
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Dynamic Race Detection for C++11

Christopher Lidbury
Imperial College London, UK

christopher.lidbury10@imperial.ac.uk

Alastair F. Donaldson
Imperial College London, UK

alastair.donaldson@imperial.ac.uk

Abstract
The intricate rules for memory ordering and synchronisation as-
sociated with the C/C++11 memory model mean that data races
can be difficult to eliminate from concurrent programs. Dynamic
data race analysis can pinpoint races in large and complex ap-
plications, but the state-of-the-art ThreadSanitizer (tsan) tool for
C/C++ considers only sequentially consistent program executions,
and does not correctly model synchronisation between C/C++11
atomic operations. We present a scalable dynamic data race analy-
sis for C/C++11 that correctly captures C/C++11 synchronisation,
and uses instrumentation to support exploration of a class of non se-
quentially consistent executions. We concisely define the memory
model fragment captured by our instrumentation via a restricted ax-
iomatic semantics, and show that the axiomatic semantics permits
exactly those executions explored by our instrumentation. We have
implemented our analysis in tsan, and evaluate its effectiveness on
benchmark programs, enabling a comparison with the CDSChecker
tool, and on two large and highly concurrent applications: the Fire-
fox and Chromium web browsers. Our results show that our method
can detect races that are beyond the scope of the original tsan tool,
and that the overhead associated with applying our enhanced in-
strumentation to large applications is tolerable.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords data races, concurrency, C++11, memory models

1. Introduction
With the introduction of threads of execution as a first-class lan-
guage construct, the C/C++11 standards (which we henceforth re-
fer to as C++11 for brevity) give a detailed memory model for
concurrent programs [19, 20]. A principal feature of this memory
model is the notion of a data race, and that a program exhibiting a
data race has undefined semantics. As a result, it is important for
programmers writing multi-threaded programs to take care in not
introducing data races.

The definition of a data race in C++11 is far from trivial, due
to the complex rules for when synchronisation occurs between the
various atomic operations provided by the language, and the mem-
ory orders with which atomic operations are annotated. Working
out by hand whether a program is race-free can be difficult.

[Copyright notice will appear here once ’preprint’ option is removed.]

Another subtlety of this new memory model is the reads-from
relation, which specifies the values that can be observed by an
atomic load. This relation can lead to non-sequentially consistent
(SC) behaviour; such weak behaviour can be counter-intuitive for
programmers. The definition of reads-from is detailed and frag-
mented over several sections of the standards, and the weak be-
haviours it allows complicate data race analysis, because a race may
be dependent upon a weak behaviour having occurred.

The aim of this work is to investigate the provision of automated
tool support for race analysis of C++11 programs, with the goal of
helping C++11 programmers write race-free programs. The current
state-of-the-art in dynamic race analysis for C++11 is ThreadSani-
tizer [43] (tsan). Although tsan can be applied to programs that use
C++11 concurrency, the tool does not understand the specifics of
the C++11 memory model: it can both miss data races and errors,
and report false alarms. The example programs of Figure 1 illus-
trate these issues: Figure 1a has a data race that tsan is incapable of
detecting; Figure 1b has an assertion that can only fail under non-
SC behaviour and hence cannot be explored by tsan; Figure 1c is
free from data races due to C++11 fence semantics, but is deemed
racy by tsan. We discuss these examples in more detail in §2.1.

In light of these limitations, the main research questions we
consider are: (1) Can synchronisation properties of a C++11 pro-
gram be efficiently tracked during dynamic analysis? (2) How large
a fragment of the C++11 memory model can be modelled effi-
ciently during dynamic analysis? (3) Following from (1) and (2),
can we engineer a memory model-aware dynamic race analysis
tool that scales to large concurrent applications, such as the Fire-
fox and Chromium web browsers? These applications can already
be analysed using tsan, without the full extent of the C++11 mem-
ory model; our question is whether by modifying tsan to be fully
aware of the memory model, we can still explore said applications.

The programs we wish to analyse can have hundreds of threads
running concurrently, executing thousands of lines of code. They
are thus out of scope for current analysers, such as CDSChecker [31,
32] and Cppmem [6], which are designed to operate on self-
contained litmus tests and small benchmarks. It is in this regard
that our aims differ significantly from those of prior work.

We approach these questions through a series of research con-
tributions as follows:

1. Extending the vector clock algorithm for C++11 (§3) We
extend the vector clock-based dynamic race detection algorithm
to handle C++11 synchronisation accurately, requiring awareness
of release sequences and fence semantics. Our extension allows
accurate handling of programs like those of Figures 1a and 1c.

2. Exploring weak behaviours (§4) Many C++11 weak be-
haviours are due to the reads-from relation, which allows a load
to read from one of several stores. We present the design of an
instrumentation library that enables dynamic exploration of this re-
lation, capturing a large fragment of the C++11 memory model so

1 2016/11/17



that errors dependent on weak behaviours can be detected, such as
the assertion failure of Figure 1b.

3. Operational model (§5) We formalise the instrumentation of
§4 as an operational semantics for a core language. Unlike related
works on operational semantics for C/C++11 that aim to capture
the full memory model (see §8), our semantics is intended as a
basis for dynamic analysis of real-world applications, thus trades
coverage for feasibility of implementation.

4. Characterising our operational model axiomatically (§6) The
practically-focussed design of our operational model means that
not all memory model behaviours can be observed. To make this
precise, we characterise the behaviours we eliminate via a single
additional axiom to those of an existing axiomatic formalisation
of C++11, and argue that this strengthened memory model is in
correspondence with our operational model.

5. Implementation in ThreadSanitizer, and experiments (§7) We
have implemented our race detection and memory model explo-
ration techniques as an extension to the ThreadSanitizer (tsan) tool.
We evaluate the effectiveness of our extended tsan by comparing
it with the original tsan and with CDSChecker on small bench-
marks, and with the original tsan for race analysis on the Firefox
and Chromium web browsers. Our results show that our extension
to tsan can find data races that the original cannot, and will run
large-scale applications with a tolerable overhead. However, our
results emphasise the open problem of how to explain and pinpoint
the root cause of data races, as well as how to determine whether
data races rely on non-SC behaviour to manifest.

2. Background
We provide a brief overview of C++11 concurrency and the
C/C++11 memory model (§2.1), the vector clock algorithm for
data race detection (§2.2), and ThreadSanitizer, a state-of-the-art
race detection tool for C++ (§2.3).

2.1 C/C++11 Memory Model
The C/C++11 standards provide several low level atomic opera-
tions on atomic types, which allow multiple threads to interact:
stores, loads, read-modify-writes (RMWs) and fences. RMWs will
modify (e.g. increment) the existing value of an atomic location,
storing the new value and returning the previous value atomically.
Fences decouple the memory ordering constraints mentioned below
from atomic locations, allowing for finer control over synchronisa-
tion.

Each operation can be annotated with one of six memory or-
derings: relaxed, consume, acquire, release, acquire-release and se-
quentially consistent. These control how operations are ordered
between threads and when synchronisation occurs. Sequentially
consistent ordering provides the strongest ordering guarantees: if
all operations are annotated as sequentially consistent then, pro-
vided the program is free from data races, it is guaranteed to have
sequentially consistent semantics. The rest of the orderings pro-
vide synchronisation when certain conditions are met, with re-
laxed providing minimal synchronisation. In line with many prior
works [8, 31, 46], for simplicity we do not further consider the
scarcely used consume ordering. We also omit a treatment of lock
operations, which are already handled by tsan.

We follow the Post-Rapperswil formalisation of Batty et al. [5]
in providing an overview of the memory model. Although recent
works have condensed the formalisation [8, 46], the descriptive pre-
sentation of [5] provides a greater degree of intuition for designing
our instrumentation framework in §4.

We start by defining a few basic types of operation. A load is
an atomic load or RMW. An acquire load is a load with acquire,

void T1() {
nax = 1; // A
x.store(1, std:: memory_order_release ); // B

}
void T2() {

if (x.load(std:: memory_order_acquire) == 1) // C
x.store(2, std:: memory_order_relaxed ); // D

}
void T3() {

if (x.load(std:: memory_order_acquire) == 2) // E
nax; // read from ‘nax’ // F

}

(a) The write from T2 can cause T1 to fail to synchronise with T3,
resulting in a data race on nax; tsan cannot detect the race

void T1() {
x.store(1, std:: memory_order_relaxed );
y.store(1, std:: memory_order_relaxed );

}
void T2() {

assert (!(y.load(std:: memory_order_relaxed) == 1) &&
x.load(std:: memory_order_relaxed) == 0));

}

(b) The assertion can fail as T2 can observe the writes out of order; this
is not possible under SC and so cannot be detected by tsan

void T1() {
nax = 1;
atomic_thread_fence(std:: memory_order_release );
x.store(1, std:: memory_order_relaxed );

}
void T2() {

if (x.load(std:: memory_order_relaxed) == 1) {
atomic_thread_fence(std:: memory_order_acquire );
nax; // read from ‘nax’

}
}

(c) T1 and T2 synchronise via fences, thus there is no data race;
however, tsan reports a race (a false alarm)

Figure 1: Examples showing limitations of tsan prior to our work
(the statement labels A–F in Figure 1a are for reference in our vector
clock algorithm example)

acquire-release or sequentially consistent ordering. A store is an
atomic store or RMW. A release store is a store with release,
acquire-release or sequentially consistent ordering.

The model is defined using a set of relations and predicates. An
overview is given throughout the rest of this subsection.

Pre-executions A program execution represents the behaviour of
a single run of the program. These are shown as execution graphs,
where nodes represent memory events. For example, a:Wrelx=1
is a memory event that corresponds to a relaxed write of 1 to
memory location x; a is a unique identifier for the event. The event
types W, R, RMW and F represent read, write, RMW and fence
events, respectively. Memory orderings are shortened to rlx, rel,
acq, ra, sc and na for relaxed, release, acquire, release-acquire,
sequentially-consistent and non-atomic, respectively. An RMW has
two associated values, representing both the value read and written.
For example, b:RMWrax=1/2 shows event b reading value 1
from and writing value 2 to x atomically. Fences have no associated
values or atomic location; an example release fence event is c:Frel.

Sequenced-before (sb) is an intra-thread relation that orders
events by the order they appear in the program. Operations within
an expression are not ordered, so sb is not total within a thread.

Additional-synchronises-with (asw ) causes synchronization on
thread launch, between the parent thread and the newly created

2 2016/11/17



thread. Let a be the last event performed by a thread before it cre-
ates a new thread, and b be the first event in the created thread. Then
(a, b) ∈ asw . Similarly, an asw edge is also created between the
last event in the child thread and the event immediately following
the join in the parent thread.

The events, sb edges and asw edges form a pre-execution. In the
program of Figure 1b, whether an event is created for the second
read in T2 depends on whether, under short-circuit semantics, it
is necessary to evaluate the second argument to the logical &&
operator. In most of the graphs we show, obvious relations like
asw are elided to prevent the graphs from becoming cluttered. The
values read by read events are unbound, as matching reads and
writes comes at a later stage. As a result, only a select few pre-
executions of a program lead to valid executions.

Presentation of Execution Graphs Throughout the paper we
present a number of execution graphs, such as those depicted in
Figures 2 and 3. These graphs are best viewed in colour. In each
graph, events in the same column are issued by the same thread.
We sometimes omit write events that give initial values to loca-
tions; e.g. in Figure 2 we label events starting with c, not showing
events a and b that give initial values to locations x and nax.

Witness Relations A single pre-execution, disregarding the event
values, can give rise to many different executions, depending on
the behaviours the program can exhibit. A pre-execution combined
with a set of relations characterising the behaviour of a particu-
lar execution is referred to as a candidate execution. Not all pre-
executions can be extended to a candidate execution, if, for exam-
ple, a read cannot be matched with a write.

Reads-from (rf ) shows which store each load reads from. For a
store a and load b, (a, b) ∈ rf indicates that the value read by b
was written by a. In any given execution, there are usually many
stores that a load can read from.

Modification-order (mo) is a total order over all of the stores to
a single atomic location. Each location has its own order.

Sequentially-consistent (sc) order is a total order over all atomic
operations in the execution marked with sequentially-consistent
ordering. This removes a lot of the weak behaviours that a program
could otherwise exhibit. For example, a sequentially consistent load
will read from the last sequentially consistent store to the location,
but not from an earlier sequentially consistent store.

The candidate set of executions is the set of pre-executions
extended with the witness relations. At this stage, we still do not
know which of the executions are allowable by the memory model.

Derived Relations Given a pre-execution and witness relations,
a further set of relations can be derived that will allow us to see
whether said execution follows the rules set out by the memory
model.

A release-sequence (rs) represents a continuous subset of the
modification order. It is headed by a release store, and continues
along all stores to the same location. The rs is blocked when
another thread performs a store to the location. An RMW from
another thread will however continue the rs . Figure 2 shows a
release sequence that is immediately blocked by a relaxed write
from another thread.

A hypothetical-release-sequence (hrs) works in the same way
as a release sequence, but is headed by both release stores and non-
release stores. The rules for extending and blocking are the same as
for release sequences. The hrs is used for fence synchronisation,
discussed in §3.2.

Synchronises-with (sw ) defines the points in an execution where
one thread has synchronised with another. When a thread performs
an acquire load, and reads from a store that is part of a release
sequence, the head of the release sequence synchronises with the

c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=0

dr

rs

e:Wrlx x=3

sb

f:Wrlx x=2

mo

g:Racq x=3

rf
mo

sb

Figure 2: The release sequence headed by d is blocked by event f ,
causing a data race between c, the non-atomic write to nax, and h,
the non-atomic read from nax; if the blocking event f is removed,
there is no race

acquire load. Synchronisation is also caused by fences, discussed
later in §3.2. An asw edge is also sw an edge.

Happens-before (hb) is simply (sb ∪ sw)+ (where + denotes
transitive closure), representing Lamport’s partial ordering over the
events in a system [25]. Because an sw edge is also an hb edge,
when thread A synchronises with thread B, every side effect that
has occurred inA up to this point will become visible to every event
issued by B from this point.

Data Races Now that we have defined the happens-before rela-
tion, we can give a formal definition of a data race, as described
by the C/C++11 standard. A data race occurs between two memory
accesses when at least one is non-atomic, at least one is a store, and
neither happens before the other according to the hb relation. Fig-
ure 2 shows an execution with a data race, as there is no sw edge
between the release store d and acquire load g, and therefore no hb
edge between the non-atomic accesses c and h.

The presence of a data race is indicative of a program bug. The
standard states that data races are undefined behaviour, and the
negative consequences of data races are well known [1].

Consistent Executions The C++11 memory model is axiomatic—
it provides a set of axioms that an execution must abide by in order
to be exhibited by a program. A candidate execution that conforms
to such axioms is said to be consistent. Inconsistent executions are
discarded, as they should never occur when the program is com-
piled and executed. If any consistent execution is shown to have a
data race, then the set of allowed executions is empty, leaving the
program undefined.

There are seven axioms that determine consistency [5]. As
we are not considering consume memory ordering and locks,
some of these are fairly simple. The well_formed_threads ax-
iom states that sb must be intra-thread and a strict pre-order.
The well_formed_rf _mapping axiom ensures that nothing un-
usual is happening with the rf relation, such as a load specified
at one location reading from a store to another location, from
multiple stores, or from a store whose associated value is differ-
ent from the value read by the load. The consistent_locks axiom
we do not consider, as locks have not been affected by our work.
The last three axioms, consistent_sc_order , consistent_mo and
consistent_rf _mapping , correspond with the formation of the sc,
mo and rf relations. We cover these in detail in §4 when presenting
our instrumentation library. The consistent_ithb axiom, without
consume, simply requires hb to be irreflexive.

So long as an execution follows these axioms, it will be allowed.
This leads to some interesting behaviours. We refer to a weak
behaviour as one that would not appear under any interleaving of
the threads using sequentially consistent semantics. To illustrate
this, Figure 3 shows two such executions that arise from well-
known litmus tests [3, 6, 9, 31]. In the load and store buffering
examples, at least one of the reads will not read from the most
recent write in mo, no matter how the threads are interleaved. In the

3 2016/11/17



d:Rrlx x=0

rf

f:Rrlx y=0

rf

c:Wrlx y=1

sb

e:Wrlx x=1

sb

(a) Store buffering

c:Rrlx x=1

d:Wrlx y=1

sb

e:Rrlx y=1

rf

f:Wrlx x=1

sb

rf

(b) Load Buffering

Figure 3: Example executions showing some of the common weak
behaviours allowed by the C/C++11 memory model

load buffering example, one of the reads will read from a write that
has not even been performed yet. Note that while these behaviours
are allowed by the memory model, whether we observe them in
practice depends practical issues such as the effect of compiler
reorderings and properties of the hardware on which a program is
executed.

2.2 Dynamic Race Detection
A dynamic race detector aims to catch data races while a program
executes. This requires inferring various properties of the program
after specific instructions have been carried out.

The vector clock (VC) algorithm is a prominent method for race
detection that can be applied to multiple languages, including C++
with pthreads, and Java [15, 21, 28, 37, 38]. It aims to precisely
compute the happens-before relation. Each thread in the program
has an epoch representing its current logical time. A VC holds an
epoch for each thread, and each thread has its own VC, denoted
Ct for thread t. Each epoch in Ct represents the logical time of
the last instruction by the corresponding thread that happens before
any instruction thread t will perform in the future. The epoch for
thread t, Ct(t), is denoted c@t.

VCs have an initial value,⊥V , a join operator,∪, and a compar-
ison operator, ≤, and a per-thread increment operator, inct. These
are defined as follows:

⊥V = λt.0 V1 ∪ V2 , λt.max(V1(t), V2(t))

V1 ≤ V2 , ∀t.V1(t) ≤ V2(t)

inct(V ) = λu. if u = t then V (u) + 1 else V (u)

Upon creation of thread t, Ct is initialised to inct(⊥V ) (possibly
joined with the clock of the parent thread, depending on the syn-
chronisation semantics of the associated programming language).
Each atomic locationm has its own VC, Lm, that is updated as fol-
lows: when thread t performs a release operation on m, it releases
Ct to m: Lm := Ct. When thread t performs an acquire operation
on m, it acquires Lm using the join operator: Ct := Ct ∪ Lm.
Thread t releasing to location m and the subsequent acquire of m
by thread u simulates synchronisation between t and u. On per-
forming a release operation, thread t’s vector clock is incremented:
Ct := inct(Ct).

To detect data races, we must check that certain accesses to
each location are ordered by hb, the happens-before relation. As all
writes must be totally ordered, only the epoch of the last write to
a location x needs to be known at any point, denoted Wx. As data
races do not occur between reads, they do not need to be totally
ordered, and so the epoch of the last read by each thread may need
to be known. A full VC must therefore be used to track reads for
each memory location, denoted Rx for location x; Rx(t) gets set to
the epoch Ct(t) when t reads from x. To check for races, a different
check must be performed depending on the type of the current and
previous accesses. These are outlined as follows, where thread u is
accessing location x, c@t is the epoch of the last write to x and Rx

represents the latest read for x by each thread; if any check fails
then there is a race:

write-write: c ≤ Cu(t) write-read: c ≤ Cu(t)
read-write: c ≤ Cu(t) ∧ Rx ≤ Cu

Example We illustrate the VC-based race detection algorithm
using the example of Figure 1a, for the thread schedule in which
the statements are executed in the order A–F. Initially, the thread
VCs are CT1 = (1, 0, 0), CT2 = (0, 1, 0), CT3 = (0, 0, 1), and we
have Rnax = Lx = ⊥V . Because nax has not been written to,Wnax
has initial value 0@T1, where the choice of T1 is arbitrary: epoch 0
for any thread would suffice [15].

Statement A writes to nax, which has not been accessed previ-
ously, no race check is required. After A, Wnax := 1@T1, because
T1’s epoch is 1. After T1’s release store at B, Lx := Lx ∪ CT1 =
(1, 0, 0), and CT1 := incT1(CT1) = (2, 0, 0). After T2’s acquire
load C, CT2 := CT2 ∪ Lx = (1, 1, 0). The race analysis state is not
updated by T2’s store at D since relaxed ordering is used.

After T3’s acquire load at E, CT3 := CT3 ∪ Lx = (1, 0, 1).
Thread T3 then reads from nax at statement F, thus a race check is
required between this read and the write issued at A. A write-read
check is required, to show that c ≤ CT3(t), where Wnax = c@t.
Because Wnax = 1@T1, this simplifies to 1 ≤ CT3(T1), which can
be seen to hold. The execution is thus deemed race-free.

In Section 3.1 we will revisit the example, showing that our
refinements to the VC algorithm to capture the semantics of C++11
release sequences identify a data race in this execution.

2.3 ThreadSanitizer
ThreadSanitizer (tsan) is an efficient dynamic race detector tool
aimed at C++ programs [43]. The tool originally targeted C++03
programs using platform-specific libraries for threading and con-
currency, such as pthreads. The tool was designed to support C++11
atomic operations, but does not fully capture the semantics of the
C++11 memory model when tracking the happens-before relation.
This imprecision was motivated by needing the tool to work on
large legacy programs, for which performance and memory con-
sumption are important concerns, and the tsan developers focused
on optimising for the common case of release/acquire synchronisa-
tion.

The tool performs a compile-time instrumentation of the source
program, in which all (atomic and non-atomic) accesses to poten-
tially shared locations, as well as fence operations, are instrumented
with calls into a statically linked run-time library. This library im-
plements the VC algorithm outlined in §2.2. Shadow memory is
used to keep track of accesses to all locations. This will store up
to four shadow words per location. For a given location this al-
lows tsan to detect data races involving one of up to four previ-
ous accesses to the location. On each access to the location, all the
shadow words are checked for race conditions, after which details
of the current access are tracked using a shadow word, with a pre-
vious access being evicted pseudo-randomly if four accesses are
already being tracked. Older accesses have a higher probability of
being evicted. As only four of the accesses are stored, there is a
chance for false negatives, as shadow words that could still be used
can be evicted.

Limitations of tsan Recall from §2.1 that under certain condi-
tions, a release sequence can be blocked. In tsan, release sequences
are never blocked, and all will continue indefinitely. This creates
an over-approximation of the happens-before relation, which leads
to missed data races as illustrated by the example of Figure 1a.
On the other hand, tsan does not recognise fence semantics and
their role in synchronisation, causing tsan to under-approximate the
happens-before relation and produce false positives. The example
of Figure 1c illustrates this: tsan will not see the synchronisation
between the two fences and so will report a data race on nax.

4 2016/11/17



The tsan instrumentation means that every shared memory
atomic load and store leads to a call into the instrumentation li-
brary, the functions of which are protected by memory barriers.
These barriers mean that tsan is largely restricted to exploring only
sequentially consistent executions. Only data races on non-atomic
locations can lead to non-SC effects being observed. If a program
has data races that can only manifest due to non-SC interactions
between atomic operations (such as in the example of Figure 1b),
tsan will not detect the race even if the instrumented program is
executed on a non-SC architecture, such as x86, POWER or ARM.

3. Data Race Detection for C++11
The traditional VC algorithm outlined in §2.2, and implemented
in tsan, is defined over simple release and acquire operations, and
is unaware of the more complicated synchronisation patterns of
C++11. Our first contribution is to provide an updated VC algo-
rithm that properly handles C++11 synchronisation. Throughout
this section we show where the original VC algorithm falls short,
and explain how our updated algorithm fixes these shortcomings.
We summarise the overall algorithm, presenting our new extensions
as a set of inference rules, in §3.3.

3.1 Release Sequences
As described in §2.1, release sequences are key to synchronisation
in C++11. An event a will synchronise with event b if a is a
release store and b is an acquire load that reads from a store in
the release sequence headed by a. We explain why this is not
captured accurately by the existing VC algorithm, and how our new
algorithm fixes this deficiency.

Blocking Release Sequences Recall the execution of Figure 2.
The release sequence started by event d is blocked by the relaxed
write at event f . The effect is that when event g reads from event e,
no synchronisation occurs, as the release sequence headed by event
c does not extend to event e. In the original VC algorithm, synchro-
nisation does occur, as the VC for a location is never cleared; thus
it is as if release sequences continue forever.

To adapt the VC algorithm to correctly handle the blocking of
release sequences, we store for each location m the id of the thread
that performed the last release store tom. Let Tm record this thread
id. When a thread with id t performs a release store to m, the
contents of the VC for m are over-written: Lm := Ct, and t is
recorded as the last thread to have released to m: Tm := t. This
records that t has started a release sequence on m. Now, if a thread
with id u 6= Tm performs a relaxed store to m, the VC for m is
cleared, i.e. Lm := ⊥V . This has the effect of blocking the release
sequence started by Tm.

Example revisited Recall from Section 2.2 our worked example
of the VC algorithm applied to schedule A–F of Figure 1a. Revising
this example to take release sequence blocking into account, we
find that the relaxed store by T2 at D causes Lx to be set to ⊥V .
As a result, the acquire load by T3 at E yields CT3 := CT3 ∪ Lx =
(0, 0, 1). This causes the write-read race check on nax to fail at F,
because Wnax = 1@T1 and CT3(T1) = 0. Thus a race is detected,
as required by the C++11 memory model.

Read-Modify-Writes RMWs provide an exception to the block-
ing rule: an RMW on location m does not block an existing release
sequence on m. Each RMW on m with release ordering starts a
new release sequence on m, meaning that an event can be part of
multiple release sequences. If a thread t that started a release se-
quence on m performs a non-RMW store to m, the set of currently
active release sequences for m collapses to just the one started by
t. In Figure 4, release sequences from the left and middle threads

c:Wna nax=1

d:Wrel x=1

sb

h:Rna nax=0

dr

rs

e:RMWrel x=1/2

rf,mo, rs

rs

f:Wrlx x=3

sb,mo, rs

g:Racq x=3
sw

rf sb

Figure 4: The release sequence started by d and continued by e is
blocked by f ; thus d does not synchronise with g, so c races with h

are active on event e, before a relaxed store by the middle thread
causes all but its own release sequence to be blocked.

To represent multiple release sequences on a location m, we
make Lm join with the VC for each thread that starts a release
sequence. An acquiring thread will effectively acquire all of the
VCs that released to Lm when it acquires Lm. This is not enough
however. Consider the case of collapsing release sequences when a
thread t that started a release sequence on m performs a relaxed
non-RMW store. We require the ability to replace Lm with the
VC that t held when it started its release sequence on m, but this
information is lost if t’s VC has been updated since it performed the
original release store. To preserve this information, we introduce
for each location m a vector of vector clocks (VVC), Vm, that
stores the VC for each thread that has started a release sequence
on m.

How Vm is updated depends on the type of operation being
performed. If thread t performs a non-RMW store to m, Vm(u)
is set to⊥V for each thread u 6= t. If the store has release ordering,
Vm(t) and Lm are set to Ct; as a result, t is the only thread for
which there is a release sequence on m. If instead the store has
relaxed ordering, Vm(t) is left unchanged, and Lm is set to Vm(t),
i.e. to the VC associated with the head of a release sequence on m
started by t, or to ⊥V if t has not started such a release sequence.

Suppose instead that t performs an RMW on m. If the RMW
has relaxed ordering then there are no changes to Lm nor Vm and
all release sequences continue as before. If the RMW has release
ordering, Vm(t) is updated to Ct, and the VC for t is joined on to
the VC form, i.e. Lm := Lm∪Ct. By updating Lm in this manner,
we ensure that when a thread acquires fromm, it synchronises with
all threads that head a release sequence on m.

In practice, recording a full VVC for each location would be
prohibitively expensive. In our implementation (§7.1) we instead
introduce a mapping from thread ids to VCs that grows on demand
when threads actually perform RMWs.

3.2 Fences
A fence is an atomic operation that does not work on any particular
location. It is annotated with a memory ordering like other atomic
operations, and thus can be a release fence and/or acquire fence.
Fences with SC ordering have special meaning, discussed in §4.5.
As discussed above, fences are not handled in tsan: programs such
as that of Figure 1c will not be properly instrumented, leading to
false positives.

The three cases of synchronisation with fences are shown in
Figure 5. Acquire fences will synchronise if a load sequenced
before the fence reads from a store that is part of a release sequence,
even if the load has relaxed ordering, as shown in Figure 5a.
Release fences use the hypothetical release sequence, described in
§2.1. A release fence will synchronise if an acquire load reads from
a hypothetical release sequence that is headed by a store sequenced
after the fence, as shown in Figure 5b. Release fences and acquire
fences can also synchronise with each other, shown in Figure 5c.

In order to allow the VC algorithm to handle fence synchronisa-
tion, the VC from whence a thread performed a release fence must
be known, as this VC will be released to Lm if the thread then does
a relaxed store to m. When a thread performs a relaxed load, the

5 2016/11/17



a:Wrel x=1
rs

b:Rrlx x=1
rf

c:Facq

sw sb

(a) Acquire fence

a:Frel

b:Wrlx x=1

sb

c:Racq x=1
sw

hrs

rf

(b) Release fence
a:Frel

b:Wrlx x=1

sb

d:Facq

sw

hrs

c:Rrlx x=1

rf

sb

(c) Acquire and release fences

Figure 5: Synchronisation caused by fences

VC that would be acquired if the load had acquire ordering must be
remembered, because if the thread then performs an acquire fence,
the thread will acquire said VC. To handle this, for each thread twe
introduce two new VCs to track this information: the fence release
clock, Frel

t , and the fence acquire clock, Facq
t . We then extend the

VC algorithm as follows. When thread t performs a release fence,
Frel
t is set to Ct; when t performs an acquire fence, Facq

t is joined
on to the thread’s clock, i.e. Ct := Ct ∪Facq

t . When a thread t per-
forms a relaxed store to m, Frel

t is joined on to Lm. If t performs a
relaxed load from m, Lt is joined on to Facq

t .
To illustrate fence synchronisation, consider the four operations

shown in the execution fragment in Figure 5c. Let events a, b, c
and d be carried out in that order. After a, Frel

t = Ct. After b,
Lx = Frel

t . After c, Facq
u
′ = Facq

u ∪ Lx. Finally, after d, we have
C′u = Cu ∪ Facq

u
′ ≥ Cu ∪ Frel

t = Cu ∪ Ct. Thus we have
synchronisation between a and d.

3.3 Algorithm
Our extended VC algorithm, combining the original VC algorithm
of [15] with the techniques described in §3.1 and §3.2 for handling
release sequences and fences, is summarised by the inference rules
of Figure 6. We omit the rules for reads and writes on non-atomic
locations, which are unchanged.

For each thread t the algorithm records a vector clock Ct, and
fence release and acquire clocks, Frel

t and Facq
t (see §3.2). For each

variablem, both a vector clock Lm and vector of vector clocks Vm

(see §3.1) are recorded. We use C, Frel and Facq , and L and V, to
denote these clocks across all threads and locations, respectively.

Observe that Frel and Facq are only significant when relaxed
ordering is used; they do not introduce any new information in the
presence of release and acquire semantics. The fence VCs are also
never stored in the VVC, because if a thread performs a relaxed
store requiring the VVC to collapse, Frel will need to be joined
onto the VC for the location regardless.

For clarity, many optimisations to the algorithm, incorporated in
our implementation (see §7.1) are omitted from the presentation of
Figure 6. Appendix A in the extended version of the paper presents
the optimised algorithm [27]. As an example, the VVC does not
need to be used until there are two active release sequences.

4. Exploring Weak Behaviours
The fact that the C++11 memory model allows non-SC behaviours
poses a problem for data race detection techniques: a tool such as
tsan that only considers SC executions will not be able to explore

STATE:

C : Tid → VC
L : Var → VC

V : Var → (Tid → VC )

Frel : Tid → VC

Facq : Tid → VC

STORES and RMWs:

[RELEASE STORE]

L′ = L[x := Ct] V′ = V[x := ∅[t := Ct]]

(C,L,V,Frel ,Facq )⇒storerel (x,t) (C,L′,V′,Frel ,Facq )

[RELAXED STORE]

L′ = L[x := Vx(t) ∪ Frel
t ] V′ = V[x := ∅[t := Vx(t)]]

(C,L,V,Frel ,Facq )⇒storerlx (x,t) (C,L′,V′,Frel ,Facq )

[RELEASE RMW]

L′ = L[x := Lx ∪ Ct] V′ = V[x := Vx[t := Ct]]

(C,L,V,Frel ,Facq )⇒rmwrel (x,t) (C,L′,V,Frel ,Facq )

[RELAXED RMW]

L′ = L[x := Lx ∪ Frel
t ]

(C,L,V,Frel ,Facq )⇒rmwrlx (x,t) (C,L′,V′,Frel ,Facq )

LOADS (an RMW also triggers a LOAD rule initially):

[ACQUIRE LOAD]

C′ = C[t := Ct ∪ Lx]

(C,L,V,Frel ,Facq )⇒loadacq (x,t) (C′,L,V,Frel ,Facq )

[RELAXED LOAD]

Facq ′ = Facq [t := Facq
t ∪ Lx]

(C,L,V,Frel ,Facq )⇒loadrlx (x,t) (C,L,V,Frel ,Facq ′)

FENCES:

[RELEASE FENCE]

Frel ′ = Frel [t := Ct]

(C,L,V,Frel ,Facq )⇒fencerel (t) (C,L,V,Frel ′,Facq )

[ACQUIRE FENCE]

C′ = C[t := Ct ∪ Facq
t ]

(C,L,V,Frel ,Facq )⇒fenceacq (t) (C′,L,V,Frel ,Facq )

Figure 6: Semantics for tracking the happens-before relation with
loads, stores, RMWs and fences

these additional behaviours. For example, tsan cannot detect errors
associated with non-SC executions of the program of Figure 1b.1

To address this, we now present the design of a novel library
that allows a program to be instrumented, at compile time, with
auxiliary state that can enable exploration of a large fragment of
the non-SC executions allowed by C++11. The essential idea is as
follows: every atomic store is intercepted, and information relating
to the store is recorded in a store buffer. Every atomic load is also
intercepted, and the store buffer is queried to determine the set of
possible stores that the load may acceptably read from.

By controlling the order in which threads are scheduled and the
stores from which atomic load operations read, our instrumenta-
tion enables exploration of a large set of non-SC behaviours. Our

1 It is possible that compiler optimisations applied at instrumentation-time
might induce non-SC behaviours, e.g. by reordering memory accesses. In
this case, tsan would explore SC behaviours of the transformed program.

6 2016/11/17



buffering-based approach has some limitations, for example it does
not facilitate a load reading from a store that has not yet been is-
sued; we formalise the exact fragment of the memory model cov-
ered by our technique in §6.2. We use this instrumentation as a basis
for extending the tsan tool for detection of data races arising from
non-SC program executions by randomising the stores that are read
from by atomic loads (see §7).

We now give an overview of our instrumentation. In §5 we
formalise the instrumentation using an operational semantics.

4.1 Preliminaries
As stated in §2.1, we follow closely the Post-Rapperswil memory
model presentation of Batty et al. [5] in the design of our instru-
mentation library. We use the notation “§PRX” to refer to section
X of the Post-Rapperswil formalisation.

Going back to the witness relations described in §2.1, it is these
relations that differentiate one run of a program from another. We
wish to be able to explore all the possible arrangements of these
relations, while pruning those that are inconsistent. For example,
consider a program that has a single location written to four times,
split between two threads. There are 24 (4!) ways in which the mo
relation can be arranged, although only 6 of these will be consistent.

As we will see in this section, the different arrangements of mo
and sc can be handled by exploring different thread schedules. It is
the rf relation that is difficult to explore, as this requires us to know
all the stores that each load could read from. We will therefore
introduce the notion of a software store buffer.

We assume throughout that the operations issued by a thread
are issued in program order; this is a standard constraint associated
with instrumentation-based dynamic analysis. Under this assump-
tion, the operations of each thread are ordered by the sb relation.
We treat this as an axiom, and refer to it as AxSB. We also assume
that the order in which sequentially consistent operations are car-
ried out conforms with the sc relation, which we refer to as AxSC.
In fact, as we will see in §6.2, the order in which we carry out op-
erations conforms to all of the relations, and therefore each relation
conforms to every other relation. We will be brief on axioms that re-
quire showing conformance with certain relations, but nonetheless,
these will be useful in showing that our instrumentation follows the
C++11 memory model.

4.2 Post-Store Buffering
Consider the case where a thread performs an atomic store to
an atomic location. Depending on the state of the thread and the
memory order used, atomic loads should be able to read from
this store, even if there has been an intervening store to the same
location. We will therefore record the atomic stores to each location
in a buffer, allowing the instrumentation library to search though
and pick a valid store to read from.

Our approach to instrumenting stores is as follows. On inter-
cepting a store to location m, the VC updates described in §3 are
performed, to facilitate race checking. The value to be stored to m
is then placed in the store buffer for m. Each individual store in the
store buffer is referred to as a store element, and contains a snap-
shot of the state of the location at the time the store was performed.
This snapshot includes the meta-data required to ensure that each
load can be certain that reading from the store will lead to a con-
sistent execution. We explain the meta-data that constitutes a store
element throughout this section, guided by the C++11 consistency
axioms. We then formally define the store buffer in §5.

4.3 Consistent Modification Order (§PR6.17)
The consistent mo axiom states: (1) mo is a strict total order over
all the writes to each location. (2) That hb restricted to the writes at

a location is a subset of mo. (3) Restricting the composition of (sb
; Fsc ; sb) to the writes at a location is a subset of mo.

The store elements for a location is an ordered list, with each
store to m creating a store element at the back. This represents mo
for the location as a strict total order, satisfying (1).

To satisfy (2), we need to show that mo conforms with hb,
which is the transitive closure of sb and sw , thus we need to show
conformance with each of sb and sw . We already know from the
AxSB axiom that mo conforms with sb. Synchronisation follows
the rf relation (and sb when fences are involved), and as a load
can only read from a store already in the store buffer, mo must
conform with rf . So (2) is satisfied. The agreement between mo
and hb shown here is also referred to as coherence of write-writes
(CoWW).

As we have AxSB and AxSC, (3) holds trivially.

4.4 Consistent SC Order (§PR6.16)
Consistency of sc requires that sc be a strict total order over all
events with sc ordering, and that hb and mo conform with sc.
While tsan does not explicitly track the sc relation, our instrumen-
tation uses global state to track properties of threads as they execute
SC operations, which we introduce in §4.5. Access to this global
state is mutex-protected, which implicitly induces a total order on
SC operations. Conformance with hb and mo follows the same rea-
soning as that given in §4.3, so we omit it here.

4.5 Consistent Reads From Mapping (§PR6.19)
The rf requirements are the most complex out of the consistency
rules. We have broken them down into three groups. The methods
described in this section collectively give rise to an algorithm for
determining the set of possible stores that a load can read from; this
algorithm is presented formally in Figure 12 and discussed in §5.

Coherence Rules There are four coherence rules. We have al-
ready covered CoWW in §4.3, so we only discuss the other three.

(1) Coherence of Write-Reads (CoWR) states that a load cannot
read from a store if there is another store later in mo such that said
store happens before the current load. This essentially cuts off all
of the mo before such stores.

(2) Coherence of Read-Writes (CoRW) states that a load cannot
read from a store if there is another store earlier in mo that happens
after the current load. This will cut off all of the mo after such
stores. More formally, this states that rf ∪ hb ∪mo is acyclic.

The following illustrates the behaviours these rules forbid:

a:W x=2 b:W x=1
mo

c:R x=2

rf hb

CoWR

a:W x=1 b:R x=1
rf

c:W x=2

hbmo

CoRW
These two rules leaves us with a range of stores in the mo that can
potentially be read from.

Our instrumentation library automatically conforms to CoRW.
This is because violating CoRW would require a thread to read
from a store that has not yet been added to the store buffer for
a location, something our instrumentation does not allow. This is
illustrated by the execution fragment shown for CoRW above. This
reasoning also assumes that we follow the hb relation.

For CoWR, each store element must record sufficient informa-
tion to allow a thread issuing a load to determine whether the store
happened before the load. To enable this, the id of the storing thread
must be recorded when a store element is created, together with the
epoch associated with the thread when the store was issued. When a
load is issued, our instrumentation library can then search the store
buffer to find the latest store in mo that happened before the cur-

7 2016/11/17



a:Wrlx x=1

b:Wrlx x=2

sb,mo,hb

f:Rrlx x=1

rf

c:Rrlx x=2

rf

d:Wrel y=1

sb,hb

e:Racq y=1

rf,hb,sw
sb,hb

Figure 7: Inconsistent execution fragment caused by lack of CoRR

rent load; all stores prior to the identified store are cut off from the
perspective of the loading thread. This is achieved by searching the
buffer backwards, from the most recent store. For a given store el-
ement, let c@t be the epoch of the thread that performed the store.
With C denoting the VC of the loading thread, if c ≤ C(t), then
the store will happen before the load, so we halt the search.

We also have (3) Coherence of Read-Reads (CoRR). This states
that if two reads from the same location are ordered by hb, the reads
cannot observe writes ordered differently in mo. As a consequence,
if a thread performs a load from a location and reads from a
particular store element, all of the mo before said store is cut off for
future loads. Loads from other threads will also be affected when
synchronisation occurs. Consider the execution fragment shown
in Figure 7. The two loads c and f are ordered by hb due to
synchronisation between d and e. This means they must observe the
two stores a and b in the same order, else read from the same stores.
In this particular example, they do not, meaning the fragment will
lead to an inconsistent execution.

To ensure CoRR, it is thus necessary for a thread to be aware
of loads performed by other threads. To handle this, we equip
our instrumentation library with software load buffers as follows.
We augment every store element with a list of load elements.
When a thread reads from a store element, a new load element
is created and added to the list of load elements associated with
said store element. Each load element records the id of the thread
that issued the load, and the epoch associated with the thread
when the load was issued. Whenever our instrumentation library is
searching through the store buffer for the earliest store that a load
is allowed to read from, it must also search through all the load
elements associated with each store element. For a load element
under consideration, let c@t be the epoch of the thread that carried
out the load, and C the VC of the thread that is currently performing
a load. If c ≤ C(t), then the load associated with the load element
happened before the current load, and we must halt the search.

Not every load that has been issued needs to have an associated
load element. For example, if a thread loads twice from a location
without issuing an intervening release operation, the first load will
not affect any other thread and thus can be pruned. Our implemen-
tation (§7.1) incorporates several such optimisations.

Finally, we have (4) consistent RMW reads. If an RMW event
b reads from write event a, then b must follow a in mo. With
our instrumentation library, an RMW will read from the back of
the store buffer before adding a store element to the back. As the
ordering of the store elements follows mo, (4) is satisfied.

Sequentially Consistent Fences SC fences add a layer of com-
plexity to what the memory model allows. An SC fence will inter-
act with other SC fences and reads in a number of ways. These are
outlined as follows, where ‖sc−−→ denotes an inter-thread sc edge:

(5) Wnon-SC
sb−→ FSC ‖

sc−−→ RSC : The SC read must read from
the last write sequenced before the SC fence, or any write later in
modification order. Non-SC reads are unaffected.

(6) WSC ‖sc−−→ FSC
sb−→ Rnon-SC : The non-SC read must read

from the SC write, or a write later in modification order. If there is
no SC write, then the read is unaffected.

a:Wrlx x=1 b:Wsc x=2
mo

d:Rsc x=1

rf

c:Wsc x=3

sb,sc,mo
sc

Figure 8: Consistency of sc-reads only forbids d reading from b

(7) Wnon-SC
sb−→ FSC ‖sc−−→ FSC

sb−→ Rnon-SC : Any read se-
quenced after the SC fence must read from the last write sequenced
before the SC fence, or a write later in modification order.

Accommodating SC fences in our instrumentation library is not
trivial, requiring additional VCs and VC manipulation on every SC
operation. We begin by defining two global VCs: SF , representing
the epoch of the last SC fence performed by each thread, and SW ,
the epoch of the last SC write performed by each thread. Each
thread will update its position in these VCs whenever they perform
an SC fence or SC write.

Each thread t now has an extra three VCs: $F,t, $W,t and $R,t.
Each VC will control each of the three cases outlined above. These
are updated when the thread performs an SC operation. When a
thread performs an SC fence, it will acquire the two global SC
VCs: $F,t := $F,t ∪ SF and $W,t := $W,t ∪ SW . When a thread
performs an SC read, it will acquire the global SC fence VC in
the following way: $R,t := $R,t ∪ SF . To see how this enforces
the rules outlined above, consider a thread t that is performing an
atomic load on location x. While searching back through the buffer,
we have reached a store performed by thread u at epoch c@u. If
the load is an SC load, and $R,t(u) ≥ c, then we halt the search
according to (5). If the store is an SC store, and $W,t(u) ≥ c, then
we halt the search according to (6). Regardless of whether the load
or the store is SC, if $F,t(u) ≥ c then (7) applies.

We now cover the obvious missing case. (8) WSC ; RSC : The
SC read must read from the last SC write, a write later in mo than
the last SC write, or a non-SC write that does not happen before
some SC write to the same location. Figure 8 shows an execution
fragment where the SC write of c blocks the SC read of d from
reading from b, but not a.

This case is not covered by the machinery discussed earlier,
as an SC write will update SW , but an SC read will acquire SF .
To handle this, each store element must be marked with a flag
indicating whether it was an SC store. Additionally, every store
element that happens before the current store must also be marked
as a SC store. When an SC load has searched back through the
buffer and found the earliest feasible store to read from, it may
read from any store element that is unmarked, or the last marked
element.

Note that how we handle (8) does not affect (6), as if a later SC
write has marked an earlier non-SC write as being SC, then that
later write will block any thread from reaching the earlier write.

Visible Side Effects We do not cover these rules in detail, as they
do not impact instrumentation much. In brief, a load must read from
a store, or a store later in mo, where said store happens before
the load. There can be at most one visible side effect for any load,
which is already captured by (1). This can lead to cases where there
are no visible side effects for a given load, due to locations being
initialised from another thread which has yet to synchronise with.
Locations that are initialised by the global thread will therefore
overcome this issue.

5. Operational Model
We now formalise the instrumentation of §4 as operational seman-
tics for a core language. As well as making our approach precise,

8 2016/11/17



Prog ::= Stmt ; ε
Stmt ::= Stmt ; Stmt

| if (LocNA) {Stmt} else {Stmt}
| LocNA := Expr
| LocNA = Fork(Prog)
| Join(LocNA)
| StmtA
| ε

StmtA ::= LocNA = Load(LocA , MO)
| Store(LocNA , LocA , MO)
| RMW(LocA , MO , F)
| Fence(MO)

MO ::= relaxed | release | acquire
| rel_acq | seq_cst

Expr ::= <literal > | LocNA | Expr op Expr

Figure 9: Syntax for our core language

this allows us to argue in §6 that our instrumentation matches an
axiomatically-defined fragment of the C++11 memory model.

5.1 Programming Language Syntax
We present our formal operational model with respect to a core
language that captures the atomic instructions defined by C++11,
the syntax for which is described by the grammar of Figure 9.

A program is a sequence of statements that are executed by
an initial thread. We use LocA and LocNA to denote disjoint sets
of atomic and non-atomic locations, respectively. The forms of
simple statement are: assigning the result of an expression over
non-atomic locations to a non-atomic location (we leave the set
of operators that may appear in expressions unspecified); forking
a new thread, capturing a handle for the thread in a non-atomic
location (similar to C++’s std::thread); joining a thread via its
handle; and performing an atomic operation. Atomic operations,
described by the StmtA production rule, consist of loads, stores,
RMWs and fences. An RMW takes a functor, F, to apply to an atomic
location, for example, the increment function.

The language supports compound if statements; loops are
omitted for simplicity. An empty statement is represented by ε.

5.2 Operational Model Formalised
The structure of the state of a program is shown in Figure 10.
It describes the set of possible states a program can be in, and
includes the machinery described in §5 that allows us to explore
weak behaviours. Figure 10b gives us a pictorial representation of
the state, giving us an intuitive view of how the state described
formally in Figure 10a is laid out.

The state of the system comprises of the set of threads, global
vector clocks for handling SC fences, and mappings from memory
locations to either the value stored in the location, or the atomic
information associated with the location, depending on whether
the location is atomic or not. The set of atomic and non-atomic
locations are disjoint (LocA ∩ LocNA = ∅). ALocInfo holds
the information for store buffering and race detection. Prog is a
program expressed using the syntax of Figure 9.

The initial state of the program will have empty mappings for
atomic and non-atomic locations, and the VCs for the SC fences
will be ⊥V . There will just be a single thread representing the
program’s main function. Formally, let the main thread be denoted
M , the initial state will be Σ = ([M ], ∅, ∅,⊥V ,⊥V ). The initial
state of M will have C initialised to inct(⊥V ) and its three SC
fence VCs initialised to ⊥V , t will be a random identifier and P
will be the entire program.

The race detection machinery has been left out for clarity, but
note that the race analysis and store buffering both use the threads
VC (C) and the VC for the atomic location (L).

5.3 Operational Semantics
Figures 11 to 13 show the state transitions for our operational
model. They are defined for each atomic instruction in our simple
language, as well as for a few internal instructions that do not
appear in source programs. Details of the non-atomic instructions
appear in Appendix B [27].

A system under evaluation is a triple of the form (Σ, ss, T ).
The state of the system is represented by Σ, as shown in Figure 10.
The program being executed is ss , with the ThrState of the thread
running the program being T . A thread will only update its own
state when executing a program, so T will change as ss is executed.
This will cause the ThrState for the current thread in Σ to become
stale, but will refresh upon a context switch.

Figure 11 gives the semantics for atomic statements. Each
atomic function will call into the appropriate sequentially con-
sistent helper function of Figure 13, and the appropriate buffer
implementation functions. These SC helpers perform the updates
described in the SC fence section of §4.3, or nothing, if the memory
ordering is not seq_cst.

Each atomic function will first call into the VC algorithm de-
scribed in §3, as shown by calls to functions of the form [X] that
correspond with the inference rules in Figure 6. The state used by
the VC algorithm has a different representation, that makes it easier
to compare with other VC algorithms; Appendix B details how to
convert between the two representations [27].

The buffer implementation functions Store and Load carry out
the store buffering and load buffering. These are not directly used
by the programmer, rather, they are used by the other atomic func-
tions to carry out shared functionality. The load implementation
takes a store buffer element to load from. If an RMW is being
evaluated, then this element is simply the last in the buffer. For
atomic loads, an element is non-deterministically chosen from a
reads-from set, computed using the ReadsFromSet helper function
(Figure 12), which uses the consistent reads-from of §4.3. The ++
operator represents list concatenation.

6. Characterising Our Model Axiomatically
We designed the instrumentation strategy of Section 4, formalised
by the operational model of Section 5, by considering the sorts of
non-SC behaviour that would be feasible to explore in an efficient
dynamic analysis tool. However, the intricacy of the operational
rules make it difficult to see, at a high level, which behaviours are
allowed vs. forbidden by our model. We provide a clearer high-
level picture of this by devising an axiomatic memory model that
precisely describes the behaviours that our operational semantics
allows, and show that the axioms strengthen those of C++11.

We first show how to lift a trace given by our operational model
to an execution. This lifting procedure intuitively gives rise to addi-
tional axioms to those of C++11, which form our axiomatic mem-
ory model. Because our axiomatic model consists of the C++11
axioms plus an additional axiom, our axiomatic model is strictly
stronger than that of C++11. We then argue that the executions
given by lifting the set of traces produced by our operational model
exactly match the executions captured by our axiomatic model.

The following diagram summarises what we wish to show:

P

-C++11 Axiomatic
C++11 executions

-Our Axiomatic
Our executions

-Operational
Traces -Lift

Executions

⊆
=

9 2016/11/17



Tid , Z Epoch , Z Val , Z

VC , Tid → Epoch

ThrState , (t : Tid)× (C : VC )×

(${F,W,R} : VC )× (P : Prog)

LoadElem , (t : Tid)× (c : Epoch)

StoreElem , (t : Tid)× (c : Epoch)× (v : Val)×

(sc : Bool)× (clock : VC )× (loads : LoadElem set)

StoreBuffer , StoreElem list

ALocInfo , (L : VC )× StoreBuffer

ALocs , LocA→ ALocInfo

NALocs , LocNA→ Val

State , ThrState list×ALocs ×NALocs × (S{F,W} : VC )

(a) Formal definition

t : Tid
c : Epoch

LoadElem
StoreElem

t : Tid
c : Epoch
v : Val

sc : Bool
clock : VC

ALocInfo L : VC

t : Tid
C : VC
${F,W,R} : VC
P : Prog

ThrState LocNA Val

NALocs

LocA ALocInfo

ALocs

S{F,W} : V C

State

(b) Pictorial definition

Figure 10: Operational State

Notation Let P denote a program written in our language. The
set of executions allowable for P according C++11’s axiomatic
memory model is denoted consistent(P ). Our operational model
takes program P and produces a set of traces, denoted traces(P ).
We use σ to denote an individual trace, which is a finite sequence of
state transitions of the form s1 → s2 → ...→ sk. For a given trace
σ, let lift(σ) denote the lifting of σ to an axiomatic style execution.
For a set of traces S, we define lift(S) = {lift(σ) | σ ∈ S},
which is the application of lift to each trace in S. Therefore,
lift(traces(P )) gives the set of executions that can be obtained
by running P on our operational model.

6.1 Lifting Traces
Before we can define our axiomatic model, it must be clear how a
trace is lifted to an axiomatic execution. We must first extend our
operational state with auxiliary labels to track events. We define a
label as: Label , {a, b, c, . . . }∪{⊥}. Each load and store element
will have a label representing the event id. Each ThrState will have
a last sequenced before (lsb) label and the State a last sequentially
consistent (lsc) label that enables tracking of the sb and sc rela-
tions, as explained below. The ThrState will additionally have an
last additional synchronises with (lasw ) label, that enables us to
see the last event a forking thread performed before the thread, as
lsb may have updated before the new thread has begun. Including
this information allows us to create an execution by inspection of
the trace and resulting state. We present this in detail below.

To begin with, consider the four event types used in executions:
R, W, RMW and F. These correspond with the Load, Store, RMW
and Fence instructions shown in Figure 9. Reads and writes with
non-atomic orderings correspond with Read and Write. The labels
inside the LoadElem and StoreElems created by the load and
store instructions will match the event ids of their corresponding
events in the execution. The RMW instruction will create both a
LoadElem and a StoreElem , both of which will have the same
label. Fences do not create any state, but will be assigned an event
and label upon inspection of the trace.

We give a short description on how to lift event relations. In-
struction here refers to just those that create events.

An sb edge is created when a thread T performs an instruction
and T.lsb 6= ⊥. The rf edges can be created by inspection of the
trace, by seeing which StoreElem a load reads from. The mo can
be easily seen from the order of the StoreElems in the store buffer.

For sc, an edge will be drawn from Σ.lsc to the next instruction
with sequentially consistent ordering, as long as Σ.lsc 6= ⊥.

The asw edges are created in a couple of ways: when a thread
T performs a Fork, creating thread T ′, T ′ stores T.lsb in T ′.lasw .
When T ′ performs an instruction, T ′.lasw 6= ⊥ and T.lsb = ⊥,
an asw edge is created. Alternatively, when thread T ′ has finished,
thread T created thread T ′ and performs a Join with T ′.tid ,
T ′.lsb 6= ⊥ and T performs and instruction.

All other relations are derived from the events and these five re-
lations, thus, do not need to be explicitly tracked with any auxiliary
state or the lifting function.

6.2 Restricted Axiomatic Model
Now that we can see how our operational model relates to execu-
tions, we can reason about the behaviours our model can exhibit.

We notice that the direction of all the relations is in the order
they are created:

s1 → s2 → ...→ sk >
co, sb, asw , rf ,mo, sc

co represents the commitment order, it is the order in which events
are added to an execution as a program is running [30]. Assume that
we have a partial trace, σi and a corresponding partial execution,
Ei. When we advance σi to produce σi+1, possibly adding event
ei+1 to Ei to produce Ei+1, we can see from the lift function
that there can be no edges of the form (ei+1, ej≤i) in any of our
relations, but there can be (ej≤i, ei+1), hence all the relations must
conform.

Let rConsistent(P ) be the set of executions allowable for P
according to our axiomatic model. This is defined as follows:

rConsistent(P ) = consistent(P ) ∧
acyclic(sb ∪ asw ∪ rf ∪mo ∪ sc)

Acyclicity is due to all the relations conforming. For there to be a
cycle, one of the edges must go back in the commitment order. This
extra axiom prohibits behaviours that require a load to read from a
store that has yet to be committed, such as load buffering.

6.3 Equivalence of Operational and Axiomatic Models
We argue that the set of executions a program P can exhibit under
our restricted axiomatic model is equal to the set of executions
we get by lifting the set of traces that our operational model can

10 2016/11/17



ATOMIC STATEMENTS:

[ATOMIC LOAD]

(Σ, T,mo)→load (Σ, T ′)
S ∈ ReadsFromSet(Σ.ALocs(a),mo, T ′)

T ′′ = [LOAD](S,mo, T ′)
(Σ, l = Load(a,mo); ss, T )→ (Σ, l = Load(a,mo, S); δ; ss, T ′′)

[ATOMIC STORE]

(Σ, T,mo)→store (Σ′, T )
(A′, T ′) = [STORE](Σ′.ALocs(a),mo, T )
Σ′′ = Σ′[ALocs := Σ′.ALocs[a := A′]]

(Σ, Store(l, a,mo); ss, T )→ (Σ′′, Store(l, a,mo); δ; ss, T ′)

[ATOMIC RMW]

(Σ, T,mo)→load (Σ, T ′) (Σ, T,mo)→store (Σ′, T )
l is fresh S = Σ.ALocs(a).SE .back

(A′, T ′′) = [RMW](Σ.ALocs(a),mo, T ′)
Σ′′ = Σ′[ALocs := Σ′.ALocs[a := A′]]

(Σ, RMW(a,mo, F); ss, T )→
(Σ′′, l = Load(a,mo, S); l = F(l); Store(l, a,mo); δ; ss, T ′′)

[ATOMIC FENCE]

(Σ, T,mo)→fence (Σ′, T ′) T ′′ = [FENCE](mo, T ′)
(Σ, Fence(mo); ss, T )→ (Σ′, δ; ss, T ′′)

[ATOMIC LOAD IMPL]

ld.t = T.t ld.c = T.C(T.t)
S′ = S[LD := S.LD ∪ {ld}] Σ.ALocs(a).SE = L++[S]++R

Σ′ = Σ[ALocs := Σ.ALocs[a := Σ.ALocs(a)[SE :=
L++[S′]++R]]]

Σ′′ = Σ′[NALocs := Σ′.NALocs[l := S.v]]

(Σ, l = Load(a,mo, S); ss, T )→ (Σ′′, ss, T )

[ATOMIC STORE IMPL]

S.t = T.t S.c = T.C(T.t) S.v = Σ.NALocs(l)
S.sc = mo==seq_cst S.clock = A.L

A = Σ.ALocs(a) A′ = A[SE := A.SE .pushback(S)]
Σ′ = Σ[ALocs := Σ.ALocs[a := A′]]

(Σ, Store(l, a,mo); ss, T )→ (Σ′, ss, T )

Figure 11: Semantics for atomic statements

ReadsFromSet(A, mo, T ) {
if A.SE = ∅ then error
SS := {A.SE .back}
S := A.SE .back

FoundSC := S.sc
do {

if S.c ≤ T.C(S.t) then return SS
if ∃ld ∈ S.LD : ld.c ≤ T.C(ld.t) then return SS

if S.c ≤ T.$F (S.t) then return SS

if S.c ≤ T.$W (S.t) ∧ S.sc then return SS
if S.c ≤ T.$R(S.t) ∧mo = seq_cst then return SS

if S = A.SE .front then error
S := S.prev
if ¬S.sc ∨ ¬FoundSC then SS := SS ∪ {S}
FoundSC := FoundSC ∨ S.sc

}
}

Figure 12: Construction of the reads-from set

SC FENCE HELPERS:

[SC ATOMIC LOAD]

mo = seq_cst T ′ = T [$R := T.$R ∪ Σ.SF ]

(Σ, T,mo)→load (Σ, T ′)

[SC ATOMIC STORE]

mo = seq_cst Σ′ = Σ[SW := Σ.SW [T.t := T.C(T.t)]]

(Σ, T,mo)→store (Σ′, T )

[SC ATOMIC FENCE]

mo = seq_cst Σ′ = Σ[SF := Σ.SF [T.t := T.C(T.t)]]
T ′ = T [$F := T.$F ∪ Σ′.SF ]

T ′′ = T ′[$W := T ′.$W ∪ Σ′.SW ]

(Σ, T,mo)→fence (Σ′, T ′′)

[NON-SC ATOMIC]

mo 6= seq_cst x ∈ {load , store, fence}
(Σ, T,mo)→x (Σ, T )

Figure 13: Semantics for sequentially consistent fence functions

produce for P . Formally, we wish to show the following:

∀P∀E(E ∈ rConsistent(P )↔ ∃σ ∈ traces(P ) . lift(σ) = E)

We sketch the argument here; for a more detailed argument, refer
to Appendix C [27].

The forward case is shown by induction on construction of an
execution E. Given a partial execution graph Ei, that is composed
of events ej for all 0 < j ≤ i, and trace σi where lift(σi) = Ei,
when Ei is extended to Ei+1 by adding event ei+1, we can extend
the trace σi to σi+1 such that lift(σi+1) = Ei+1. The backward
case is similar, we show that extending a partial trace for P that
lifts to a partial execution of E, we will always end up with either
the same partial execution or a new partial execution.

The order in which we add events to the partial execution must
follow the commitment order described in §6.3. Therefore, we must
first topologically sort the events of E.

7. Implementation and Experiments
We describe the implementation of our new techniques as tsan11,
an extension to tsan (§7.1). We evaluate the effectiveness of tsan11
in practice, guided by the following research questions: RQ1: To
what extent is tsan11 capable of finding known relaxed memory
defects in moderate-sized benchmarks, and how does the tool com-
pare with existing state-of-the-art in this regard? RQ2: What is the
runtime and memory overhead associated with applying tsan11 to
large applications, compared with native execution and application
of the original tsan tool? RQ3: To what extent does tsan11 enable
the detection of new, previously unknown errors in large applica-
tions, that could not be detected using tsan prior to our work?

In §7.2, we address RQ1 by applying tsan11, the original tsan
tool and CDSChecker to a set of benchmarks that were used in a
previous evaluation of CDSChecker [31]. In §7.3 we consider RQs
2 and 3 via analysis of the Firefox and Chromium web browsers.

Reproducibility To aid in reproducing our results, our tools,
benchmarks and result log files are available online [26].

7.1 The tsan11 Tool
The goal of our work is to apply efficient, C++11-aware race de-
tection to large programs. Therefore, we have implemented the
enhanced VC algorithm of §3 and the instrumentation library de-
scribed in §4 and formalised in §5 as an extension to the Thread-
Sanitizer (tsan) tool. The original tsan tool supports concurrent C++

11 2016/11/17



programs and provides instrumentation for C++11 atomic opera-
tions, but, as illustrated in §2.3, does not handle these atomic oper-
ations properly. We refer to the original version of tsan as tsan03
(because it does not fully cater for C++11 concurrency, and C++03
is the version of C++ prior to C++11), and to our extension, that
captures a large part of the C++11 memory model, as tsan11.

The tsan tool is part of the compiler-rt LLVM project,2 and
our tsan11 extension is a patch to SVN revision 272792.

Bounding of store and load buffers To prevent unbounded mem-
ory overhead, we must bound the size of store buffers so that the
oldest element of a full buffer is evicted when a new store element
is pushed. This restricts the stores that loads can read from, so the
buffer size trades memory overhead for observable behaviours. For
our evaluation we used a buffer size of 128 to allow a relatively
wide range of stores to be available to load operations. Load buffers
need not be bounded. This is because at most one load element per
thread is required for any store element: the oldest load has the
smallest epoch, so if a later load blocks a thread, so will the oldest.

Resolving load operations at runtime Our instrumentation lets us
control the reads-from relation via the the algorithm of Figure 12,
allowing for variety of randomised and systematic strategies for
weak behaviour exploration. Our implementation favours reading
from older stores, choosing the oldest feasible store with 50%
probability, the second-oldest with 25% probability, and so on.

7.2 Evaluating Using Benchmark Programs
Benchmark programs To compare tsan11 with tsan03 and CD-
SChecker at a fine-grained level, we applied the tools to the bench-
marks used to evaluate CDSChecker previously [31]. These are
small C11 programs ranging from 70 LOC to over 150 LOC. We
had to convert the benchmarks to C++11 for use with tsan, due to
the lack of a C11 threading library. Example benchmarks include
data types and high level concurrency concepts, such as Linux read-
write locks. There are 13 benchmarks, however some of these rely
on causality cycles or load buffering to expose bugs and, as dis-
cussed in §6, tsan11 does not facilitate exploration of these sorts of
weak behaviour. Of the 7 benchmarks whose behaviours tsan11 can
handle, only 2 have data races. We therefore induced data races into
the other 5 by making small mutations such as relaxing memory
order parameters, reordering instructions and inserting additional
non-atomic operations. The benchmarks, both before and after our
race-inducing changes, are provided online at the URL associated
with our experiments.

Notes on comparing tsan with CDSChecker Comparing tsan11
and CDSChecker is difficult as the tools differ in aim and approach.
CDSChecker explores all behaviours of a program, guaranteeing
to report all races; tsan11 explores only a single execution, deter-
mined by the OS scheduler and randomisation of the reads-from
relation, reporting only those data races that the execution exposes.
The goal of CDSChecker is exhaustive exploration of small-but-
critical program fragments, while tsan11 is intended for analysis
of large applications. CDSChecker requires manual annotation of
the operations to be instrumented, and can only reason about C11
(not C++11) concurrency. This is a practical limitation because, at
time of writing, C11 threads are not supported by mainstream com-
pilers such as GCC and Clang.3 In contrast, tsan11 automatically
instruments all memory operations, and supports C++11 concur-
rency primitives. Nevertheless, we present a best effort comparison

2 http://llvm.org/svn/llvm-project/compiler-rt/trunk
3 A recent Stack Overflow thread provides an overview of C11 thread-
ing support: http://stackoverflow.com/questions/24557728/
does-any-c-library-implement-c11-threads-for-gnu-linux.

as CDSChecker is the most mature tool for analysis of C11 pro-
grams that we are aware of.

Experimental setup These experiments were run on an Intel i7-
4770 8x3.40GHz with 16GB memory running Ubuntu 14.04 LTS.
We added a sleep statement to the start of each thread in each
benchmark in order to induce some variability in the schedules
explored by the tsan tools. We used the Linux time command to
record timings, taking the sum of user and system time. This does
not incorporate the time associated with the added sleep statements,
thus the wall-clock time associated with running the tsan tools is
longer than what we report. We omit this time because, with fur-
ther engineering, we could implement a strategy for inducing vari-
ability in the thread schedule with low overhead; the use of sleep
is simply a proxy for this missing feature. The tsan-instrumented
benchmarks were compiled using Clang v3.9. We used the revision
of CDSChecker with hash 88fb552.4

The results of our experiment are summarised in Table 1, where
all times are in ms, and discussed below. For each benchmark, we
report the time taken for exploration using CDSChecker (deter-
ministic tool), averaged over 10 runs, and the average time over
1000 runs for analysis using tsan11 (which is nondeterministic).
For tsan11 we report the rate at which data races are detected, i.e.
the percentage of runs that exposed races (Race rate), the number
of runs required for a data race to be detected with at least 99.9%
probability based on the race rate (No. 99.9%), and the associated
time to conduct this number of runs, based on the average time per
run (Time 99.9%). The Runs to match column shows the number
of runs of tsan11 that could be performed in the same time as CD-
SChecker takes to execute (rounded up), and Race chance uses this
number and the race rate to estimate the chances that tsan11 would
find a race if executed for the same time that CDSChecker takes
for exhaustive exploration. The table also shows the average time
taken, over 1000 runs, to apply tsan03 on each benchmark and the
associated race rate. We use the configuration of CDSChecker flags
recommended in the CDSChecker documentation for all bench-
marks. For tsan11, we use the default system scheduler and the
store buffer bound and reads-from strategy discussed in §7.1.

Results The results show that tsan11 was able to find races in
all but one of the benchmarks (barrier), but that the rate at which
races are detected varies greatly, being particularly low for mpmc-
queue. This is due to the dynamic nature of the tool: the thread
schedule that is followed is dictated by the OS scheduler. For the
remaining seven benchmarks, comparing the time taken to run
CDSChecker with the “Time 99.9%” column for tsan11 shows
that for 2 benchmarks, exhaustive exploration with CDSChecker
is faster than reliable race analysis using tsan11, while for the other
5 benchmarks it is likely to be faster to use tsan11 to detect a race.
Recall, though, that these times exclude the time associated with the
sleep statements added to the benchmarks that tsan11 analyses, as
discussed above. The “Race chance” column indicates that overall,
with the exception of barrier, repeated application of tsan11 for the
length of time that CDSChecker takes for exploration has a high
probability of detecting a race. Note however that we measure the
time for full exploration using CDSChecker; if CDSChecker were
modified so as to exit on the first race encountered, the time it takes
to find a race would likely be lower.

The race rate results for tsan03 show that in some cases the tool
did not detect a race, either because the race depends on weak be-
haviour (meaning that tsan03 would be incapable of finding it) or
is more likely to occur if non-SC executions are considered (for ex-
ample, tsan03 does find a race in mcs-lock, but with a very low race
rate). The timing results for tsan03 show that it is usually faster per

4 git://demsky.eecs.uci.edu/model-checker.git

12 2016/11/17



execution compared with tsan11. In general this is to be expected
since tsan11 performs a heavier-weight analysis. However, these
benchmarks are so short-running that small differences, such as the
fact that tsan11 is slightly faster for analysis of chase-lev-deque,
may be due to experimental error.

7.3 Evaluation Using Large Applications
Applications The programs we have focused on are Firefox and
Chromium, two web browsers with very large code bases. Both
browsers make heavy use of threads and atomics: Firefox can have
upwards of 100 threads running concurrently, while Chromium
starts multiple processes, each of which will will run many threads.
As tsan03 had already been applied to both Firefox and Chromium,
there were clear instructions on how to run both with tsan.

Experimental setup These experiments were run on an Intel
Xeon E5-2640 v3 8x2.60GHz CPU with 32GB memory running
Ubuntu 14.04 LTS, revision r298600 of Firefox5 and the Chromium
version tagged “tags/54.0.2840.71”.6 The browsers were compiled
using Clang v3.9, following instructions for instrumenting each
browser with tsan as provided by the developers of Firefox7 and
Chromium.8 We run the browsers in a Docker container (using
Docker v1.12.3, build 6b644ec) via ssh with X-forwarding.

We tested both browsers with tsan03 and tsan11, and without
instrumentation. We use FF, FF03 and FF11 to refer to Firefox
without instrumentation, and instrumented using tsan03 and tsan11,
respectively; CR, CR03 and CR11 refer similarly to Chromium.

To make our evaluation as reproducible as possible, we tested
the browsers using JSBench v2013.1 [40].9 JSBench runs a series
of JavaScript benchmarks, sampled from real-world applications,
presenting runtime data averaged over 23 runs. We recorded peak
memory usage via the Linux time command, reporting the “Max-
imum resident set size” data that this command records. For the
browser versions instrumented with race analysis, we record all de-
tails of reported data races to a file. In the case of tsan11, we record,
during analysis, data on the number and kinds of atomic operations,
including their memory orders, that are issued during execution.
The full JSBench reports for all browser configurations, together
with memory usage information, data race reports and statistics on
atomic operations, are available on our companion web page [26].

Results Table 2 shows results on memory usage, execution time
and races reported running our browser configurations on JSBench.
Recall that JSBench runs a series of benchmarks 23 times. The
“Peak mem” column shows the maximum amount of memory (in
MB) used throughout this process, as reported by the time tool.
The “Mean time” column shows the mean time, averaged over the
23 runs, for running the benchmarks (data on standard deviation,
and per-benchmark statistics reported by JSBench, are available
from our web page). The “Races” column shows, for all configu-
rations except FF and CR, the number of races reported during the
entire JSBench run. The results for Firefox show that the increase in
memory usage associated with FF03 vs. FF is 2.7×, compared with
9.6× for FF11 vs. FF. Thus, as expected, our instrumentation leads
to significantly higher memory consumption. Performance-wise,

5 https://hg.mozilla.org/mozilla-central/
6 We obtained Chromium according to the instructions at https:
//www.chromium.org/developers/how-tos/get-the-code/
working-with-release-branches.
7 https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/Thread_Sanitizer
8 https://www.chromium.org/developers/testing/
threadsanitizer-tsan-v2
9 http://plg.uwaterloo.ca/~dynjs/jsbench/

our instrumentation leads to a more modest overhead: average JS-
Bench runtime increases by 11.2× when using FF03 vs. FF, and by
14.2×when using FF11 vs. FF. Interestingly, the memory overhead
associated with tsan03-based race instrumentation for Chromium is
higher—a 10.6× increase with CR03 vs. CR—but grows less sig-
nificantly when tsan11 is used—a 13.6× increase with CR11 vs.
CR. The growth in runtime for Chromium follows a similar pattern
to that for Firefox, with an increase in average runtime of 11.1×
for CR03 vs. CR, and 17.1× for CR11 vs. CR.

Examination of the tsan logs showed 39 race reports for FF03
vs. 52 for FF11, and 1 for CR03 vs. 6 for CR11. We do not yet
know whether the higher rate of races detected using tsan11 for
both browsers is due to the additional behaviours that our instru-
mentation exposes, or simply a result of our instrumentation and its
overheads causing a more varied set of thread interleavings to be
explored. A tsan race report shows the stacks of the two threads in-
volved in the race. It is hard to determine the root cause of the race
from this, and harder still to understand whether the race depends
on weak memory semantics; we leave a deeper investigation of this
(requiring significant novel research) to future work.

When running FF11 and CR11 on JSBench, we recorded the
number of each type of atomic operation that tsan11 intercepted.
The full data is provided online, but we summarise the results in Ta-
ble 3. The atomic operations row shows the total number of atomic
operations that were issued during the entire JSBench run, indicat-
ing that both browsers, and especially Firefox, make significant use
of C++11 atomic operations. We then show the percentage of op-
erations associated with each operation type—load, store, RMW
and fence. This indicates that fence operations were so scarce they
contribute negligible percentage (12,203 and 78 fence operations
were intercepted for Firefox and Chromium, respectively, and in
all cases these were SC fences), that loads significantly outnumber
stores (expected if busy-waiting is used), that relaxed operations
are common, and that the other memory orderings are all used to
a varying degree. Our results also confirmed that the consume or-
dering is not used. The heavier use of atomic operations by Firefox
perhaps explains the larger growth in memory overhead associated
with dynamic race instrumentation for this browser.

We do not yet have data on the distribution of executed atomic
operations throughout the browser source code, nor the typical use
cases for these operations, and believe that a detailed empirical
study of atomic operation usage in these browsers, and in other
large applications, is an important avenue for future work.

In summary: our experiments with the web browsers shows that
(a) tsan11 is able to run at scale, with significant but not prohibitive
memory and time overheads compared with tsan03, (b) tsan11 re-
ports a larger number of races compared with tsan03, and (c) both
web browsers make significant use of C++11 atomic operations.
What our evaluation does not settle is the question of which as-
pects of our extensions to tsan to support C++11 concurrency are
important in practice, for identifying new data races and suppress-
ing possible false alarms reported by tsan03.

8. Related Work
There is a large body of work on data race analysis, largely split
into dynamic analysis techniques (e.g. [13, 15, 21, 37, 38, 42]) and
static approaches (e.g. [14, 33, 39, 45, 47]). Unlike our approach,
none of these works handles C/C++11 concurrency.

Several recent approaches enable exhaustive exploration and
race analysis of small C11 programs. CDSChecker [31, 32], which
we study in §7.2, uses dynamic partial order reduction [17] to re-
duce state explosion. Cppmem [6], and an extended version of the
Herd memory model simulator [3, 8], explore litmus tests written in
restricted subsets of C11. Similarly, the Relacey tool supports thor-
ough reasoning about the behaviours of concurrency unit tests, ac-

13 2016/11/17



CDSChecker tsan11 tsan03
Race No. Time Runs to Race Race

Test Time Time rate 99.9% 99.9% match chance Time rate
barrier 5 18 0.0% ∞ ∞ 1 0.0% 16 0.0%
chase-lev-deque 90 7 18.3% 35 245 13 92.8% 8 94.5%
dekker-fences 4341 10 48.9% 11 110 434 >99.9% 9 100.0%
linuxrwlocks 11700 12 3.9% 174 2088 975 >99.9% 9 0.0%
mcs-lock 1206 24 19.8% 32 768 50 >99.9% 10 0.3%
mpmc-queue 11606 11 0.8% 861 9471 1055 >99.9% 9 0.0%
ms-queue 50 88 100.0% 1 88 1 100.0% 84 100.0%

Table 1: Comparison of CDSChecker, tsan11 and tsan03; all times reported are in ms

Browser Peak mem (MB) Mean time (ms) Races (#)
FF 1,159 128 N/A

FF03 3,092 1431 39
FF11 11,092 1819 52
CR 109 103 N/A

CR03 1,158 1148 1
CR11 1,481 1765 6

Table 2: Memory usage, runtime and number of races reported for
our browser configurations running on JSBench

Browser Firefox Chromium
# atomic operations 437M 280M

loads 55.33% 74.73%
stores 9.39% 7.76%
RMWs 35.28% 17.51%
fences 0.00% 0.00%
relaxed 38.97% 77.59%
acquire 14.28% 13.46%
release 1.98% 0.68%
acq/rel 4.83% 1.64%
SC 39.94% 6.63%

Table 3: The number of atomic operations executed by the browsers
during a complete JSBench run, with a breakdown according to
operation type and memory order

counting for C++11 memory model semantics [49]. Our approach
is different and complementary: we do not aim for full coverage,
but instead for efficient race analysis scaling to large applications.

Formulating an operational semantics for C/C++11 has been
the subject of recent work [12, 23, 24, 30, 34, 35]. A key work
here presents an executable operational semantics for the mem-
ory model [30], and we based our notion of commitment order on
this work. The main difference between our contribution and that
of [30] is that the approach of [30] provides complete coverage of
the memory model: the operational semantics is provably equiva-
lent to the axiomatic model of [6]. This is achieved by having the
operational semantics track a prefix of a consistent candidate exe-
cution throughout an execution trace. These prefixes can grow very
large and become expensive to manipulate, and it seems unlikely
that the approach would be feasible for instrumentation of large-
scale applications such as the web browsers that we study. In con-
trast, our semantics covers only a subset of the memory model, but
can be efficiently explored during scalable dynamic analysis.

A program transformation that simulates weak memory model
behaviours is the basis of a technique for applying program analy-
ses that assume SC to programs that are expected to exhibit relaxed
behaviours [2]. Like our instrumentation, the method works by in-
troducing buffers on per memory location basis in a manner that al-
lows non-SC memory accesses to be simulated. The key distinction
between this work and ours is that we account for C++11 atomic

operations with a range of memory orderings, whereas the method
of [2] only applies to racy programs without atomic operations, ap-
plying a single consistency model to all memory accesses.

A limitation of our approach is that our instrumentation does
not take account of program transformations that might be applied
due to compiler optimisations. The interaction between C/C++11
concurrency and compiler optimisations has been the subject of
several recent works [11, 29, 36, 46], as has the correctness of
compilation schemes from C11/C++11 to various architectures [6,
7, 41, 48]. Future work could consider exploring the effects of
program-level transformations during dynamic analysis.

Randomising the reads-from relation during uncontrolled dy-
namic analysis has been applied in other works [10, 16]. An alter-
native would be to explore this relation systematically, similar to
a recent approach for testing concurrent programs under the TSO
memory model [50], and a method for memory model-aware model
checking of concurrent Java programs [22].

The KernelThreadSanitizer (ktsan) tool provides support for
fence operations, which are prevalent in the Linux kernel [18],
and source code comments indicate that an older version of tsan
provided some support for non-SC executions.10

9. Conclusion
We have presented a method for accurate dynamic race analysis
for C++11 programs, and an instrumentation library that allows a
large fragment of the C++11 relaxed memory model to be explored.
Our experiments show that our implementation, an extension to
tsan, can detect races that are beyond the scope of the original
tool, and that our extended instrumentation still enables analysis of
large applications—the Firefox and Chromium web browsers. Av-
enues for future work include: developing more advanced heuristics
for exploring captured weak behaviours; devising further instru-
mentation techniques to capture a larger fragment of the memory
model; conducting a larger-scale experimental study of data race
defects in C++11 software, to understand the extent to which weak
memory-related bugs, vs. bugs that can already manifest under SC
semantics, are a problem in practice; and designing extensions our
technique to cater for the OpenCL memory model [8], facilitating
weak-memory aware data race detection for software running on
GPU architectures, which are known to have weak memory mod-
els [4] that can lead to subtle defects in practical applications [44].

Acknowledgements
Special thanks to Paul Thomson and Hugues Evrard for assistance
with our final experimental setup and evaluation. Thanks to Dmitry
Vyukov, Anton Podkopaev, Tyler Sorensen, John Wickerson, and
the anonymous reviewers and artifact evaluators, for their feedback
on our work. This work was supported by a PhD studentship from
GCHQ, and by EPSRC Early Career Fellowship EP/N026314/1.

10 https://github.com/Ramki-Ravindran/data-race-test/
commit/d71e69e976fe754e40cac13145ab31e593a2edd1

14 2016/11/17



References
[1] S. Adve. Data races are evil with no exceptions: Technical perspective.

Commun. ACM, 53:84–84, 2010.
[2] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software

verification for weak memory via program transformation. In ESOP,
pages 512–532, 2013.

[3] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans.
Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[4] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,
D. Poetzl, T. Sorensen, and J. Wickerson. GPU concurrency: Weak
behaviours and programming assumptions. In ASPLOS, pages 577–
591, 2015.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematiz-
ing C++ concurrency: The post-Rapperswil model. Technical Report
N3132=10-0122, JTC1/SC22/WG21 – The C++ Standards Commit-
tee, 2010.

[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, pages 55–66, 2011.

[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: from C++ 11 to POWER. In
POPL, pages 509–520, 2012.

[8] M. Batty, A. F. Donaldson, and J. Wickerson. Overhauling SC atomics
in C11 and OpenCL. In POPL, pages 634–648, 2016.

[9] J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar. Nit-
picking C++ concurrency. In PPDP, pages 113–124, 2011.

[10] M. Cao, J. Roemer, A. Sengupta, and M. D. Bond. Prescient memory:
exposing weak memory model behavior by looking into the future. In
ISMM, pages 99–110, 2016.

[11] S. Chakraborty and V. Vafeiadis. Validating optimizations of concur-
rent C/C++ programs. In CGO, pages 216–226, 2016.

[12] M. Doko and V. Vafeiadis. A program logic for C11 memory fences.
In VMCAI, pages 413–430, 2016.

[13] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race-aware Java
runtime. Commun. ACM, 53(11):85–92, 2010.

[14] D. R. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. In SOSP, pages 237–252, 2003.

[15] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In PLDI, pages 121–133, 2009.

[16] C. Flanagan and S. N. Freund. Adversarial memory for detecting
destructive races. In PLDI, pages 244–254, 2010.

[17] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

[18] Google. KernelThreadSanitizer, a fast data race detector for the Linux
kernel, visited November 2016. https://github.com/google/
ktsan.

[19] ISO/IEC. Programming languages – C. International standard
9899:2011, 2011.

[20] ISO/IEC. Programming languages – C++. International standard
14882:2011, 2011.

[21] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. Toward inte-
gration of data race detection in DSM systems. J. Parallel Distrib.
Comput., 59(2):180–203, 1999.

[22] H. Jin, T. Yavuz-Kahveci, and B. A. Sanders. Java memory model-
aware model checking. In TACAS, pages 220–236, 2012.

[23] R. Krebbers and F. Wiedijk. A typed C11 semantics for interactive
theorem proving. In CPP, pages 15–27, 2015.

[24] O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire
consistency. In POPL, pages 649–662, 2016.

[25] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[26] C. Lidbury and A. F. Donaldson. Companion webiste for repro-
ducibility of experiments, 2017. http://multicore.doc.ic.ac.
uk/projects/tsan11/.

[27] C. Lidbury and A. F. Donaldson. Dynamic race detection for
C++11: Extended version, 2017. https://www.doc.ic.ac.uk/
~afd/homepages/papers/pdfs/2017/POPLExtended.pdf.

[28] F. Mattern. Virtual time and global states of distributed systems. In
Proc. Workshop on Parallel and Distributed Algorithms, pages 215–
226, 1988.

[29] R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a
theory of sound optimisations in the C11/C++11 memory model. In
PLDI, pages 187–196, 2013.

[30] K. Nienhuis, K. Memarian, and P. Sewell. An operational semantics
for C/C++11 concurrency. In OOPSLA, pages 111–128, 2016.

[31] B. Norris and B. Demsky. CDSchecker: checking concurrent data
structures written with C/C++ atomics. In OOPSLA, pages 131–150,
2013.

[32] B. Norris and B. Demsky. A practical approach for model checking
C/C++11 code. ACM Trans. Program. Lang. Syst., 38(3):10, 2016.

[33] Oracle Corporation. Analyzing program performance with Sun Work-
Shop, Chapter 5: Lock analysis tool. http://docs.oracle.com/
cd/E19059-01/wrkshp50/805-4947/6j4m8jrnd/index.html,
2010.

[34] J. Pichon-Pharabod and P. Sewell. A concurrency semantics for re-
laxed atomics that permits optimisation and avoids thin-air executions.
In POPL, pages 622–633, 2016.

[35] A. Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of
C/C++ concurrency. CoRR, abs/1606.01400, 2016.

[36] D. Poetzl and D. Kroening. Formalizing and checking thread refine-
ment for data-race-free execution models. In TACAS, pages 515–530,
2016.

[37] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection
in multihreaded C++ programs. In PPoPP, pages 179–190, 2003.

[38] E. Pozniansky and A. Schuster. Multirace: efficient on-the-fly data
race detection in multithreaded C++ programs. Concurrency and
Computation: Practice and Experience, 19(3):327–340, 2007.

[39] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: context-
sensitive correlation analysis for race detection. In PLDI, pages 320–
331, 2006.

[40] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of
JavaScript benchmarks. In OOPSLA, pages 677–694, 2011.

[41] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget,
J. Alglave, and D. Williams. Synchronising C/C++ and POWER. In
PLDI, pages 311–322, 2012.

[42] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[43] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data race de-
tection in practice. In WBIA, pages 62–71, 2009.

[44] T. Sorensen and A. F. Donaldson. Exposing errors related to weak
memory in GPU applications. In PLDI, pages 100–113, 2016.

[45] N. Sterling. WARLOCK - A static data race analysis tool. In USENIX
Winter, pages 97–106, 1993.

[46] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Z.
Nardelli. Common compiler optimisations are invalid in the C11
memory model and what we can do about it. In POPL, pages 209–
220, 2015.

[47] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static race detection on
millions of lines of code. In FSE, pages 205–214, 2007.

[48] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. J. ACM, 60(3):22, 2013.

[49] D. Vyukov. Relacy race detector, visited November 2016. http:
//www.1024cores.net/home/relacy-race-detector.

[50] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction
for relaxed memory models. In PLDI, pages 250–259, 2015.

15 2016/11/17


