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a b s t r a c t 

The numerical onset of parasitic and spurious artefacts in the vicinity of fluid interfaces with surface ten- 

sion is an important and well-recognised problem with respect to the accuracy and numerical stability of 

interfacial flow simulations. Issues of particular interest are spurious capillary waves, which are spatially 

underresolved by the computational mesh yet impose very restrictive time-step requirements, as well as 

parasitic currents, typically the result of a numerically unbalanced curvature evaluation. We present an 

artificial viscosity model to mitigate numerical artefacts at surface-tension-dominated interfaces without 

adversely affecting the accuracy of the physical solution. The proposed methodology computes an addi- 

tional interfacial shear stress term, including an interface viscosity, based on the local flow data and fluid 

properties that reduces the impact of numerical artefacts and dissipates underresolved small scale inter- 

face movements. Furthermore, the presented methodology can be readily applied to model surface shear 

viscosity, for instance to simulate the dissipative effect of surface-active substances adsorbed at the inter- 

face. The presented analysis of numerical test cases demonstrates the efficacy of the proposed methodol- 

ogy in diminishing the adverse impact of parasitic and spurious interfacial artefacts on the convergence 

and stability of the numerical solution algorithm as well as on the overall accuracy of the simulation 

results. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The dynamics of an interface separating two immiscible fluids

s governed by the behaviour of individual molecules, which typi-

ally have a size of less than one nanometer. Computational fluid

ynamics (CFD), however, is based on continuum mechanics and

reats fluids as continuous media. Molecular scales cannot be re-

olved using continuum mechanics, which leads to a variety of

heoretical and numerical difficulties with respect to the represen-

ation of fluid interfaces using CFD. These difficulties manifest as

arasitic (of unphysical origin) or spurious (of physical origin but

umerically misrepresented) flow features in the vicinity of the in-

erface. Numerical artefacts of particular practical interest in inter-

acial flow modelling that have attracted significant attention and

esearch efforts are parasitic currents [1–7] and spurious capillary

aves [1,8–13] . 

The numerical onset of unphysical flow currents in the vicin-

ty of the interface, so-called parasitic currents , are a common oc-
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urrence in the modelling of surface-tension-dominated flows. Pre-

ious studies [3–6] have identified two distinct origins of para-

itic currents: a) a discrete imbalance between pressure “jump”

nd surface tension and b) a numerically unbalanced evaluation

f the interface curvature. The imbalance of the pressure gradi-

nt and surface tension can be eliminated by employing so-called

alanced-force discretisation methods that assure a discrete bal-

nce between surface tension and pressure gradient, which has

reviously been proposed and successfully demonstrated by Re-

ardy and Renardy [14] and Francois et al. [4] for sharp surface

epresentations such as the ghost-fluid method [15,16] , and by

rancois et al. [4] , Mencinger and Žun [5] and Denner and van

achem [6] for methods using a continuum surface force formu-

ation [1,17] . A numerically unbalanced evaluation of the interface

urvature, which is typically associated with spatial aliasing errors

esulting from the computation of the second derivative of a dis-

rete indicator function or reconstruction [3,6] , leads to an unphys-

cal contribution to the momentum equations (via surface tension)

nd, consequently, causes an unphysical acceleration of the flow in

he vicinity of the interface [4,7] . Using a balanced-force discretisa-

ion of the surface tension, parasitic currents are solely dependent
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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on the evaluation of the interface curvature and can, for instance,

be eliminated ( i.e. reduced to machine precision) for certain cases

by imposing the geometrically exact curvature [4–7] . Although pre-

vious studies [7,18] have shown that, with a careful discretisation

of the interface curvature, parasitic currents can be reduced to ma-

chine precision in some cases once the interface has reached a nu-

merical equilibrium, parasitic currents are still an issue of signif-

icant practical relevance for applications with evolving interfaces,

as evident by the considerable body of literature on this subject

published over the past five years alone ( e.g. [7,19–22] ). 

Another important numerical artefact in interfacial flows are

spurious capillary waves . In a numerical framework, the shortest

wavelength unambiguously resolved by the computational mesh is

λmin = 2�x, with �x representing the mesh spacing. Because an

adequate spatial resolution of waves requires at least 6 − 10 cells

per wavelength [13] , capillary waves with a wavelength of λmin ≤
λ � 3 λmin are not part of the physical solution and can, therefore,

be considered to be spurious capillary waves, meaning that these

waves are a response of the discretised governing equations to a

perturbation of the interface but are numerically misrepresented.

Therefore, spurious capillary waves are, contrary to parasitic cur-

rents, not the result of numerical errors but the result of the lim-

itations associated with the finite resolution of the computational

mesh. The origin of spurious capillary waves can be physical per-

turbations of the interface, for instance due to the collision of the

interface with an obstacle, as well as numerical perturbations, for

instance the finite accuracy of numerical algorithms, discretisation

errors or parasitic currents [13] . An adequate temporal resolution

of the propagation of all spatially resolved capillary waves is essen-

tial for a stable numerical solution [1,13] . The dispersion relation of

capillary waves in inviscid fluids is given as [23] 

ω 

2 
σ = 

σ k 3 

ρa + ρb 

, (1)

from which the phase velocity follows as c σ = ω σ /k, where ω σ is

the angular frequency of capillary waves, k is the wavenumber, σ
is the surface tension coefficient and ρ is the density of the ad-

jacent fluids a and b. Hence, the phase speed of capillary waves

increases with decreasing wavelength. This anomalously dispersive

behaviour of capillary waves leads to a very rigid time-step restric-

tion for interfacial flow simulations. For the shortest spatially re-

solved capillary waves, Denner and van Wachem [13] devised the

capillary time-step constraint as 

�t σ ≤ �x √ 

2 c σ + u �

, (2)

where �x denotes the mesh spacing and u � is the flow velocity

tangential to the interface. Denner and van Wachem [13] demon-

strated that the shortest spatially resolved capillary waves are in

most cases not subject to viscous attenuation, since the computa-

tional mesh is usually too coarse for typical values of the fluid vis-

cosities to spatially resolve the vorticity generated by the shortest

numerically represented waves. 

The capillary time-step constraint limits the simulation of inter-

facial flow applications and has been commonly attributed to the

explicit numerical implementation of surface tension. As a result,

it is widely postulated that an implicit implementation of surface

tension would lift or at least mitigate the capillary time-step con-

straint [1,8–10,18] . Recent research efforts inspired by this assump-

tion aimed at finding an implicit or semi-implicit treatment of the

surface tension to lift the time-step restrictions in interfacial flows

[8,9,11,12] . Hysing [8] proposed a semi-implicit formulation of sur-

face tension based on the CSF method [1] for a two-dimensional

finite element method. The semi-implicit formulation of Hysing in-

cludes an additional implicit term which represents artificial shear

stresses tangential to the interface. Raessi et al. [9] translated this
ethodology for finite volume methods and reported that this

emi-implicit formulation of surface tension allows to exceed the

apillary time-step constraint by up to factor five without desta-

ilising the solution of the presented two-dimensional test cases.

chroeder et al. [11] proposed a two-dimensional method with a

emi-implicit implementation of surface tension on a Lagrangian

nterface mesh ( i.e. using an explicit representation of the inter-

ace) coupled to a Eulerian mesh for the flow, presenting sta-

le results for time-steps up to �t = 3 �t σ . In a similar fashion,

heng et al. [12] recently proposed a fully-implicit coupling of a

agrangian interface mesh to a MAC grid and showed that the

ethod can yield stable results for time-steps up to �t ≈ 10 3 �t σ .

owever, with respect to methods that rely on an implicit interface

epresentation, such as Volume-of-Fluid methods [24] or Level-Set

ethods [25,26] , and the CSF method of Brackbill et al. [1] , Denner

nd van Wachem [13] demonstrated that the temporal resolution

equirements associated with the propagation of capillary waves

s a result of the spatiotemporal sampling of capillary waves and

s independent of whether surface tension is implemented explicit

r implicit. Simulating the thermocapillary migration of a spheri-

al drop, Denner and van Wachem [13] demonstrated that with-

ut external perturbations acting at the interface (such as para-

itic currents), the capillary time-step constraint can be exceeded

y several orders of magnitude without destabilising the solution,

resenting stable results for �t = 10 4 �t σ using an explicit imple-

entation of surface tension. Thus, in order to mitigate or lift the

apillary time-step constraint for numerical methods that rely on

n implicit interface representation, the shortest capillary waves

patially resolved by the computational mesh have to be either fil-

ered out or damped with an appropriate method to mitigate their

mpact. 

Issues regarding numerical artefacts are, however, not limited

o interfacial flows. For instance, numerical oscillations induced by

 high-order discretisation of advection terms is a longstanding is-

ue in CFD as well as numerical heat and mass transfer, and has

een the topic of extensive studies, e.g. [27–31] . Artificial viscos-

ty is a well-established concept to mitigate or eliminate high-

requency oscillations in the solution and improve the stability of

he numerical methodology, in particular for shock capturing and

n transsonic flows, and numerical models that incorporate arti-

cial viscosity span a wide range of explicit and implicit meth-

ds, see e.g. [32–37] . Cook and Cabot [35] suggested that the ar-

ificial grid-dependent viscosity should be chosen as to only damp

avenumbers close to the Nyquist wavenumber π / �x , which in a

umerical simulation is the wavenumber of the shortest spatially

esolved waves. Discretisation schemes which introduce numeri-

al diffusion to avoid oscillatory solutions, such as TVD schemes

27–29] , are often considered to be part of the artificial viscosity

odels as well. In fact, TVD schemes can be readily translated into

n explicit artificial viscosity term, as for instance shown by Davis

38] . 

In this study we propose an artificial viscosity model to miti-

ate numerical artefacts at fluid interfaces, expanding on the work

f Raessi et al. [9] . The proposed artificial viscosity model can ac-

ommodate arbitrary interface viscosities and two methods to dy-

amically compute the interface viscosity based on the local flow

onditions are presented. We present and discuss the results for

 range of numerical experiments, which allow a comprehensive

ssessment of the efficacy of the methodology, highlight the act-

ng physical mechanisms and provide best practice guidelines for

uture interfacial flow simulations using the proposed artificial vis-

osity model. Furthermore, our study demonstrates that the suc-

ess of the proposed methodology with regards to mitigating the

apillary time-step constraint is solely based on the dissipation of

urface energy, irrespective of the type of implementation, contrary

o previous suggestions [8,9] . 
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The remainder of this article is organised as fol-

ows. Section 2 introduces the governing equations and

ection 3 presents the applied numerical framework. The ar-

ificial viscosity model is presented and appropriate choices of the

nterface viscosity as well as the acting physical mechanisms are

iscussed in Section 4 . The results for a variety of numerical test

ases are presented in Section 5 , in order to scrutinise the pro-

osed methodology, show its efficacy and provide a benchmark for

uture modelling effort s. The article is summarised and concluded

n Section 6 . 

. Governing equations 

The considered isothermal, incompressible flow of Newtonian

uids is governed by the continuity equation and the momentum

quations, defined as 

∂u i 

∂x i 
= 0 (3) 

(
∂u i 

∂t 
+ u j 

∂u i 

∂x j 

)
= − ∂ p 

∂x i 
+ 

∂ 

∂x j 

[
μ

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)]
+ ρ g i + f s ,i 

(4) 

here u is the velocity, p stands for the pressure, ρ is the density,

is the viscosity of the fluid, t represents time, g is the gravi-

ational acceleration and f s is the volumetric force due to surface

ension. Based on hydrodynamic principles, the forces acting on

he interface must balance in both phases. Neglecting gradients in

urface tension coefficient, the force-balance in the direction nor-

al to the interface is [39] 

p b − p a −
(

2 μb 

∂(u j ˆ m j ) 

∂x i 

∣∣∣∣
b 

ˆ m i − 2 μa 

∂(u j ˆ m j ) 

∂x i 

∣∣∣∣
a 

ˆ m i 

)
= σ κ. (5) 

here subscripts a and b denote the two fluids, σ is the surface

ension coefficient, κ is the interface curvature and ˆ m is the unit

ormal vector of the interface (pointing into fluid b). 

The Volume of Fluid (VOF) method [24] is adopted to capture

he interface between two immiscible fluids. In the VOF method

he local volume fraction in each cell is represented by the colour

unction γ , defined as 

( x , t) = 

{
0 fluid a 
1 fluid b . 

(6) 

he interface is, therefore, situated in every mesh cell with a

olour function value of 0 < γ < 1. The local density ρ and vis-

osity μ are defined based on the colour function γ , given as 

( x , t) = ρa [1 − γ ( x , t)] + ρb γ ( x , t) (7) 

( x , t) = μa [1 − γ ( x , t)] + μb γ ( x , t) , (8) 

here subscripts a and b denote the two fluids. The advection of

he colour function γ is defined based on the underlying flow field

s 

∂γ

∂t 
+ u i 

∂γ

∂x i 
= 0 . (9)

. Numerical methodology 

The applied numerical framework is based on a finite volume

ethod with a collocated variable arrangement [6,40] . The tran-

ient term of the momentum equations, Eq. (4) , is discretised using

he Second-Order Backward Euler scheme and convection is discre-

ised using a central differencing scheme. The continuity equation
s discretised using a specifically constructed momentum-weighted

nterpolation method proposed by Denner and van Wachem [6] ,

hat couples pressure and velocity and assures a discrete balance

etween pressure gradient, gravity and surface force. 

The solution procedure follows a coupled, implicit implementa-

ion of the primitive variables, following the work of Denner and

an Wachem [6] , where the governing equations of the flow are

olved in a single linear system of equations, given as 
 

 

 

x -momentum equation 

y -momentum equation 

z-momentum equation 

continuity equation 

⎞ 

⎟ ⎠ 

 ︷︷ ︸ 
A 

·

⎛ 

⎜ ⎝ 

φu 

φv 
φw 

φp 

⎞ 

⎟ ⎠ 

︸ ︷︷ ︸ 
φ

= b , (10) 

here φ is the solution vector, constituted by the solution subvec-

ors of velocity u = (u, v , w ) T and pressure p . Each time-step con-

ists of a finite number of non-linear iterations to account for the

on-linearity of the governing equations. At the end of each non-

inear iteration the deferred terms of the equation system are up-

ated, based on the result of the most recent non-linear iteration.

his iterative procedure continues until the non-linear problem has

onverged to a sufficiently small tolerance. A BiCGSTAB method in-

orporated in the freely-available PETSc library [41,42] is utilised to

olve the preconditioned linear equation system. 

In this study a compressive VOF methodology [43] is applied to

iscretise the temporal evolution of the interface, governed by Eq.

9) , using algebraic discretisation schemes to discretise Eq. (9) and

ransporting the colour function in a time-marching fashion. This

ompressive VOF methodology inherently conserves mass within

he limits of the solver tolerance [43] and is able to capture evolv-

ng interfaces with similar accuracy as VOF-based interface recon-

truction methods [43,44] . The interface advection and the flow

olver are implemented in a segregated fashion and coupled ex-

licitly, see Ref. [43] for details. 

Based on the colour function distribution, the surface force per

nit volume is discretised using the CSF model [1] as 

f s ,i = σ κ ˆ m i δ� = σ κ
∂γ

∂x i 
, (11) 

here ˆ m = ∇ γ / |∇ γ | is the interface normal vector. In order to en-

ure a balanced-force discretisation of the surface force, Eq. (11) is

iscretised on the same computational stencil as the pressure gra-

ient [6] and no convolution is applied to smooth the surface force

45] . 

. Artificial viscosity model for interfacial flows 

The assumption that an implicit treatment of surface tension

an mitigate the capillary time-step constraint, first proposed by

rackbill et al. [1] , has motivated recent effort s to formulate a

semi-)implicit implementation of the CSF model. Following the

ork of Bänsch [46] , Hysing [8] proposed an additional implicit

erm for finite element methods that is dependent on the surface

ension, which Raessi et al. [9] extended to finite volume methods,

iven as 

f τ,i = σ �t δ� ∇ 

2 
s u i , (12)

here ∇ 

2 
s is the Laplace-Beltrami operator tangential to the inter-

ace and δ� = |∇γ | is the so-called interface density. The coeffi-

ient σ �t δ� of the tangential Laplacian of the velocity has the

ame unit (Pa s) as the dynamic viscosity μ and can, therefore, be

een as constituting an artificial interface viscosity. Consequently,

he additional term given by Eq. (12) represents artificial shear

tresses acting tangential to the interface in the interface region

n addition to the shear stresses imposed by the bulk phases, in-

reasing the dissipation of interface movement. 
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4.1. Artificial interfacial shear stresses 

Following the analysis of Eq. (12) in the previous paragraph, the

additional shear stresses acting tangential to the interface can be

generalised as 

f τ,i = μ� ∇ 

2 
s u i , (13)

where μ� is the interface viscosity, representing a numerical dif-

fusion coefficient applied to smooth the topology of the fluid inter-

face. For an isothermal, incompressible flow the momentum equa-

tions, Eq. (4) , including the additional interfacial shear stress term

of the artificial viscosity model become 

ρ

(
∂u i 

∂t 
+ u j 

∂u i 

∂x j 

)
= − ∂ p 

∂x i 
+ 

∂ 

∂x i 

[
μ

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)]

+ ρ g i + σ κ
∂γ

∂x i 
+ μ� ∇ 

2 
s u i . (14)

The prevailing effect of this additional interfacial shear stress term,

Eq. (13) , is an increased dissipation of surface energy through a

local increase of the acting shear stresses. The underlying mech-

anism closely resembles the additional shear stresses imposed at

the interface by the adsorption of surface-active substances, which

in the literature is often described using a surface viscosity term,

following the work of Scriven [47] , that is identical to Eq. (13) .

With respect to surface-active substances the surface viscosity it-

self is, strictly speaking, not a fluid or interface property but should

merely be regarded as a phenomenological constant [39] . The ad-

ditional interfacial shear stress term, Eq. (13) , also bears similarity

to other types of artificial viscosity models, such as the original ar-

tificial viscosity model of von Neumann and Richtmyer [32] or the

spectral-like artificial viscosity model of Cook and Cabot [35] . 

With respect to parasitic currents, the additional interfacial

shear stresses play the traditional role of increasing the dissipa-

tion of parasitic currents, in particular since parasitic currents are

spatially very localised and the associated second spatial deriva-

tives are typically high. The effect of the additional interfacial

shear stresses on spurious capillary waves is more versatile, as

they reduce the frequency and phase velocity of capillary waves

[48] and also increase the penetration depth of the vorticity in-

duced by capillary waves [49] , leading to (increased) attenuation

of these waves. Furthermore, the increased viscosity acting on cap-

illary waves steepens the energy cascade of capillary wave turbu-

lence [50] and, thus, capillary waves with small wavelength that

result from wave interaction are less energetic. 

4.2. Choice of interface viscosity μ�

Defining an appropriate interface viscosity for a given problem

is essential for the efficacy of the artificial viscosity model and the

overall accuracy of the conducted simulation. If the interface vis-

cosity is too small, parasitic and spurious artefacts cannot be coun-

teracted with maximum effect. On the other hand, if the interface

viscosity is too large, the artificial viscosity model compromises

the predictive quality of the numerical framework and changes the

outcome of the simulation. As a general template it is proposed to

define the interface viscosity as 

μ� = μ∗
�

ˆ δ� (15)

where μ∗
�

is the base value of the interface viscosity, ˆ δ� = δ� �x

is the normalised interface density and �x is the mesh spacing.

This formulation assures that the interface viscosity is non-zero

only in the interface region as well as that the shear stress term

of the artificial viscosity model is distributed in the same way as

the force due to surface tension and, hence, only acts at the inter-

face. As shown schmematically in Fig. 1 , the normalised interface
ensity is 0 ≤ ˆ δ� ≤ 0 . 5 and, hence, the applied interface viscosity

n any given mesh cell is μ� ≤ 0 . 5 μ∗
�

. The base value of the inter-

ace viscosity can either be fixed to a predefined value or can be

alculated based on the fluid properties and the flow field, such as

he two specific examples discussed below. 

The original formulation of the additional interfacial shear

tress term proposed by Raessi et al. [9] is retained by defining

he base value of the interface viscosity as 

∗
� = 

σ �t 

�x 
. (16)

his interface viscosity is proportional to the surface tension co-

fficient σ and the time-step �t but inversely proportional to the

esh spacing �x , similar to the magnitude of parasitic currents

4,6] . 

Denner and van Wachem [13] demonstrated that the viscous

ttenuation of interface waves in numerical simulations is criti-

ally influenced by the mesh resolution, concluding that the at-

enuation of spurious capillary waves cannot be represented in a

hysically accurate manner, since the vorticity generated by these

aves is typically not discretely resolved by the computational

esh. Thus, an alternative definition of the interface viscosity is

roposed based on the length scale of the penetration depth of the

orticity generated by capillary waves, given as [49] 

 ν = 

√ 

ν

ω σ
, (17)

here ν = μ/ρ is the kinematic viscosity. With respect to the dis-

ersion of capillary waves, it can be assumed that the fluid prop-

rties of both phases act collectively on capillary waves [48] , so

hat for instance the effective kinematic viscosity is ν = νa + νb .

ollowing this rational for the purpose of defining a length scale

hat takes into account the natural attenuation of capillary waves,

or fluids with different fluid properties and including interface vis-

osity, this viscous length scale can be reformulated as 

 ν = 

√ 

1 

ω σ

(
μa 

ρa 
+ 

μb 

ρb 

+ 

μ�

ρ�

)
, (18)

here ρ� = (ρa + ρb ) / 2 is the reference density at the interface.

ence, the base value of the interface viscosity follows as 

∗
� = max 

{ 

ρ�

(
l 2 ν ω σ − μa 

ρa 
− μb 

ρb 

)
, 0 

} 

. (19)

his formulation of the interface viscosity takes into account the

amping provided by the bulk phases as well as the increased at-

enuation of interface features with decreasing mesh spacing, since

ow structures associated with parasitic currents and spurious

apillary waves equally reduce in size. These flow structures ex-

erience a larger natural attenuation because viscosity acts prefer-

bly at smaller scales [23] . Furthermore, since underresolved in-

erface waves are underdamped due to an inadequate resolution

f the vorticity induced by these waves [13] , a reduced mesh spac-

ng ( i.e. higher mesh resolution) increases the viscous dissipation of

hose waves. If the bulk phases provide sufficient damping, e.g. in

he case of overdamped capillary waves [48] , the interface viscosity

ecomes zero. Following the argument of Prosperetti [49] , the vis-

ous length scale in Eq. (19) is defined as l ν = �x . Thus, the result-

ng interface viscosity leads to a penetration depth of the vorticity

enerated by an interfacial wave that is of the order of magnitude

f the mesh spacing. The angular frequency ω σ should be based

n a representative wavelength, such as the minimum spatially re-

olved wavelength λmin = 2�x or the smallest wavelength that is

patially adequately resolved, e.g. λ = 3 λmin = 6�x . Note that this

epresents only one particular choice for the viscous length scale l ν
nd the angular frequency ω σ for Eq. (19) and that other choices

ay be more suitable for a given problem. 



F. Denner et al. / Computers and Fluids 143 (2017) 59–72 63 

Fig. 1. One-dimensional examples of an equidistant Cartesian mesh with colour function γ and corresponding normalised interface density ˆ δ� = |∇γ | �x, with |∇γ j | ≈
| γ j+1 − γ j−1 | / (2 �x ) discretised using central differencing. 
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The particular choice of interface viscosity also dominates the

patiotemporal convergence behaviour of the artificial viscosity

odel. The interface viscosity defined in Eq. (16) is O(�x −1 , �t) .

hus, the interface viscosity diverges with first-order under mesh

efinement, with μ∗
�

= ∞ for �x → 0, and converges with first-

rder for decreasing time-steps, with μ∗
�

= 0 for �t → 0. The in-

erface viscosity defined in Eq. (19) with l ν = �x, on the other

and, converges with order 0.5 for spatial refinement, since μ∗
�

∝
 

�x , and is independent of the time-step �t . 

.3. Implementation 

Hysing [8] and Raessi et al. [9] implemented Eq. (12) implic-

tly, assuming that an implicit implementation is required to lift

he capillary time-step constraint. This widely advocated assump-

ion has been corrected by Denner and van Wachem [13] , demon-

trating that restrictions imposed by the capillary time-step con-

traint also hold for the implicit implementation of surface ten-

ion. Contrary to previous studies [8,9] , the additional interfacial

hear stress term of the artificial viscosity model, Eq. (13) , is im-

lemented as an explicit contribution to the momentum equations,

efined as 

f j 
τ,i 

= μ� ∇ 

2 
s u 

j−1 
i 

, (20)

here superscripts j and j − 1 denote the current and the previous

on-linear iteration, respectively. The Laplace-Beltrami operator of

elocity with respect to the tangential vector of the interface is 

 

2 
s u i = ∇ · ∇ s u i − ( ̂  m · ∇)(∇ s u i ) ̂  m , (21)

here 

 s u i = ∇u i − ( ̂  m · ∇u i ) ̂  m (22)

s the velocity gradient tangential to the interface. 

Because the shear stress term of the artificial viscosity model

s implemented explicitly, the applied time-step has to fulfil the

iscous time-step constraint [9] 

t μ ≤ ρ �x 2 

2 μ�
. (23) 

ince the Cauchy stress tensor of the momentum equations, Eq. (4) ,

s implemented implicity in the applied numerical framework, only

he interface viscosity μ� of the artificial viscosity model has to

e considered in determining the viscous time-step constraint by

q. (23) . However, strict adherence to the viscous time-step con-

traint is in many cases not necessary, since the solution algorithm

ccounts iteratively for non-linearities of the governing equations

nd, hence, the additional interfacial shear stress term, Eq. (20) ,

s changing in every iteration. Preliminary tests have shown that,

ith the numerical framework presented in Section 3 , stability is-

ues associated with the viscous time-step constraint only arise for

ery large interface viscosities. 

Dependent on the mesh spacing, the fluid properties and the

pplied interface viscosity, the viscous time-step constraint �t μ
an be more restrictive than the capillary time-step constraint �t σ ,
ince �t μ∝ �x 2 and �t σ ∝ �x 3/2 . Comparing �t μ and �t σ , the crit-

cal mesh spacing follows as 

x c = 

2 μ2 
�

πσρ
, (24) 

nd the largest stable time-step becomes 

t max = 

{
�t σ if �x > �x c 
�t μ if �x < �x c . 

(25) 

owever, in many cases of practical interest �x 
 �x c with �t σ
�t μ and, hence, the viscous time-step constraint does not im-

ose an additional limit to the applied time-step for such cases.

he magnitude of capillary and viscous time-step constraints is fur-

her discussed for each individual test case in Section 5 . An implicit

mplementation of ∇ 

2 
s u and ∇ s u [see Eqs. (21) and (22) , respec-

ively], as for instance described in detail by Raessi et al. [9] , can

emedy this issue for cases in which �t μ � �t σ . 

. Results 

The results of four representative test-cases are presented, scru-

inising the proposed artificial viscosity model for interfacial flows

y highlighting its acting mechanisms and discussing its impact

n realistic applications. In what follows, μ∗,t 
�

denotes the inter-

ace viscosity based on the work of Hysing [8] and Raessi et al.

9] , see Eq. (16) , with superscript t indicating its time-step depen-

ency, and μ∗,λ
�

denotes the interface viscosity determined by Eq.

19) , where superscript λ stands for its dependency on the chosen

eference wavelength. For all presented simulations, the applied

ime-step satisfies the capillary time-step constraint, Eq. (2) , the

iscous time-step constraint, Eq. (23) , as well as a Courant number

o = | u | �t/ �x < 1 , unless explicitly stated otherwise. 

.1. Dispersion of capillary waves 

A sinusoidal, surface-tension-driven wave between two viscous

uids is simulated. The wave with wavelength λ has an initial am-

litude of 0.01 λ and the Laplace number of the two-fluid system is

a = σρλ/μ2 = 30 0 0 . Both fluids are initially at rest, have a den-

ity of ρ = 1 . 0 kg m 

−3 , a viscosity of μ = 1 . 6394 × 10 −3 Pa s and a

urface tension coefficient σ = 0 . 25 π−3 N m 

−1 , which results in a

on-dimensional viscosity of 

= 

4 μπ2 

ρ ω σ λ2 
= 6 . 472 × 10 

−2 . (26)

he motion of the interface is induced by surface tension only,

ravity is excluded. The domain is λ in width ( x -direction) and 3 λ
n height ( y -direction), identical to the domain used by Popinet

18] , and is represented by an equidistant Cartesian mesh with

 spatial resolution of 32 cells per wavelength λ. The periodic

otion of the capillary wave is discretised with �t = 10 −3 s for

= 1m and �t = 3 . 162 × 10 −5 s for λ = 0 . 1m , which corresponds

o 10 0 0 time-steps �t per period ω 

−1 
σ . All domain boundaries

re treated as free-slip walls. The capillary time-step constraint

s �t σ = 3 . 471 × 10 −2 s for the wave with λ = 1 m and �t σ =
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Fig. 2. Temporal evolution of the amplitude A of the standing capillary wave with wavelength λ = 1 m and λ = 0 . 1 m for different interface viscosities μ∗
� . The analytical 

result is based on the solution of the initial-value problem of Prosperetti [51] . 

Fig. 3. Damping ratio ζ = �/ω 0 of the standing capillary wave with wavelength 

λ = 1 m and λ = 0 . 1 m for different interface viscosities μ∗
� . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m  

t  

c  

t  

p  

r  

a  

fl  

c  

o  

s  

i  

r  

a  

p  

�

5

 

t  

w  

t  

b  

w  

l  

a  

a  

w  

d  

b  

d  

t  

 

t  

f  

o  

L  

a  

w  

f  

[  

L  

h  

s  

p  
1 . 098 × 10 −3 s for λ = 0 . 1m . Assuming μ∗
�

= 10 −2 Pa s , the vis-

cous time-step constraint is �t μ = 1 . 953 × 10 −2 s for λ = 1 m and

1 . 953 × 10 −3 s for λ = 0 . 1 m . Prosperetti [51] derived an analyti-

cal solution for the initial-value problem of the evolution of such

a capillary wave in the limit of small wave amplitude and equal

kinematic viscosity of the bulk phases. 

Fig. 2 shows the temporal evolution of the amplitude for wave-

lengths λ = 1 m and λ = 0 . 1 m for the predefined interface viscosi-

ties μ∗
�

= 0 Pa s ( i.e. no artificial viscous shear stresses are applied

at the interface), μ∗
�

= 10 −3 Pa s and μ∗
�

= 10 −2 Pa s . The simula-

tion results for both cases without artificial viscosity model ( μ∗
�

=
0 ) are in excellent agreement with the analytical solution of Pros-

peretti [51] , which is shown in the graphs as a reference. The tem-

poral evolution of the amplitude of the capillary wave deviates in-

creasingly from the analytical solution as the interface viscosity in-

creases, due to the enhanced attenuation through the additional

shear stresses imposed by the artificial viscosity model, given by

the damping coefficient 

� = 

ln (| A 0 | / | A 1 | ) 
t 1 − t 0 

, (27)

where A is the wave amplitude, t stands for time and superscripts

0 and 1 denote two extrema with respect to the temporal evo-

lution of the wave amplitude. Fig. 3 shows the damping ratio

ζ = �/ω σ of both waves as a function of interface viscosity. The

damping ratio increases rapidly with increasing interface viscos-

ity and, as previously indicated, the damping effect of the artifi-

cial viscosity model on the shorter wave ( λ = 0 . 1 m ) is significantly

stronger. 
The temporal evolution of the capillary wave amplitude A , with

nd without interface viscosity is shown in Fig. 4 for different

esh resolutions. Without interface viscosity ( μ∗
�

= 0 ), see Fig. 4 a,

he prediction of the wave amplitude becomes more accurate,

ompared to the analytical results, with increasing mesh resolu-

ion. The results obtained on meshes with 64 cells and 128 cells

er wavelength λ are almost indistinguishable, indicating that a

esolution of 64 cells per wavelength is sufficient. Applying the

rtificial viscosity model with μ∗
�

= 10 −2 Pa s , see Fig. 4 b, the in-

uence of the artificial viscosity model is diminishing with in-

reasing mesh resolution. Since the artificial viscosity model is

nly applied in the close vicinity of the interface, the additional

hear stresses introduced by the artificial viscosity model are act-

ng in a region of decreasing volume for meshes with increasing

esolution, thereby decreasing the added dissipation. The capillary

nd viscous time-step constraint for the case with 128 mesh cells

er wavelength and μ∗
�

= 10 −2 Pa s are �t σ = 4 . 339 × 10 −3 s and

t μ = 1 . 221 × 10 −2 s , respectively. 

.2. Interface instabilities on falling liquid films 

Falling liquid films are convectively unstable to long-wave per-

urbations ( i.e. the wavelength is much longer than the film height)

hich leads to the formation of periodic or quasi-periodic wave

rains [52] . Waves with a frequency higher than the neutral sta-

ility frequency f crit are attenuated by surface tension, whereas

aves with a frequency lower than f crit evolve as a result of the

ong-wave instability mechanism [53] . The resulting solitary waves

re governed by complex hydrodynamic phenomena and exhibit

 dominant elevation with a long tail and steep front, typically

ith capillary ripples preceding the main wave hump. In inertia-

ominated film flows, solitary waves exhibit a separation of scales

etween the front of the main wave hump, where gravity, viscous

rag and surface tension balance, and the tail of the wave, charac-

erised by a balance between gravity, viscous drag and inertia [52] .

Two different film flows are considered to study the effect of

he artificial viscosity model: a) the attenuation of numerical arte-

acts at the interface, and b) the spatiotemporal aliasing of spuri-

us capillary waves. Both cases are simulated in a domain of size

 x × L y × 0.1 h N , schematically illustrated in Fig. 5 , represented by

n equidistant Cartesian mesh with 10 cells per film height h N ,

here h N is the height of the unperturbed film (Nusselt height)

or a given flow rate according to the Nusselt flat film solution

52] . For all cases considered in this study the domain height is

 y = 4 h N . The inclined substrate has an inclination angle β to the

orizontal plane and is modelled as a no-slip boundary. The gas-

ide (top) boundary is assumed a free-slip wall. A monochromatic

erturbation is imposed at the domain-inlet, periodically changing
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Fig. 4. Temporal evolution of the amplitude A of the standing capillary wave with wavelength λ = 1 m and interface viscosities μ∗
� = 0 and μ∗

� = 10 −2 Pa s for different mesh 

resolutions, indicated by the number of cells per wavelength λ. The analytical result is based on the solution of the initial-value problem of Prosperetti [51] . 

Fig. 5. Schematic illustration of the numerical domain with dimensions L x × L y . The 

liquid film with height h ( x, t ) flows from left to right on substrate with inclination 

angle β . 
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he mass flow at frequency f and amplitude A from the mean, with

 semi-parabolic velocity profile prescribed for the liquid phase at

he inlet 

 (x = 0 , 0 ≤ y ≤ h N ) = 

3 

2 

[ 1 + A sin ( 2 π f t ) ] 

(
2 

y 

h N 

− y 2 

h 

2 
N 

)
u N , 

(28) 

nd a spatially-invariant velocity prescribed at the inlet for the

as-phase 

 (x = 0 , h N < y ≤ 4 h N ) = 

3 

2 

[ 1 + A sin ( 2 π f t ) ] u N , (29)

here u N is mean flow velocity (Nusselt velocity) based on the

usselt flat film solution [52] , given as 

 N = 

ρl g sin β h 

2 
N 

3 μl 

. (30) 

he film height h (x = 0) = h N at the inlet is constant and an open

oundary condition is applied at the domain-outlet [54,55] . The

lm is initially flat and the velocity field is fully developed. 

.2.1. Mitigating parasitic currents 

Following the work of Denner et al. [56] and Charogiannis et al.

57] , the considered liquid film has a Reynolds number of Re =
l u N h N /μl = 20 . 55 and is flowing down a substrate with an in-

lination angle of β = 20 ◦ to the horizontal. The liquid phase has

 density of ρl = 1169 . 165 kg m 

−3 and a viscosity of μl = 1 . 8433 ×
0 −2 Pa s , the gas phase has a density of ρg = 1 . 205 kg m 

−3 and

 viscosity of μg = 1 . 82 × 10 −5 Pa s , and the surface tension co-

fficient is σ = 5 . 8729 × 10 −2 N m 

−1 . The Nusselt height for this

lm flow is h N = 1 . 65923 × 10 −3 m and the Nusselt velocity is u N =
 . 95296 × 10 −1 m s −1 . The length of the applied three-dimensional

omain is L x = 205 h N and the perturbation frequency is f = 7 s −1 

ith an amplitude of A = 11 . 38% . The capillary time-step constraint
or this case is �t σ = 9 . 927 × 10 −5 s , whereas the viscous time-

tep constraint is �t μ = 9 . 965 × 10 −4 s for μ∗
�

= μ∗,t 
�

and �t μ =
 . 163 × 10 −4 s for μ∗

�
= μ∗,λ

�
. 

Fig. 6 a shows the film height h , normalised by the Nusselt flat

lm height h N , and Fig. 6 b shows the streamwise velocity at the

nterface u �, normalised by the Nusselt velocity u N , as a function

f the normalised downstream distance x . Experimental results for

his particular case of Denner et al. [56] are shown as a reference.

he impact of numerical artefacts at the front of the solitary wave

s clearly visible in Fig. 6 , manifesting as wiggles of the film height

 (see inset of Fig. 6 a), particularly between the wave crest and

he preceding trough, and as strong fluctuations of the interface

elocity u � (see inset of Fig. 6 b). Since the applied time-step sat-

sfies �t σ , no external perturbations of high frequency are applied

nd given that the numerical artefacts occur in a region of rela-

ively high curvature and low shear stress, the observed numer-

cal artefacts are most likely parasitic currents. No such wiggles

nd fluctuations are observed if the artificial viscosity model is ap-

lied with either of the two considered definitions of the interface

iscosity. However, the artificial viscosity model noticeably influ-

nces the hydrodynamics of the capillary ripple preceding the soli-

ary wave. With increasing interface viscosity ( μ∗,t 
�

= 0 . 0334 Pa s

nd μ∗,λ
�

= 0 . 277 Pa s ) the amplitude of the capillary ripple preced-

ng the solitary wave is considerably reduced and its wavelength is

ncreased, leading to smaller variations in interface velocity. Capil-

ary ripples form in order for the surface energy of the interface to

alance the inertia of the flow and an increasing number of capil-

ary ripples is generally observed for increasing inertia [52,58] . As

 consequence of the artificial viscosity model increasing the dissi-

ation in the vicinity of the interface (which is acting particularly

t short wavelengths [48] ) and, therefore, dissipating some of the

nertia of the flow, the resulting capillary ripple is smaller for in-

reasing interface viscosity. 

.2.2. Spatiotemporal aliasing of spurious capillary waves 

Since the interface and the flow field are clearly oriented, falling

iquid films are well suited to study the onset of spatiotemporal

liasing of spurious capillary waves as a result of breaching the

apillary time-step constraint given in Eq. (2) , as demonstrated by

enner and van Wachem [13] . Spurious capillary waves have typ-

cally a frequency that is significantly larger than the neutral sta-

ility frequency f crit and, hence, from a purely physical viewpoint,

purious capillary waves should be naturally attenuated. Raessi

t al. [9] reported that an implicit implementation of the addi-

ional interfacial shear stress term, Eq. (12) , allowed them to con-

uct numerically stable simulation with time-steps up to 5 times

arger than the capillary time-step constraint of Brackbill et al. [1] .
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Fig. 6. Film height h , normalised with the Nusselt film height h N , and streamwise velocity at the interface u �, normalised with the Nusselt velocity u N , as a function of 

normalised downstream distance x . The insets show a magnified view of the front of the main wave hump, which is visibly affected by parasitic currents. The corresponding 

reference interface viscosities are μ∗,t 
�

= 3 . 34 × 10 −2 Pa s and μ∗,λ
�

= 2 . 77 × 10 −1 Pa s . Experimental results of Denner et al. [56] are shown as a reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Film height h , normalised with the Nusselt film height h N , as a function of 

normalised downstream distance x of the vertically falling water film with pertur- 

bation frequency f = 25 s −1 at (a) time t = 0 . 065 s and (b) t = 0 . 075 s for different 

time-steps �t . The insets show magnified views of the film height at specific down- 

stream distances. The reference interface viscosity is μ∗,t 
�

= 0 . 0239 Pa s and the cap- 

illary time-step constraint is �t σ = 5 . 52 × 10 −6 s . 

v  

t  

s  
As previously discussed in the introduction of this article, Hys-

ing [8] as well as Raessi et al. [9] attributed this behaviour to

the implicit implementation of this term, a hypothesis which has

later been disputed by Denner and van Wachem [13] . In the cur-

rent study the additional shear stress term of the artificial vis-

cosity model, Eq. (13) , is implemented explicitly, as detailed in

Section 4.3 . 

A falling water film on a vertical ( β = 90 ◦) substrate is sim-

ulated, as previously considered experimentally and numerically

by Nosoko and co-workers [54,59] . The liquid phase has a den-

sity of ρl = 998 kg m 

−3 and a viscosity of μl = 10 −3 Pa s , whereas

the gas phase is taken to have a density of ρg = 1 . 205 kg m 

−3 

and a viscosity of μg = 10 −5 Pa s . The surface tension coefficient

is σ = 7 . 2205 × 10 −2 N m 

−1 . The liquid film flow has a Reynolds

number of Re = 51 . 1 with h N = 2 . 51 × 10 −4 m . The computational

domain has a length of L x = 300 h N and the perturbation frequency

is f = 25 s −1 with an amplitude of A = 3% . Given the neutral stabil-

ity frequency for this case is f crit = 169 . 3 s −1 , the shortest spatially

resolved capillary waves with λmin = 2�x and f (λmin ) = 59 . 9 ×
10 3 s −1 are naturally attenuated and, hence, any observed growth

of these waves is a numerical artefact. 

Fig. 7 a and b shows the film height as a function of down-

stream distance of the falling water film at two time instants for

different numerical time-steps. The capillary time-step constraint

following Eq. (2) is �t σ = 5 . 52 × 10 −6 s , assuming u � · k = 1 . 5 u N 

(which is the streamwise interface velocity of the unperturbed

film). In Fig. 7 a the onset of spatial aliasing for the case with

�t = 8 . 31 × 10 −6 s and μ∗
�

= 0 is starting to be visible, even in the

flat section of the film for x � 160 h N , while the other two cases do

not exhibit any aliasing. The aliasing severely influences the evolu-

tion of the falling liquid film shortly after its onset, see Fig. 7 b, in

particular at the crest and the preceding trough of the largest in-

terfacial wave. No aliasing is observed if the time-step is reduced

to satisfy the capillary time-step constraint ( �t < �t σ ), exempli-

fied by the case with �t = 3 . 92 × 10 −6 s ≈ 0 . 71 �t σ in Fig. 7 . Ap-

plying the artificial viscosity model with μ∗
�

= μ∗,t 
�

= 0 . 0239 Pa s ,

for which �t μ = 2 . 634 × 10 −5 s applies, increases the dissipation of

the surface energy of spurious capillary waves and, even with �t =
8 . 31 × 10 −6 s ≈ 1 . 5 �t σ , results in a smooth and accurate evolution

of the interface without aliasing. Note that the interface viscosity

is 23.9 times larger than the viscosity of the liquid and is, there-

fore, increasing the penetration depth of the vorticity generated by

capillary waves, see Eq. (17) , by almost factor 5. This leads to a sig-

nificantly increased attenuation of spurious capillary waves, which

is essential for the ability to breach the capillary time-step con-

straint �t σ . It is possible to apply a larger time-step than in the

shown example but this would generally require a larger interface
 t  
iscosity and would, therefore, have a more pronounced impact on

he accuracy of the simulation results. It is worth noting that de-

pite the explicit implementation of the artificial viscosity model,

he numerical algorithm is stable and spurious capillary waves are
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Fig. 8. Temporal evolution of (a) the Froude number Fr and (b) the total kinetic energy E kin = ρu 2 / 2 in the computational domain of the rising bubble with Eo = 40 and 

Mo = 0 . 056 . 

Fig. 9. Capillary instability with wavelength λ and amplitude η on a liquid jet with radius r and initial radius r 0 . 

Fig. 10. Comparison of the numerical breakup length L b and the theoretical 

breakup length L b, R based on the linear stability analysis of Rayleigh [63] for differ- 

ent interface viscosities μ∗
� and for different time-steps �t . 
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ot amplified, allowing to breach the capillary time-step constraint

ithout consequences. 

.3. Buoyancy-driven rise of a bubble 

The rise of a bubble due to the sole action of buoyancy, char-

cterised by its Morton number Mo = g μ4 
o /ρo σ 3 = 0 . 056 and its

ötvös number Eo d = ρo g d 
2 
0 
/σ = 40 is simulated and analysed.

he continuous phase has a density of ρo = 10 0 0 kg m 

−3 and a vis-

osity of μo = 0 . 2736 Pa s . Following previous studies [6,43,44,60] ,

he density and viscosity ratio of the bubble are ρi /ρo = μi /μo =
0 −2 . The bubble is initially spherical with a diameter of d 0 =
 . 02 m , the surface tension coefficient is σ = 0 . 1 N m 

−1 and the

ravitational acceleration of g = 10 m s −2 is acting in negative y -
irection. Both fluids are initially at rest and the motion of the

ubble is induced by buoyancy only. The applied computational

omain has a size of 5 d 0 × 7 d 0 × 5 d 0 and is resolved with an

quidistant Cartesian mesh of 100 × 140 × 100 cells. The boundary

t the top of the domain is considered to be an outlet boundary,

ll other boundaries are free-slip walls. Given the domain width of

 d 0 , the rise velocity in the applied computational domain is ex-

ected to be 96% of the rise velocity observed in a domain of infi-

ite extend [6] . The capillary time-step constraint is �t σ = 9 . 185 ×
0 −4 s and the viscous time-step constraint is �t μ = 1 . 143 × 10 −2 s

or μ∗
�

= μ∗,t 
�

and �t μ = 1 . 660 × 10 −3 s for μ∗
�

= μ∗,λ
�

. 

Empirical studies by Clift et al. [61, Fig 2.5] suggest a terminal

eynolds number of Re d = | u | r ρo d 0 /μo ≈ 20 . 5 − 21 . 0 for a bub-

le with Eo d = 40 and Mo = 0 . 056 in a domain of infinite ex-

end, which represents a Froude number of F r d = | u r | / 
√ 

d 0 g ≈
 . 626 − 0 . 642 with respect to the chosen fluid properties and

 r d ≈ 0 . 601 − 0 . 616 considering the finite width of the applied

omputational domain. Denner et al. [44] reported a terminal

roude number of F r d = 0 . 58 using a VOF-PLIC method in a do-

ain of 5 d 0 width and Pivello et al. [60] obtained a terminal

roude number F r d = 0 . 606 using a front-tracking method and a

omain of 8 d 0 width. 

Fig. 8 a shows the temporal evolution of the Froude number

r d . The additional viscous dissipation imposed by μ∗,t 
�

= 0 . 07 Pa s ,

q. (16) , causes only a very small difference in the Froude num-

er ( i.e. rise velocity) of the bubble compared to the case with-

ut interface viscosity. Calculating the interface viscosity μ∗,λ
�

=
 . 6085 Pa s based on Eq. (19) , on the other hand, results in a no-

iceably affected Froude number, which is particularly visible in the

agnification of Fig. 8 a. Despite the observed differences as a re-

ult of the artificial viscosity model and corresponding interface

iscosity, the Froude numbers for all three cases are well within

he expected range of Froude numbers as given by empirical stud-

es and numerical results discussed in the previous paragraph. The

otal kinetic energy E kin of the flow in the entire computational do-
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Table 1 

Values of μ∗
� and μ∗

�/μ for different simulation time-steps �t . Based on Eq. (2) , �t σ 
 3 . 4 × 10 −6 s . 

Fig. 11 a 12 a 13 a 11 b 12 b 13 b 11 c 12 c 13 c 11 d 12 d 13 d 

�t (×10 −6 s) 0 .5 1 .0 3 .4 6 .8 

�t / �t σ 0 .15 0 .29 1 .0 2 .0 

μ∗
� (×10 −3 Pa s) 0 .0 1 .46 2 .92 0 .0 2 .92 5 .84 0 .0 9 .93 19 .9 0 .0 19 .9 39 .8 

μ∗
�/μ 0 .0 1 .62 3 .24 0 .0 3 .24 6 .48 0 .0 11 .0 22 .1 0 .0 22 .1 44 .2 

�t μ (×10 −6 s) ∞ 463 .2 213 .6 ∞ 213 .6 106 .3 ∞ 56 .72 28 .22 ∞ 28 .22 14 .11 

Fig. 11. Pulsed water jet at t = 3 . 06 × 10 −3 s with μ∗
� = 0 and for �t ∈ { 0 . 5 , 1 . 0 , 3 . 4 , 6 . 8 } × 10 −6 s . 
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main exhibits a decreasing total kinetic energy in the domain for

increasing interface viscosity as a results of the increased viscous

dissipation, as seen in Fig. 8 b. 

5.4. Capillary instability of a liquid jet 

The capillary instability of a water jet, schematically illustrated

in Fig. 9 , is simulated and analysed in order to assess the influ-

ence of the proposed artifical viscosity model on the prediction of

the breakup length of the jet when the capillary time-step con-

traint is breached. Following the properties used by Moallemi et al.

[62] , the liquid phase has a density of ρ = 9 . 97 × 10 2 kg m 

−3 and a

viscosity of μ = 9 . 0 × 10 −4 Pa s , whereas the gas phase has a den-
ity of ρg = 1 . 18 kg m 

−3 and a viscosity of μg = 1 . 85 × 10 −5 Pa s .

he liquid jet has a diameter of d o = 2 r o = 0 . 25 mm and axial ve-

ocity U o = 3 . 0 m s −1 , with a surface tension coefficient of σ =
 . 3 × 10 −2 N m 

−1 . This corresponds to a Weber number of W e =
r o U 

2 
o /σ = 15 . 365 and an Ohnesorge number of Oh = μ/ 

√ 

ρ σ r o =
 . 44 × 10 −3 . A gravitational acceleration of g = 9 . 81 m s −2 is acting

n the positive x -direction. The applied computational domain is of

ize 40 d o × 4 d o × 4 d o and is resolved with an equidistant Carte-

ian mesh of 400 × 40 × 40 cells. The liquid jet is initialised as a

ylinder with a diameter d o and velocity U o , the gas phase is ini-

ially at rest. Finally, the x 0 boundary is considered to be an inlet

oundary, the x 1 boundary is considered to be a pressure outlet

oundary, and all other boundaries are outlets. 
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Fig. 12. Pulsed water jet at t = 3 . 06 × 10 −3 s with μ∗
� = μ∗,t 

�
and for �t ∈ { 0 . 5 , 1 . 0 , 3 . 4 , 6 . 8 } × 10 −6 s . 
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Considering the equations of motion for an inviscid fluid in a

ylindrical coordinate system ( r, θ , x ), Rayleigh [63] conducted a

inear stability analysis on the jet radius r under the assumption

hat 

(θ, x, t) = r o + αn cos (nθ ) cos (kx ) , (31)

ith αn � r o , and showed 

1 that the original equilibrium becomes

nstable for n = 0 and for a reduced wavenumber κ = kr o such

hat | κ | < 1. In that case, the jet radius can be rewritten as 

(x, t) = r o + εo e 
qt cos (kx ) ∀ θ, (32)

nd the growth rate of the unstable radius disturbance q is given

y 

 

2 = 

σ

r 3 ρ

κ I 1 (κ) 

I o (κ) 
(1 − κ2 ) , (33)
o 

1 In fact, Plateau [64] first proved that a liquid jet is stable for all purely 

on-axisymmetric deformations, but unstable to axisymmetric modes with | κ | < 

 [ i.e. modes whose wavelength λ(= 2 π r o /κ) > 2 π r o ]. Rayleigh [63] added to 

lateau’s theory by describing the dynamics of the instability. 

a

L

I  

c  
here I n is the modified Bessel’s function of the n -th order. The

imensionless disturbance growth rate 

 = q 

√ 

r 3 o ρ

σ
(34) 

eaches its maximum ω max � 0.3433 for κ � 0.697 [63] . 

Assuming that the linear approximation remains valid until the

et breaks up, the theoretical breakup time t b is obtained by calcu-

ating the time necessary for the radial disturbance ε = εo e 
qt de-

ned in Eq. (32) to reach ε = r o , which gives 

 b = 

ln ( r o /εo ) 

q 
= 

ln ( 1 /ηo ) 

q 
, (35) 

here ηo = εo /r o is the dimensionless amplitude of the radial dis-

urbance. The breakup length L b follows from the breakup time t b 
s 

 b = U o t b = 

U o ln ( 1 /ηo ) 

q 
. (36) 

n the cases considered in this study, the inlet jet radius remains

onstant and equal to r o , while the inlet jet velocity periodically
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Fig. 13. Pulsed water jet at t = 3 . 06 × 10 −3 s with μ∗
� = 2 μ∗,t 

�
and for �t ∈ { 0 . 5 , 1 . 0 , 3 . 4 , 6 . 8 } × 10 −6 s . 
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changes with dimensionless amplitude ξ o following 

 inlet = U o [ 1 + ξo sin ( κ U o t/r o ) ] . (37)

Based on the mechanical energy of the perturbation, Moallemi

et al. [62] derived a relationship between a radius perturbation ηo 

and a velocity perturbation ξ o , given as 

ξo = 

2 

3 

ηo . (38)

Consequently, by inserting Eq. (38) in Eq. (36) , the breakup length

for a jet with a velocity perturbation ξ o becomes 

L b = 

U o 

q 
ln 

(
2 

3 ξo 

)
. (39)

The liquid jet in the presented simulations is pulsed by a

monochromatic perturbation imposed at the domain-inlet, period-

ically changing the mass flow with reduced wavenumber κ = 0 . 7

(to trigger the most unstable mode) and amplitude ξo = 0 . 08 from

the mean. Based on the linear stability analysis of Rayleigh [63] ,

the theoretical breakup length following from Eq. (39) with an ini-

tial amplitude of ξo = 0 . 08 is L b , R = 24 . 2 r o . 

Simulations are conducted for μ∗
�

∈ { 0 , μ∗,t 
�

, 2 μ∗,t 
�

} using differ-

ent numerical time-steps �t , see Table 1 . The interface viscosity
∗,t 
�

(or a multiple thereof), given in Eq. (16) , is deemed to be the

ost adequate choice for the evaluation of the interface viscosity

or the considered case, because of its dependency on the time-

tep �t . Alternatively, the values for μ∗
�

given in Table 1 could,

f course, be applied explicitly. Fig. 10 shows the breakup length

 b normalised by the breakup length obtained from linear stabil-

ty analysis, L b , R = 24 . 2 , as a function of the simulation time-step

or three values of μ∗
�

. The additional dissipation imposed by μ∗
�

ncreases the breakup length. For the case with the largest time-

tep �t = 2�t σ = 6 . 8 × 10 −6 s and the highest interfacial viscosity
∗
�

= 2 μ∗,t 
�

= 44 . 2 μ, the breakup length L b is approximately 11%

igher than for the same case without interface viscosity. This ob-

ervation stands in agreement to previous findings [65] , which sug-

est that an increase in viscosity increases the breakup time and

ength. The artificial viscosity model dissipates energy at the in-

erface, thereby reducing the capillary-driven instability. Note that

 perfect agreement with the result of the linear stability analysis

s, of course, not expected, due to the limiting assumptions of the

inear stability analysis as well as the limitations imposed by the

nite spatiotemporal resolution of the conducted simulations and

he associated difficulties in predicting what is a singular breakup

vent in reality [66] . However, the presented results with μ∗ = 0

�
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nd �t < �t σ are in very good agreement with the results re-

orted by Moallemi et al. [62] for a water jet with the same fluid

roperties and only marginally smaller jet velocity ( W e = 14 . 8 and

h = 9 . 44 × 10 −3 ) as considered here. 

Figs. 11 –13 show a slice of the computational domain at t =
 . 06 × 10 −3 s with the interface contour and the underlying veloc-

ty field for each of the considered time-steps and interface vis-

osities. As previously seen in Fig. 10 , the breakup is delayed by

he additional interface viscosity imposed through the artificial vis-

osity model. This can also be concluded from comparing Figs. 11 d

nd 13 d. In the case of μ∗
�

= 0 depicted in Fig. 11 d, breaching the

apillary time-step limit results in visible oscillations of the in-

erface as well as the velocity field. These oscillations are absent

f the artificial viscosity model is applied, i.e. μ∗
�

> 0 , of which

he results are shown in Figs. 12 d and 13 d. This is due to the

rtificial viscosity model damping the (spurious) capillary waves

ith the shortest wavelengths. In general, the artificial viscosity

as a negligible influence on the overall accuracy of the solution

or μ∗
�

� 3 μ, as for instance observed by comparing the velocity

elds in Figs. 11 a-b and 12 a-b, and based on the results plotted in

ig. 10 . 

. Conclusions 

An artificial viscosity model to mitigate the impact of numerical

rtefacts at fluid interfaces has been presented and validated. The

rtificial viscosity model is based on the tangential Laplacian of the

nterfacial velocity and an appropriately chosen interface viscosity.

o this effect, the proposed method belongs to the broad class of

rtificial viscosity models, which are already widely used in other

ranches of CFD and numerical heat and mass transfer, such as tur-

ulent transsonic flows. 

A comprehensive analysis of results for representative test

ases have been presented to validate and scrutinise the proposed

ethodology. The presented results demonstrate that the major

hysical mechanism associated with the artificial viscosity model

s an increased viscous dissipation in the vicinity of fluid interfaces

nd an ensuing reduction of surface energy, which acts preferably

t small length scales. Applying the artificial viscosity model has

een shown to allow to breach the capillary time-step constraint

nd reduce the adverse impact of parasitic currents. As long as the

pplied interface viscosity is chosen carefully, the artificial viscos-

ty model is found to not affect the accuracy and overall predic-

ive quality of the numerical solution in a noticeable way, while

n many cases improving the accuracy of the results due to the

itigation of numerical artefacts. Although the capillary time-step

onstraint is more restrictive than the viscous time-step constraint

or all presented cases, for certain cases, if for instance the applied

esh resolution is very high, the viscous time-step constraint can

e more restrictive than the capillary time-step constraint. In such

ases, an implicit implementation of the artifical viscosity model is

dvisable. Nevertheless, the presented results obtained with an ex-

licit implementation of the artificial viscosity model demonstrate

he overall efficacy, which is not dependent on the type of imple-

entation, of the proposed model. 

Based on the presented results, the interface viscosity derived

rom the previous work of Raessi et al. [9] , Eq. (16) , performs gen-

rally better than the proposed interface viscosity based on the

amping of capillary waves. This finding corresponds well with the

onvenient properties of the interface viscosity as defined by Eq.

16) , as the interface viscosity generally increases under condition

hich typically lead to larger parasitic currents or faster capillary

aves. The proposed interface viscosity derived from the damping

f capillary waves, see Eq. (19) , was found to provide typically too

uch damping in its current form. Nevertheless, it provides an al-

ernative framework for the definition of the interface viscosity. 
Following the extensive analysis presented for the dispersion of

apillary waves, the evolution of long-wave instabilities on falling

iquid films, the buoyancy-driven rise of a bubble and the capillary-

riven breakup of a liquid jet, it can be concluded that for an inter-

ace viscosity of μ� � 3 μ the impact on the accuracy of the results

s negligible. However, dependent on the particular case, higher in-

erfacial viscosities may be applicable without distorting the result

n a significant manner. For instance, in the presented case of the

ong-wave instabilities on falling liquid films the applied interface

iscosity μ� ≈ 23 μ prevents the onset of aliasing if the capillary

ime-step constraint is breached, while the influence of the artifi-

ial viscosity model on the evolution of the long-wave instability is

nsignificant despite the high interfacial viscosity. This can be ex-

lained by the long wave length of the examined interfacial waves

n this case. 
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