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Abstract—We investigate where and how key dependency
structure between measures of network activity change through-
out the course of daily activity. Our approach to data-mining is
probabilistic in nature, we formulate the identification of depen-
dency patterns as a regularised statistical estimation problem.
The resulting model can be interpreted as a set of time-varying
graphs and provides a useful visual interpretation of network
activity. We believe this is the first application of dynamic
graphical modelling to network traffic of this kind. Investigations
are performed on 9 days of real-world network traffic across a
subset of IP’s. We demonstrate that dependency between features
may change across time and discuss how these change at an intra
and inter-day level. Such variation in feature dependency may
have important consequences for the design and implementation
of probabilistic intrusion detection systems.

I. INTRODUCTION

Networked systems are increasingly being targeted by so-
phisticated cyber-criminals and other parties. Rather than
cause immediate damage and expose themselves to defenders,
attackers are increasingly choosing to infiltrate and remain
active within a network for extended periods of time. These
Advanced Persistent Threats (APT) are hard to detect due to
the massive complexity and volume of activity within networks
which can mask the subtle movements of an attacker [3]. A
common strategy for infiltration is to initially target a single,
or small subset of devices in a network. Once this objective is
secured, an attack can be escalated, the intruder compromises
further machines within the network, gaining further control
over the network [11].

Traditional Intrusion Detection Systems (IDS) such as
SNORT operate on a rule-based approach [12], they can react
very quickly to detect known threats which correspond to
previously modelled and coded patterns. Given the efficiency
of such pattern matching, these methods can be applied at
the packet level. Unfortunately, such hard-coded rules require
frequent updating to keep up with current threats. Furthermore,
given their high levels of specificity, rule-based methods
are also increasingly bypassed using so-called polymorphic
attacks. These attacks are capable of subtly transform their
observed behaviour to deliver similarly malicious payloads or
maliciously effect network/system operation. [2].

To counter over-fitting and rule specification issues, a
popular research direction in network anomaly detection is
to adopt so called machine-learning based approaches [12],
[15], [7]. Generally speaking, these aim to model different
classes of network activity (i.e. anomalous/normal) based on
some algorithm which is trained on real network data. Due to
the size and complexity of network datasets, finding patterns
which can identify network state (either malicious or benign)
constitutes a substantial data-mining problem.

Discriminative and Generative Models

Two main strands of machine-learning methodologies are
employed in the literature:

• Discriminative methods - classify activity as nor-
mal/abnormal based on an explicit labeling of normality,
i.e. one has access to some labeled data where the state of
the network is known. Sometimes, this may be extended
to consider specific types of anomaly, in a task which is
known as anomaly identification [7].

• Generative models - aim to describe an underlying statis-
tical distribution from which observed data may be gen-
erated from. Anomalous activity can then be defined with
respect to the estimated distribution [12]. Many correla-
tion based, for example Principle Component Analysis
(PCA) methods may be seen in this light [13]. Previous
works [9], [8], [16] have demonstrated that correlation,
or second order statistics of network traffic can be used
to identify denial of service attacks.

Let xt be a set of p features derived from network traffic and
yt represent the state of the network at a time t. Roughly
speaking, a discriminative model will try and predict yt given
data x

t, using a model built (or trained) on data from the
past xt0 , yt

0
where t0 < t. Statistically, such a procedure aims

to model the conditional distribution P (Y |X), i.e. once we
observe the random variable X we should be able to say
something about the network state Y . However, in order to
train such a model, we need observations that relate to both
the random variable X and the network state variable Y . In
many situations, we simply don’t know whether the network
is in an anomalous state a-priori, i.e. we cannot measure Y .



Such a setting may relate to zero-day threats where knowledge
of the attack vector is not available in advance of the attack.

In this case, a generative approach can be useful for defining
anomalies. Rather than model the conditional distribution
P (Y |X), a generative model aims to describe the joint

distribution of the network features P (X
1

, X
2

, . . . , Xp). In
particular, the joint distribution is desirable, rather than a set
of marginal models which describe P (X

1

), . . . , P (Xp) and
do not model inter-dependencies between features. Such joint
modelling of features is the focus of this paper. However,
defining and learning a joint distribution, as opposed to a con-
ditional discriminative, or set of marginal models is difficult
due to the inherent parametric complexity of such models.

Understanding Feature Dynamics

It is common practice to assess correlation patterns (which
can relate to the specification of a joint distribution) across
a whole data set, one does not typically take into account
how these may change as a function of time. However, it
is well known that network traffic can exhibit non-stationary
behaviour [14], [12]; it is therefore possible that dependency
patterns may change depending on which time/scale they are
observed.

In this work, we aim to quantify whether any temporal
variation in dependency exists on real network traffic. To
achieve this, we utilise a novel dynamic graphical modelling
framework. Representing dependencies between features as a
set of time-varying graphs, we uncover important relations
between features and quantify their variation over several days
of real data. To the authors’ knowledge, this is the first time
such a methodology has been applied to NetFlow derived
features. We limit our analysis here to the consideration
of feature dynamics and do not build an explicit anomaly
detection engine. However, it is our belief that understanding
dependencies between features, and how these can vary over
time is an important step to building fully generative anomaly
detection systems.

In the next section we introduce our data-set and the subset
of features used for our analysis. We also provide some details
of the dynamic graph modelling tools used to extract and
study dependency patterns. Section III introduces a set of
experiments that investigate feature dynamics at both an intra
and inter-day scale. We then conclude with a discussion of
estimated dependency structures, what they mean in the con-
text of network traffic, and how knowledge of the investigated
patterns can be used in future work for anomaly detection.

II. METHODOLOGY AND DATA

A. The Dataset

We aim to assess the dependency structure within a set of
features (p = 14) that relate to the number of connections,
packets, and size of packets. These features are extracted
from a subset of 10 IP addresses within the Imperial College
network. The IP addresses (to be understood as devices) under
study are kept constant throughout the study, where data was

collected for 13 consecutive days (including 4 weekend days
which we discount in our analysis).

The features we use are constructed from what is known
as NetFlow data. This provides a popular measure of network
activity and records some properties of sessions or connections
between devices from inside and outside the network. Raw
measurements include; the time and date that connections
are established; the type of connection (or protocol, i.e.
UDP, TCP); the Internet Protocol (IP) addresses of source
and destination; volume; and number of packets transferred.
These events occur in continuous time, however, to combine
information from multiple NetFlow records we choose to bin
the events into time intervals. We transform the raw NetFlow
measurements into binned features as described in Table I.

Name Description
No_Events Number of events that start and end in bin
No_StartEvents Number of events that start in bin but end outside
Bytes_Median Median of packet size within bin
Bytes_MAD Median absolute deviance (MAD) of packet size
Bytes_SUM Total number of bytes in bin
Bytes_SD Standard-deviation of bytes
Packets_Median Median number of packets
Packets_MAD MAD of packer distribution within bin
Packets_SUM Number of packets within bin
Packets_SD Standard-deviation of packet distribution in bin
BP_ratio_Median Median of ratio between bytes and packet
BP_ratio_MAD MAD of byte-packet ratio
BP_ratio_SUM Sum of ratio within bin
BP_ratio_SD Standard-deviation of byte-packet ratio

Table I: List of extracted NetFlow features used in this
analysis. Features are split into four rough categories; those
which count the volume of sessions (or individual NetFlow
records), the size of the packets in each record, the number of
packets in each record, and the ratio of bytes per packet. For
further details on the construction of features see Evangelou
et al. [1].

The act of binning the records simplifies analysis by reduc-
ing the raw volume of features to be processed. One advantage
of this approach to data-mining is that it enables enhanced
interpretation and robustness over correlating individual data-
points. For example, the statistical distribution of binned
features may provide a high-level characterisation of a network
that can augment more specific (and sensitive) analysis at the
individual packet/session level (for example via deterministic
pattern matching [17]). Whilst we use p = 14 features in
this work, there is plenty of scope to increase the number of
features used. For example, a similar methodology may be
employed from more fine-grained features derived via deep-
packet inspection.

The distribution of the features will change dependening
on the size of the bin used in analysis. For example, Fig. 1
demonstrates what one of these features (Number of events)
looks like for different bin sizes, we plot this at 10 minutes and
5 minutes. Clearly, the distribution of features (within a bin)
changes depending on the size of the bin. We note that many
of the features we use are based on count data, as the bin-
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Figure 1: Top: Example traces of aggregated NetFlow packet
counts (within 5 and 10 minute intervals) across 5 consecutive
days (Mon-Fri). Bottom: The same traces as transformed by
Eq. (1) with h = 2.

size tends to zero these feature distributions will demonstrate
an excess of zero values [1], [14]. This is undesirable for
our particular analysis as we wish to model the features as
continuous random variables. To avoid such problems, we
perform our analysis with a relatively large bin-size of 10
minutes, the limitations of this are discussed further in section
IV.

Pre-processing

To enable stable estimation of dependency structure it is pru-
dent to ensure that all features are measured on a similar scale

level. To this end, we perform a localised z-scoring procedure
which measures the empirical mean and standard-deviation of
a feature flow within a window (of width 2h+1). We perform
a local de-trending and variance stabilising transform to each
feature flow according to:

˜Xt =
Xt � µ̂t

�̂t
, (1)

where µ̂t = (

Pt+h
i=t�h Xi)/2h + 1 and �̂t =

�Pt+h
i=t�h(Xi �

µ̂t)
2/2h

�
1/2. The result of such a transform can be seen

in Fig. (1). The focus of this work is on understanding the
contemporaneous relationship between features and how these
change over time. The interest here is thus correlatory in
nature, we desire to know how one feature i changes with
(not necessarily in response) to another feature j. As we have
rescaled the data, we can assume that the marginal variance
of the data will be approximately 1 across time. Estimation of
dependency structure should therefore no longer be sensitive
to variable scaling (i.e. trends in the data).

B. Gaussian Graphical Models

An undirected graphical model (UGM) factorises a joint
distribution Dp over a set of p variables by representing
conditional dependencies as a graph structure G(V,E). An
example of a graphical model relating to network features
can be seen in Fig. 2, where V indexes a set of nodes
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Figure 2: Top: Dense and sparse estimates of precision ma-
trices (�

1

= 0 and �
1

= 0.1 respectively). Bottom: Corre-
sponding graphical estimates for a static GGM. The size of
the nodes in the estimated graph represent the relative degree
(number of edges) associated with each node.

(relating to features) and E denotes edges associated with
feature dependency. In our case, we assume our features are
drawn from a Gaussian graphical model (GGM) whereby the
distribution is Gaussian Dp = Np(0,⌃0

), with covariance
matrix ⌃

0

. An important property of GGM’s, is that one
may infer conditional independence between variables i, j by
considering the relevant entry in the precision matrix, defined
as ⇥i,j := (⌃)

�1

i,j . In particular the following statements hold:

(j, k) 2 E () Xj ? Xk|XV \{j,k} () ⇥i,j 6= 0 ,

where Xj ? Xk|XV \{i,j} means the variable Xj is inde-
pendent of Xk conditioned on the rest of the variables (see
Lauritzen et al. [10] for more details). These are indexed by
the complete set of vertices excluding the j, kth elements,
i.e V \{j, k} := {i = 1, . . . , p | 8i 6= j, k}. Estimating
the precision matrix ˆ⇥ is thus of great importance when
inferring the edge set of a GGM. Naive estimation of the
precision matrix, for example via Maximum-Likelihood will
generally result in a completely dense precision matrix and
graph G(V,E), i.e. all possible edges will be contained within
E (see left plot in Fig. 2). Such an estimate is undesirable for
two reasons. Firstly, we do not gain any intuition about the
dependencies between variables, and secondly, the estimator is
likely to have high-variance due to the number of parameters
O(p2) required to be estimated. A popular solution to this
problem is to enforce sparsity on the graph, whereby the
number of edges estimated s = |E| is small in comparison
to the number of possible edges, i.e. s < p2/2 � p. Such a



model has less degrees of freedom than its dense counterpart
and therefore provides a more robust estimate of the joint
distribution. As seen in Fig. (2), a sparse graphical model
also enables enhanced interpretation, in the GGM setting the
estimated edges obtained from ˆ⇥ can be used to identify con-
ditional dependencies between variables. Such dependencies
are important as they enable us to suggest where features may
be related, either by construction, or as a result of different
traffic processes operating on the network.

Sparsity can be enforced on a GGM in several ways,
either by assuming an a-priori pattern of zeros (and cor-
respondingly edges in the graph), or by placing a prior
on the number of edges in the graph (or non-zeros in the
precision matrix). A popular choice is to adopt a log-prior
proportional to the size of the off-diagonal precision entries,
namely logP (⇥;�

1

) = ��
1

P
i 6=j |⇥i,j |, where in this case

a larger value of �
1

corresponds to assuming a sparser graph.
Performing either Bayesian (we find the full distribution
P (⇥|X,�)) or MAP (we find the most likely precision matrix
argmaxP (⇥|X,�

1

) ) inference we can then identify a sparse
GGM [4].

C. Dynamic Graphical Models

Traditionally, GGM’s are estimated in a static setting and
the data is assumed to be drawn independently and identically.
However, as discussed, we wish to examine the temporal
variation in dependency patterns. In order to achieve this,
we utilise what is known as a dynamic GGM [6]. Such
an extension permits temporal variation in the covariance
structure according to:

(Xt
1

, . . . , Xt
p)

> ⇠ N (0,⌃t
0

) , (2)

where ⌃t
0

is a localised covariance matrix, for times t =

1, . . . , T . As it stands the model in (2) is not identifiable from
data as we are required to estimate O(Tp2) parameters from
only O(T ) data points.

To aid in this identification and permit consistent estima-
tion, we must assume that the model has certain smoothness
properties, i.e. that the covariance can not vary too much
in adjacent time-intervals. There are variety of options over
what kind of smoothness we may wish to impose on such
models [6]. However, for the purposes of this work we will
assume that temporal variation will be restricted by a total-
variation type constraint, namely

PT
t=2

|⇥t
0

� ⇥t�1

0

|  �
2

.
This results in a piecewise constant precision matrix, where
one can expect a given entry in the precision matrix ⇥

t
i,j to

change only at a few (sparse) points in time, i.e. for many
time points t, t + 1 2 [1, T ] we expect ⇥t

i,j = ⇥

t+1

i,j . Such a
smoothness prior is particularly useful for modelling bursty
and discontinuous network traffic as it can permit sudden
jumps in structure. In order to estimate such structure we work
in the MAP estimation paradigm and minimise the negative

penalised log-likelihood function: L({⇥t},Y ) :=

TX

t=1

�� log det(⇥t
) + trace((y

t
)

>
y⇥t

)

�
+ . . . (3)

. . . . . .+ �
1

TX

t=1

X

i 6=j

|⇥t
i,j |+ �

2

TX

t=2

PX

i,j=1

|⇥t
i,j �⇥

t�1

i,j | ,

where �
2

is a tuning parameter that effects the smoothness
of the estimated graphs. This parameter can be understood
in a similar way to �

1

which enforces sparsity, a larger �
2

results in smoother estimation of a dynamic graph. A set of
dynamic graph estimates can now be obtained by minimising
the objective in (3), we refer to this procedure as the Fused

Graphical Lasso (FGL). Since this function is convex, it can be
minimised reliably utilising a variety of convex optimisation
methods. In this work we utilise an Alternating Directed

Method of Multipliers (ADMM) algorithm which has compu-
tational complexity of order O(p3T log(T )). In the interests
of space we refer the reader to Gibberd et al. [5] for details
of this implementation, code is availiable on request.

III. EXPERIMENTS

In this section we detail the estimation of dynamic graphical
models based on 9 days of NetFlow features. We aim to
assess the within day and between-day variation in feature
dependency and visualise this via the estimated graphical
models.
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Figure 3: Solution paths depicting the number of edges
estimated as a function of tuning parameters within two
consecutive days.

A. Intra-day Dynamics

In this first experiment we aim to assess whether there is
a common daily pattern to dependency dynamics. One might
hypothesize such behaviour according to a day-night cycle,
for example, activity during the day where users are working
on a network may exhibit different patterns to those detected



in the evening. To test such a hypothesis, we run FGL on
each of the 9 working week-days within our dataset. For each
day we find a solution path according to a grid of tuning
parameters �

1

,�
2

. Each point in this path corresponds to a
set of dynamic graphs with different sparsity and smoothness
properties. Figure 3 gives a visualisation of such solution
paths, comparing estimate edge structure across two days of
data. As expected, one can see the clear sparsity inducing
effect of �

1

, whereby large �
1

have very few edges. Similarly,
the smoothing effect of �

2

can also be observed, larger
values have visibly reduced variation in the number of edges
estimated.

Cross-Validation

It is quite clear that the two days considered in Fig. (3)
do not have very similar solution paths. However, we wish to
know whether such difference between days is typical across
the whole data-set, or just limited to the two days plotted.
Hypothetically, if the data from across different days was
generated according to the same process, then a model trained
on one day should be able to describe some of the behaviour
of another day.

We here formalise such descriptive ability using a measure
of risk based on how well one training day can be explain
the data corresponding to a held out test day. Exchanging
the test data-set across the days in a leave-one-out cross-
validation fashion, the risk can be used to describe how well
the estimated models generalise between days. By minimising
this risk surface one can estimate an optimal set of tuning
parameters (�

1

,�
2

). To construct our risk function we adapt
the idealised setting where we have knowledge of the ground-
truth distribution. For a multivariate Gaussian distribution, the
predictive risk for a pair of ground truth ⌃

0

and estimated
ˆ

S covariance matrices is given as R(

ˆ

S) = tr((

ˆ

S)

�1⌃
0

) +

log det(

ˆ

S). Zhou et al. [18] note that up to a constant
R(

ˆ

S) = �2E
0

[log(f
ˆS(Z))], where fS is the density for

N (0, ˆS) and the data is drawn under the ground truth structure
Z ⇠ N (0,⌃

0

). The likelihood and the risk are thus related
via the density function. In our case, we extend this measure
of risk to cover the whole time-series. We define the leave one
out cross-validation risk as: R

loo

({ˆSt}Tt=1

) :=

TX

t=1

✓
1

N

NX

itest=1

X

i 6=itest


tr(

ˆ⇥
i

tS
itest
t ) + log det

�
(

ˆ⇥
i

t)
�1

��◆
,

(4)
where S

itest
t = yty

>
t is an ill-conditioned estimate of the

local empirical covariance. In effect, by averaging over the
N different days of data, we can see how different (�

1

,�
2

)

perform in terms of describing the data on other days.
The risk surface, as plotted in Fig. (4) tells us a lot about

how the estimated dependency graphs generalise across days.
In particular we note:

• The shrinkage inducing �
1

appears to have a minima at
around �

1

= 0.1.
• The risk surface suggests that �

2

should be set very large,
there is no discernible minima with respect to �

2

.
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Figure 4: Leave-one-out risk surface, as averaged over N = 9

days of data.

The fact that the risk surface prefers a very large �
2

suggest
that almost constant precision matrices should be preferred,
i.e. there will be no dynamic structure estimated. This should
be interpreted as evidence against the hypothesis that there is a
regular daily cycle of dependency patterns, i.e. there appears
to be no consistent pattern to the dynamics across different
days (at least in this data-set). A perhaps more interesting
observation is the fact that there is a minima with respect to �

1

,
whilst there are no regular temporal patterns, this does suggest
that there is an optimal level of sparsity which generalises
across different days.

B. Inter-day Dynamics

Whilst in the previous experiment, we didn’t see any signif-
icant temporal patterns in the daily analysis, we might still be
able to find some longer time-scale changes. In this experiment
we concatenate 5 days worth of data together (Monday-Friday)
in an effort to assess inter-day dynamics, we then run FGL
on the whole dataset for a wide range of tuning parameters
(�

1

,�
2

). For each setting of these parameters, we obtain a set
of precision matrix estimates { ˆ⇥t

(�
1

,�
2

)}Tt=1

which encode a
graphical model through the pattern of non-zero entries. In this
mode of operation FGL is operating in a purely exploratory
data-analysis role, we want to see what solutions for different
�
1

and �
2

look like.
Figure 5 presents the output of this analysis, where we plot

the number of edges estimated in the graph as a function of
tuning parameters. There is clearly some temporal patterns
contained within the solution path. In particular we note that
there seems to be a slightly more dense region within the
periods t 2 [10, 50] and t 2 [70, 100]. It is interesting to
note that these appear to coincide with periods of increased
activity as measured by overall event count (see Fig. 1).
Rather than a daily cycle, this pattern suggests that meaningful
dynamics might be detected over a period of several days.
Whilst this periodicity is very clear in the raw data, it is
not necessarily obvious that this would propagate through to
changes in feature dependency structure.

To investigate this structure further, we can harness the
cross-validation analysis performed in the intra-day experi-
ment to select an appropriate level of sparsity and set �

1

= 0.1.
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Figure 5: Edge density solution path for 5 consecutive days
of data.

In Fig. 6 we plot the number of edges as a function of time
at two specific smoothness parameters, �

2

= 1 and �
2

= 6.
In addition to this we can visualise the graph directly, plotting
snapshots of estimated graphs (for �

1

= 0.1,�
2

= 6).

IV. DISCUSSION

In this section we discuss the interpretation of some of the
dependency patterns in our analysis and present some future
directions for research.

• Dependency between features can and does change over

time - The analysis depicted in Figs. 5,6 clearly shows
that dependency structure (i.e. edges in the graph) change
as a function of time. In this particular data-set there are
no obvious daily trends in this graph dependency. Instead,
we find two distinctly similar regimes of activity (over a
period of several days) where the graph estimates are
denser than in the surrounding time-periods. We suggest
that these may be used to describe different processes
which are running across the network at these times.

• Some dependency structures are persistent across time -
Whilst some dependencies change over time, our analysis
suggests that a sub-set of these are persistent (or re-
occurring) over time. In particular, the subset of features
(Packets_SD, Packets_SUM, Bytes_SUM and Bytes_SD)
appear to be highly inter-dependent. This is particularly
obvious during periods of high-activity (see graphs in
Fig. 6 at t = 20, 40, 75, 90). Alternatively, we can also
detect variables which are relatively independent of the
other variables, for example, the number of start events
(No_StartEvents) appears to be relatively disconnected
throughout the whole analysis window.

The characterisation of dependency patterns may enable future
probabilistic IDS systems to focus their modelling power
on only known dependencies. In theory this should lead to
improved robustness (and hence reduced false positives) as the
model complexity can be reduced without affecting the ability
of the generative distribution to describe normal patterns of
activity.

Limitations and Future Directions

In this work we assume feature flows are distributed as a
continuous Gaussian random variable, however, this assump-
tion is unlikely to be met in practice. The requirement of Gaus-
sianity limits the time resolution of our analysis, specifically it
requires us to have a large bin size (10 minutes) so that features
can be treated as continuous random variables. In future
work, one may consider using a different likelihood function,
or non-parametric models which allow more flexibility with
respect to feature distribution. This will potentially lead to a
characterisation of network traffic at shorter time-intervals.

Larger studies which include more IP addresses or devices
are planned and will investigate the reproducibility of the
results obtained here. These will verify the persistence of
extracted dependency structure between variables, and assess
how this depends on the aggregation level (i.e. bin interval).
To this extent, understanding dependency between features at
different aggregation levels may be important for characteris-
ing network activity, such an analysis might be considered a
multivariate extension of the work by Scherrer et al. [14].

Finally, it may be interesting to consider whether depen-
dency arises between features due to construction (i.e. how we
define the features), or as a product of actual varying network
activity. Such a study would need access to information about
the processes running on each device and how these produce
network activity.

Conclusion

The primary contribution of this work is to demonstrate that
dynamic graphical models can be applied to the modelling of
network NetFlow data. In applying such methods we can gain
some insight on feature dependency within network traffic. It
is important to place these results in the wider cyber-security
context. We emphasise here that we do note validate using
such models to detect actual attacks, such validation is left as
future work.

Our results demonstrate that network activity can be de-
scribed by a sparse graphical model. This has potential im-
plications for probabilistic IDS as it suggests that a statistical
model can focus on a subset of dependencies between fea-
tures. Such models should be more robust and therefore have
capability to reduce false alarm rates. A key point that we
demonstrate is that whilst dependency structure is sparse, the
structure of this model may change over time. Such changes
are not necessarily due to malicious activity, but may in future
developments provide a means to automatically detect changes
in usage patterns. For example, if one detects dependency
patterns not seen in a large volume of historical data this
may indicate a new, unseen, and possibly malicious process
operating on the network. It is envisaged that high-level statis-
tical characterisations of network traffic can therefore augment
traditional rule-based IDS systems and provide context to
decision making and alert generation.

In summary, it is our firm belief that understanding and
characterising the dependency of network activity features,
across different time-periods, and scales, is crucial for building



No_Events

No_StartEvents

Bytes_Median

Bytes_MAD

Bytes_SUM Bytes_SD

Packets_Median

Packets_MAD

Packets_SUM

Packets_SD BP_RATIO_Median

BP_RATIO_MAD

BP_RATIO_SUM

BP_RATIO_SD

t=5 t=20 t=40 t=60 t=75 t=90 t=105

0 20 40 60 80 100
Time since start of week (hours)

10

15

20

25

30

35

40

N
um

be
r o

f E
dg

es

Number of Estimated Edges vs Time

λ1=0.1,λ2=1
λ1=0.1,λ2=6

Figure 6: Top: Choosing �
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= 0.1 the number of edges are plotted as a function of time for two solutions, one with high
smoothness �

2

= 6 and one with low smoothness �
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= 1. Bottom: Some snapshots of graph structure are given at different
points in the week (measured in hours). These graphs correspond to the solution with �
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= 0.1,�
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= 6.

effective generative anomaly detection systems. In this work
we have shown on real data that such dependencies can and
do vary with respect to time. As such, this serves to highlight
the importance of considering dynamics in statistical models
of network traffic.
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