TFPI mice. However, expression was 

predominantly seen in organs other than the liver (Figure 3-17. Images 1 and 

2). 

 

At 48 hours after administration of paracetamol transgene expression was 

identified by immunohistochemical staining in 2/2 samples from αSMA-TFPI 

mice. Positive staining was seen in aggregates of cells within the liver that 

were positive for αSMA and previously identified as activated hepatic stellate 

cells, indicating transgene expression in αSMA activated hepatic stellate cells 

within the liver (Figure 3-17. Images 3 and 4). 
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Image 1 

 

Image 2 

 

Image 3 

 

Image 4 

 

 
Figure 3-17: Paracetamol induced acute liver injury, transgenic TFPI 
expression 
 
Arrow indicates typical staining pattern in smooth muscle of vessels. 
 
Image 1: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse 24 
hours after paracetamol administration. Kidney (vessel). Original x100 
magnification. 
 
Image 2: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse 24 
hours after paracetamol administration. Lung (bronchial smooth muscle), 
Original x100  magnification. 
 
Image 3: Anti-human TFPI immunohistochemistry. αSMA-TFPI mouse 48 
hours after paracetamol administration. Liver (aggregate of activated hepatic 
stellate cells). Original x200 magnification. 
 
Image 4: Anti-αSMA immunohistochemistry – matched to Image 3. αSMA-
TFPI mouse 48 hours after paracetamol administration. Liver (aggregate of 
activated hepatic stellate cells). Original x200 magnification. 
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Expression of the TFPI transgene, as detected by PCR in liver samples, was 

identified in 4/5 samples from αSMA-TFPI mice culled at 6 hours after 

administration of paracetamol, 5/5 samples from αSMA-TFPI mice culled at 

12 hours, 3/5 samples from αSMA-TFPI mice culled at 24 hours, 5/5 samples 

from αSMA-TFPI mice culled at 48 hours, and 6/6 samples from αSMA-TFPI 

mice culled at 72 hours after paracetamol administration. If strong gene 

expression can be interpreted as positivity after PCR of cDNA and weak gene 

expression as positivity after amplification of initial PCR products then the 

strongest gene expression was at 48 hours after administration of 

paracetamol. 

 

Overall transgenic TFPI protein and gene expression was strongest at 48 

hours after administration of paracetamol. 
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3.2.9. Model summary – paracetamol induced acute liver injury 

After paracetamol induced acute liver injury the overall picture in αSMA-TFPI 

mice was of decreased liver injury compared to control mice. This was 

associated with less fibrin deposition, decreased PAR2 gene expression, less 

hepatic stellate cell activation and a modified innate immune cell response. 

The recovery from liver injury in these mice appeared accelerated but, as the 

pattern of recovery was similar in transgenic and control mice, this is more 

likely to represent quicker recovery after less overall liver injury. 

 

The presence of less fibrin in transgenic mice suggests that the transgenic 

TFPI was acting to inhibit activation of the coagulation cascade, decreasing 

clot formation. The association of decreased fibrin deposition with less liver 

injury suggests that the parenchymal extinction hypothesis of the role of the 

coagulation cascade in liver injury may be applicable to acute liver injury and 

suggests that TFPI is a key molecule in the coagulation cascade for regulating 

microvascular clot formation in paracetamol induced acute liver injury. 

 

The pattern of decreased hepatocellular necrosis and decreased ALT 

(released from injured hepatocytes) is likely to be linked to the decreased 

MCM4 expression (indicating decreased cell proliferation).  

 

The decreased gene expression of PAR2 in transgenic mice at 24 hours 

suggests that transgenic TFPI expression was associated with decreased 

production of PAR-2 receptors that also supports the PAR theory of the role of 

the coagulation cascade in liver injury. The reduction in PAR2 gene 
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expression was followed by a reduction in hepatic stellate cell activation and 

total hepatic macrophages at 48 hours after paracetamol induced acute liver 

injury which is in keeping with a reduction in PAR-2 associated pro-

inflammatory stimuli (Adams et al. 2011; Knight et al. 2012; Gaca et al. 2002).  

 

However, Kataoka et al showed that the blockade of PAR-2 alone is not 

sufficient to alter the degree of paracetamol induced liver injury (Kataoka et al. 

2014) and it is likely that the effects of the transgenic TFPI in this work are 

due to its combined impact on PAR-2 and fibrin deposition. 

 

Within the data collected there are two results that do not fit with the overall 

outcome of the model - the presence of increased activation of hepatic stellate 

cells in transgenic mice at 12 hours after paracetamol induced acute liver 

injury and the proportion of Ly6C expression in mature tissue macrophages at 

24 hours. 

 

It is possible that, because the transgene was predominantly expressed on 

activated hepatic stellate cells within the liver, there was not enough of the 

transgene present in the early stages of liver injury to affect the activation of 

hepatic stellate cells or immune cell composition. In addition, the central role 

of TF in the activation of the coagulation cascade during liver injury (Kerr 

2003) might have meant that early in injury progression the transgenic TFPI 

was overwhelmed but, as propagation, rather than initiation, became the 

predominant phase of the coagulation cascade, there was enough transgenic 

TFPI available to affect a measurable impact beyond reduced fibrin deposition.  
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It is also possible that the increase in activated hepatic stellate cells at 12 

hours was due to the decreased proportion of NK cells seen in transgenic 

mice at baseline. NK cells are key to activated hepatic stellate cell apoptosis 

(Radaeva et al. 2006) and a lack of these at the initiation of liver injury may 

have tipped the balance towards more activated hepatic stellate cells. 

 

The impact of the baseline increase in pro-resolution Ly6Cint/lo macrophages 

is difficult to ascertain from these results. Overall it seems to have been of 

benefit. It is also possible that at 24 hours the relative increase in the Ly6Chi 

expression within the mature tissue macrophage population represented a 

compensatory increase to overcome the initial pro-resolution macrophage 

phenotype dominance. Allowing the transgenic mice to develop an overall 

macrophage phenotype similar to that seen in control mice, including a peak 

in Ly6Chi pro-inflammatory macrophages. 

 

The results from this set of experiments are also notable for not completely 

following the published literature. Although there is no published work that 

describes the effect of TFPI in paracetamol induced acute liver injury – there 

is work looking at low levels or lack of tissue factor (TF), the major 

constituents of the coagulation cascade that TFPI acts upon. Reduction of TF 

in models of paracetamol induced acute liver injury has shown a reduction in 

the degree of early (around 6 hours) liver injury but with no longer term affect 

on the progression of liver injury. The authors attributed this to the 

accumulation of fibrin to control levels over time, thought to be via activation 
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of other arms of the coagulation cascade and residual TF (Ganey et al. 2007; 

Sullivan et al. 2013). The difference between this work and the published 

literature may be due to the farther reaching effects of TFPI, which acts not 

only to bind TF but also factor VIIa and factor Xa. 
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3.3. α- naphthylisothiocyanate (ANIT) induced acute liver injury 

ANIT	
   (⍺-naphthylisothiocyanate) induces cholestatic, bile duct centric 

hepatocellular liver injury. 

 

60mg/kg of ANIT was administered to mice via oral gavage. In this set of 

experiments mice were culled at 6, 24 and 48 hours after administration of 

ANIT. 

 

3.3.1. Plasma liver function tests 

At 6 hours after administration of ANIT there was a statistically significant 

decrease in ALP and plasma albumin in αSMA-TFPI mice compared to 

C57BL6/J control mice (Mann Whitney test, p = 0.02 and p = 0.04 respectively. 

Figure 3-18. Graph B and D). No other plasma liver function tests showed any 

statistically significant difference. 

 

At 24 hours after administration of ANIT there was a statistically significant 

decrease in ALP and ALT in αSMA-TFPI mice compared to control mice 

(Mann Whitney test, p=0.02 for both. Figure 3-18. Graphs A and B). No other 

plasma liver function tests showed any statistically significant difference. 

 

However, at 48 hours after administration of ANIT there was no statistically 

significant difference in any plasma liver function tests of αSMA-TFPI mice 

compared to control mice and review of the data shows similar median and 

interquartile ranges (Figure 3-18. Graphs A-D). 
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At 6 hours there were n=5 in both the control and the αSMA-TFPI group. At 

24 hours there were n=5 in the control group and n=4 in the αSMA-TFPI 

group. At 48 hours there were n=4 in both the control and the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays. Baseline sample numbers were as 

previously noted in section 3.1. 

 

Median plasma values in 
each strain 

(fold change from baseline) 
Baseline 6 

hours 
24 

hours 
48 

hours 

ALT 
IU/L 

Control 24 30 
(1.3) 

102 
(4.3) 

145 
(6.0) 

αSMA-TFPI 40 46 
(1.2) 

45 
(1.1) 

123 
(3.1) 

ALP 
IU/L 

Control 56 132 
(2.4) 

98 
(1.8) 

73 
(1.3) 

αSMA-TFPI 46 104 
(2.3) 

78 
(1.7) 

79 
(1.7) 

Total 
bilirubin 
µmol/L 

Control 4.6 9.4 
(2.0) 

9.6 
(2.1) 

10.6 
(2.3) 

αSMA-TFPI 3.8 9.6 
(2.5) 

9.0 
(2.4) 

9.2 
(2.4) 

Albumin 
g/L 

Control 24.4 25.4 
(1.0) 

21.6 
(-1.1) 

21.2 
(-1.2) 

αSMA-TFPI 24.2 23.6 
(-1.0) 

21.6 
(-1.1) 

23.8 
(-1.0) 

Table 3-5: ANIT induced acute liver injury, median plasma liver function tests 
values and fold change from baseline 
BOLD figures = statistically significant decrease in value in αSMA-TFPI mice 
compared to control mice. 
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Figure 3-18: ANIT induced 
acute liver injury, plasma 
liver function tests 
Symbols indicate median, 
bars indicate interquartile 
range. 
 
* p=<0.05. 
 
See Table 3-5 for median 
values 
 
Graph A: Plasma ALT 
(IU/L). 
 
Graph B: Plasma ALP 
(IU/L).  
 
Graph C: Plasma total 
bilirubin (µmol/L). 
 
Graph D: Plasma albumin 
(g/L).  
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3.3.2. Liver injury 

Analysis of H&E stained liver FFPE tissue sections showed no evidence of 

liver injury at 6 hours in both αSMA-TFPI and C57BL6/J control mice. 

 

Digital image analysis of percentage area hepatocellular liver injury in H&E 

stained liver FFPE tissue sections showed no statistically significant 

difference in αSMA-TFPI mice compared to C57BL6/J control mice after ANIT 

administration at any time point (Figure 3-19. Graph A). 

 

Review of the data showed that there was a trend towards less injury, bile 

duct centric hepatocellular necrosis/apoptosis, in the αSMA-TFPI mice at 24 

and 48 hours compared to control mice (median at 24 hours 1.0% and 0.1% 

in control and αSMA-TFPI mice respectively; median at 48 hours 5.3% and 

0.9% in control and αSMA-TFPI mice respectively) however this did not reach 

statistical significance. At 48 hours there were only 4 mice in the αSMA-TFPI 

mice (n = 7 control mice) and there was quite marked variation in both strains 

at the time point (coefficient of variation at 48 hours, 80% and 139% in control 

and αSMA-TFPI mice respectively), both of which may have limited statistical 

analysis. 

 

At 6 hours there were n=5 in both the control and the αSMA-TFPI group. At 

24 hours there were n=6 in the control group and n=4 in the αSMA-TFPI 

group. At 48 hours there were n=7 in the control and n=4 in the αSMA-TFPI 

group. Some of these sample numbers were less than the power calculation 

sample number due to failed assays.  
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Graph A 

 
Image 1 

 

Image 2 

 
Image 3 

 

Image 4 

 
 
Figure 3-19: ANIT induced acute liver injury 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Percentage area liver injury in liver FFPE tissue sections.  
 
Image 1: Hepatocellular injury at 24 hours. Control mouse. Original x100 
magnification. Image 2: Hepatocellular injury at 24 hours. αSMA-TFPI mouse. 
Original x100 magnification. 
 
Image 3: Hepatocellular injury at 48 hours. Control mouse. Original x100 
magnification. Image 4: Hepatocellular injury at 48 hours. αSMA-TFPI mouse. 
Original x100 magnification.  
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3.3.3. Model summary - ANIT induced acute liver injury 

There was some variability in this model and the 48 hour time point was 

underpowered due to a lack of suitable transgenic mice. However αSMA-TFPI 

mice did display a significant reduction in plasma markers of liver injury (ALP 

and ALT) and a trend of decreased in liver parenchymal injury. These findings 

indicate that the transgenic expression of TFPI did alter the progression of 

acute cholestatic liver injury and acts to reinforce the results from the 

paracetamol model of acute liver injury. 

 

Further work is required to elucidate the reason for these results but it is likely 

mechanism of action is that, as in the paracetamol model, inhibition of the TF / 

VIIa / Xa complex by the transgenic TFPI limited microvascular clot formation 

and protease activated receptor (PAR) activation, diminishing the impact of 

ANIT hepatocellular and bile duct injury.  

 

Luyendyk et al confirmed that the coagulation cascade was activated in ANIT 

induced cholestatic liver injury. They showed that TF did play a role in the 

progression of injury as low level expression of TF was associated with less 

liver injury (Luyendyk et al. 2009). This supports the hypothesis that the 

reason for the differences between the transgenic and control model were due 

to the action of TFPI in relation to TF. 

 

They attributed the impact of low-TF on the progression of ANIT liver injury to 

three possible mechanisms: 



 208 

1. Disruption of fibrin microvascular clot formation and hepatic 

parenchymal hypoxia. 

2. Disruption of fibrin clot scaffold formation, reducing the accumulation of 

platelets and neutrophils key to ANIT induced injury (Sullivan, Wang, et 

al. 2010)(Dahm et al. 1991)(Kodali et al. 2006). 

3. Reduced thrombin associated PAR-1 signalling (Copple et al. 2003). 

 

In addition, the apparent role of PAR-2 in the paracetamol induced acute liver 

injury model suggests that the role of PAR-2 in ANIT induced acute liver injury 

should also be examined. Future investigation of the role of TFPI in ANIT 

induced acute liver injury using the αSMA-TFPI transgenic model should be 

guided by these findings and include assessment of PAR expression, review 

of liver immune cell composition and assessment of the inflammatory cytokine 

profile of the liver during injury progression. 
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3.4. Chapter Results Summary Table 

Parameter 
measured 

Paracetamol acute liver 
injury model vs. control 

(2, 6, 12, 24, 48 and 72 hours) 

ANIT acute liver injury 
model vs. control 

(6, 24 and 48 hours) 
Liver injury Decreased injury at 24-48 

hours (complete injury 
resolution at 72 hours). 
Decreased ALT from 12 – 72 
hours. 
Decreased ALP at 12 hours 
(and 24 - 48 hours). 
Decreased bilirubin at 6 hours 
(and 24 – 48 hours). Increased 
at 12 hours. 
Decreased cellular 
proliferation. 
 

Decreased injury. 
Decreased ALP at 6 and 24 
hours. 
Decreased ALT at 24 hours. 

Fibrin deposition 
 

 

Decreased fibrin deposition 
(until resolution at 72 hours). 

Not completed due to lack of 

significance in the degree of 

injury on H&E stained 

sections when controls were 

compared with transgenic 

mice. Limited time and 

reagents also played a role 

in this decision. 

PAR expression 
 

 

Decreased PAR2 expression 
at 24 hours. 

Liver immune cell 
composition 

Decreased proportion of 
macrophages at 48 hours. 
Decreased proportion of 
mature tissue macrophages at 
24 hours with greater Ly6Chi 

expression. 
 
 

Hepatic stellate 
cell activation 

Increased activation at 12 
hours. 
Decreased activation at 48 
hours. 
 
 

Table 3-6: Comparison of acute liver injury models in αSMA targeted 
expression of TFPI 
Text in grey = non significant (p<0.05) trend 
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4. αSMA targeted expression of TFPI in chronic liver injury 

 

4.1. Additional baseline parameters 

Further parameters in the baseline (uninjured) liver phenotype of the αSMA-

TFPI mice were defined to help analyse data from experimental studies in 

chronic liver injury. 

	
  

Baseline liver function tests (3.1.1), hepatic stellate cell activation (3.1.2), liver 

immune cell composition (3.1.3), protease activated receptor gene expression 

(3.1.4) and baseline transgenic TFPI expression (3.1.5) were described in 

section 3.1. 

	
  

The additional baseline measurements taken for investigation of chronic liver 

injury were baseline liver collagen content (4.1.1) and baseline liver collagen 

turnover (4.1.2). 

	
  

4.1.1. Liver collagen content 

Sirius red histochemical staining detects type I and Type III collagen in 

formalin fixed paraffin embedded (FFPE) tissue on light microscopy. Collagen 

is the predominant extracellular matrix protein deposited in liver and as such 

is often used as a surrogate for liver fibrosis.  

 

Digital image analysis of liver sections stained with Sirius red showed no 

statistically significant difference in the percentage of collagen in liver tissue of 

αSMA-TFPI mice compared to C57BL6/J control mice (Mann Whitney test, 
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p=0.20. Figure 4-1. Graph A). There were n=10 in the control group and n=11 

in the αSMA-TFPI group  

 

Collagen 1⍺1 gene expression infers the amount of collagen I actively being 

transcribed in the sample. Quantitative PCR of cDNA reverse transcribed from 

whole liver homogenate RNA showed no statistically significant difference in 

collagen 1⍺1 gene expression in the livers of αSMA-TFPI mice compared to 

control mice (Mann Whitney test, p=0.99. Figure 4-1. Graph B). There were 

n=10 in the control group and n=9 in the αSMA-TFPI group  

 

Note: Hydroxyproline quantification of liver collagen content was also used to 

evaluate liver fibrosis, however baseline measurements were not made due to 

lack of difference in Sirius red histochemistry and collagen 1⍺1 gene 

expression already demonstrated at baseline and the limited resources 

associated with the hydroxyproline assay. 
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Image 1 

 
Image 2 

 
 

Figure 4-1: Baseline liver collagen content 
Bars indicate median with interquartile range. 
 
Graph A: Percentage Sirius red staining in liver FFPE tissue sections. Median 
0.7% and 1.0% in control and αSMA-TFPI strains respectively. 
 
Graph B: Collagen 1⍺1 gene expression in whole liver homogenates. At 
baseline the αSMA-TFPI strain had a -1.2 fold change (decrease) in collagen 
1⍺1 gene expression compared to controls. 
 
Image 1: Sirius red staining. Control mouse. Original x40 magnification. 
Image 2: Sirius red αSMA-TFPI mouse. Original x40 magnification. 
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4.1.2. Collagen turnover 

Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases 

(TIMP) are proteases and protease inhibitors that regulate the degradation of 

collagen in the liver. MMP2, MMP9 and TIMP1 gene expression infers the 

amount of these proteins actively being transcribed in the sample.  

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA showed no statistically significant difference in MMP2, MMP9 or TIMP1 

gene expression in the livers of αSMA-TFPI mice compared to control mice 

(Mann Whitney test, p=0.86, p=0.87 and p=0.50 respectively. Figure 4-2. 

Graphs A-C). 

 

There were n=6 in the control group and n=10 in the αSMA-TFPI group for 

MMP2 expression. There were n=7 in both the control and the αSMA-TFPI 

group for MMP9 expression. There were n=8 in the control group and n=10 in 

the αSMA-TFPI group for TIMP1 expression. 
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Figure 4-2: Baseline 
matrixmetalloproteinase 

and TIMP gene expression 
Bars indicate median with 
interquartile range. 
 
Graph A: MMP2 gene 
expression in whole liver 
homogenates. At baseline 
the αSMA-TFPI strain had a 
-1.1 fold change (decrease) 
in MMP2 gene expression 
compared to controls. 
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates. At baseline 
the αSMA-TFPI strain had a 
-1.1 fold change (decrease) 
in MMP9 gene expression 
compared to controls. 
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates. At baseline 
the αSMA-TFPI strain had a 
2.9 fold change (increase) 
in TIMP1 gene expression 
compared to controls. 
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4.1.3. Summary – Additional baseline parameters 

As shown in section 3.1.5 the αSMA-TFPI mice showed moderate amounts of 

TFPI protein and / or gene expression in the liver and other major organs at 

baseline. However, it appears that this expression did not alter many 

physiological and biological parameters of interest in the investigation of 

chronic liver injury as there were no differences between αSMA-TFPI and 

control mice in plasma liver function tests, measures of hepatic stellate cell 

activation, MMP, TIMP or protease activated receptor (PAR) gene expression. 

This is in keeping with previous work that showed no effect of the transgene 

on baseline bleeding times and circulating anticoagulant activity (Chen, 

Giannopoulos, et al. 2004; D Chen et al. 2006). 

 

The αSMA-TFPI mice did show an altered liver innate immune cell 

composition (as described in section 3.1.3 and discussed in section 3.1.6) and 

these differences at baseline have been taken into account when analysing 

injury model data. 
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4.2. Carbon tetrachloride (CCl4) induced chronic liver injury 

Repeated doses of carbon tetrachloride (CCl4) cause chronic liver injury with 

fibrosis. Early fibrosis has a centrilobular pattern but progresses to centri-

portal bridging, and nodule formation. With cessation of CCl4 fibrosis 

resolution occurs. 

 

Staggered doses of 0.125mL – 1mL/kg of CCl4 was administered to mice via 

intraperitoneal injection for 4 weeks. Mice were culled at 24, 48, 72 and 96 

hours after the last injection of CCl4. 

 

4.2.1. Plasma liver function tests 

There was no statistically significant difference in any plasma liver function 

tests of αSMA-TFPI mice compared to C57BL6/J control mice at any time 

point after the last injection of CCl4 (Figure 4-3. Graphs A-D). 

 

Review of the data shows that at 24 hours after the last dose of CCl4 

transgenic mice had an ALT one third of that seen in the control mice (Mann 

Whitney test, p=0.14). At this time point statistical analysis may have been 

limited by the number of transgenic animals (n=4, power calculations 

recommended 6 animals per arm). 
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Figure 4-3: CCl4 induced 
chronic liver injury, plasma 
liver function tests 
Symbols indicate median, 
bars indicate interquartile 
range. 
 
See Table 4-1 for median 
values. 
 
Graph A: Plasma ALT 
(IU/L).  
 
Graph B: Plasma ALP 
(IU/L).  
 
Graph C: Plasma total 
bilirubin (µmol/L).  
 
Graph D: Plasma albumin 
(g/L).  
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Median plasma values in 
each strain 

(fold change from 
baseline) 

Baseline 24 
hours 

48 
hours 

72 
hours 

96 
hours 

ALT 
IU/L 

Control 24 946 
(39) 

179 
(7.5) 

50 
(2.1) 

54 
(2.3) 

αSMA-TFPI 40 361 
(9.0) 

286 
(7.2) 

50 
(1.3) 

88 
(2.2) 

ALP 
IU/L 

Control 56 58 
(1.0) 

63 
(1.1) 

50 
(-1.1) 

64 
(1.1) 

αSMA-TFPI 46 54 
(1.2) 

78 
(1.7) 

56 
(1.2) 

86 
(1.9) 

Total 
bilirubin 
µmol/L 

Control 4.6 6.1 
(1.3) 

5.8 
(1.3) 

9.0 
(2.0) 

6.2 
(1.4) 

αSMA-TFPI 3.8 6 
(1.6) 

7.4 
(2.0) 

8.8 
(2.3) 

8.0 
(2.1) 

Albumin 
g/L 

Control 24.4 31.0 
(1.3) 

26.4 
(1.1) 

24.6 
(1.0) 

31.0 
(1.3) 

αSMA-TFPI 26.2 26.8 
(1.0) 

25.2 
(-1.0) 

25.2 
(-1.0) 

30.4 
(1.2) 

Table 4-1: CCl4 induced chronic liver injury, median plasma liver function tests 
values and fold change from baseline 
 

At 24 hours there were n=10 in the control group and n=4 in the αSMA-TFPI 

group. At 48 hours there were n=4 in the control group and n=5 in the αSMA-

TFPI group. At 72 and 96 hours there were n=5 in both the control and the 

αSMA-TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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4.2.2. Liver collage content 

Digital image analysis of liver FFPE sections stained with Sirius red from mice 

culled at 24, 48, 72 and 96 hours after the last injection of CCl4 showed no 

statistically significant difference in liver collagen deposition in αSMA-TFPI 

mice compared to C57BL6/J control mice (Figure 4-4. Graph A). At 24 hours 

there were n=10 in the control group and n=9 in the αSMA-TFPI group. At 48, 

72 and 96 hours there were n=5 in both the control and the αSMA-TFPI group. 

Some of these sample numbers were less than the power calculation sample 

number due to failed assays. Baseline sample numbers were as previously 

noted in section 4.1. 

 

Hydroxyproline quantification of the collagen content of livers from mice culled 

at 24, 48, 72 and 96 hours after the last injection of CCl4 showed no 

statistically significant difference in liver collagen content in αSMA-TFPI mice 

compared to control mice (Figure 4-4. Graph B). At 24 hours there were n=4 

in the control group and n=5 in the αSMA-TFPI group. At 48, 72 and 96 hours 

there were n=5 in both the control and the αSMA-TFPI group. Some of these 

sample numbers were less than the power calculation sample number due to 

failed assays.  

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled at 24, 48, 72 and 96 hours after the last injection of 

CCl4 showed no statistically significant difference in collagen 1⍺1 gene 

expression in the livers of αSMA-TFPI mice compared to control mice (Figure 

4-4. Graph C). At 24 hours there were n=14 in the control group and n=13 in 
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the αSMA-TFPI group. At 48, 72 and 96 hours there were n=5 in both the 

control and the αSMA-TFPI group. Some of these sample numbers were less 

than the power calculation sample number due to failed assays. Baseline 

sample numbers were as previously noted in section 4.1. 
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Image 1 

 

Image 2 
 

Figure 4-4: CCl4 induced chronic liver injury, liver collagen content 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Percentage Sirius red staining in liver FFPE tissue sections.  
Graph B: Hydroxyproline content (µg/g of liver). 
Graph C: Collagen 1⍺1 gene expression in whole liver homogenates.  
 
Image 1: Sirius red at 48 hours. Control mouse. Original x40 magnification. 
Image 2: Sirius red at 48 hours. αSMA-TFPI mouse. Original x40 
magnification. 
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4.2.3. Hepatic stellate cell activation 

Digital image analysis of FFPE liver sections from mice culled at 24, 48, 72 

and 96 hours after the last injection of CCl4 were stained using an antibody for 

⍺SMA and showed a statistically significant decrease in the number of 

activated hepatic stellate cells in the livers of αSMA-TFPI mice compared to 

C57BL6/J control mice at 24 hours only (Mann Whitney test p = 0.003) but no 

significant difference at subsequent time points.  

 

Review of the fold change in numbers of activated hepatic stellate from 

baseline showed a slightly different pattern. At 24 hours, the fold change from 

baseline was similar in both transgenic and control mice. Between 48 and 72 

hours transgenic mice demonstrated a more pronounced increase in activated 

stellate cells – reaching a peak of 52 times that at baseline (compared to a 

peak of 26 times baseline in the control mice). At 72 hours transgenic mice 

still demonstrate a greater fold change in activated hepatic stellate cells from 

baseline, although not as marked as previous time points. 

 

At 24 hours there were n=10 in the control group and n=9 in the αSMA-TFPI 

group. At 48, 72 and 96 hours there were n=5 in both the control and the 

αSMA-TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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Median number of αSMA+ 
cells 

(fold change from baseline) 

Base-
line 

24 
hours 

48 
hours 

72 
hours 

96 
hours 

Control 0.9 17.3 
(19) 

23.4 
(26) 

16.8 
(19) 

4.7 
(5) 

αSMA-TFPI 0.4 9.2 
(23) 

19.8 
(50) 

20.6 
(52) 

5.7 
(14) 

Table 4-2: CCl4 induced chronic liver injury, median number of activated 
hepatic stellate cells per HPF and fold change from baseline 
BOLD figures = statistically significant difference between αSMA-TFPI mice 
and control mice. 
 

 
Image 1

 

Image 2

 
Figure 4-5: CCl4 induced chronic liver injury, αSMA immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
** p=<0.01. 
See Table 4-2 for median values 
 
Graph A: Number of activated hepatic stellate cells in liver FFPE tissue 
sections as determined by ⍺SMA immunohistochemistry. 
 
Image 1: Anti-αSMA immunohistochemistry at 24 hours. Control mouse. 
Original x400 magnification. Image 2: Anti-αSMA immunohistochemistry at 24 
hours. αSMA-TFPI mouse. Original x400 magnification. 
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4.2.4. Collagen turnover 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled at 24, 48, 72 and 96 hours after the last injection of 

CCl4 showed no statistically significant difference in MMP2, MMP9 or TIMP1 

gene expression in αSMA-TFPI mice compared to C57BL6/J control mice 

(Figure 4-6. Graphs A-C).  

 

At 24 hours there were n=6 in the control group and n=9 in the αSMA-TFPI 

group for MMP2 expression. At 48, 72 and 96 hours there were n=5 in both 

the control and the αSMA-TFPI group for MMP2 expression.  

 

At 24 hours there were n=9 in the control group and n=5 in the αSMA-TFPI 

group for MMP9 expression. At 48, 72 and 96 hours there were n=5 in both 

the control and the αSMA-TFPI group for MMP9 expression.  

 

At 24 hours there were n=6 in the both control and the αSMA-TFPI group for 

TIMP1 expression. At 48 and 96 hours there were n=5 in both the control and 

the αSMA-TFPI group for TIMP1 expression. At 72 hours there were n=5 in 

the control group and n=5 in αSMA-TFPI group for TIMP1 expression.  

 

Some of these sample numbers were less than the power calculation sample 

number due to failed assays. Baseline sample numbers were as previously 

noted in section 4.1. 

  



 225 

 

 

Figure 4-6: CCl4 induced 
chronic liver injury, 
matrixmetalloproteinase and 
TIMP gene expression 
Graph A: MMP2 gene 
expression in whole liver 
homogenates.  
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates.  
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates.  
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4.2.5. Liver immune cell composition 

At baseline there were differences in the macrophage population phenotype 

and a trend towards decreased NK cells in αSMA-TFPI mice compared to 

C57BL6/J control mice (Section 3.1.3. Figure 3-4 and Figure 3-5). 

 

Flow cytometry of fresh cells isolated from the liver showed a statistically 

significant decrease in the proportion of macrophages (CD45+ CD11b+ Ly6G- 

F4/80+ cells) in αSMA-TFPI mice compared to control mice culled at 24 hours 

after the last injection of CCl4 (Mann Whitney test p = 0.02. Figure 4-7. Graph 

A). However, there was no statistically significant difference at subsequent 

time points. 

 

Flow cytometric assessment of macrophage Ly6C expression showed no 

statistically significant difference in proportions of macrophages with 

intermediate / low or high Ly6C expression in αSMA-TFPI mice compared to 

control mice at any time point (Figure 4-7. Graphs B and C). 

 

Flow cytometry of fresh cells isolated from the liver showed a statistically 

significant increase in the proportions of neutrophils in αSMA-TFPI mice 

compared to control mice culled at 24 hours after the last injection of CCl4 

(Mann Whitney test p = 0.008. Figure 4-7. Graph D). However, there was no 

statistically significant difference at subsequent time points. 

 

Flow cytometry of fresh cells isolated from the liver showed a statistically 

significant decrease in the proportions of NK cells in αSMA-TFPI mice 
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compared to control mice culled at 24 hours after the last injection of CCl4 

(Mann Whitney test p = 0.008. Figure 4-8. Graph C). However, there was no 

statistically significant difference at subsequent time points. 

 

There was no statistically significant difference in the proportions of T cells 

and B cells in αSMA-TFPI mice compared to control mice at any time point 

(Figure 4-8. Graphs A and B). 

 

At 24, 48, 72 and 96 hours there were n=5 in both the control and the αSMA-

TFPI group. Some of these sample numbers were less than the power 

calculation sample number due to failed assays. Baseline sample numbers 

were as previously noted in section 3.1. 
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Figure 4-7: CCl4 induced 
chronic liver injury, liver 
macrophage and neutrophil 
populations 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05, ** p=<0.01 
 
See Table 4-3 for median 
values. 
 
Graph A: Macrophages 
(CD45+ CD11b+ Ly6G- 
F4/80+ cells) as a 
proportion of CD45+ 
(immune) cells. 
 
Graph B: Macrophage 
expression of intermediate 
or low levels of Ly6C as a 
proportion of macrophages.  
 
Graph C: Macrophage 
expression of high levels of 
Ly6C as a proportion of 
macrophages.  
 
Graph D: Neutrophils 
(CD45+ CD11b+ Ly6G+ 
cells) as a proportion of 
CD45+ (immune) cells.  
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Figure 4-8: CCl4 induced 
chronic liver injury, liver T 
cell, B cell and NK cell 
populations 
Bars indicate median with 
interquartile range. 
 
** p=<0.01 
 
See Table 4-3 for median 
values. 
 
Graph A: T cells (CD45+ 
CD3+ cells) as a proportion 
of CD45+ (immune) cells.  
 
Graph B: B cells (CD45+ 
B220+ cells) as a proportion 
of CD45+ (immune) cells.  
 
Graph C: NK cells (CD45+ 
NK1.1+ cells) as a 
proportion of CD45+ 
(immune) cells.  
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Median immune cell 
proportions in each strain 

(fold change from baseline) 
Baseline 24 

hours 
48 

hours 
72 

hours 
96 

hours 

Overall 
macrophage 
proportions 
(% CD45+ 

immune cells) 

Control 9 23 
(2.6) 

26 
(2.9) 

25 
(2.8) 

17 
(1.9) 

aSMA-TFPI 11 14 
(1.3) 

12 
(1.1) 

26 
(2.4) 

13 
(1.2) 

Proportion of 
cells with Ly6C 

int/lo 
expression (% 
macrophages) 

Control 39 56 
(1.4) 

74 
(1.9) 

56 
(1.4) 

58 
(1.5) 

aSMA-TFPI 59 87 
(3.0) 

73 
(1.2) 

57 
(-1.0) 

57 
(-1.0) 

Proportion of 
cells with Ly6C 
hi expression 

(% 
macrophages) 

Control 32 36 
(1.1) 

12 
(-2.7) 

11 
(-2.9) 

9 
(-3.6) 

aSMA-TFPI 40 8 
(-5.0) 

11 
(-3.6) 

13 
(-3.1) 

11 
(-3.6) 

Overall 
neutrophil 

proportions 
(% CD45+ 

immune cells) 

Control 1.2 3.9 
(3.3) 

5.9 
(4.9) 

6.5 
(5.4) 

4.7 
(3.9) 

aSMA-TFPI 2.1 5.2 
(2.5) 

4.9 
(2.3) 

8.1 
(3.9) 

6.0 
(2.9) 

Overall T cell 
proportions 
(% CD45+ 

immune cells) 

Control 38 19 
(-2.0) 

22 
(-1.7) 

14 
(-2.7) 

25 
(-1.5) 

aSMA-TFPI 26 17 
(-1.5) 

19 
(-1.4) 

18 
(-1.4) 

29 
(1.1) 

Overall B cell 
proportions 
(% CD45+ 

immune cells) 

Control 25 17 
(-1.5) 

27 
(1.1) 

17 
(-1.5) 

19 
(-1.3) 

aSMA-TFPI 19 17 
(-1.1) 

22 
(1.2) 

18 
(-1.1) 

23 
(1.2) 

Overall NK cell 
proportions 
(% CD45+ 

immune cells) 

Control 18 11 
(-1.6) 

8.1 
(-2.2) 

6.3 
(-2.9) 

6.3 
(-2.9) 

aSMA-TFPI 0.9 2.0 
(2.2) 

6.9 
(7.7) 

6.4 
(7.1) 

11 
(12) 

Table 4-3: CCl4 induced chronic liver injury, liver immune cell populations, 
median values and fold change from baseline.  
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4.2.6. Transgenic TFPI expression 

Expression of the transgene was assessed using gel electrophoresis of PCR 

products from cDNA transcribed from DNase treated whole liver homogenate 

RNA. 

 

Expression of the TFPI transgene was identified in 2/5 samples from αSMA-

TFPI mice culled at 24 hours after the last injection of CCl4; 5/5 samples from 

αSMA-TFPI mice culled at 48 hours after the last injection of CCl4; 5/5 

samples from αSMA-TFPI mice culled at 72 hours after the last injection of 

CCl4 and 5/5 samples from αSMA-TFPI mice culled at 96 hours after the last 

injection of CCl4. 

 

Due to the lack of difference in the progression and resolution of liver fibrosis 

in the transgenic mice compared to the control mice, coupled with limited 

amounts of the transgene specific antigen for immunohistochemistry, only 

PCR detection of transgene expression was used. 
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4.2.7. Model summary - CCl4 induced chronic liver injury 

After carbon tetrachloride (CCl4) induced chronic liver injury the overall picture 

in αSMA-TFPI mice was of no significant difference in liver fibrosis or fibrosis 

resolution. The pattern of αSMA expression, indicative of the number of 

activated hepatic stellate cells, was similar to that in the published literature, 

although a peak was observed at 48 hours as opposed to 72 hours (see 

Figure 1-2). Liver fibrosis and resolution also followed a similar pattern to the 

published literature with peak Sirius red area staining at 72 hours 

(Ramachandran et al. 2012). 

 

However αSMA-TFPI mice did demonstrate some changes at 24 hours that 

mirror those seen in the paracetamol induced acute liver injury model, further 

supporting the role of TFPI and the coagulation cascade in liver injury. 

 

At 24 hours after the last dose of CCl4, transgenic mice showed a statistically 

significant decrease in hepatic stellate cell activation and a global decrease in 

macrophages within the liver with a greater predominance of (although not 

statistically significant) the Ly6Cint/lo pre-resolution population. 

 

This relationship was seen at 48 hours in the paracetamol induced acute liver 

injury experiments and has also been demonstrate in PAR-2 knockout mice, 

PAR-1 knockout mice, low-TF mice and mice administered a thrombin 

antagonist (Sullivan, Weinreb, et al. 2010; Kallis et al. 2014; Duplantier et al. 

2004). The published literature suggests that the loss of PAR-1 activation 

(knockout model or loss of thrombin induced activation) prevents or limits a 
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pro-fibrotic microenvironment (including reduced TGF-β signalling) and 

inflammatory cell recruitment to the liver (possibly via reduced MCP-1 

signalling). Kallis et al specifically saw a decrease in the recruitment bone 

marrow derived macrophages with the loss of PAR-1 signalling. Loss of PAR-

2 activation was also associated with a decreased in hepatic macrophages 

and loss of TGF-β signalling. 

 

It could therefore be hypothesised that the changes seen in the αSMA-TFPI 

model at 24 hours represents the action of transgenic TFPI, via alteration of 

the coagulation cascade and PAR activation (blockade of TF action, 

prevention of TF / VIIa / Xa PAR-2 signalling or reduced thrombin or Xa PAR-

1 activation) but that the effect is not of the same magnitude as that seen in 

other models. The reason for this reduced effect may be due to the cell 

specific expression of the transgenic TFPI compared to the global knockout / 

reduced expression / molecule blockade in the other models.  

 

At 24 hours after the last dose of CCl4, transgenic mice showed a statistically 

significant increase in neutrophils and decrease in NK cells compared to 

controls. At baseline, transgenic mice had a lower proportion of NK cells 

compared to controls and so this significant decrease at 24 hours may simply 

represent a lower starting point for transgenic mice compared to control mice 

with adequate / control equivalent recruitment of NK cells to the liver. In the 

setting of chronic liver injury however this is surprising as there had been 

repeated / on going stimuli for NK cell recruitment. It is not possible to fully 

elucidate the reason for this result from this work and further investigation of 
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inflammatory cytokines may help explain the recruitment of cells to the liver in 

these models.  

 

Neutrophils are responsible for tissue injury and a pro-inflammatory 

microenvironment. The reasons for the increase in neutrophils at 24 hours 

cannot be elucidated from the results in this work however their role in 

promoting a pro-inflammatory environment might explain the transition of the 

transgenic model from a comparatively pro-resolution phenotype to one that 

mirrored the control mice. As with the NK cell result further investigation of 

inflammatory cytokines may help explain the recruitment of cells to the liver in 

these models. 
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4.3. Chapter Results Summary Table 

Parameter measured  CCl4 chronic liver injury model vs. control 
(24, 48, 72 and 96 hours) 

Liver collagen content 
 

No difference. 

Hepatic stellate cell activation 
 

Decreased activation at 24 hours. 

MMP2 / MMP9 gene 
expression 
 

No difference. 

TIMP1 gene expression 
 

No difference. 

Liver Immune cell 
composition 

Decreased proportion of macrophages at 24 (and 
48) hours. 
Macrophage population at 24 hours with 
proportionally greater Ly6Cint/lo expression. 
Decreased proportion of neutrophils at 24 hours. 
Decreased proportion of NK cells at 24 hours 
(reduced at baseline also). 
 

Liver injury 
 

 

Decreased ALT at 24 hours. 

Table 4-4: Summary of chronic liver injury models in αSMA targeted 
expression of TFPI 
Text in grey = non significant (p<0.05) trend 
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5. CD31 targeted expression of TFPI in acute liver injury 

The genome of the transgenic mouse strain CD31-TFPI contains a construct 

that initiates the expression of human TFPI when a cell expresses CD31. The 

biological effect is therefore cell specific expression of TFPI beyond normal 

physiological expression. 

 

5.1. Baseline parameters 

The baseline (uninjured) liver phenotype of the CD31-TFPI mice was defined 

to help analyse data from experimental studies. 

	
  

5.1.1. Plasma liver function tests 

Plasma markers of liver function are widely used as minimally invasive 

markers of liver injury and function.  

 

There were n=13 in the control group and n=16 in the CD31-TFPI group 

(except for albumin values, where n=8 in the CD-TFPI group due to failed 

assays in one batch). 

 

Alanine aminotransferase (ALT) is released from injured hepatocytes. 

Average ALT levels in C57BL6/J mice aged 6-16 weeks are 42-80IU/L (Grubb 

et al. 2014). Median ALT values for CD31-TFPI mice fell within this range but 

median ALT values for C57BL6/J control mice were below this range. 

 

There was a statistically significant (Mann Whitney U test; p = 0.01) increase 

in plasma ALT of CD31-TFPI mice compared to control mice (Figure 5-1. 
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Graph A). There were a number of outliers within the ALT results. Removal of 

these outliers did not affect the significance of the result. Examination of the 

individual cases showed that these elevated readings were not associated 

with sample haemolysis or elevation of other liver function parameters and the 

median ALT value for this group remained within the normal range. 

 

Alkaline phosphatase (ALP) is an enzyme produced by cholangiocytes and 

can be elevated when there is damage to these cells. Of note ALP is also 

produced by bone and can be elevated due to bone disease. Average ALP 

levels in C57BL6/J mice are 68-140IU/L (Grubb et al. 2014). Median ALP 

values for CD31-TFPI and control mice in this work fell just below this range 

and there was no statistically significant difference in plasma ALP of CD31-

TFPI mice compared to control mice (Mann Whitney test, p=0.52. Figure 5-1. 

Graph B). 

 

Total bilirubin measures unconjugated and conjugate bilirubin, the breakdown 

product of haemoglobin. The liver is responsible for conjugation and excretion 

of bilirubin. Elevated levels of total bilirubin suggest liver injury and decreased 

bilirubin metabolism, bile duct injury obstructing bilirubin excretion or 

increased breakdown of haemoglobin. Average total bilirubin levels in 

C57BL6/J mice aged 8-11 weeks are 0.48-1.35 µmol/L (Grubb et al. 2014). 

Median total bilirubin values for CD31-TFPI and control mice in this work were 

above the normal range presented in the literature. However, there was no 

statistically significant difference in plasma total bilirubin of CD31-TFPI mice 
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compared to C57BL6/J control mice (Mann Whitney test, p=0.63. Figure 5-1. 

Graph C).  

 

Decreased levels of albumin can indicate chronic impairment of the livers 

synthetic function. Average albumin levels in C57BL6/J mice aged 8-11 

weeks are 31-39g/L (Grubb et al. 2014). Median albumin values for CD31-

TFPI and control mice in this work were below the normal range presented in 

the literature and there was a statistically significant (Mann Whitney U test, 

p=0.004) increase in plasma albumin of CD31-TFPI mice compared to control 

mice (Figure 5-1. Graph D).  
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Figure 5-1: Baseline plasma 
liver function test results 
Bars indicate median with 
interquartile range. 
 
*  p=<0.05; ** p=<0.01 
 
Graph A: Plasma ALT 
(IU/L). Median 24IU/L and 
74IU/L in control and CD31-
TFPI strains respectively. 
 
Graph B: Plasma ALP 
(IU/L). Median 56IU/L and 
61IU/L in control and CD31-
TFPI strains respectively. 
 
Graph C: Plasma total 
bilirubin (µmol/L). Median 
4.6µmol/L and 4.1µmol/L in 
control and CD31-TFPI 
strains respectively. 
 
Graph D: Plasma albumin 
(g/L). Median 24.4g/L and 
26.2g/L in control and 
CD31-TFPI strains 
respectively. 
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5.1.2. Baseline transgenic TFPI expression 

Genomic carriage of the transgene was confirmed by end point PCR and gel 

electrophoresis of PCR products. Only mice with proven genomic carriage of 

the transgene were termed CD31-TFPI mice and used in experiments. 

 

Expression of the transgene was assessed using immunohistochemistry and / 

or PCR. Immunohistochemistry for human TFPI was performed on FFPE liver, 

kidney, spleen, lung and heart sections. End point PCR was performed on 

cDNA reverse transcribed from whole liver homogenate DNAse treated RNA. 

 

The anti-human TFPI antibody used in the immunohistochemistry was specific 

to amino acids 29-44 of the human TFPI protein, a portion of the protein 

present in the transgene that has only 31.25% homology with the mouse TFPI 

protein. Specificity was confirmed by negative staining in tissue from 

C57BL6/J control mice. 

 

FFPE tissue from the spleens of CD31-TFPI mice demonstrated staining 

consistent with expression of the transgene in CD31 positive sinusoidal 

endothelial cells and dendritic cells / macrophages but not the endothelium of 

the splenic arterioles (faint, non-specific staining seen, Figure 5-2. Image 1 

and 2). No expression of the transgene was seen in liver, kidney, lung or heart. 

 

 Gene expression was identified on gel electrophoresis of PCR products in 1 

in 5 liver homogenate samples from baseline CD31-TFPI mice. Further 

amplification of PCR products from the 4 negative liver homogenate samples 
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showed gene expression in 3 of these samples (total 4/5 positive). At both 

steps there was no expression detected in control samples (Figure 5-2. 

Image 3 and 4).  

 

The results from the immunohistochemistry and liver homogenate gene 

expression suggest very low levels of transgene expression in the livers of the 

CD31-TFPI mice at baseline. 
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Image 1 

 

Image 2 

  
 
Image 3 

 

 
Image 4 

 
 
Figure 5-2: Baseline transgenic TFPI expression 
Image 1: Anti-human TFPI immunohistochemistry. Splenic sinusoidal endothelial 
cells and macrophages. CD31-TFPI mouse. Spleen. Original x400 magnification. 
Image 2: Anti-human TFPI immunohistochemistry. Splenic sinusoidal endothelial 
cells and macrophages. CD31-TFPI mouse. Spleen. Original x400 magnification. 
 
Image 3: PCR product gel electrophoresis. CD31-TFPI baseline samples (B19, B29, 
B30, B54, B153). PCR of 1µL of cDNA transcribed from liver homogenate RNA. 
B153 shows strong positive bands. 
Image 4: PCR product gel electrophoresis. CD31-TFPI baseline samples (B19, B29, 
B30, B54). PCR of 1.5µL of PCR product amplified from the PCR product produced 
in Image 3. Positive bands seen in samples B19, B29 and B54. 
 
Pos = genomic DNA positive control. 
BL6 = control (C57BL6/J) liver homogenate cDNA (negative control). 
Blank = non-template control. 
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5.1.3. Summary – Baseline parameters 

The CD31-TFPI mice showed little or no transgenic TFPI gene expression in 

the liver and very low levels of protein expression in only the spleen at 

baseline. Given the transgene expression model (surface expression of TFPI 

when CD31 is expressed at the cell membrane) the low level of transgenic 

TFPI expression is likely to be due to low levels of cell surface CD31 

expression in the liver. In the liver CD31 is predominantly expressed on 

activated liver sinusoidal endothelial cells (LSEC) and in the uninjured liver 

their cell surface expression of CD31 is low (DeLeve et al. 2004). This was 

confirmed by CD31 immunohistochemical staining of uninjured liver (see 

Appendix). Other CD31 positive cells in the liver include Kupffer cells, 

platelets and other immune cells in relatively low numbers. 

 

Despite this, the CD31-TFPI mice did had an elevated average plasma ALT 

compared to control mice. This average was however within physiological 

range for the background C57BL6/J strain. All blood samples were collected 

and stored in the same way and each set of plasma tests was performed on 

the same machine in one batch. Routine health screening undertaken by the 

animal care facility where the mice were housed showed no evidence of 

mouse hepatitis virus in CD31-TFPI mice. In addition measurements of 

cellular proliferation and hepatic stellate cell activation were not elevated in 

CD31-TFPI mice compared to controls (see section 6.1 on baseline 

parameters in chronic liver injury) and plasma ALP and bilirubin levels were 

similar between the strains. Therefore although the results represent a true 

difference between the CD31-TFPI and control mice (and not analysis 
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artefact), the impact of this baseline difference may be of no physiological 

significance.  

 

Both CD31-TFPI and control mice in this study demonstrated plasma total 

bilirubin levels above the normal range. There was no indication that either 

strains of mice had bile duct injury (plasma ALP not elevated, no evidence of 

bile duct damage or bilirubinostasis on histology) and there was no identifiable 

reason for both strains to have an increased turnover of erythrocytes therefore 

the reason for the plasma total bilirubin result is likely to be associated with 

either diet or blood collection, processing and analysis methods. As all mice 

were maintained on the same diet and all blood samples collected and 

processed in the same way it is unlikely that this finding would affect 

conclusions drawn from experimental models. 

 

Similarly the lower than normal range of plasma albumin levels seen in both 

CD31-TFPI and control mice is likely to represent variation in either diet or 

blood collection, processing and analysis methods. The elevated plasma 

albumin seen in CD31-TFPI mice compared to control mice was 

physiologically small (only 1.8g/L difference in median values) and is likely to 

represent the fact that although brought in control mice were housed in the 

same room as the CD31-TFPI mice and acclimatised to their surroundings for 

at least 5 days prior to cull, their diet prior to arrival and the stress of transport 

(disrupting feeding patterns) may have negatively affected the control mice 

plasma albumin levels. Of note, brought in control mice used in experiments 

(as opposed to baseline animals) tended to have a greater delay between 
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transportation / arrival in the unit and the date they were culled (time from 

arrival to experimental cull ranged from 6 days to 84 days in control mice, 

depending on the experimental protocols they underwent). 

 

These baseline differences have been taken into consideration when 

analysing injury model data. 
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5.2. Paracetamol induced acute liver injury 

Paracetamol toxicity induces centrilobular hepatocellular necrosis with a 

marked inflammatory cell infiltrate. 

 

300-350mg/kg of paracetamol was administered to mice via intraperitoneal 

injection. Mice were culled at 6, 12 and 24 hours after administration of 

paracetamol. 

 

5.2.1. Plasma liver function tests 

As previously noted, there were statistically significant differences in baseline 

ALT and albumin in CD31-TFPI transgenic mice compared to control mice 

(Figure 5-1. Graphs A and D, CD31-TFPI mice had elevated plasma ALT and 

albumin compared to controls). 

 

At 6 hours there were n=5 in both the control and the CD31-TFPI group. At 12 

hours there were n=4 in both the control and the CD31-TFPI group. At 24 

hours there were n=6 in the control group and n=7 in the CD31-TFPI group for 

ALP and total bilirubin, n=6 in the CD31-TFPI group for ALT and n=5 in the 

CD31-TFPI group for albumin. Some of these sample numbers were less than 

the power calculation sample number due to failed assays. Baseline sample 

numbers were as previously noted in section 5.1. 

 

At 6 hours after administration of paracetamol there was no statistically 

significant difference in any plasma liver function tests of CD31-TFPI mice 

compared to control mice. There was a trend towards a lower plasma ALT in 
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the CD31-TFPI mice compared to control mice, with median ALT values of 

118IU/L and 896IU/L respectively. A single high outlier in the CD31-TFPI 

group (ALT 13044IU/L, Figure 5-3. Graph A) was identified. Removal of this 

outlier from statistical analysis did not alter the significance of the results and 

it is possible that for this parameter the statistical analysis may have been 

limited by the number per group. 

 

At 12 hours after administration of paracetamol there was a statistically 

significant decrease in the plasma ALT, ALP and albumin of CD31-TFPI mice 

compared to control mice (Mann Whitney U test, ALT p=0.03, ALP p=0.03, 

Albumin, p=0.03; Figure 5-3. Graphs A, B and D respectively). 

 

At 24 hours after administration of paracetamol there was no statistically 

significant difference in any plasma liver function tests of CD31-TFPI mice 

compared to control mice and review of the data shows similar median and 

interquartile ranges. 
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Median plasma values in 
each strain 

(fold change from baseline) 
Baseline 6 

hours 
12 

hours 
24 

hours 

ALT 
IU/L 

Control 24 896 
(37) 

4399 
(183) 

2553 
(106) 

CD31-TFPI 74 118 
(1.6) 

182 
(2.5) 

2806 
(38) 

ALP 
IU/L 

Control 56 112 
(2.0) 

154 
(2.8) 

126 
(2.3) 

CD31-TFPI 61 141 
(2.3) 

92 
(1.5) 

100 
(1.6) 

Total 
bilirubin 
µmol/L 

Control 4.6 5.6 
(1.2) 

4.5 
(1.0) 

8.7 
(1.9) 

CD31-TFPI 4.1 5.7 
(1.4) 

5.9 
(1.4) 

6.6 
(1.6) 

Albumin 
g/L 

Control 24.4  28.5 
(1.2) 

26.9 
(1.1) 

CD31-TFPI 26.2  24.7 
(-1.1) 

30.4 
(1.2) 

Table 5-1: Paracetamol induced acute liver injury, median plasma liver function 
tests values and fold change from baseline 
BOLD figures = statistically significant decrease in value in CD31-TFPI mice 
compared to control mice. 
 
A fold change of 1.0 indicates a x1.0 increase in the value, or no change. 
A negative fold change indicates a decrease in the value. 
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Figure 5-3: Paracetamol 
induced acute liver injury, 
plasma liver function tests 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. ** p=<0.01. 
 
See Table 5-1 for median 
values. 
 
Graph A: Plasma ALT 
(IU/L).  
 
Graph B: Plasma ALP 
(IU/L).  
 
Graph C: Plasma total 
bilirubin (µmol/L). 
 
Graph D: Plasma albumin 
(g/L).  
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5.2.2. Hepatocellular necrosis 

Digital image analysis of percentage area necrosis in H&E stained liver FFPE 

tissue sections showed no statistically significant difference in CD31-TFPI 

mice compared to control mice. There were n=5 in both the control and the 

CD31-TFPI group at each time point. 

 

There was a trend towards less necrosis in the CD31-TFPI mice compared to 

control mice at 6 hours with median percentage area necrosis of 0.2% and 

11.6% respectively. A single outlier was identified in the CD31-TFPI group 

(35% necrosis, Figure 5-4. Graph A). Removal of this outlier from statistical 

analysis did not alter the significance of the results and it is possible that for 

this parameter the statistical analysis may have been limited by the number 

per group. 

 

There was a trend towards less necrosis at 12 hours in the CD31-TFPI mice 

compared to control mice with median percentage area necrosis of 8.5% and 

22.1% respectively. At this time point there was quite variable results in both 

experimental arms (ranges of 1.1-23.2% in CD31-TFPI and 18.4-51.1% in 

control mice) and again, and it is possible that for this parameter the statistical 

analysis may have been limited by the number per group (CD31-TFPI n=5, 

control n=5). 

 

At 24 hours there was a trend towards more necrosis in the CD31-TFPI mice 

compared to control mice with median percentage area necrosis of 49.6% and 

28.2% respectively. At this time point there was quite variable results in both 
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experimental arms (ranges of 11.7-85.9% in CD31-TFPI and 17.3-50.9% in 

control mice) and again, it is possible that for this parameter the statistical 

analysis may have been limited by the number per group (CD31-TFPI n=5, 

control n=5). 
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Image 1 

 

Image 2 

 
Image 3 

 

Image 4 

 
Figure 5-4: Paracetamol induced acute liver injury, hepatocellular necrosis 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Percentage area necrosis in liver FFPE tissue sections.  
 
Image 1: Hepatocellular necrosis at 6 hours. Control mouse. Original x100 
magnification. Image 2: Hepatocellular necrosis 6 hours. CD31-TFPI mouse. 
Original x100 magnification. 
 
Image 3: Hepatocellular necrosis at 24 hours. Control mouse. Original x100 
magnification. Image 4: Hepatocellular necrosis at 24 hours. CD31-TFPI 
mouse. Original x100 magnification.  
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5.2.3. Transgenic TFPI expression 

Expression of the transgene was assessed using PCR. Gene expression of 

the TFPI transgene was identified in 0/5 samples from CD31-TFPI mice culled 

24 hours after administration of paracetamol, before and after amplification of 

initial PCR products. 

 

Due to the lack of significant difference in the degree of hepatocellular injury / 

necrosis in the transgenic mice compared to the control mice, coupled with 

limited amounts of the transgene specific antigen for immunohistochemistry 

and no detection of the transgene by PCR, only PCR detection of transgene 

expression was used. 
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5.2.4. Model summary - paracetamol induced acute liver injury 

After paracetamol induced acute liver injury the overall picture in CD31-TFPI 

mice was of delayed but overall equivalent hepatocellular necrosis compared 

to controls. Data from this project and the literature suggests hepatocellular 

necrosis peaks at 24 hours after paracetamol administration and that plasma 

liver function tests peak at 12-24 hours (Jaeschke et al. 2014). Taken together 

with the lack of evidence to suggest transgenic TFPI was being expressed in 

the liver of these mice at 24 hours the model was halted at the 24 hours time 

point. Despite this, the model provided further evidence to suggest that TFPI 

does alter the progression acute liver injury when the result were considered 

alongside those of the αSMA-TFPI model. 

 

The pattern of injury suggests that in the CD31-TFPI mice the inhibition of the 

TF / VIIa / Xa complex by the transgenic TFPI expressed on CD31+ cells 

limited early but not late acute liver injury. This is most striking at 12 hours 

when there is a marked decrease in plasma markers of acute liver injury in the 

CD31-TFPI mice. This corresponded with decreased but not statistically 

significant, hepatocellular necrosis. The reason for this difference (plasma vs. 

H&E stained FFPE liver sections) may be due to lobar heterogeneity of 

hepatocellular necrosis after paracetamol induced liver injury. Plasma 

markers are more representative of the overall extent of liver injury but are not 

necessarily specific for liver injury. Whereas H&E stained FFPE sections of 

the liver are specific for liver injury but dependant on sampling and may suffer 

from sampling error (selection of less injured areas). 
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Every effort was made to address sampling errors between experimental 

groups through systematic sampling of the liver (see Methods 2.4.1 and 

Figure Figure 2-1), however this may not have fully accounted for variable 

distribution of hepatocellular necrosis. 

 

This pattern of injury seen in the CD31-TFPI mice (limited early but not late 

acute liver injury) differs from the results seen when TFPI expression was 

targeted at αSMA+ cells. The difference may be due to the earlier injury / 

activation of liver sinusoidal endothelial cells and tissue resident CD31+ 

Kupffer cells in paracetamol induced liver injury. Ito et al described their 

activation between 0.5 to 6 hours and 0.5 to 12 hours respectively (compared 

to maximal activation of αSMA+ hepatic stellate cells between 48 and 72 

hours) (Ito et al. 2003). 

 

This pattern of early protection from paracetamol induced acute liver injury is 

in keeping with the pattern of liver injury seen in low-TF mice, mice 

administered heparin or lepirubin (to inhibit thrombin) and PAR-1 knockout 

mice (Ganey et al. 2007; Miyakawa et al. 2015). Ideally, it would have been 

useful to demonstrate the distribution and extent of fibrin clot formation, to 

support the impact of transgenic TFPI expression acting through its role in 

reducing microvascular clot formation. However, due to limited time and 

resources (fibrin antibody for immunohistochemistry) and the overall lack of 

statistical significance in this model, this was not undertaken. 
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In these papers the authors attributed the pattern of injury and loss of 

protection at 24 hours to coagulation cascade propagation with clot formation 

despite low levels of tissue factor (TF) or thrombin inhibition and in turn the 

activation of PAR-1. The reason for the time limited effect of PAR-1 loss was 

not explored by the authors but it could be hypothesised that control level liver 

injury was the result of microvascular thrombus associated hypoxia and 

alternate PAR activation.  

 

The impact of the increased baseline plasma ALT and albumin in CD31-TFPI 

mice compared to control mice is hard to evaluate as the transgenic strain 

demonstrated less elevation of these parameters compared to controls. It is 

therefore likely, as discussed in section 5.1.3, that the biological impact of the 

baseline differences was minimal.  

 

This set of experiments was at times limited by the number of animals per 

group. A power calculation had suggested that 6 animals per arm would 

provide the data to evaluate the model however in some analyses there was 

not data from 6 animals per arm; the plasma liver function tests especially 

suffered from sample exclusion due to haemolysis. Repetition of experimental 

groups could have addressed this but because the model had provided data 

supporting published work and the body of work from the αSMA-TFPI model, 

plus the overall lack of difference in the degree of liver injury at 24 hours, I felt 

that the repetition of work in this way was contrary to the 3Rs of animal 

research (refinement, replacement and reduction) and would not add 

significantly to the scientific value of the data already collected.  
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5.3. Alpha-naphthylisothiocyanate (ANIT) induced acute liver injury 

ANIT	
   (⍺-naphthylisothiocyanate) induces cholestatic, bile duct centric liver 

injury. 

 

60mg/kg of ANIT was administered to mice via oral gavage. Mice were culled 

at 6, 24 and 48 hours after administration of ANIT. 

 

5.3.1. Plasma liver function tests 

As previously noted, there were statistically significant differences in baseline 

ALT and albumin in CD31-TFPI transgenic mice compared to control mice 

(Figure 5-1. Graphs A and D, CD31-TFPI mice had elevated plasma ALT and 

albumin compared to controls). 

 

At 6 hours there were n=5 in both the control and the CD31-TFPI group. At 24 

hours there were n=5 in the control group and n=7 in the CD31-TFPI group. 

At 48 hours there were n=4 in the control group and n=7 in the CD31-TFPI. 

Some of these sample numbers were less than the power calculation sample 

number due to failed assays. Baseline sample numbers were as previously 

noted in section 5.1. 

 

At 6 hours after administration of ANIT there was a statistically significant 

decrease in ALP in CD31-TFPI mice compared to C57BL6/J control mice 

(Mann Whitney U test, p = 0.02. Figure 5-5. Graph B). No other plasma liver 

function tests showed any statistically significant difference. Review of the 

data showed that there was a trend towards decreased plasma albumin in the 
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CD31-TFPI mice compared to controls but that there were only 5 mice in each 

arm and this may have limited the statistical analysis. 

 

At 24 hours after administration of ANIT there was a statistically significant 

decrease in ALT, ALP and total bilirubin in CD31-TFPI mice compared to 

control mice (Mann Whitney U test, p = 0.003, p = 0.003 and p = 0.01 

respectively). Figure 5-5. Graphs A, B and C respectively). 

 

At 48 hours after administration of ANIT there was no statistically significant 

difference in any plasma liver function tests of CD31-TFPI mice compared to 

control mice. Review of the data showed a trend towards increased ALT and 

decreased plasma bilirubin in CD31-TFPI mice compared to control mice, 

however there were only 4 mice in each arm and this may have limited 

statistical analysis (Table 5-2. Figure 5-5. Graphs A-D). Of note, given the 

baseline difference in ALT in CD31-TFPI mice, at 48 hours after 

administration of ANIT the fold change from baseline was 2.6 and 6.0 in 

CD31-TFPI mice compared to control mice respectively but this did represent 

a marked worsening (increase) plasma ALT in the CD31-TFPI mice. 
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Median plasma values in 
each strain 

(fold change from baseline) 
Baseline 6 

hours 
24 

hours 
48 

hours 

ALT 
IU/L 

Control 24 30 
(1.3) 

102 
(4.3) 

145 
(6.0) 

CD31-TFPI 74 56 
(-1.3) 

38 
(-1.9) 

192 
(2.6) 

ALP 
IU/L 

Control 56 132 
(2.4) 

98 
(1.8) 

73 
(1.3) 

CD31-TFPI 61 106 
(1.7) 

60 
(1.0) 

64 
(1.0) 

Total 
bilirubin 
µmol/L 

Control 4.6 9.4 
(2.0) 

9.6 
(2.1) 

10.6 
(2.3) 

CD31-TFPI 4.1 9.6 
(2.3) 

6.0 
(1.5) 

5.8 
(1.4) 

Albumin 
g/L 

Control 24.4 25.4 
(1.0) 

21.6 
(-1.1) 

21.2 
(-1.2) 

CD31-TFPI 26.2 23.8 
(-1.1) 

20.8 
(-1.3) 

20.4 
(-1.3) 

Table 5-2: ANIT induced acute liver injury, median plasma liver function tests 
values and fold change from baseline 
BOLD figures = statistically significant decrease in value in CD31-TFPI mice 
compared to control mice. 
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Figure 5-5: ANIT induced 
acute liver injury, plasma 
liver function tests 
Symbols indicate median, 
bars indicate interquartile 
range. 
 
* p=<0.05. ** p=<0.01. 
 
See Table 5-2 for median 
values. 
 
Graph A: Plasma ALT 
(IU/L).  
 
Graph B: Plasma ALP 
(IU/L).  
 
Graph C: Plasma total 
bilirubin (µmol/L).  
 
Graph D: Plasma albumin 
(g/L). 
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5.3.2. Liver Injury 

Analysis of H&E stained liver FFPE tissue sections showed no evidence of 

liver injury at 6 hours in both CD31-TFPI and C57BL6/J control mice. There 

were n=5 in both the control and the CD31-TFPI group. 

 

At 24 hours there was a statistically significant decrease in percentage area 

liver injury in CD31-TFPI mice compared to control mice (Mann Whitney U 

test, p = 0.005. Figure 5-6. Graph A. Median 0.9% and 0% in control and 

CD31-TFPI strains respectively). There were n=6 in the control group and n=7 

in the CD31-TFPI group.  

 

At 48 hours there was no statistically significant difference in percentage area 

liver injury in CD31-TFPI mice compared to control mice. Review of the data 

showed that there was a trend towards decreased injury in CD31-TFPI mice 

compared to control mice (median 5.3% and 0.7% in control and CD31-TFPI 

strains respectively) however the experiment was adequately powered (n=7 in 

each arm) and therefore variability in the model limited the statistical analysis 

(coefficient of variation at 48 hours, 80% and 143% in control and CD31-TFPI 

mice respectively). 
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Image 1 

 

Image 2 

 
Image 3 

 

Image 4 

 
Figure 5-6: ANIT induced acute liver injury 
Symbols indicate median. Bars indicate interquartile range. 
** p=<0.01 
Graph A: Percentage area liver injury in liver FFPE tissue sections. 
 
Image 1: Hepatocellular injury at 24 hours. Control mouse. Original x100 
magnification. Image 2: Hepatocellular injury at 24 hours. CD31-TFPI mouse. 
Original x100 magnification. 
 
Image 3: Hepatocellular injury at 48 hours. Control mouse. Original x100 
magnification. Image 4: Hepatocellular injury at 48 hours. CD31-TFPI mouse. 
Original x100 magnification.  
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5.3.3. Model summary - ANIT induced acute liver injury 

Overall CD31-TFPI mice displayed a reduction in liver injury as a result of 

ANIT administration as demonstrated by reduced hepatocellular necrosis and 

decreased plasma ALP and total bilirubin. This was most prominent at 24 

hours after administration or ANIT but was also seen at 48 hours. The pattern 

of ANIT induced acute liver injury in this CD31-TFPI model directly mirrors 

that seen in the αSMA-TFPI model. 

 

The likely mechanism of action is that inhibition of the tissue factor (TF) / VIIa 

/ Xa complex by the transgenic TFPI expressed on CD31+ cells prevents 

microvascular clot formation and protease activated receptor (PAR) activation, 

diminishing the impact of ANIT hepatocellular and bile duct injury.  

 

As discussed in Chapter 3 Luyendyk et al showed that TF did play a role in 

the progression of ANIT induced cholestatic liver injury (Luyendyk et al. 2009). 

This supports the hypothesis that the reason for the differences between the 

transgenic and control model were due to the action of TFPI in relation to TF. 

In Luyendyk et al’s work the low-TF mice demonstrated a more significant 

decrease in liver injury at 48 hours after administration of ANIT, compared to 

the CD31-TFPI mice that demonstrated a more significant decrease 24 hours. 

 

Luydendyk et al attributed the impact of low-TF on the progression of ANIT 

liver injury to three possible mechanisms: 

• Disruption of fibrin microvascular clot formation and hepatic 

parenchymal hypoxia. 
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• Disruption of fibrin clot scaffold formation, reducing the accumulation of 

platelets and neutrophils key to ANIT induced injury (Sullivan, Wang, et 

al. 2010)(Dahm et al. 1991)(Kodali et al. 2006). 

• Reduced thrombin associated PAR-1 signalling (Copple et al. 2003). 

 

Given the apparent role of PAR-2 in the paracetamol induced acute liver injury 

model means that the role of PAR-2 in ANIT induced acute liver injury should 

also be examined.  

 

As in the paracetamol induced acute liver injury model the earlier reduction in 

ALP, ALT, bilirubin and parenchymal injury seen in the CD31-TFPI mice may 

be due to the expression profile of CD31 during liver injury. 

 

This set of experiments was at times limited by the number of animals per 

group. A power calculation had suggested that 6 animals per arm would 

provide the data to evaluate the model however in some analyses there was 

not data from 6 animals per arm; the plasma liver function tests especially 

suffered from sample exclusion due to haemolysis. However, I felt that the 

repetition of work to provide plasma data only, in light of the liver parenchymal 

injury data, was contrary to the 3Rs of animal research (refinement, 

replacement and reduction) and would not add significantly to the scientific 

value of the data already collected. 

 

As in the paracetamol model it would have been ideal to demonstrate the 

distribution and extent of fibrin clot formation, to support the impact of 
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transgenic TFPI expression acting through its role in reducing microvascular 

clot formation. However, due to limited time and resources (fibrin antibody for 

immunohistochemistry) and the overall lack of statistical significance in this 

transgenic model, this was not undertaken. 

 

 

5.4. Chapter Results Summary Table 

Parameter 
measured 

Paracetamol acute liver injury 
model vs. controls 

(2, 6, 12 and 24 hours) 

ANIT acute liver injury model 
vs controls 

(6, 24 and 48 hours) 
Liver injury Decreased liver injury at 6 and 12 

hours. 
Decreased ALP at 12 hours. 
Decreased ALT at 6 and 12 
hours. 

Decreased liver injury. 
Decreased ALP at 6 and 24 
hours. 
Decreased total bilirubin at 24 
hours and 48 hours. 
Decreased ALT at 24 hours. 
 

Table 5-3: Comparison of acute liver injury models in CD31 targeted 
expression of TFPI 
Text in grey = non significant (p<0.05) trend 
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6. CD31 targeted expression of TFPI in chronic liver injury 

 

6.1. Additional baseline parameters 

Further parameters in the baseline (uninjured) liver phenotype of the CD31-

TFPI mice were defined to help analyse data from experimental studies in 

chronic liver injury. 

 

Baseline liver function tests (5.1.1) and baseline transgenic TFPI expression 

(5.1.2) were described in section 5.1. 

 

The additional baseline measurements taken for the investigation of chronic 

liver injury were baseline liver collagen content (6.1.1) hepatic stellate cell 

activation (6.1.2), liver collagen turnover (6.1.3) and liver immune cell 

composition (6.1.4). 

 

6.1.1. Liver collagen content 

Sirius red histochemical staining detects type I and Type III collagen in 

formalin fixed paraffin embedded (FFPE) tissue on light microscopy. Collagen 

is the predominant extracellular matrix protein deposited in liver and as such 

is often used as a surrogate for liver fibrosis.  

 

Digital image analysis of liver sections stained with Sirius red showed no 

statistically significant difference in the percentage of collagen in liver tissue of 

CD31-TFPI mice compared to C57BL6/J control mice (Mann Whitney test, 
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p=0.98. Figure 6-1. Graph A). There were n=10 in the control group and n=13 

in the CD31-TFPI group. 

 

Collagen 1⍺1 gene expression infers the amount of collagen I actively being 

transcribed in the sample. Quantitative PCR of cDNA reverse transcribed from 

whole liver homogenate RNA showed no statistically significant difference in 

collagen 1⍺1 gene expression in the livers of CD31-TFPI mice compared to 

control mice (Mann Whitney test, p=0.78. Figure 6-1. Graph B). There were 

n=10 in both the control and in the CD31-TFPI group. 

 

Note: Hydroxyproline quantification of liver collagen content was also used to 

evaluate liver fibrosis, however baseline measurements were not made due to 

lack of difference in Sirius red histochemistry and collagen 1⍺1 gene 

expression already demonstrated at baseline and the limited resources 

associated with the hydroxyproline assay. 
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Image 1 

 
Image 2 

 
 

 

Figure 6-1: Baseline liver collagen content 
Bars indicate median with interquartile range. 
 
Graph A: Percentage Sirius red staining in liver FFPE tissue sections. Median 
0.7% in both control and CD31-TFPI strains. 
 
Graph B: Collagen 1⍺1 gene expression in whole liver homogenates. At 
baseline the CD31-TFPI strain had a -1.4 fold change (decrease) in collagen 
1⍺1 gene expression compared to controls. 
 
Image 1: Sirius red staining. Control mouse. Original x40 magnification. 
Image 2: Sirius red CD31-TFPI mouse. Original x40 magnification. 
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6.1.2. Hepatic stellate cell activation 

Activated hepatic stellate cells are the predominant collagen producing cell in 

the liver during homeostasis and injury. Activated hepatic stellate cells 

express ⍺SMA. Immunohistochemistry for ⍺SMA in FFPE liver tissue sections 

is used as a surrogate for hepatic stellate cell activation.  

 

Digital image analysis of FFPE liver sections stained using an antibody for 

⍺SMA showed a statistically significant decrease in the number of activated 

hepatic stellate cells in the liver of CD31-TFPI mice compared to C57BL6/J 

control mice (Mann Whitney U test; p=0.001.Figure 6-2. Graph A). 

Graphically, there were a number of outliers within the data collected for the 

control group. Removal of these outliers did not affect the significance of the 

result. There were n=10 in the control group and n=13 in the CD31-TFPI 

group. 

  



 270 

 

Figure 6-2: Baseline αSMA 
immunohistochemistry 
Bars indicate median with 
interquartile range. 
 
HPF = High power field, x400 
magnification. 
 
** p=<0.01. 
 
Graph A: Number of 
activated hepatic stellate cells 
in liver FFPE tissue sections 
as determined by ⍺SMA 
immunohistochemistry. 
Median 0.9 cells per HPF and 
0.1 cells per HPF in control 
and CD31-TFPI strains 
respectively. 
 
Image 1: Liver FFPE sections 
stained with ⍺SMA from 
control mice. Original x400 
magnification. 
 
Image 2: Liver FFPE sections 
stained with ⍺SMA from 
CD31-TFPI mice. Original 
x400 magnification. 
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Image 2 
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6.1.3. Collagen turnover 

Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases 

(TIMP) are proteases and protease inhibitors that regulate the degradation of 

collagen in the liver. MMP2, MMP9 and TIMP1 gene expression infers the 

amount of these proteins actively being transcribed in the sample. There were 

n=6 in the control group and n=7 in the CD31-TFPI group for MMP2 

expression. There were n=7 in the control group and n=6 in the CD31-TFPI 

group for MMP9 expression. There were n=8 in both the control and the 

CD31-TFPI group for TIMP1 expression. 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA showed a statistically significant increase in the expression of MMP2 in 

the liver of CD31-TFPI mice compared to C57BL6/J control mice (Mann 

Whitney U test; p=0.02. Figure 6-3. Graph A). However there was no 

statistically significant difference in MMP9 or TIMP1 gene expression in the 

livers of CD31-TFPI mice compared to control mice (Mann Whitney test, 

p=0.23 and p=0.70 respectively. Figure 6-3. Graphs B and C). 
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Figure 6-3: Baseline 
matrixmetalloproteinase and 
TIMP gene expression 
Bars indicate median with 
interquartile range. 
 
* p=<0.05 
 
Graph A: MMP2 gene 
expression in whole liver 
homogenates. At baseline 
the CD31-TFPI strain had a 
5 fold change (increase) in 
MMP2 gene expression 
compared to controls. 
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates. At baseline 
the CD31-TFPI strain had a 
-2 fold change (decrease) in 
MMP9 gene expression 
compared to controls. 
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates. At baseline 
the CD31-TFPI strain had a 
-1.7 fold change (decrease) 
in TIMP1 gene expression 
compared to controls. 
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6.1.4. Liver immune cell composition 

The immune cell composition of the liver has been shown to affect the rate 

and progression of liver injury. 

 

Macrophages are a key effector cell in acute and chronic liver injury. 

Immunohistochemistry for F4/80 in liver FFPE sections is used to identify 

macrophages.  

 

Digital image analysis of liver FFPE sections stained using an antibody for 

F4/80 (Figure 6-4. Images 1 and 2) showed no statistically significant 

difference in the number of F4/80 positive cells in the livers of CD31-TFPI 

mice compared to C57BL6/J control mice (Mann Whitney test, p=0.31. Figure 

6-4. Graph A). There were n=5 in both the control and the CD31-TFPI group. 
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Figure 6-4: Baseline F4/80 
immunohistochemistry 
Bars indicate median with 
interquartile range. 
 
HPF = High power field, x400 
magnification. 
 
n = 5 per arm. 
 
Graph A: Number of 
macrophages in liver FFPE 
tissue sections as determined 
by F4/80 
immunohistochemistry. 
Median 26 cells per HPF and 
25 cells per HPF in control 
and CD31-TFPI strains 
respectively. 
 
Image 1: Liver FFPE sections 
stained with F4/80 from 
control mice. Original x400 
magnification. 
 
Image 2: Liver FFPE sections 
stained with F4/80 from 
CD31-TFPI mice. Original 
x400 magnification. 
 

Image 1 

 
Image 2 
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Flow cytometry of fresh cells isolated from mouse liver was also used to 

identify macrophages, neutrophils, T cells, B cells and NK cells. Unfortunately 

data relating to the liver immune composition was available from only a small 

number of CD31-TFPI mice at baseline for all parameters (n = 3 in the CD31-

TFPI group compared to n=9 in the control group for macrophages and n=3 in 

the control group for T cells, B cells and NK cells) due to failed assays. This 

limited statistical analysis. 

 

There was no statistically significant difference in the proportion of 

macrophages (CD45+ CD11b+ Ly6G- F4/80+ cells) in the livers of CD31-

TFPI mice compared to control mice (Mann Whitney test, p=0.28. Figure 6-5. 

Graphs A). Within this population there was no statistically significant 

difference in the proportions of macrophages with intermediate / low 

(Ly6Cint/lo) or high (Ly6Chi) Ly6C expression in CD31-TFPI mice compared to 

control mice (Mann Whitney test, p=0.73 and p=0.37 respectively. Figure 6-5. 

Graphs B and C).  

 

There was no statistically significant difference in the proportion of neutrophils 

in the livers of CD31-TFPI mice compared to control mice (Mann Whitney test, 

p=0.28. Figure 6-5. Graph D). 

 

There was no statistically significant difference in the proportion of T cells, B 

cells or NK cells in the livers of CD31-TFPI mice compared to control mice 

(Mann Whitney test, p=0.40, p=0.90 and p=0.70 respectively. Figure 6-6. 

Graphs A-C).  
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Figure 6-5: Baseline liver 
macrophage and neutrophil 
composition 
Bars indicate median with 
interquartile range. 
 
n = 3 per arm. 
 
Graph A: Macrophages 
(CD45+ CD11b+ Ly6G- 
F4/80+ cells) as a 
proportion of CD45+ 
(immune) cells. Median at 
baseline, 9% and 13% of 
CD45+ cells in control and 
CD31-TFPI strains 
respectively. 
 
Graph B: Macrophages 
expression intermediate or 
lo levels of Ly6C as a 
proportion of macrophages. 
Median at baseline, 39% 
and 46% macrophages in 
control and CD31-TFPI 
strains respectively. 
 
Graph C: Macrophages 
expression high levels of 
Ly6C as a proportion of 
macrophages. Median at 
baseline, 32% and 44% of 
macrophages in control and 
CD31-TFPI strains 
respectively. 
 
Graph D: Neutrophils 
(CD45+ CD11b+ Ly6G+ 
cells) as a proportion of 
CD45+ (immune) cells. 
Median at baseline, 1.2% 
and 2.6% of CD45+ cells in 
control and CD31-TFPI 
strains respectively. 
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Figure 6-6: Baseline liver T 
cell, B cell and NK cell 
composition 
Bars indicate median with 
interquartile range. 
 
Graph A: T cells(CD45+ 
CD3+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at baseline, 38% 
and 25% of CD45+ cells in 
control and CD31-TFPI 
strains respectively. 
 
Graph B: B cells (CD45+ 
B220+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at baseline, 25% 
and 24% of CD45+ cells in 
control and CD31-TFPI 
strains respectively. 
 
Graph C: NK cells (CD45+ 
NK1.1+ cells) as a 
proportion of CD45+ 
(immune) cells. Median at 
baseline, 18% and 16% of 
CD45+ cells in control and 
CD31-TFPI strains 
respectively.  
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6.1.5. Summary – Additional baseline parameters 

As shown in section 5.1.2, the CD31-TFPI mice showed little or no transgenic 

TFPI gene expression in the liver and very low levels of protein expression in 

only the spleen at baseline. However differences were seen in baseline 

plasma liver function tests (discussed in section 5.1.3), hepatic stellate cell 

activation and MMP2 expression. 

 

In the uninjured liver hepatic stellate cell αSMA expression is low (Knittel et al. 

1999). Both CD31-TFPI and control mice demonstrated low levels of 

expression at baseline. CD31-TFPI mice had significantly lower αSMA 

expression compared to control mice at baseline and it is therefore possible 

that this was due to the effect of transgenic TFPI even though expression 

levels were low.  

 

It is not possible to determine the mechanism by which this could have 

occurred from the data collected, however it is possible that the transgenic 

expression of TFPI targeted to CD31 positive endothelium or CD31 positive 

hepatic macrophages altered the crosstalk between these cells and hepatic 

stellate cells residing within the space of Disse (and therefore in close 

proximity to each other) in the uninjured liver. A possible pathway for this 

would be a reduction in the activation of PAR (PAR-1, PAR-2 and PAR-4) 

through TFPI inhibition / blockade of TF / VIIa / Xa, resulting in reduced 

hepatic stellate cell activation (Shi et al. 2007; Knight et al. 2012).  
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In CD31-TFPI mice there was a 5 fold increase in the baseline expression of 

MMP-2 compared to control mice. MMP-2 gene expression in uninjured liver 

has been reported in the literature (Smith et al. 2014) although MMP-2 

expression is more commonly associated with activated hepatic stellate cells 

(Iredale et al. 2013). Work by Hartland et al has shown that active MMP-2 

promotes apoptosis in cultured hepatic stellate cells in a dose dependent 

manner (Hartland et al. 2009). Therefore it could be hypothesised that the 

increase in MMP-2 seen in the CD31-TFPI mice was the reason for the 

relative decrease in activated hepatic stellate cells compared to controls at 

baseline.  

 

I am unable to explain why there was an increase in the baseline MMP2 gene 

expression seen in the CD31-TFPI mice. It is worth noting that in this work the 

gene expression of MMP2 has been measured but this is not a direct 

reflection of the amount or activity of MMP-2 in the tissue, which is derived 

from proteolytic cleavage pro-MMP-2 protein. However, Knittel et al mapped 

the gene expression of MMP2 and MMP9 in acute and chronic liver injury and 

found that gene expression did correspond to changes in the protein level 

(Knittel et al. 2000).  
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6.2. Carbon tetrachloride (CCl4) induced chronic liver injury 

Repeated doses of carbon tetrachloride (CCl4) cause chronic liver injury with 

fibrosis. Early fibrosis has a centrilobular pattern but progresses to centri-

portal bridging, and nodule formation. With cessation of CCl4 fibrosis 

resolution occurs. 

 

Staggered doses of 0.125mL – 1mL/kg of CCl4 was administered to mice via 

intraperitoneal injection for 4 weeks. Mice were culled at 24 hours after the 

last injection of CCl4. 

 

This model was halted at 24 hours due to the results demonstrated below and 

the lack of effect of transgenic TFPI to alter the progression and resolution of 

liver fibrosis in the α-SMA-TFPI mice administered CCl4 (who were followed 

up along a time course of progression and resolution until 96 hours after the 

last injection of CCl4). 

 

6.2.1. Plasma liver function tests 

As previously noted, there were statistically significant differences in baseline 

ALT and albumin in CD31-TFPI transgenic mice compared to control mice 

(Figure 5-1. Graphs A and D, CD31-TFPI mice had elevated plasma ALT and 

albumin compared to controls). 

 

At 24 hours there were n=10 in the control group and n=4 in the CD31-TFPI. 

Sample numbers were less than the power calculation sample number due to 
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failed assays. Baseline sample numbers were as previously noted in section 

5.1. 

 

At 24 hours after the last injection of CCl4 there was no statistically significant 

difference in any plasma liver function tests of CD31-TFPI mice compared to 

control mice (Figure 6-7.Graphs A-D). Review of the data showed a trend 

towards decreased ALT in CD31-TFPI transgenic mice compared to controls 

(median 413IU/L and 946IU/L respectively). Taking into account the baseline 

increase in the plasma ALT of CD31-TFPI mice, the relative lack of increase 

in CD31-TFPI mice after CCl4 induced chronic liver injury suggests that this 

trend is biologically significant. It is also worth noting that the statistical 

analysis of this marker was under powered in the CD31-TFPI arm (n=4).   
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Figure 6-7: CCl4 induced 
chronic liver injury, plasma 
liver function tests 
Symbols indicate median, 
bars indicate interquartile 
range. 
 
* p=<0.05. ** p=<0.01. 
 
Graph A: Plasma ALT 
(IU/L). Median at 24 hours 
after last injection of CCl4, 
946U/L and 413IU/L (39 
and 5.6 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively. 
 
Graph B: Plasma ALP 
(IU/L). Median at 24 hours 
after last injection of CCl4, 
58IU/L and 66IU/L (1.0 and 
1.0 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively. 
 
Graph C: Plasma total 
bilirubin (µmol/L). Median at 
24 hours after last injection 
of CCl4, 6.1µmol/L and 
5.5µmol/L (1.3 and 1.3 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph D: Plasma albumin 
(g/L). Median at 24 hours 
after last injection of CCl4, 
31g/L and 32g/L (1.3 and 
1.2 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively. 
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6.2.2. Liver collagen content 

Digital image analysis of liver FFPE sections stained with Sirius red from mice 

culled at 24 hours after the last injection of CCl4 showed no statistically 

significant difference in liver collagen deposition in CD31-TFPI mice 

compared to control mice (Figure 6-8. Graph A). There were n=10 in the 

control group and n=9 in the CD31-TFPI group. Baseline sample numbers 

were as previously noted in section 6.1. 

 

Hydroxyproline quantification of the collagen content of livers from mice culled 

24 hours after the last injection of CCl4 showed no statistically significant 

difference in liver collagen content in CD31-TFPI mice compared to control 

mice (Figure 6-8. Graph B). However there was a trend towards decreased 

liver hydroxyproline in the livers of CD31-TFPI mice with a median 

hydroxyproline measurement of 300µg/g compared to 768µg/g in control mice 

livers. Here the statistical analysis appears to be limited by the number per 

group (both n = 4). 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled 24 hours after the last injection of CCl4 showed a 

statistically significant decrease in collagen 1⍺1 gene expression in the livers 

of CD31-TFPI mice compared to control mice (Mann Whitney U, p = 0.008. 

Figure 6-8. Graph C). There were n=14 in the control group and n=10 in the 

CD31-TFPI group. Baseline sample numbers were as previously noted in 

section 6.1. 
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Figure 6-8: CCl4 induced chronic liver 
injury, liver collagen content 
Symbols indicate median. Bars indicate 
interquartile range. 
 
** p=<0.01. 
 
Graph A: Percentage Sirius red staining 
in liver FFPE tissue sections from mice 
administered CCl4. At 24 hours after last 
injection of CCl4, median 3.8% in both 
control and CD31-TFPI strains. 
 
Graph B: Hydroxyproline content (µg/g 
of liver) in livers from mice culled 24 
hours after the last injection of CCl4. 
Median 768µg/g and 300µg/g in control 
and CD31-TFPI strains respectively. 
Bars indicate median with interquartile 
range. 
 
Graph C: Collagen 1⍺1 gene expression 
in whole liver homogenates.  
CD31-TFPI mice had a -2.5 fold change 
(decrease) in collagen 1⍺1 gene 
expression at 24 hours after the last 
injection of CCl4 compared to baseline. 
Control mice had a 5.4 fold change 
(increase) in collagen 1⍺1 gene 
expression compared to baseline. 
 
Image 1: Sirius Red at 24 hours. Control 
mouse. Original x40 magnification. 
Image 2: Sirius Red at 24 hours. CD31-
TFPI mouse. Original x40 magnification. 
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6.2.3. Hepatic stellate cell activation 

As previously noted, at baseline there was a statistically significant decrease 

in the number of activated hepatic stellate cells in the liver of CD31-TFPI mice 

compared to control mice (Figure 6-2. Graph A). 

 

Digital image analysis of FFPE liver sections from mice culled 24 hours after 

the last injection of CCl4 were stained using an antibody for ⍺SMA and 

showed a statistically significant decrease in the number of activated hepatic 

stellate cells in the livers of CD31-TFPI mice compared to control mice (Mann 

Whitney U test; p=0.001. 
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Image 2 
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Figure 6-9. Graph A). However, given the baseline differences seen in the 

number of activate hepatic stellate cells, CD31-TFPI mice demonstrated a 99 

fold increase in the number of hepatic stellate cells from baseline and control 

mice demonstrated a 19 fold increase. There were n=10 in the control group 

and n=11 in the CD31-TFPI group. Baseline sample numbers were as 

previously noted in section 6.1. 
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Image 1 

 

Image 2 

 
Figure 6-9: CCl4 induced chronic liver injury, αSMA immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
** p=<0.01. 
 
Graph A: Number of activated hepatic stellate cells in liver FFPE tissue 
sections as determined by ⍺SMA immunohistochemistry. Median 17.3 cells 
per HPF and 9.9 cells per HPF in control and CD31-TFPI strains respectively. 
 
Image 1: Anti-αSMA immunohistochemistry at 24 hours. Control mouse. 
Original x400 magnification. Image 2: Anti-αSMA immunohistochemistry at 24 
hours. CD31-TFPI mouse. Original x400 magnification. 
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6.2.4. Collagen turnover 

As previously noted, at baseline there was a statistically significant increase in 

the expression of MMP2 in the liver of CD31-TFPI mice compared to control 

mice (Figure 6-3. Graph A). 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled at 24 hours after the last injection of CCl4 showed no 

statistically significant difference in MMP2, MMP9 or TIMP1 gene expression 

in CD31-TFPI mice compared to control mice (Figure 6-10. Graphs A-C). 

There were n=6 in the control group and n=7 in the CD31-TFPI group for 

MMP2 expression. There were n=9 in the control group and n=5 in the CD31-

TFPI group for MMP9 expression. There were n=6 in the control group and 

n=8 in the CD31-TFPI group for TIMP1 expression. Sample numbers were 

less than the power calculation sample number due to failed assays. Baseline 

sample numbers were as previously noted in section 6.1. 

 

At 24 hours after the last injection of CCl4 both strains of mice showed 

decreased MMP2 gene expression and increased MMP9 gene expression 

compared to baseline. There was a trend towards decreased TIMP1 gene 

expression in CD31-TFPI mice compared to control mice, however this did not 

reach statistical significance (Mann Whitney U test; p=0.06) in adequately 

powered comparisons (n = 8 in CD31-TFPI arm and n = 6 in control arm). 

Review of the data showed little change in TIMP1 gene expression from 

baseline in CD31-TFPI mice but control mice should a 10 fold increase in 

TIMP1 gene expression from baseline.  
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Figure 6-10: CCl4 induced 
chronic liver injury, 
matrixmetalloproteinase and 
TIMP gene expression 
Graph A: MMP2 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a -9.7 fold change 
(decrease) and control mice 
had a -5.0 fold change 
(decrease) in MMP2 gene 
expression at 24 hours after 
the last injection of CCl4 
compared to baseline. 
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a 2.1 fold change 
(increase) and control mice 
had a 1.4 fold change 
(increase) in MMP9 gene 
expression at 24 hours after 
the last injection of CCl4 
compared to baseline. 
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a 1.3 fold change 
(increase) and control mice 
had a 10.2 fold change 
(increase) in TIMP1 gene 
expression at 24 hours after 
the last injection of CCl4 
compared to baseline. 
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6.2.5. Liver immune cell composition 

Digital image analysis of liver FFPE sections from mice culled 24 hours after 

the last injection of CCl4 were stained using an antibody for F4/80 and showed 

no statistically significant difference in the number of F4/80 positive 

macrophages in the livers of CD31-TFPI transgenic mice compared to 

C57BL6/J control mice (Figure 6-11. Graph A). There were n=10 in the control 

group and n=11 in the CD31-TFPI group. Baseline sample numbers were as 

previously noted in section 6.1. 

 

Flow cytometry of fresh cells isolated from the liver of mice culled 24 hours 

after the last injection of CCl4 showed no statistically significant difference in 

the proportion of macrophages or macrophage subsets in the livers of CD31-

TFPI mice compared to control mice (Figure 6-12. Graphs A-C). 

 

Flow cytometry of fresh cells isolated from the liver of mice culled 24 hours 

after the last injection of CCl4 showed no statistically significant difference in 

the proportion of neutrophils in the livers of CD31-TFPI mice compared to 

control mice (Figure 6-12. Graph D). 

 

Flow cytometry of fresh cells isolated from the liver of mice culled 24 hours 

after the last injection of CCl4 showed a statistically significant increase in the 

proportion of B cells in the livers of CD31-TFPI mice compared to control mice 

(Mann Whitney U test, p = 0.03. Figure 6-13. Graph B). There was no 

statistically significant difference in the proportion of T cells and NK cells in 
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the livers of CD31-TFPI mice compared to control mice (Figure 6-13. Graphs 

A and C). 

 

There were n=5 in both the control and the CD31-TFPI group. Sample 

numbers were less than the power calculation sample number due to failed 

assays or insufficient numbers of transgenic animals. Baseline sample 

numbers were as previously noted in section 6.1. 
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Image 1 

 

Image 2 

 
 

Figure 6-11: CCl4 induced chronic liver injury, F4/80 immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Number of macrophages in liver FFPE tissue sections as 
determined by F4/80 immunohistochemistry. Median at 24 hours after last 
injection of CCl4, 32.9 cells per HPF and 25.7 cells per HPF (1.3 and 1.0 fold 
change from baseline) in control and CD31-TFPI strains respectively. 
 
Image 1: Anti-F4/80 immunohistochemistry at 24 hours. Control mouse. 
Original x400 magnification. Image 2: Anti-F4/80 immunohistochemistry at 24 
hours. CD31-TFPI mouse. Original x400 magnification. 
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Figure 6-12: CCl4 induced chronic liver injury, liver macrophage and neutrophil 
composition 

Symbols indicate median. 
Bars indicate interquartile 
range. 
 
Graph A: Macrophages 
(CD45+ CD11b+ Ly6G- 
F4/80+ cells) as a 
proportion of CD45+ 
(immune) cells. Median at 
24 hours after the last 
injection of CCl4, 23% and 
24% (2.5 and 1.7 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph B: Macrophages 
expression intermediate or 
lo levels of Ly6C as a 
proportion of macrophages. 
Median at 24 hours after 
the last injection of CCl4, 
56% and 48% (1.4 and 1.0 
fold change from baseline) 
in control and CD31-TFPI 
strains respectively. 
 
Graph C: Macrophages 
expression high levels of 
Ly6C as a proportion of 
macrophages. Median at 24 
hours after CCl4, 36% and 
29% (1.1 and -1.5 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph D: Neutrophils 
(CD45+ CD11b+ Ly6G+ 
cells) as a proportion of 
CD45+ (immune) cells. 
Median at 24 hours after 
CCl4, 3.9% and 2.8% (3.3 
and 1.1 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively.  
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Figure 6-13: CCl4 induced chronic liver injury, liver T cell, B cell and NK cell 
composition 

Bars indicate median with 
interquartile range. 
 
* p=<0.05 
 
Graph A: T cells (CD45+ 
CD3+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at 24 hours after 
the last injection of CCl4, 
19% and 19% (-2.0 and -
1.3 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively. 
 
Graph B: B cells (CD45+ 
B220+ cells) as a proportion 
of CD45+ (immune) cells. 
Median at 24 hours after 
the last injection of CCl4, 
17% and 28% of CD45+ 
cells (-1.5 and 1.2 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph C: NK cells (CD45+ 
NK1.1+ cells) as a 
proportion of CD45+ 
(immune) cells. Median at 
24 hours after the last 
injection of CCl4, 11% and 
9% of CD45+ cells (-1.6 
and -1.7 fold change from 
baseline) in control and 
CD31-TFPI strains 
respectively. 
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6.2.6. Transgenic TFPI expression 

Expression of the transgene was assessed using PCR. Gene expression of 

the TFPI transgene was identified in 0/5 samples from CD31-TFPI mice culled 

24 hours after the last injection of CCl4; before and after amplification of initial 

PCR products. 

 

Due to the lack of statistically significant differences between in the transgenic 

and control mice, coupled with limited amounts of the transgene specific 

antigen for immunohistochemistry, only PCR detection of transgene 

expression was used. 
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6.2.7. Model summary - CCl4 induced chronic liver injury 

Twenty four hours after carbon tetrachloride (CCl4) induced chronic liver injury 

the overall picture in CD31-TFPI mice was of decreased liver injury and 

fibrosis in comparison to control mice.  

 

In CD31-TFPI mice liver plasma ALT was decreased in real terms and in fold 

change from baseline compared to control mice but did not reach statistical 

significance. This suggests that the CD31-TFPI mice may have sustained less 

liver injury after CCl4 induced chronic liver injury. In keeping with this CD31-

TFPI demonstrated less hepatic stellate cell activation, less (not statistically 

significant) TIMP1 expression and in turn less fibrosis. However, baseline 

hepatic stellate cell activation was decreased and fold change from baseline 

showed that there was a similar or greater increase in the liver of CD31-TFPI 

mice compared to controls. The implication of this is that, while transgenic 

TFPI expression created an overall picture of decreased liver injury and 

fibrosis the effect was most likely due to baseline changes and not alteration 

in biological pathways during fibrogenesis. In keeping with this there was no 

detectable transgene expression in the liver of CD31-TFPI mice 24 hours after 

the last injection of CCl4 in a CCl4 induced chronic liver injury model. 

 

In CD31-TFPI there was a 1.2 fold increase in the proportion of B cells from 

baseline and a statistically significant increase compared to control mice 

(control mice demonstrated a decrease in the proportion of B cells from 

baseline, consistent with published data (Novobrantseva et al. 2005)). The 

spleen acts as a major pool for lymphocytes, including B cell, that are 
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recruited to the liver during liver injury (Klugewitz et al. 2004). Given the 

relatively strong expression of transgenic TFPI in the spleen compared to the 

liver of CD31-TFPI at baseline, it may be that the transgene is acting outside 

of the liver to alter the B cell phenotype, promoting a pro-resolution or 

protective B cell phenotype. Of note, the published literature shows that, in a 

CCl4 model of chronic liver injury, liver fibrosis is attenuated in absence of B 

cells because of their role producing pro-inflammatory cytokines and their role 

in the recruitment of innate immune mononuclear cells (Thapa et al. 2015; 

Novobrantseva et al. 2005).  

 

This hypothesis (B cell priming in the spleen) required detailed studies of the 

B cell population in the transgenic mice. With constraints on time and 

resources I decided that the model, at 24 hours, had provided supportive 

evidence already collected on the beneficial role of TFPI in liver injury and 

further extension of the model, given the potentially complex baseline 

phenotype, would not be of benefit.  
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6.3. Chapter Results Summary Table 

Parameter measured CCl4 chronic liver injury model vs. control 
(to 24 hours only) 

Liver collagen content Decreased hydroxyproline content. 
Decreased collagen 1α1 gene expression. 

Hepatic stellate cell activation Decreased hepatic stellate cell activation BUT 
RELATIVE INCREASE FROM BASELINE greater 
than controls. 

MMP2 / MMP9 gene 
expression 

No difference. 

TIMP1 gene expression 
 

Decreased expression. 

Liver Immune cell 
composition  
 

Increased proportion of B cells. 

Liver injury Relative decrease in fold change of ALT from 
baseline. 

Table 6-1: Summary of chronic liver injury model in CD31 targeted expression 
of TFPI 
Text in grey = non significant (p<0.05) trend 
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7. The Role of TFPI in Liver Injury – Conclusions 

This work sought to explore the role of TFPI in liver injury through exploration 

of the hypothesis “Cell specific expression of TFPI in acute and chronic liver 

injury would limit the progression and extent of liver injury”. 

 

Two transgenic strains of mice, selectively expressing TFPI on αSMA or 

CD31 positive cells (creating local, cell specific over expression of TFPI), 

were used to explore the role of TFPI in acute liver injury (paracetamol and α-

naphthylisothiocyanate induced) and chronic liver injury (carbon tetrachloride 

induced). 
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7.1. Acute liver injury 

Decreased liver injury was evident in all acute liver injury models. Therefore 

TFPI does modify the extent and progression of acute liver injury. 

 

All models (mouse strain and liver injury type) were subjected to initial model 

screening consisting of assessment of plasma liver function tests and 

percentage area of liver injury visible on H&E stained sections of liver. The 

αSMA-TFPI paracetamol model was selected for more in depth investigation 

due to extensive differences between transgenic and control mice, less 

variability in results within experimental groups and the positive identification 

of the TFPI positive effector cell (αSMA positive hepatic stellate cells). 

 

The presence of less fibrin in the liver confirmed that the transgenic TFPI was 

acting to inhibit activation of the coagulation cascade and that this was potent 

enough to overcome propagation steps of the cascade that may have 

otherwise resulted in fibrin production. The reduced fibrin deposition 

throughout the model time points, confirms that Wanless et al’s parenchymal 

extinction theory of the role of the coagulation cascade in liver fibrosis is also 

applicable in acute liver injury (Wanless, Liu, et al. 1995).  

 

The decreased gene expression of PAR2 at 24 hours suggests that 

transgenic TFPI expression was associated with decreased production of 

PAR-2 receptors. The reduction in PAR2 gene expression was followed by a 

reduction in hepatic stellate cell activation and total hepatic macrophages at 

48 hours after paracetamol induced acute liver injury, in keeping with reduced 
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PAR-2 associated pro-inflammatory stimuli, particularly TNF-α (Adams et al. 

2011). However this was a transient finding and it appears that there may 

have been the need for a threshold of transgenic TFPI expression to be 

exceeded for this to occur and that the action of the transgenic TPFI created a 

form of negative feedback where increased TFPI expression limited hepatic 

stellate cell activation, reducing further TFPI expression. 

 

Furthermore, decreased liver injury and hepatocellular proliferation was 

notable from 24 hours onwards but changes in hepatic stellate activation and 

the innate immune cell composition were present only at the later time point of 

48 hours, suggesting that mechanisms to reduce liver injury occurred prior to 

this and that the measurable effect on the hepatic stellate cell activation and 

liver immune cell composition was the result of reduced liver injury, possibly 

via a decrease in the release of danger associated molecular patterns 

(DAMPs) (Szabo & Petrasek 2015). 

 

Therefore, the role of parenchymal extinction due to early microvascular clot 

formation may be a more important driver for acute liver injury. The role of 

tissue hypoxia / ischaemia was not investigated in this work and presents an 

opportunity for future investigation. 

 

The positive impact of transgenic TFPI on the extent and progression of acute 

liver injury suggests that the administration of TFPI to humans during 

episodes of acute liver injury may act to reduce overall injury. Further work 

(see below, section 7.1.2) is required before any form of human trial could 



 302 

proceed and my concern would be that the results from this work are based 

on localised cell specific ‘administration’ of TFPI potentially at the inception of 

liver injury that is different to how we could currently administer TFPI to 

humans. TFPI (for administration to humans) is only available in recombinant 

form, which is short acting and needs to be continuously administered via 

intravenous access resulting in systemic dosing. This is reliant on the 

individual seeking medical intervention, which is likely to only occur after 

inception of liver injury and usually not until symptoms of acute liver failure are 

present. 
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Parameter 
measured  

Paracetamol acute liver injury model 
vs. control 

ANIT acute liver injury 
model vs. control 

αSMA-TFPI 
(6, 12, 24, 48 and 72 

hours) 

CD31-TFPI 
 (6, 12 and 
24 hours) 

αSMA-TFPI 
 (6, 24 and 
48 hours) 

CD31-TFPI 
 (6, 24 and 
48 hours) 

Liver injury Decreased injury at 24-
48 hours (complete 
injury resolution at 72 
hours). 
 
Decreased ALT from 12 
– 72 hours. 
 
 
 
Decreased ALP at 12 
hours (and 24 - 48 
hours). 
 
 
Decreased bilirubin at 6 
hours (and 24 – 48 
hours). Increased at 12 
hours. 
 
 
Decreased cellular 
proliferation. 

Decreased 
liver injury 
at 6 and 12 
hours. 
 
Decreased 
ALT at 6 
and 12 
hours. 
 
Decreased 
ALP at 12 
hours. 

Decreased 
injury. 
 
 
 
Decreased 
ALT at 24 
hours  
 
 
Decreased 
ALP at 6 
and 24 
hours. 

Decreased 
liver injury. 
 
 
 
Decreased 
ALT at 24 
hours. 
 
 
Decreased 
ALP at 6 
and 24 
hours. 
 
Decreased 
total 
bilirubin at 
24 hours 
and 48 
hours. 

Fibrin 
deposition 
 

Decreased fibrin 
deposition (until 
resolution at 72 hours). 

   

PAR 
expression 
 

Decreased PAR2 
expression at 24 hours. 

   

Liver 
immune cell 
composition 

Decreased proportion of 
macrophages at 48 
hours. 
Decreased proportion of 
mature tissue 
macrophages at 24 
hours with greater Ly6C 
hi expression. 

   

Hepatic 
stellate cell 
activation 
 

Increased activation at 
12 hours. 
Decreased activation at 
48 hours. 

   

Table 7-1: Summary of acute liver injury results 
Text in grey = non-significant (p<0.05) trend 
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7.1.1. Limitations 

A major limitation of this work was the presence of baseline differences 

between transgenic and control mice. The αSMA-TFPI mice had a decreased 

proportion of NK cells and a predominance of Ly6Cint/lo pro-resolution 

macrophages at baseline with evidence of transgenic gene expression but not 

protein expression in the liver. The CD31-TFPI mice were less extensively 

investigated but showed a significant difference in baseline ALT compared to 

controls at baseline only and the median for the group tested was still within 

the normal range. No difference in liver immune cell composition was 

identified. The CD31-TFPI demonstrated very little evidence of transgenic 

gene expression in the liver. 

 

The presence of baseline differences does not preclude the use of data 

obtained from these models, nor necessarily alter the impact of the results 

obtained as long as they are acknowledged in conclusions drawn from the 

work. The biggest impact of these baseline differences is on the translational 

value of the data. In this case, administration of TFPI as a therapeutic agent in 

liver injury could only occur after the injury, whereas baseline effects of the 

transgenic TFPI alter the environment in which the actual injury occurs.  

 

In this work only PAR gene expression was analysed. As receptors, PAR do 

not need to be continuously produced in order for them to be active. Gene 

expression indicates the production of more PAR protein and any changes 

from baseline can indicate the increased or decreased production of PAR. 
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This can be extrapolated to indicate an increase or decrease in PAR 

activation, based on the assumption that with greater activation there is an 

increased need to replace activated proteins but it is not a direct marker of 

PAR activity. However, Jesmin et al did demonstrate that gene expression did 

mirror protein expression (Jesmin et al. 2006). 

 

Finally in some experiments the number of animals, particularly transgenic 

animals, did not reach that suggested by power calculations performed during 

experimental planning. 
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7.1.2. Future work 

Based on the results demonstrated here, future work could include: 

• Identification of the CD31+ effector cell expressing TFPI in the CD31-

TFPI mice through: 

o double immunohistochemical / fluorescent staining of FFPE sections 

with light microscopic or confocal microscopy evaluation  

o and / or flow cytometry phenoptyping 

o use of cell suspension preparation methods that utilise cell 

enrichment techniques such as CD31 labelled magnetic microbeads 

and separation columns 

o and / or flow cytometry based cell sorting to select CD31 positive 

cells for further analysis 

• Evaluation of PAR protein expression by: 

o Western blotting 

o Or ELISA 

• Assessment of the liver inflammatory cytokine profile by: 

o Cytokine array panels that utilise membrane based antibodies for 

parallel detection of multiple cytokines and chemokines 

• Assessment of makers of tissue hypoxia (e.g. hypoxia inducible factors, 

HIFs) using similar methods mentioned above for protein detection. 

• Administration of TPFI via a continuous infusion pump to control animals 

undergoing procedures to induce acute liver injury (to better model how 

humans could be administered TFPI). 
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The results of these investigations would enable me to work out a biological 

mechanism for the results seen in this work as well as test in vivo the validity 

of TFPI as a therapy to modify the progression and extent of acute liver injury. 

 

Some of the proposed future work could be carried out on samples collected 

from this body of work and could form the basis of a number of short projects 

for undergraduates. In vivo work would require a greater level of training and 

time to optimise and would be more suited to postgraduate research. 
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7.2. Chronic liver injury 

No consistent effect on liver fibrosis was seen in transgenic mice compared to 

control mice and therefore this work can conclude that cell specific TFPI 

associated inhibition of the coagulation cascade does not present a useful 

avenue for the modification of chronic liver injury and fibrosis. 

 

An important finding, which builds on results from the acute liver injury models, 

is the consistent decrease in hepatic stellate cell activation in αSMA-TFPI 

mice. TFPI expression was confirmed on αSMA positive hepatic stellate cells 

supporting a role for TFPI in the modification of hepatic stellate cell biology. 
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Parameter measured  
CCl4 chronic liver injury model vs. control 
αSMA-TFPI 

(24, 48, 72 and 96 hours) 
CD31-TFPI 

(24 hours only) 
Liver collagen content No difference. Decreased collagen 1α1 

gene expression and 
hydroxyproline content. 

Hepatic stellate cell 
activation 

Decreased activation at 24 
hours. 

Decreased hepatic stellate 
cell activation (but relative 
increase from baseline) 
greater than controls. 

MMP2 / MMP9 
expression 

No difference. No difference. 

TIMP1 expression No difference. Decreased expression. 
Liver Immune cell 
composition  

Decreased proportion of 
macrophages at 24 (& 48) 
hours. 
Decreased proportion of 
neutrophils at 24 hours. 
Decreased proportion of NK 
cells at 24 hours. 

Increased proportion of B 
cells. 

Liver injury Decreased ALT at 24 
hours. 

 

Table 7-2: Summary of chronic liver injury results 
Text in grey = non significant (p<0.05) trend 
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7.2.1. Limitations 

The major limitation to this work was the lack of another chronic liver injury 

model to support the findings in the CCl4 model. During the course of the body 

of work a supporting thioacetamide model of chronic liver injury was planned 

and undertaken, however the model was found to be flawed due to the timing 

of tissue harvest and cessation of the administration of the xenobiotic causing 

chronic liver injury. Briefly, mice were continuously administered 

thioacetamide up until they were culled. This differs from the CCl4 model 

where at least 24 hours is left between the final dose of xenobiotic and the 

first collection of tissue. The CCl4 model is widely used in the literature and, 

although I cannot find a specific article describing why a 24 hour gap is left, I 

presume that this is to avoid sampling the liver during an episode of acute on 

chronic liver injury. 

 

Results from these thioacetamide models (see Appendix A) were somewhat 

contradictory, demonstrating overall increased liver fibrosis / collagen content 

despite reduced hepatic stellate cell activation. This is likely to be due to the 

difference described above. Ideally this thioacetamide model would have 

been repeated but limitations on resources, the lack of positive findings in the 

CCl4 model of chronic liver injury and consideration of the 3Rs of animal 

research lead to my decision not to repeat the work. 

 

All the methods, data and analyses relating to the flawed thioacetamide model 

are included in Appendix A. 
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As mentioned above (section 7.1.1), another limitation of this work was the 

presence of baseline differences between transgenic and control mice. 

However, in a chronic liver injury model, compared to an acute liver injury 

model, the impact of any baseline differences may be less due to the 

repeated and extended period of liver injury prior to evaluation of specific 

markers.  

 

Beyond the baseline differences mentioned above, the αSMA-TFPI mice 

showed no further baseline differences compared to controls. The CD31-TFPI 

showed additional differences including decreased hepatic stellate cell 

activation and decreased MMP2 gene expression. The differences in the 

CD31-TFPI mice did complicate the interpretation of the chronic liver injury 

models, especially the proportion of activated hepatic stellate cells, which is a 

key variable for the assessment of chronic liver injury and fibrosis. 

 

Finally, MMP2, MMP9 and TIMP1 gene expression only were measured in 

this work. MMP-2, -9 and TIMP-1 are complex enzymes and their inhibitor that 

are produced by a number of cells in the liver in both active and inactive forms. 

Gene expression only indicates the production of more or less protein and not 

the activity of that protein. However, when Knittel et al mapped the gene 

expression of MMP2 and MMP9 in chronic liver injury they found that gene 

expression did correspond to changes in the protein level (Knittel et al. 2000). 
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7.2.2. Future work 

While the data in this work suggests that further investigation of TFPI in 

chronic liver injury would not be of value, the following work could reinforce or 

explain some of the findings: 

• A 0 hour time point for the CCl4 model of chronic liver injury. 

• At least a 24 hour time point for the TAA model of chronic liver injury. 

• Identification of the CD31+ effector cell expressing TFPI in the CD31-

TFPI mice as described in section 7.1.2 

• MMP protein expression and zymography to ascertain their activity. 

• Evaluatio of TIMP-1 protein expression by: 

o Western blotting 

o Or ELISA 

• Assessment of fibrin deposition as carried out in the acute liver injury 

models. 

• PAR gene and protein expression as carried out in the acute liver injury 

models and as described in section 7.1.2 

• Assessment of the liver inflammatory cytokine profile as described in 

section 7.1.2 

• Ex-vivo isolation of αSMA-TFPI hepatic stellate cells by: 

o Flow cytometry based cell sorting  

o Or cell suspension preparation methods that utilise cell 

enrichment techniques such as antibody labelled magnetic 

microbeads and separation columns  
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• Followed by in vitro examination of TFPI expression, surface marker 

expression (including PAR) and assessment of cytokine, MMP and 

TIMP production. 

 

The results of these investigations would enable me to work out biological 

mechanisms for the results, potentially revealing alternative coagulation 

cascade targets in chronic liver injury that may prove more effective in altering 

the progression and extent of chronic liver injury than TFPI. 

 

Some of the proposed future work could be carried out on samples collected 

from this body of work and could form the basis of a number of short projects 

for undergraduates. 
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Appendix A 

This appendix contains all background information, data and analyses relating 

to the thioacetamide model of chronic liver injury carried out as supporting 

model for the CCl4 model of chronic liver injury also used in the body of work 

but abandoned due to a flaw in experimental design. 
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A.1. Background: Thioacetamide (TAA) chronic liver injury model 

Thioacetamide (TAA) is another commonly used xenobiotic for the 

experimental induction of liver injury in mice. TAA is metabolised to 

thioacetamide-S-oxide that is a potent reactive oxygen species. 

Hepatocellular damage occurs in periportal and centrilobular hepatocytes and 

long term exposure results in progressive liver fibrosis through the activation 

of hepatic stellate cells, the expression of pro-fibrogenic and pro-inflammatory 

cytokines (including IL-1β, TGF- β, PDGF and TNF-α) and the production of 

MMP-9 by neutrophils and to a lesser extent, leukocytes and Kupffer cells (Liu 

et al. 2013; Salguero Palacios et al. 2008). With cessation of thioacetamide, 

fibrosis resolves. 
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A.2. Methods: Thioacetamide induced liver injury 

Under Home Office Licence 70/6493 and 70/8060, 6-8 week old transgenic 

and background strain matched wild type controls (C57BL6/J, Harlan UK) 

were administered 0.03% w/v thioacetamide (Sigma) dissolved in autoclaved 

drinking water for 8 weeks (Teixeira-Clerc et al. 2006) and then culled as 

described in section 2.4. 

 

Vehicle only treated mice were administered autoclaved drinking water only. 

 

Mice were monitored using minimally invasive parameters (observation of 

body condition and weight, minimal handling) and in accordance with 

guidance set out in the licence. 

 

A power calculation based on pilot cohort Sirius red collagen staining data 

suggested 6 animals per experimental arm.  
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A.3. Thioacetamide (TAA) induced chronic liver injury in αSMA 

targeted expression of TFPI 

 

A.3.1. Plasma liver function tests 

After TAA administration there was a statistically significant decrease in 

plasma ALP and total bilirubin in αSMA-TFPI mice compared to C57BL6/J 

control mice (Mann Whitney test, p = <0.0001 and p = 0.008 respectively. 

Figure A 1. Graphs B and C). There was no statistically significant difference 

in plasma ALT in αSMA-TFPI mice compared to control mice (Figure A 1. 

Graph B). There were n=9 in the control group and n=7 in the αSMA-TFPI 

group. Baseline sample numbers were as previously noted in section 3.1. 
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Figure A 1: TAA induced 
chronic liver injury, plasma 
liver function tests 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
** p=<0.01. **** p=<0.0001. 
 
Graph A: Plasma ALT 
(IU/L). Median after TAA 
administration, 70IU/L and 
56IU/L in (2.9 and 1.4 fold 
change from baseline) 
control and αSMA-TFPI 
strains respectively. 
 
Graph B: Plasma ALP 
(IU/L). Median after TAA 
administration, 92IU/L and 
59IU/L (1.6 and 1.2 fold 
change from baseline) in 
control and αSMA-TFPI 
strains respectively. 
 
Graph C: Plasma total 
bilirubin (µmol/L). Median 
after TAA administration, 
7.4µmol/L and 3.9µmol/L 
(1.6 and 1.0 fold change 
from baseline) in control 
and αSMA-TFPI strains 
respectively. 
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A.3.2. Liver collagen content 

Digital image analysis of liver FFPE sections stained with Sirius red from mice 

administered TAA showed no statistically significant difference in liver 

collagen deposition in αSMA-TFPI mice compared to C57BL6/J control mice 

(Figure A 2. Graph A). There were n=10 in both the control and the αSMA-

TFPI group. Baseline sample numbers were as previously noted in section 4.1. 

 

Hydroxyproline quantification of the collagen content of livers from mice 

administered TAA showed a statistically significant increase in liver collagen 

content in αSMA-TFPI mice compared to control mice (Mann Whitney test p = 

0.03. Figure A 2. Graph B). There were n=5 in both the control and the αSMA-

TFPI group. The sample number was below that suggested by the power 

calculation due to failed assays. 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled after TAA administration showed no statistically 

significant difference in collagen 1⍺1 gene expression in the livers of αSMA-

TFPI mice compared to control mice (Figure A 2. Graph C). There were n=10 

in both the control and the αSMA-TFPI group. Baseline sample numbers were 

as previously noted in section 4.1. 
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Figure A 2: TAA induced chronic liver 
injury, liver collagen content 
Symbols indicate median. Bars 
indicate interquartile range. 
 
* p=<0.05. 
 
Graph A: Percentage Sirius red 
staining in liver FFPE tissue sections 
from mice administered TAA. Median 
1.4% and 1.9% in control and αSMA-
TFPI strains respectively. 
 
Graph B: Hydroxyproline content 
(µg/g of liver) in livers from mice 
administered TAA. Median 200µg/g 
and 353µg/g in control and αSMA-
TFPI strains respectively. Bars indicate 
median with interquartile range. 
 
Graph C: Collagen 1⍺1 gene 
expression in whole liver homogenates.  
αSMA-TFPI mice had a 2.7 fold 
change (increase) in collagen 1⍺1 
gene expression after TAA 
administration compared to baseline. 
Control mice had a 5.8 fold change 
(increase) compared to baseline. 
 
 

Image 1 

 

Image 2 

 
 
Image 1: Sirius Red. Control mouse. Original x40 magnification. Image 2: 
Sirius Red. αSMA-TFPI mouse. Original x40 magnification. 
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A.3.3. Hepatic stellate cell activation 

Digital image analysis of FFPE liver sections from mice culled after TAA 

administration were stained using an antibody for ⍺SMA and showed a 

statistically significant decrease in the number of activated hepatic stellate 

cells in the livers of αSMA-TFPI mice compared to control mice (Mann 

Whitney test p = <0.0001.Figure A 3. Graph A). There were n=9 in the control 

group and n=10 in the αSMA-TFPI group. Baseline sample numbers were as 

previously noted in section 3.1. 

 

 

Figure A 3: TAA induced chronic liver injury, αSMA immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
**** p=<0.0001. 
 
Graph A: Number of activated hepatic stellate cells in liver FFPE tissue 
sections as determined by ⍺SMA immunohistochemistry. Median after TAA 
administration 10.7 cells per HPF and 2.7 cells per HPF (12 and 6.8 fold 
change from baseline) in control and αSMA-TFPI strains respectively. 
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A.3.4. Collagen turnover 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice administered TAA showed a statistically significant decrease 

in MMP9 gene expression and statistically significant increase in TIMP1 gene 

expression in αSMA-TFPI mice compared to C57BL6/J control mice (Mann 

Whitney test p = 0.04 and p = 0.02 respectively. Figure A 4. Graphs B and C). 

There was no statistically significant difference in MMP2 gene expression in 

αSMA-TFPI mice compared to control mice (Figure A 4. Graph A). 

 

There were n=10 in both the control and the αSMA-TFPI group for all gene 

expression assays. Baseline sample numbers were as previously noted in 

section 4.1. 
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Figure A 4: TAA induced 
chronic liver injury, 
matrixmetalloproteinase and 
TIMP gene expression 
Graph A: MMP2 gene 
expression in whole liver 
homogenates. αSMA-TFPI 
mice had a 13.7 fold 
change (increase) and 
control mice had a 17.9 fold 
change (increase) in MMP2 
gene expression after TAA 
administration compared to 
baseline. 
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates. αSMA-TFPI 
mice had a -1.4 fold change 
(decrease) and control mice 
had a 1.5 fold change 
(increase) in MMP9 gene 
expression after TAA 
administration compared to 
baseline. 
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates. αSMA-TFPI 
mice had a 9.8 fold change 
(increase) and control mice 
had a 4.1 fold change 
(increase) in TIMP1 gene 
expression after TAA 
administration compared to 
baseline. 
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A.3.5. Liver immune cell composition 

Digital image analysis of liver FFPE sections from mice administered TAA 

were stained using an antibody for F4/80 and showed no statistically 

significant difference in the number of F4/80 positive macrophages in the 

livers of αSMA-TFPI mice compared to C57BL6/J control mice (Figure A 5. 

Graph A). There were n=10 in both the control and the αSMA-TFPI group. 

Baseline sample numbers were as previously noted in section 3.1. 

 

 

 
Figure A 5: TAA induced chronic liver injury, F4/80 immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Number of macrophages in liver FFPE tissue sections as 
determined by F4/80 immunohistochemistry. Median at 24 hours after TAA 
administration, 14.5 cells per HPF and 17.6 cells per HPF (-1.7 and -1.3 fold 
change from baseline) in control and αSMA-TFPI strains respectively. 
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A.3.6. Model summary - TAA induced chronic liver injury in αSMA 

targeted expression of TFPI 

This model was initiated to provide further evidence to support the data 

collected in the CCl4 model of chronic liver injury, however it was abandoned 

after a single cohort because a flaw in the experimental design was identified. 

Mice were continuously administered thioacetamide (TAA) up until they were 

culled. This differs from the CCl4 model where at least 24 hours is left 

between the final dose of xenobiotic and the first collection of tissue. The CCl4 

model is widely used in the literature and, although I cannot find a specific 

article describing why a 24 hour gap is left, I presume that this is to avoid 

sampling the liver during an episode of acute on chronic liver injury.  

 

Due to the overall lack of impact of αSMA targeted TFPI expression on the 

progression of chronic liver injury in a CCl4 model I felt it was inappropriate to 

repeat a modified version of the TAA model. However some brief conclusions 

have been drawn from the data collected from this TAA model of chronic liver 

injury. 

 

Prior models have suggested a protective / pro-resolution effect of transgenic 

TFPI expression. Some of the results from the TAA model support this. The 

most notable result from this TAA model and all the other αSMA-TFPI models 

of liver injury is the reduction in hepatic stellate cell activation (not measured 

in the ANIT model of acute liver injury). This suggests that, if only on a cellular 

level, TFPI can act to reduce hepatic stellate activation. 
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In the TAA model of chronic liver injury there was reduced plasma ALP and 

total bilirubin in αSMA-TFPI mice compared to controls. The combination of 

changes in the plasma ALP and bilirubin does suggest some alteration in the 

extent of bile duct damage, but this was not seen histologically and, with a 

lack of histological evidence for reduced bile duct injury, these are non-

specific markers (elevated / reduced in a number of disease processes) and 

the significance of this is uncertain within the limits of the data collected.  

 

The MMP9, TIMP1 and hydroxyproline results in this model are difficult to 

interpret and are likely to be indicative of the model flaw described above. On 

one hand, comparatively reduced MMP-9 and increased TIMP-1 production 

suggests a pro-fibrotic environment, which is supported by the increased 

hydroxyproline result. However other markers of fibrosis did not confirm the 

hydroxylproline result and some studies have shown that MMP-9 production is 

not altered from baseline in chronic liver injury (Knittel et al. 2000; Hemmann 

et al. 2007), as was the case in this model. MMP-9 is produced by a number 

of cells including activated hepatic stellate cells and therefore it is also 

possible that the relatively decreased production fits with decreased hepatic 

stellate cell activation seen in transgenic mice compared to control mice. 

 

TIMP-1 is predominantly expressed by activated hepatic stellate cells and 

therefore its relatively increased expression is contrary to the relatively 

decreased activation of hepatic stellate cells in the transgenic mice. It is 

possible that, in the setting of TAA induced chronic liver injury in mice 

expressing transgenic TFPI, alternate cell types such as macrophages are 
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induced to produce TIMP-1 (Hemmann et al. 2007). Immunohistochemical 

detection of TIMP-1 protein expression or flow cytometry phenotyping of 

TIMP-1 expressing cells may help to clarify this result. The role of TFPI in 

these results, other than its impact on hepatic stellate cell activation, cannot 

be elucidated from this work. 
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A.4. Thioacetamide (TAA) induced chronic liver injury in CD31 

targeted expression of TFPI 

 

A.4.1. Plasma liver function tests 

As previously noted, there was a statistically significant increase in baseline 

ALT in CD31-TFPI transgenic mice compared to control mice (Figure A 6. 

Graphs A). Of note, plasma albumin was not measured for this experiment. 

 

After TAA administration there was no statistically significant difference in any 

plasma liver function tests of CD31-TFPI mice compared to control mice 

(Figure A 6. Graphs A-C). There was a trend towards decreased plasma ALT 

and total bilirubin in CD31-TFPI mice compared to controls after TAA 

administration, and in each parameter this indicated no change or a small 

decrease from baseline measurements. However this did not reach statistical 

significance in adequately powered comparisons (n=7 in the CD31-TFPI 

group and n=9 in the control group). 
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Figure A 6: TAA induced 
chronic liver injury, plasma 
liver function tests 
Symbols indicate median. 
Bars indicate interquartile 
range. 
 
* p=<0.05. 
 
Graph A: Plasma ALT 
(IU/L). Median after TAA 
administration, 70IU/L and 
72IU/L (2.9 and 1.0 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph B: Plasma ALP 
(IU/L). Median after TAA 
administration, 92IU/L and 
67IU/L (1.6 and 1.1 fold 
change from baseline) in 
control and CD31-TFPI 
strains respectively. 
 
Graph C: Plasma total 
bilirubin (µmol/L). Median 
after TAA administration, 
7.4µmol/L and 3.3µmol/L 
(1.6 and -1.2 fold change 
from baseline) in control 
and CD31-TFPI strains 
respectively. 
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A.4.2. Liver collagen content 

Digital image analysis of liver FFPE sections stained with Sirius red from mice 

administered TAA showed a statistically significant increase in liver collagen 

deposition in CD31-TFPI mice compared to controls (Mann Whitney U, p = 

0.005. Figure A 7. Graph A). There were n=10 in both the control and the 

CD31-TFPI group. Baseline sample numbers were as previously noted in 

section 6.1. 

 

Hydroxyproline quantification of the collagen content of livers from mice 

administered TAA showed a statistically significant increase in liver collagen 

content in CD31-TFPI mice compared to control mice (Mann Whitney U, p = 

0.008. Figure A 7. Graph B). There were n=5 in both the control and the 

CD31-TFPI group. Sample numbers were less than the power calculation 

sample number due to failed assays or insufficient assay reagents. 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice culled after TAA administration showed a statistically 

significant increase in collagen 1⍺1 gene expression in the livers of CD31-

TFPI mice compared to control mice (Mann Whitney U, p = 0.01. Figure A 7. 

Graph C). There were n=10 in both the control and the CD31-TFPI group. 

Baseline sample numbers were as previously noted in section 6.1. 
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Figure A 7: TAA induced chronic liver 
injury, liver collagen content 
Symbols indicate median. Bars indicate 
interquartile range. 
 
* p=<0.05. ** p=<0.01. 
 
Graph A: Percentage Sirius red staining 
in liver FFPE tissue sections from mice 
administered TAA. Median 1.4% and 
2.6% in control and CD31-TFPI strains 
respectively. 
 
Graph B: Hydroxyproline content (µg/g 
of liver) in livers from mice administered 
TAA. Median 200µg/g and 402µg/g in 
control and CD31-TFPI strains 
respectively. Bars indicate median with 
interquartile range. 
 
Graph C: Collagen 1⍺1 gene expression 
in whole liver homogenates.  
CD31-TFPI mice had a 12.8 fold change 
(increase) in collagen 1⍺1 gene 
expression after TAA administration 
compared to baseline. Control mice had 
a 5.8 fold change (increase) in collagen 
1⍺1 gene expression compared to 
baseline. 
 
Image 1: Sirius Red. Control mouse. 
Original x40 magnification. 
 
Image 2: Sirius Red. CD31-TFPI mouse. 
Original x40 magnification. 
 

Image 1

 
 

Image 2 
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A.4.3. Hepatic stellate cell activation 

As previously noted, at baseline there was a statistically significant decrease 

in the number of activated hepatic stellate cells in the liver of CD31-TFPI mice 

compared to control mice (Figure A 8. Graph A). 

 

Digital image analysis of FFPE liver sections from mice culled after TAA 

administration were stained using an antibody for ⍺SMA and showed a 

statistically significant decrease in the number of activated hepatic stellate 

cells in the livers of CD31-TFPI mice compared to control mice (Mann 

Whitney U test; p = 0.006. Figure A 8. Graph A). However, given the baseline 

differences seen in the number of activate hepatic stellate cells, CD31-TFPI 

mice demonstrated a 38 fold increase in the number of hepatic stellate cells 

from baseline and control mice demonstrated only a 12 fold increase. There 

were n=9 in the control group and n=10 in the CD31-TFPI group. Baseline 

sample numbers were as previously noted in section 6.1. 
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Figure A 8: TAA induced chronic liver injury, αSMA immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
** p=<0.01. 
 
Graph A: Number of activated hepatic stellate cells in liver FFPE tissue 
sections as determined by ⍺SMA immunohistochemistry. Median after TAA 
administration 10.7 cells per HPF and 3.8 cells per HPF (12 and 38 fold 
change from baseline) in control and CD31-TFPI strains respectively. 
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A.4.4. Collagen turnover 

As previously noted, at baseline there was a statistically significant increase in 

the expression of MMP2 in the liver of CD31-TFPI mice compared to control 

mice (Figure A 9. Graph A). 

 

Quantitative PCR of cDNA reverse transcribed from whole liver homogenate 

RNA from mice administered TAA showed a statistically significant increase in 

MMP9 gene expression in CD31-TFPI mice compared to control mice (Mann 

Whitney U test; p = 0.03. Figure A 9. Graph B). No statistically significant 

difference was seen in MMP2 or TIMP1 gene expression in CD31-TFPI mice 

compared to control mice (Error! Reference source not found.. Graphs A 

and C). 

 

There were n=10 in the control and in the CD31-TFPI group for all assays. 

Baseline sample numbers were as previously noted in section 6.1. 
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Figure A 9: TAA induced 
chronic liver injury, 
matrixmetalloproteinase and 
TIMP gene expression 
Graph A: MMP2 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a 8.7 fold change 
(increase) and control mice 
had a 17.9 fold change 
(increase) in MMP2 gene 
expression after TAA 
administration compared to 
baseline. 
 
Graph B: MMP9 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a 6.8 fold change 
(increase) and control mice 
had a 1.5 fold change 
(increase) in MMP9 gene 
expression after TAA 
administration compared to 
baseline. 
 
Graph C: TIMP1 gene 
expression in whole liver 
homogenates. CD31-TFPI 
mice had a 22.3 fold 
change (increase) and 
control mice had a 4.1 fold 
change (increase) in TIMP1 
gene expression after TAA 
administration compared to 
baseline. 
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A.4.5. Liver immune cell composition 

Digital image analysis of liver FFPE sections from mice administered TAA 

were stained using an antibody for F4/80 and showed no statistically 

significant difference in the number of F4/80 positive macrophages in the 

livers of CD31-TFPI mice compared to C57BL6/J control mice (Figure A 10. 

Graph A). There were n=10 in the control and in the CD31-TFPI group for all 

assays. Baseline sample numbers were as previously noted in section 6.1. 

 

 

Figure A 10: TAA induced chronic liver injury, F4/80 immunohistochemistry 
Symbols indicate median. Bars indicate interquartile range. 
 
Graph A: Number of macrophages in liver FFPE tissue sections as 
determined by F4/80 immunohistochemistry. Median at 24 hours after TAA 
administration, 15 cells per HPF and 17 cells per HPF (-1.7 and -1.5 fold 
change from baseline) in control and CD31-TFPI strains respectively. 
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A.4.6. Model summary - TAA induced chronic liver injury in CD31 

targeted expression of TFPI 

This model was initiated to provide further evidence to support the data 

collected in the CCl4 model of chronic liver injury, however it was abandoned 

after a single cohort because of the flaw in the experimental design discussed 

in Chapter 4. Briefly, mice were continuously administered thioacetamide 

(TAA) up until they were culled creating a potential acute on chronic liver 

injury model as opposed to the intended chronic liver model.  

 

After thioacetamide (TAA) induced chronic liver injury the overall picture in 

CD31-TFPI mice was of increased liver fibrosis in comparison to control mice. 

This was a somewhat surprising result as all prior models (acute and chronic 

liver injury) had suggested a protective or pro-resolution effect of transgenic 

TFPI expression and there had been a significant decrease in hepatic stellate 

cell activation in CD31-TFPI mice compared to control mice in this TAA model. 

However, as in the previous model (CCl4 induced chronic liver injury) hepatic 

stellate cell activation had been decreased at baseline and fold change from 

baseline showed that there was a greater increase in hepatic stellate cell 

activation in the liver of CD31-TFPI mice compared to controls.  

 

The relatively greater increase in hepatic stellate cell activation from baseline 

in the CD31-TFPI mice, in part, explains the increased fibrosis and relatively 

large fold increase in TIMP1 expression from baseline. The increase in 

hepatic stellate cell activation may have been associated with the increase in 

MMP9 expression seen in CD31-TFPI mice. MMP-9 has a role in TGF-β 
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associated hepatic stellate cell activation and collagen production. MMP-9 is 

expressed by Kupffer cells, hepatic stellate cells, lymphocytes and neutrophils 

during liver fibrosis and its activity and gene expression is not normally altered 

in liver fibrosis (Knittel et al. 2000)(Hemmann et al. 2007) therefore it is 

possible that, as in the CCl4 model, priming of an effector cell may have 

occurred and in this model lead to increased MMP9 expression and a pro-

fibrotic microenvironment. Unfortunately only F4/80 macrophage populations 

were quantified in this model. There was no difference between transgenic 

and control mice in the absolute numbers of these cells in the liver but their 

Ly6C expression profile was not investigated. 

 

Due to limitations on time and resources and the incongruous results from this 

model I felt it was inappropriate to repeat a modified version of the TAA model 

to address the experimental design flaw. 
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Parameter measured  TAA chronic liver injury model vs. control 
 αSMA-TFPI CD31-TPFI 

Liver collagen 
content 

Increased hydroxyproline 
content. 

Increased Sirius red 
staining, hydroxyproline 
content and collagen 1α1 
gene expression. 

Hepatic stellate cell 
activation 

Decreased activation. Decreased hepatic stellate 
cell activation (but relative 
increase from baseline) 
greater than controls. 

MMP2 / MMP9 
expression 

Decreased (no change from 
baseline) MMP9 
expression. 

Increased MMP9 
expression. 

TIMP1 expression Decreased expression. Increased expression. 
Liver Immune cell 
composition  

No difference (F4/80 
positive macrophages only 
measured). 

No difference (F4/80 
positive macrophages only 
measured). 

Liver injury Decreased ALP and total 
bilirubin. 

No difference.  
Relative stability in LFT’s 
compared to control 
increase. 

Table A 1: Summary TAA chronic liver injury 
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Appendix B 

 

Below are images (original magnification x1000) of CD31 DAB 

immunohistochemical staining of liver sections from uninjured livers. The DAB 

labelled antibody demonstrates positive staining of vascular endothelial cells 

but not sinusoidal epithelial cells. 

 

  

CD31 staining luminal vascular 
endothelial cells 

No staining of sinusoidal endothelial cells 

 

 


