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Abstract
We theoretically investigate the damping and trapping forces in a three-dimensionalmagneto-optical
trap (MOT), by numerically solving the optical Bloch equations.We focus on the casewhere there are
dark states because the atom is driven on a ‘type-II’ systemwhere the angularmomentumof the
excited state, F ¢, is less than or equal to that of the ground state, F. For these systemswefind that the
force in a three-dimensional lightfield has very different behaviour to its one dimensional
counterpart. This differs from themore commonly used ‘type-I’ systems (F F 1¢ = + )where the 1D
and 3Dbehaviours are similar. Unlike type-I systemswhere, for red-detuned light, bothDoppler and
sub-Doppler forces damp the atomicmotion towards zero velocity, in type-II systems in 3D, the
Doppler force and polarization gradient force have opposite signs. As a result, the atom is driven
towards a non-zero equilibrium velocity, v0, where the two forces cancel.We find that v0

2 scales
linearly with the intensity of the light and is fairly insensitive to the detuning from resonance.We also
discover a newmagneto-optical force that alters the normalMOT force at lowmagnetic fields and
whose influence is greatest in the type-II systems.We discuss the implications of thesefindings for the
laser cooling andmagneto-optical trapping ofmolecules where type-II transitions are unavoidable in
realising closed optical cycling transitions.

1. Introduction

Laser cooling [1] andmagneto-optical trapping [2] are the foundations of a huge number of experiments and
technological applications that use ultracold atoms. As an atommoves through the lightfield formed by
counter-propagating red-detuned beams, itsmotion is damped due to the velocity-dependence of theDoppler
shift. This is Doppler cooling, and it is effective in both an opticalmolasses and amagneto-optical trap (MOT). If
the atomhas angularmomentum in the ground state, and the light field has a spatially varying polarization, the
friction coefficient ismodified at low velocities due to an interplay between optical pumping amongst the
magnetic sub-levels and the changing polarization of the light [3, 4]. These sub-Doppler coolingmechanisms are
usually divided into two types, depending on how the polarizations of the counter-propagating lasers are
arranged. In the standard x yp p configuration (also known as lin⊥lin), sub-Doppler cooling is due to the
Sisyphusmechanismwhere amoving atom is optically pumped betweenmagnetic sub-levels in such away that
itmostly climbs the potential hills arising from the spatially-varying light shift. In the s s+ - configuration sub-
Doppler cooling is due to an orientation-dependent force, where optical pumping induces an atomic orientation
proportional to the speed of the atom, and the oriented atomabsorbsmore strongly fromone beam than the
other. Both sub-Doppler processes are inhibited bymagnetic fields and so aremost effective in an optical
molasses where thefield is close to zero, though they can also play a role inMOTs [5–7]. Sub-Doppler cooling
can also occurwithout polarization gradients if the light has a spatially varying intensity and a suitablemagnetic
field is applied [4, 8–10]. This is known asmagnetically-induced laser cooling and can be viewed as a Sisyphus
mechanismwhere themoving atom is transferred back and forth betweenmagnetic sub-levels with differing
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light shifts,first by optical pumping in a region of high light intensity, and then by Larmor precession once it has
moved towards low light intensity.

Most laser coolingwork uses a ‘type-I’ level system, where the atom is driven froma lower state with angular
momentum F to an upper state with angularmomentum F F 1¢ = + . This avoids optical pumping into dark
states. The vastmajority ofMOTs use this level scheme and are known as type-IMOTs. Sub-Doppler cooling in
type-I systems has been extensively studied experimentally [11, 12], and theoretically, both in 1D [3, 4] and in 3D
[13–17].

It is also possible to cool and trap atoms using a ‘type-II’ transitionwhere F F ¢. In this case, atoms can be
optically pumped into a dark state and uncouple from the light, and so these dark statesmust be destabilized [18]
if the cooling is to be effective. Type-IIMOTs have been studied experimentally [2, 19–24]. Compared to type-I
MOTs, they tend to have higher temperatures, typically in the 2–20mK range, larger cloud sizes, typically a few
millimetres, and lower densities. These propertiesmake them the poor relation of type-I atomicMOTs.
However, type-II systems are increasingly being used to cool atoms efficiently to sub-Doppler temperatures in
opticalmolasses, known as ‘graymolasses’ [25–31].Moreover, recent experiments on laser cooling [32] and
magneto-optical trapping [33–35] ofmolecules rely on type-II transitions to produce a closed optical cycling
transition [36]. These advances have renewed the interest in the cooling andmagneto-optical trapping
mechanisms at work in type-IImolasses andMOTs.

The theoretical understanding of the cooling andmagneto-optical trapping forces in type-II systems is not as
well developed as in the type-I case. Some insights into the behaviour of type-IIMOTs in 3D are given in [37],
where rate equations are used to calculate the trapping and damping forces. This approach necessarilymisses all
of the sub-Doppler processes. There are a few theoretical studies of cooling in 1D that use a densitymatrix
approach [28, 38–41]. These studies point out that sub-Doppler processes occurring in type-II systems are
different to those in type-I systems, because of the presence of dark states in the former. In a type-II system, the
atom is optically pumped from a bright to a dark state, and thenmakes amotion-induced non-adiabatic
transition back to a bright state [31, 40]. This process, in combinationwith the spatially varying light shift can
provide a frictional force. Some key conclusions of these 1D studies are: (i)Doppler cooling always requires red-
detuning, but sub-Doppler cooling in type-II systems requires blue-detuned light; (ii) there is no velocity-
dependent force at any velocity in an F F1 1=  ¢ = system in s s+ - light; (iii) the velocity-dependent forces
tend to be considerably smaller in type-II systems compared to type-I.We knowof no equivalent studies in 3D,
with the exception of [30]where 3D simulations of graymolasses cooling on theD1 line of Li andK are
compared to experimental results.

Here, we systematically investigate the cooling andmagneto-optical trapping forces for a number of type-II
systems, namely F F ¢= 1 0 , 1 1 and 2 1 .We also include 1 2 transitions, for comparison
between type-I and type-II systems.Wenumerically solve the optical Bloch equations (OBEs), introduced in
section 2, for an atomormoleculemoving through either a 1Dor 3D configuration of counter-propagating laser
beams. In section 3we consider the cooling forces in zeromagnetic field, and then extend this to consider
cooling in the presence of a staticmagnetic field. Finally, in section 4we consider the trapping force in aMOT.

2.Optical bloch equations

2.1. Equations ofmotion
We follow the approach ofUngar et al [4] in extending tomulti-level atoms the theoryfirst developed byGordon
andAshkin [42].We consider an atomwith a ground-state of angularmomentum F and an excited state of
angularmomentum F ¢, separated by an energy 0w . The atomic states F m, Fñ∣ are labelled by the F andmF

quantumnumbers. The equations ofmotion are set up in theHeisenberg picture, sowewish tofind the time
evolution of the expectation values of the atomic operators, m n

i j
,

,sá ñ. The operators for the ground and excited
states are F m F n, ,m n

F F
,
,s = ñá∣ ∣and F m F n, ,m n

F F
,
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coherences rotate atω, the angular frequency of the laser light, and sowe define F m F n, , em n
F F t
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Here Ê is the electric field operator, B̂ is themagnetic field operator,M is the atomicmass,P is themomentum,
m̂ is themagnetic dipolemoment operator and d̂ is the electric dipolemoment operator. Following the
procedure in [4], we expand the fields in terms of raising and lowering operators, and thenwrite them in terms of
the externalfield and the radiation reactionfield of the atom. This leads to the followingOBEs:
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The detuning is 0w wD = - , the total decay rate from the excited state isΓ, and the relaxation rates m n
q
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given by

F F F
m q m q

F F
n q n q2 1 1 1 1 . 7m n

q m m
,G = G ¢ + - ¢

- - +
¢

- - +
- - ¢⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( )( ) ( )

TheRabi frequencies n
qW are

r F F
n q n q F d F

i

2
1 1 , 8n

q
q

F n


W = - ¢

- - + á ¢ ñ-
-  ⎜ ⎟⎛

⎝
⎞
⎠( )( ) ( )

where F d Fá ¢ ñ  is the reducedmatrix element of the electric dipole operator. Here, rq ( ) are amplitude
components of the total classical electric field E r rt t, cos w=( ) ( ) , expanded in a spherical basis according to

r rq q q* = å( ) ( ) , and r is the position of the atom. The spherical basis vectors are ez0 = ,
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where rBq ( ) are the spherical components of themagnetic field amplitude and themagneticmoment terms are
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with g F g=( ) and g F g¢ = ¢( ) , the lower and upper state g factors respectively.
The force f P td d= is treated classically. This is justified as long as the temperature remains high

compared to the photon recoil limitT h Mk2recoil
2

Bl= ( ) ( )where the effects ofmomentumquantisation
become significant. The force can be expressed as a commutator of themomentumPwith theHamiltonian,
which can also be re-written for thisHamiltonian as f H= - ˆ . The direct contribution from gradients in the
magnetic field interaction Bm( ˆ · ) is small for typicalMOTfields, sowe neglect it here, but emphasise that the
magnetic field can give rise to substantial forces indirectly, by creating unbalanced radiation pressure. The force
arising from the electric dipole interaction is

f i . 11
m q

m q m
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2.2. Lightfields
In one dimension, wewill focus on two lightfields that give interesting polarization gradient forces, the linflin
and s s+ - configurations. The 1D linflin configuration consists of two counter-propagating linearly polarised
beams, with an anglef between the polarisations. Both beams have amplitude E andwavevector k cw= , and
the total lightfield is

z E kz kz2 cos 2 cos 2 . 12lin lin 1 1  f f= - - +f -( ) [ ( ) ( ) ] ( )

Wewill also consider a 3D version of the standingwavewhere additional pairs of counter-propagating linear
beams propagate along the x and y axes and 2f p= for each pair of beams. The resulting lightfield is

3
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The phases 1q and 2q arise because each additional pair of counter-propagating beams can have an arbitrary
phasewith respect to the beamswhich propagate along z [43].

The 1D s s+ - configuration consists of two counter-propagating beamswith identical circular polarization
(relative to their k-vectors),

z E kz kze e2 sin cos . 14x y = -s s+ -( ) [ ( ) ( )] ( )

In the sameway aswe defined equation (13)we can alsomake a 3D version of the s s+ - arrangement
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The intensity of each laser beam is I c E1

2 0
2e= , so the total intensity is I2 for the 1D arrangements and I6 for

the 3D arrangements. It is helpful to specify the intensity relative to the saturation intensity of the transition,
defined via

I
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E F d F
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2 1
. 16
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2 2
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á ¢ ñ
G ¢ +
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( )
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This definition leads to the usual, convenient expression for the saturation intensity, I hc
sat 3 3= p

l
G .

3. Cooling forces

3.1. 1D cooling in zeromagneticfield
To investigate the cooling force, it is natural to start with the simple 1D lightfields s s+ - and lin lin f .We drag the
atom through the lightfield at a velocity v=z/t. In the s s+ - case wewait for the expectation values of the
atomic operators to reach a steady state and then calculate the z component of the force. In the linflin case, we
wait until the expectation values reach a periodic quasi-steady state, and then calculate the z component of the
force averaged over one oscillation period of the atomic operators. The force parallel to the velocity is positive if
it is in the same direction as the velocity vector.With this terminology, a normal friction force is a negative
parallel force. Throughout this paper, we express the velocity in units of kG and the force in units of k G. For
Rb cooled on theD2 transition, theDoppler-limited temperature,T k2D B= G ( ), corresponds to an rms speed
of k0.04G .

Figures 1(a) and (b) show the force versus velocity for the1 2 type-I system in both the s s+ - lightfield
and the lin linf configuration for several values off. For all polarization configurations this system exhibits the
usual Doppler cooling curve, withmaximum force when theDoppler shift equals the detuning (here,

2.5D = - G). The sub-Doppler forces are shownmost clearly infigure 1(b).When 0f = there is no sub-
Doppler force because there are no polarization gradients, but for 0f ¹ and for the s s+ - lightfield there is
enhanced friction at low velocities. The highest peak sub-Doppler force occurs when the beams are orthogonally
polarised, i.e. 2f p= . Relative to this case, the s s+ - case shows largerDoppler and smaller sub-Doppler
features.

The story is very different for the type-II systems. Figures 1(c), (d) and (e) show the force versus velocity for
the1 1 system for the same lightfields as figure 1(a). In this system the force is zero at all velocities for the
s s+ - configuration, and for the lin linf configurationwith 0f = and 2f p= , in agreementwith the results
described in [23, 40, 41, 44]. For other values off, there is a force at low velocity of approximately the same size
as the sub-Doppler force in the type-I 1 2 system, but of opposite sign. Rather than depending linearly on the
velocity around v=0, this force scales with a higher odd power of v, as can be seen clearly infigure 1(e). There is
also a broad frictional feature at velocities of around kG which is roughly 100 times smaller than theDoppler
cooling feature in the 1 2 system. These results show that, for the 1 1 system, there can be strong sub-
Doppler cooling at low velocity for blue-detuned light, but only weak cooling at higher velocities for red-
detuned light.

Themarked difference in the velocity-dependent force between the 1 2 and1 1 systems can be
attributed to the presence of a dark state in the 1 1 system. At high velocities of order v k~ D the dark state
prevents normalDoppler cooling in the1 1 system. At these high velocities, theDoppler shift is large enough
that the beams can be considered independently. One of the two beams optically pumps the atom into a state
which is dark to that beam. If 0f ¹ the opposing beam can return the atom to the state which is bright to the
first beam. For these two processes—optical pumping into the dark state by one beamand out of the dark state
by the opposing beam—the average number of scattered photons is the same, and so the net force is zero. This
explains the absence of aDoppler cooling feature infigure 1(c).

4
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At low velocities where v kG , the dark state has a different impact, which is best illustrated using a
picture of how the polarization gradient force arises in a red-detuned lin linf standingwave, for both the1 2
and1 1 systems. Figure 2(a) illustrates the familiar Sisyphus coolingmechanism [3] for the1 2 system in
the lin⊥lin configuration (i.e. 2f p= , the angle whichmaximizes the force). The bottompart of the figure
show the ac Stark shifts of the m 0, 1F =  ground states, alongwith a sequence of optical pumping events. The
thick lines indicate the internal state of an atom as itmoves through the standingwave, showing that the atom
loses energy because in a red-detuned lightfield the state with the largest negative ac Stark shift (and hence the
lowest energy) is also the state intowhich the atom is continually being optically pumped.

The picture is different for the 1 1 system in a linflin configuration, as pointed out previously [40, 45].
Here, themechanism is best explained in terms of a position-dependent dark state and an orthogonal bright
state. Figure 2(b) shows the ac stark shifts of these states as a function of position, for the case where 4f p= ,
alongwith the direction of the local laser polarisation at various points in the standingwave. An atom that starts
in the bright state will be pumped into the dark state, and this ismost likely to occur at the intensitymaxima of
the standingwave. If the atom is stationary it will remain in the dark state, and therewill be no force, but if it is
moving through the changing polarization itmaymake a non-adiabatic transition back into the bright state. The

Figure 1. (Quasi)-steady state force versus velocity for the 1D s s+ - arrangement and linflin arrangements for atoms scattering light
on F F1 2=  ¢ = , F F1 1=  ¢ = and F F2 1=  ¢ = transitions. The parameters are 2.5D = - G and I Isat= for each
beam.

5
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probability of such a transition is strongly peaked at places where the energy difference between bright and dark
states is small, and this occurs at the intensityminima of the standingwavewhere the energy of the bright state is
amaximum. This picture shows how the atom gains energy by repeatedly transitioning to the bright state at the
top of the potential hill, and then being optically pumped to the dark state at the bottomof the hill.When the
light is blue-detuned the ac Stark shift is reflected through the zero energy line, and the force instead becomes a
frictional one that cools the atom.Wenote that this ‘non-adiabatic force’ [40] is zerowhen 0f = andwhen

2f p= .When 0f = there are no polarization gradients and so the non-adiabatic transition probability is
everywhere zero.When 2f p= both the ac Stark shift and the non-adiabatic transition probability are
independent of position. Intermediate values off between 0 and 2p show a difference in the size of the non-
adiabatic force and the velocity range over which it acts.Whenf is small the friction force is strong at low
velocities but acts over a small velocity range, while the opposite is true for values off close to 2p . A smaller
value off increases the non-adiabatic transition probability, and this increases the force for the slowest
molecules which onlymake those transitions near the nodes. For the same reason, fastermolecules canmake the
transition away from anode, andmay then ride over the top of the next potential hill before being optically
pumped back to the dark state, resulting in a decreased friction force. Thef thatmaximizes the sub-Doppler
force is between 8p and 3 16p for the F F1 1=  ¢ = system, and between 3 16p and 4p for the
F F2 1=  ¢ = system.

Wehave also studied the 1 0 and 2 1 systems in these one-dimensional lightfields. For the 1 0
system the force is zero at all velocities in the s s+ - case and for all values off in the linflin case. TheDoppler
cooling force is zero for the same reason as in the 1 1 case discussed above. The non-adiabatic force is zero
because themotion through the changing polarization does not couple the bright and dark states (the rate of
change of the dark state is orthogonal to the bright state). The results for the 2 1 system are shown in
figures 1(f) and (g). Here, the force is non-zero in all cases except for the linflin configurationwith 0f = . In this
system there are three bright states and two dark states, andwhile the ac Stark shift of one of the bright states is
zero at 2f p= , the other two are position-dependent and so the non-adiabatic force acts. Interestingly, the
force in the s s+ - configuration has a similar size to the linflin configuration, but has the opposite sign. The ac
Stark shifts of the bright states in the s s+ - case are independent of position, and so the non-zero force indicates
that a coolingmechanism can operate in some type-II systems in s s+ - lightfields that is similar to the
orientation-dependent force that acts in type-I systems.

Although these 1D results are not new, we present themhere for two reasons. First, they validate our code,
because our results agree with those given in [41].We have also confirmed that our resultsmatch those of [4] for
the 2 3 system. Second, the 1D results serve as a benchmark for comparisonwith the 3D results presented in
the next section.Wewillfind that the 1D results provide a good description of the equivalent 3D geometries for
the type-I systems, but that type-II systems in 3Ddiffer greatly from their 1D counterparts.

3.2. 3D cooling in zeromagneticfield
Wenow consider the velocity-dependent forces in 3D.Once again the atom is dragged through the light field,
from an initial position r0 to a newposition r r vt0= + at time t. Provided that the components of v , v v v, ,x y z( ),
have a greatest commondivisor g, theHamiltonianwill be periodic and the atomic operators and force will come

Figure 2. Illustration of the Sisyphusmechanism for a red-detuned linflin standingwave in two cases: (a) 1 2 systemwith
2f p= and (b) 1 1 systemwith 4f p= . The upper parts show the local polarisation and the lower parts the ac Stark shifts of

the ground states. In (a) themechanism relies only on optical pumping between differently-shifted sub-levels. In (b) themechanism
relies on optical pumping near the intensitymaxima and non-adiabatic transitions from the dark to the bright state near the intensity
minima.
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to a quasi-steady state, where they too become periodic in timewith a time period equal to gl . To extract the
steady state force, we evolve theOBEs until the systemhas come into a quasi-steady state, then evaluate the
atomic operators and components of the force over one period gl . The steady state force is the average of the
force over one period and is found to be independent of the initial values of the atomic operators, whichwe take
to be amaximallymixed state of the ground state operators. In 3D,we distinguish between components of the
force that are parallel and perpendicular to the velocity vector.

In three dimensions, the intensity and polarization gradients in both s s+ - and lin⊥lin lightfields depend on
the relative phases 1q and 2q between the three pairs of counter-propagating beams. The electric field
experienced by the atomdepends on its starting position, r0, and its direction ofmotion v v∣ ∣. Therefore, at low
velocities we expect the force to depend on speed, position and direction. At higher velocities where theDoppler
forces dominate, we no longer expect a significant dependence on position, but the direction ofmotion remains
important. This is because the netDoppler shift depends on the orientation of the trajectory relative to the k-
vectors of the light beams.

In a typicalMOTormolasses, the atomic cloud extends overmany thousands of spatial periods of the light
field. Tofind the steady-state force at each velocity we solve theOBEs for a set of initial positions r0 and then
average together the results. In our first approach to this problem,we choose a set of points evenly spaced by 8l
along eachCartesian axis and filling a cube of volume 3l , giving 512 points in total.

Figure 3 shows the outcome of this approach for a 1 1 systemmoving in a 3D s s+ - lattice with
01 2q q= = . Infigure 3(a), we show a vector plot of the steady-state force in the xy plane in the case where

v k0.1z = G , while vx and vy are varied. The detuning of all beams is 2.5D = - G and the intensity of each beam
is I2 sat. Notice first that unlike the 1D s s+ - standingwave, in 3D the force does not vanish. Thefigure shows that
at high velocities the arrows predominantly point towards the origin,meaning that a negative force dominates.
This is normalDoppler cooling, which can occur in 3Dbecause the laser beams transverse to themotion can
pumppopulation out of the dark state into a bright state. At low velocities there is a positive force, tending to
push the atoms to higher velocities rather than cool them. This is the influence of the polarization gradient force.
There are several velocities where the force in the xy-plane is zero. These are (to the nearest 0.025)
v v, 0, 0x y =( ) ( ), 0, 0.7( ), 0.7, 0( ), 0.45, 0.45( ), 0.35, 0.65( ) and 0.65, 0.35( ), all in units ofΓ/k. Thefirst four
are unstable points in this plane, while the last two are stable in this plane in the sense that a small deviation from
the equilibrium xy-velocity produces a force that returns the velocity to the equilibrium value.We see that for
this system red-detuned light does not cool the atom towards zero velocity but instead drives it towards
particular non-zero values. This is seen clearly in figure 3(b)where the force along x is plotted versus vx, when
v 0y = , and v k0.1z = G . Finally, returning tofigure 3(a)wenote that at low velocities, the perpendicular part of
the force becomes comparable to the parallel force, even after averaging over the initial positions. The non-
vanishing perpendicular components are also seen in the type-I systems (1 2 and 2 3 ) studied in [13, 14].
These perpendicular componentsmay play an important role in sub-Doppler cooling and the dynamics of a
MOT, and could lead to non-isotropic velocity distributions. Nevertheless, in this paper we focus on the parallel
component of the force andwe assume an isotropic velocity distribution.

Figure 3. Steady state force in the xy plane for a 1 1 systemmoving in a 3D s s+ - lightfield given by r3Ds s+ - ( ). Each choice of v
plotted has been averaged over 512 values of r0 as described in the text. The vector plot (a) shows the xy component of the force as a
function of vx and vy, while plot (b)fixes vy=0 and plots the x component of the force as a function of vx, considering higher speeds
than those shown in plot (a). Other parameters are v k0.1z = G , 2.5D = - G and I I2 sat= for each beam.
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To calculate representative velocity-dependent force curves, similar to those infigure 1, we adopt aMonte-
Carlo approach.We pick a starting position r0 whose Cartesian components are drawn at random from a
uniformdistribution on the interval 0, l[ ], and a randomdirection ofmotion chosen from an isotropic
distribution.We thenfind the steady-state force parallel to the velocity f v v· ∣ ∣ for a range of speeds v∣ ∣.We
repeat this proceduremany times, typicallymaking 500–5000 choices of initial position and direction.We
average together the results of the simulations at each speed, and determine the confidence intervals on themean
force using a bootstrap procedure [46]. In this paper, we restrict ourselves to the case where 0;1 2q q= =
alternative choices for the phases can produce slightly different force curves but the conclusions of the
subsequent sections are unaffected.

Figure 4 shows the results of such a simulation for the1 2 , 1 1 , 1 0 and 2 1 systems, for the 3D
s s+ - and lin⊥lin arrangements. The light is detuned to the red ( 2.5D = - G) and the intensity of each beam is
Isat. The 1 2 system shows an enhanced frictional force at low speeds due to sub-Doppler cooling, and this
effect ismore pronounced for lin⊥lin than s s+ -. These 3D results are very similar indeed to their 1D
counterparts.We turn now to the type-II systems shown infigures 4(b)–(d). These results are completely
different to the 1D results, and also to the type-I systems in 3D. For all three systems, and for both polarization
configurations, the force in 3D is positive at low speeds and negative at speeds higher than around k2G . This
behaviour is reversedwhen the detuning is reversed. The forces are large, typically only slightly smaller than for
type-I systems. This contrasts sharply with the 1D casewhere there is no velocity-dependent force for 1 0 and
1 1 systems in the 1D versions of these lightfields, and only small forces for the 2 1 system. In the type-II
systems there is notmuch difference between the s s+ - and lin⊥lin cases, unlike the type-I systemswhere the
difference is pronounced at low speeds. Furthermore, the low velocity features have a significant influence on the
force up to higher speeds in type-II systems compared to type-I systems, especially in the s s+ - configuration. In
fact the ‘sub-Doppler’ features we see in type-II systems extend far beyond the usual Doppler limit even for
moderate saturation of the transition. This result suggests that, for red-detuned light and typical intensities,
atoms andmolecule cooled on type-II transitions will reach an equilibrium temperaturemuch higher than the
Doppler limit.

We attribute this difference between the 1D and 3D results to the non-adiabatic force, which is effective in
3D s s+ - and lin⊥linfields but not in their corresponding 1D versions. This is because, on any typical trajectory

Figure 4. Steady-state force in the direction of velocity for (a) 1 2; (b) 1 1; (c) 1 0; (d) 2 1 systemsmoving in a 3D s s+ -

light field (purple) and 3D lin lin^ lightfield (green). Parameters are 2.5D = - G and I Isat= for each beam. Thewidth of the lines
indicates the 68% confidence intervals on themean force, calculated using a bootstrapmethod.

8

New J. Phys. 18 (2016) 123017 JADevlin andMRTarbutt



through these 3Dfields, there are gradients of both intensity and polarization, giving rise to spatially varying ac
Stark shifts, optical pumping probabilities and non-adiabatic transition probabilities, all the ingredients needed
for the non-adiabatic force. For blue-detuned light the sign of the force is reversed, and so the non-adiabatic
force leads to sub-Doppler cooling. The role of the non-adiabatic force in sub-Doppler cooling of type-II
systemswas elucidated in [31], in the context of an experimental demonstration of graymolasses cooling of 40K.

Wenow examine how the friction force depends on detuning and intensity. Figure 5(a) shows the force
versus velocity in the 1 1 system for a range of detunings when the intensity of each laser beam is I Isat= .We
see that reversing the sign of the detuning reverses the sign of the force in the usual way. Both the peak sub-
Doppler force visible infigure 5(a) and the peakDoppler force (which occurs at higher speeds than those shown
in thisfigure) scale in the samewaywith detuning; for large detunings the forces scale as 1

2D
, reaching a

maximumat aroundD = G and then falling as the detuning is further reduced. For small detunings in the range
0– 2G , the peak forces scales linearly with detuning.When I Isat= , the force passes through zero at velocity
v k0.50 » G . The velocity v0 depends onlyweakly on the detuning, varying by only 15%over the entire range
from 10D = - G to 0.125D = - G that we considered. The behaviour is similar in other type-II systems.
Figure 5(b) shows the force versus velocity for a range of intensities with the detuning fixed at 2.5D = - G. Over
the range of intensities shown, the peak value of the sub-Doppler force is proportional to the intensity, while the
slope of the force close to zero speed is independent of intensity just as it is for type-I systems [4]. The speed, v0,
where the force changes sign, scales with the square root of the intensity, as shown infigure 5(c). In a red-
detuned type-IIMOT the balance betweenDoppler and sub-Doppler forces drives atoms towards speed v0.
Therefore, we can expect the temperature, which is proportional to the square of the speed, to scale linearly with
intensity, until the intensity is low enough that theDoppler-limiting temperature is reached. This is the
behaviour recently observed in a SrFMOT [35].

3.3. 3D cooling in amagneticfield
It is well known that, in type-I systems, sub-Doppler cooling is suppressedwhen amagnetic field is applied [47],
and somost sub-Doppler cooling is done in amolasses rather than aMOT.Wewish to knowwhether this is also
the case for type-II systems, and sowe repeat the analysis of the previous sectionwith the addition of a
homogeneousmagnetic field along the z axis2, B Bq 0= .

Figure 6(a) shows the force versus speed in the1 1 system for a range ofmagnetic fieldmagnitudes.
Notice that both themaximumvalue of the the sub-Doppler force, and the range of speeds over which it
operates, is reduced as themagnetic field strength is increased.Nevertheless, there remains a significant positive
force at low velocities forfield values up to themaximumexplored, 0.8 B mG corresponding to 0.57 mTwhen

2 10 MHzpG = ´ . This is very different to the behaviour in themore familiar type-I 1 2 system, shown in
figure 6(b), where the sub-Doppler features present at zerofield almost vanish once thefield reaches 0.1 B mG .
Also visible infigure 6(a) are a set of weakmagnetic field resonances whichmove up to higher velocities as the
magnetic field is increased. For example, when the field is 0.4 B mG there are resonances in the forcewhen the
speed is approximately k0.28G and k0.48G . Exploring the dependence on the g-factors, we find that the force
depends on the product of the lower state g-factor, g, and the appliedfieldB, but is independent of the upper state

Figure 5. Steady state force in the direction of velocity for a 1 1 systemmoving in a 3D s s+ - optical standingwave for (a) a range of
detunings with an intensity of I Isat= in each beam and (b) a range of intensities at a fixed detuning 2.5D = - G. Inset (c) shows v0,
the speedwhere the force is zero, as a function of the square root of the intensity.

2
The same behaviour is also seen formost other orientations of themagneticfieldwith respect to the laser beampropagation direction.

9

New J. Phys. 18 (2016) 123017 JADevlin andMRTarbutt



g-factor, g ¢. For the 1 0 and 2 1 systems the dependence onmagnetic field is similar to that of the1 1
system.

These results lead us to conclude that sub-Doppler processes will be important in typical type-IIMOTs,
where the atoms typically explore fields up to about B 0.25 B m= G . BecauseMOTs use red-detuned light,
these sub-Doppler forces drive the velocity upwards and so limit the temperature that can be reached in the
MOT. If the intensity is approximately Isat, which is a popular choice, the velocity where the force vanishes
corresponds to a temperature far higher than theDoppler limit. This is consistent with experimental
observations of high temperatures in type-IIMOTs, e.g. [2, 35].

4. Trapping forces

So farwe have investigated the velocity-dependent force. Nowwe turn tomagneto-optical trapping forces for
the various angularmomentum cases. It is useful to compare our results with those of [37], where the trapping
forces in a 3DMOTmade of three pairs of s s+ - beams are calculated for a variety of angularmomentum cases
using a set of rate equations. Some conclusions of that paper are as follows: (i)when F F¢ = , the polarization
handedness required to give a trapping force is the same as for a type-I system, butwhen F F 1¢ = - the
polarization has to be reversed; (ii) the required handedness depends on the sign of the upper state g-factor, g ¢,
but not on the lower state g-factor, g; (iii) if g 0¢ = there is no trapping force, and if g g¢  the trapping force is
veryweak. In the regimewhere g B 0.5B m > G∣ ∣ , theOBE simulations presented below agreewith these findings
and are in quantitative agreement with the ratemodel for the few simple cases we have examined.However, in
the opposite regimewhere g B 0.5B m < G∣ ∣ they shownewbehaviour.

To investigate the trapping forces, we again consider the situationwhere an atommoves with velocity v
through a lightfield 3Ds s+ - and amagnetic field B Bq 0= .We evolve the atomic operators using theOBEs until
the solutions reach a quasi-steady state and then calculate the time-average z-component of the force f efz z= · .
For each choice ofmagnetic fieldwefix the speed v∣ ∣and average the results overmany directions and initial
positions. This averaging removes the velocity-dependent part of the force but retains themagneto-optical force.
From these results we can infer the position-dependent force in aMOT. For clarity, we plot the force as a
function ofmagnetic field in units of B mG , but the reader can convert this into a trapping force once the field
gradient is known.

The results of the simulations are shown infigure 7wherewe plot fz versusB for g 1=  and various values
of g ¢. At large positiveB, and for our definition of the lightfield, equation (15), we see that the force is positive for
the1 1 and1 2 systems (graphs (a), (b), (e) and (f)) but negative for the 2 1 system (graphs (c) and (d)).
Thismeans that a trapping force requires a negative field gradient for the former systems, but a positive field
gradient or reversed polarizations for the latter system. This is the same result as obtained from the ratemodel
[37]. For smallB, we find a change in the behaviour of the force, pointing to a newmechanism. For type-II
systems, this new force opposes the normalmagneto-optical forcewhen g and g ¢ have the same signs. For type-I
systems it is the opposite. In all cases, the ratio of g ¢ to g sets the strength of this new force relative to the usual
MOT force. For g g> ¢∣ ∣ ∣ ∣ the new force has a greater influence, as can be seen from the green curves infigure 7.
This is particularly relevant tomolecularMOTs becausemanymolecules of interest have small g ¢. The presence
of these new forces at lowfields will lead to largerMOTdiameters in type-II systemswhen g and g ¢ have the same
sign, especially for the 2 1 system shown infigure 7(c)where the large anti-trapping force at low fields will

Figure 6. Steady-state force in the direction of velocity for (a) a 1 1 system and (b) a 1 2 systemmoving through a 3D s s+ - light
fieldwith amagnetic field B Bb m= G applied along z. Results are shown for several values ofβ. Parameters are I Isat= ,

2.5D = - G, g g 1= ¢ = .
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force the atoms out to large radii. Repeating these simulations for different speeds v∣ ∣ in the range v 0=∣ ∣ to
v k0.2= G∣ ∣ slightly alters the shape of the trapping features at lowmagnetic fields but does not affect the
observationsmade above.

Finally, we note that the trapping force on the 1 0 transition, not shown infigure 7, is different from the
other type-II transitions—because the upper state has noZeeman splitting the normalMOT force is absent for
this system; we do however find a small force at lowmagnetic fieldwhosemaximumvalue is about

k0.4 10 3´ G- for the same choice of parameters as infigure 7.

5. Conclusions

Let us now summarize ourfindings, draw some conclusions, andmake some suggestions. In 1D,we found that
type-II systemsmoving in a linflin lightfield show velocity-dependent forces. At low velocities blue-detuned
light is needed to cool the atoms, whereas at high velocities the lightmust be red detuned. The force in the low
velocity regime is best understood in terms of a cycle of non-adiabatic transitions near the intensityminima,
followed by optical pumping from the bright state to the optical dark state near the intensitymaxima, which sets
up a Sisyphusmechanism. The velocity dependent forces vanishwhen 0f = and, in the case of the 1 1 and

Figure 7. Force fz versusB (along z) for the 1 1 , 2 1 and 1 2 systems, for various values of g ¢ and for g 1= + (left column)
and g 1= - (right column). Parameters are I Isat= , 2.5D = - G, and v k0.1= G∣ ∣ .

11

New J. Phys. 18 (2016) 123017 JADevlin andMRTarbutt



1 0 systems, when 2f p= . There is no velocity-dependent force when the1 1 and 1 0 systems
traverse a s s+ - standingwave, whereas the 2 1 system shows a velocity-dependent force of similar
magnitude to the linflin case, butwith an opposite sign.

In 3D, all the type-II systems show similar velocity dependent forces in all the lightfields considered. At high
velocities (‘Doppler cooling’ regime), cooling in these systems requires red-detuned light, while at low velocities
(‘sub-Doppler’ regime) blue-detuned light is needed.We attribute these forces to the non-adiabatic Sisyphus
effect, which can occur in both the 3D s s+ - and lin⊥lin configurations because all typical trajectories through
these lightfields involve spatially varying intensities and polarizations. In type-II systems, the sub-Doppler force,
and the range of speeds over which it dominates, are reducedwhen amagnetic field is applied, but to amuch
smaller extent than in type-I systems. As a result, sub-Doppler processes are likely to play an important role in
type-IIMOTs aswell as in an opticalmolasses.When the light is red-detuned theDoppler and sub-Doppler
forces have opposite signs and so there is a speed, v0, where they cancel. Atomswill tend to be driven towards this
speed, rather than towards zero.When the intensity in each beam is Isat, wefind v k0.50 » G . ForNa cooled on
theD2 line, this rms speed corresponds to a temperature of about 9 mK,which is far higher than theDoppler
limit.We suggest that this is the reason for the high temperatures observed in type-IIMOTs [2], which though
observed almost 30 years ago has never been explained. The equilibrium speed v0 is proportional to the square
root of the laser intensity and so the temperature can be lowered by lowering the intensity once the atoms are
captured in theMOT. This is consistent with the recentmeasurements of temperature versus intensity in a SrF
MOT [35].

Our study usingOBEs in 3D also reveals a newmagneto-optical force at lowmagnetic field. For type-II
systems, this force opposes the normalmagneto-optical force when g and g ¢ have the same signs. For this reason,
we expect type-IIMOTs to be larger than their type-I counterparts when the g-factors have the same sign
because the trapping forces are reduced, or even reversed, near the trap centre. Investigating themechanism
responsible for this new force is an interesting avenue for future research.

We suggest a three-step approach to obtaining the lowest temperatures for type-II systems. The atoms are
first loaded into a normal high-intensity, red-detunedMOT,whichwill give high capture velocity but also high
temperature. The intensity of the lasers can then be ramped down in order to lower the temperature. Then, the
detuning is switched to the blue and the intensity ramped back up again so that the sub-Doppler cooling ismost
effective. This can be donewith themagnetic field turned off, following the standard graymolassesmethod.
Alternatively, to retain the trapping forces, the field can be kept on and the polarization handedness reversed
when the light is switched from red to blue,making a blue-detunedMOT.Wehope the results and insights we
have presentedwill be valuable in the ongoing endeavour to produce high-density samples of ultracold atoms
andmolecules.
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