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Abstract—The increasing penetration of intermittent energy 

sources along with the introduction of shiftable load elements 

renders transmission network expansion planning (TNEP) a 

challenging task. In particular, the ever-expanding spectrum of 

possible operating points necessitates the consideration of a 

very large number of scenarios within a cost-benefit 

framework, leading to computational issues. On the other 

hand,  failure to adequately capture the behavior of stochastic 

parameters can lead to inefficient expansion plans. This paper 

proposes a novel TNEP framework that accommodates 

multiple sources of operational stochasticity. Inter-spatial 

dependencies between loads in various locations and 

intermittent generation units’ output are captured by using a 

multivariate Gaussian copula. This statistical model forms the 

basis of a Monte Carlo analysis framework for exploring the 

uncertainty state-space. Benders decomposition is applied to 

efficiently split the investment and operation problems. The 

advantages of the proposed model are demonstrated through a 

case study on the IEEE 118-bus system. By evaluating the 

confidence interval of the optimality gap, the advantages of the 

proposed approach over conventional techniques are clearly 

demonstrated.  

Index Terms--Multivariate copulas, stochastic optimization, 

transmission network expansion planning, uncertainty 

analysis, wind power. 

I. NOMENCLATURE 

Sets and indices 

𝑡 ∈ 𝑇 Scenarios. 

𝑖, 𝑗 ∈ 𝐼 Indices of the network buses. 

𝑔 ∈ 𝐺 Indices of all generators. 

𝛾 ∈ Γ Indices of thermal generators, Γ ⊂ 𝐺. 

𝑤 ∈ 𝑊 Indices of wind generators, 𝑊 ⊂ 𝐺. 

𝑑 ∈ 𝑁𝑑 Indices of load. 

𝑖, 𝑗 ∈ Λ Existing transmission lines. 

𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤 Candidate transmission lines. 

 

Input parameters 

𝑛𝑖𝑗 Candidate lines built between bus i and j, 𝑖, 𝑗 ∈
Λ𝑛𝑒𝑤. 

𝐶𝑖𝑗 Cost of building a line from bus i to j ($/year). 

𝜋𝑔 Generation cost of generator g ($/MWh). 

Υ Value of lost load ($/MWh). 

𝜏 Duration of each scenario (hour). 

𝑝𝑡 Probability of scenario t. 

𝐵𝑖𝑗 Susceptance of existing line from bus i to j 

(p.u.), 𝑖, 𝑗 ∈ Λ. 

𝐵𝑖𝑗
𝑛𝑒𝑤 Susceptance of candidate line from bus i to j 

(p.u.), 𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤. 

𝑓𝑖𝑗
𝑚𝑎𝑥 Power flow limit of the transmission line from 

bus i to j (MW). 

 

Decision variables 

𝑓𝑖𝑗 Power flow of the transmission line from bus i 

to j (MW). 

𝜃𝑖 Phase angle at bus i (rad). 

𝐒 Branch-node incidence matrix with 

elements 𝑠𝑖𝑗. 

𝑫 Matrix of sampled load (MW). 

𝑷𝑾
𝒎𝒂𝒙 Matrix of sampled wind power (MW). 

𝑷𝚪 
𝒎𝒂𝒙 Matrix of maximum conventional generators 

capacities (MW). 

𝑼 Matrix of load curtailment with elements 

𝑈𝑑  (MW). 

𝑭 Matrix of power flow with elements 𝑓𝑖𝑗  (MW). 

𝑷𝚪 Matrix of conventional generator output (MW). 

𝑷𝐖 Matrix  of wind generator output (MW). 

 

II. INTRODUCTION  

The increasing integration of large-scale intermittent 
power plants such as wind farms,  the introduction of 
shiftable load elements, and the growing interconnection that 
characterizes electricity systems have led to significant 
uncertainty in planning, operation, and evaluation of 
transmission networks [1]. Under this new reality, 
transmission network expansion planning (TNEP) needs to 
be carried out with the consideration of uncertainties of loads 
and wind generators. TNEP is a nonlinear, nonconvex, and 
mixed integer optimization problem (MIP) problem. For 
practical purposes, it can be approximated via the linearized 
direct current (DC) power flow [1]. The main purpose of 



TNEP is to determine the best time, the most appropriate 
locations, and the optimal number of new lines that are 
required to be installed in an electrical network while 
minimizing the sum of investment and operation costs [3].  

In order to solve the TNEP problem, deterministic 
approaches have been applied in the past [4], [5]. However, 
the stochastic variables beyond the operator’s control (e.g. 
wind power) introduce substantial power flow fluctuations to 
the network. Consequently, it is not sufficient to perform the 
planning with stochastic variables only considering one 
power system operating profile. In recent years, a series of 
probabilistic TNEP models (e.g. fuzzy method [7], Monte 
Carlo simulation [8], and two-point estimation method [9], 
etc.) have been proposed to take into account the 
uncertainties stemming from various sources such as forced 
outage rates of lines [10], liberalized electricity markets [11], 
and wind farms [12], [13]. Furthermore, the uncertainty of 
both load and wind have been considered in [14], [15], [16], 
[8]. Nevertheless, wind and load are assumed to be 
uncorrelated in [14].  In [15], uncertainties of load and wind 
are represented by scenarios generated using clustering 
method. As stated in [8], entirely depending on real 
observations cannot provide a sufficient number of samples 
for Monte Carlo simulation.  

A parametric model can generate samples that have 
similar dependence structure but not identical to what has 
already been encountered, thus interpolating and 
extrapolating the historical dataset. Another practical 
advantage is not having to deal with missing data [17]. To 
this end, total load and available wind power are modeled via 
a bivariate Gaussian copula based on historical data in [8]. 
The samples generated from the constructed model are then 
used to carry out a two-stage stochastic program for 
transmission planning. However, although this method 
captures the dependence between total load and total wind 
output, the individual variables (electricity consumption at 
each bus and output of an each wind farm) are assumed to be 
perfectly correlated. This is a substantial simplification 
undertaken in the interest of relieving the increased 
computational load that comes with modelling the stochastic 
variables at the level of individual variables instead of their 
aggregation. However, capturing the interspatial correlations 
of load and renewables output at various places can be an 
important factor for investment planning.  

In the past multivariate statistical models have been 
widely used to model stochastic signals. For example, in [18] 
power injections from renewable sources of energy are 
modeled using Vector Autoregressive models to generate 
multivariate synthetic wind speed time series based on 
empirical observations. In [19] distribution system loads are 
represented through a Gaussian mixture model (GMM) 
whose parameters are estimated by the expectation-
maximization (EM) algorithm.  

In general, one of the most highly challenging tasks of a 
multivariate statistical framework, is its ability to model 
large-scale measurement data by accurately capturing the 
non-linear dependence structure of the data as well as their 
non-Gaussian marginal distributions. To this end, a vast 
number of applications have demonstrated that copulas are 
capable of accomplishing this task. In [20], a multivariate 
Gaussian copula is used to fit a model based on historical data 

and to generate synthetic wind power output from 15 sites in 
the Netherlands. Beyond that, a more advanced multivariate 
modeling framework based on vine copulas has been 
proposed in [21] to capture spatiotemporal interdependencies 
of wind power and to determine energy storage requirements. 
Although the increased computational burden has been 
resolved through a systematic truncation method, it is still 
impractical for the modelling of high-dimensional data. 

In the present paper, we propose a stochastic TNEP model 
considering multivariate dependent load and wind modeling 
based on a multivariate Gaussian copula. Load and wind 
generation measurements from French electricity system are 
mapped to the IEEE 118-bus test system, and modeled by the 
proposed multivariate Gaussian copula. Using the load and 
wind power samples generated from the constructed model, 
an appropriate transmission plan for a future year can be 
obtained by carrying out a Monte Carlo simulation. The 
proposed TNEP model is solved by using Benders 
decomposition. The solution quality of the proposed model is 
evaluated and compared to some conventional methods 
through constructing a confidence interval on the optimality 
gap. Results indicate that capturing spatial dependencies at 
the level of individual variables can have a substantial impact 
on transmission planning decisions. The proposed framework 
is shown to outperform existing approaches in this regard. 

 The outline of the remainder of this paper is as follows: 
Section II introduces the procedure of stochastic dependence 
modeling using multivariate copulas. In Section III, we 
present the mathematical formulation of the proposed TNEP 
model.  Section IV presents the simulation result of the 
proposed method. A comparison between the results of 
different methods is also performed here. Section VI 
summarizes and concludes the paper. 

III. STOCHASTIC MULTIVARIATE DEPENDENCE 

MODELING USING COPULAS 

Dependence modeling of stochastic variables in power 
systems faces two significant challenges; capturing non-
linear dependence structures and non-Gaussian marginal 
distributions. In Fig. 1. We show histograms and bivariate 
scatter plots of five stochastic variables taken from the French 
transmission system; variables L1, L2 and L3 are loads at 
different locations while W1 and W2 are wind injections 
from two wind farms.  

 

Fig. 1. Histograms of marginals distributions and bivariate scatter plots of 

active loads (MW) and wind power output (MW) for randomly selected 

buses in France, measured between Jan 2012 and Feb 2012. 



It can be observed that stochastic variables have highly non-

normal marginal distributions (diagonal histograms) and non-

linear dependencies (scatter diagrams) [17]. The dependence 

between the different loads, between the outputs of the two 

wind farms as well as the dependence between individual 

loads and wind power injections are highly complex and non-

standard. As such, it is of great potential benefit to move 

beyond the assumption of perfect correlation between loads 

at different locations etc. and investigate the dependence 

structure at the level of disaggregated variables in more 

detail. The first step towards this direction is being able to fit 

a model that can accurately capture all these characteristics, 

which can then be subsequently used as an engine for the 

generation of  a large number of stochastic scenarios.  

Generally speaking, there are three approaches to 
carrying out statistical modeling: 1) Nonparametric 
modeling; 2) Parametric modeling; 3) Semiparametric 
modeling. In general, nonparametric modeling techniques 
assume that the data do not have a characteristic underlying 
structure. As a result, such methods do not rely on any 
specific probability distributions, but the model is 
constructed directly from the data instead. On the other hand, 
a parametric model is a distribution that can be described 
using a finite number of parameters and relies on an analytic 
description of the joint probability distribution. Finally, 
semiparametric modeling involves constructing a model that 
has both parametric and non-parametric components. This is 
a suitable model for dealing with multi-dimensional data 
where a combination of different techniques may be essential 
to capture the important data characteristics. In the present 
research, the model of choice is semi-parametric due to its 
primary means of capturing the dependence structure of 
stochastic variables, as shown in [17]. The procedure of 
modeling load and wind based on copulas is presented in the 
following parts. 

A. Probability Integral Transformation 

In this paper, probability density functions and 
cumulative distribution functions are denoted by 𝑓 and 𝐹, 
respectively, and their copula versions by 𝑐 and 𝐶. Consider 
𝑚  random variables  𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑚) ∈ ℝ𝑚  with 
marginal density functions 𝑓𝑖(𝑥𝑖) and distribution 
functions 𝐹𝑖(𝑥𝑖), for 𝑖 = 1, … , 𝑚. For each variable 𝑋𝑖 , its 
corresponding variable 𝑈𝑖  on [0,1] can be obtained via the 
empirical cumulative distribution function (ECDF) 
transformation, mathematically formulated as: 

𝑈𝑖 = 𝐹𝑖(𝑋𝑖)                                        (1) 

where 𝑈𝑖  is uniformly distributed on  [0,1] . Conversely, 

given 𝑈𝑖 and the inverse ECDF, 𝐹𝑖
−1(∙), the random variable 

𝑋𝑖 can be obtained by: 

𝑋𝑖 =  𝐹𝑖
−1(𝑈𝑖)                                     (2) 

Using the equations (1) and (2), samples of stochastic 
variables with empirical marginal distributions of historical 
measurements can be generated for Monte Carlo simulation.  
Examples of this transformation are presented in Fig. 2 based 
on the historical data shown in Fig. 1.  Also, the non-Gaussian 
margins of the examples show the benefits of using ECDFs 
instead of fitting parametric distributions.   

  

Fig. 2. ECDF transformation of L2 (a) and W1 (b). 

B. Multivariate Gaussian Copula 

According to Sklar’s theorem [22], the joint density 
function of m random variables 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑚) is given 
by: 

𝑓(𝑥1, … , 𝑥𝑚)

= (∏ 𝑓𝑖(𝑥𝑖)

𝑚

𝑖=1

) 𝑐1…𝑚(𝐹1(𝑥1), … , 𝐹𝑚(𝑥𝑚)) (3) 

where the function 𝑐1…𝑚: [0,1]𝑚 → ℝ is an m-dimensional 

copula with uniform marginals {𝑈1, 𝑈2, … , 𝑈𝑚} =

{𝐹1(𝑋1), 𝐹2(𝑋2), … , 𝐹𝑚(𝑋𝑚)}. This way, even though a 
joint density function contains information on both the 
individual marginal distributions and on the relation between 
the variables, copulas provide a way for isolating the 
dependency structure. In general, a copula is an m-

dimensional parametric function defined on the [0,1]𝑚 space 

and describing the dependency between 𝑚  variables. 
Copulas have the convenient property that each of their 
marginal distributions are the uniform distribution on [0,1]. 
Moving beyond the above definition, there are many different 
types of copulas; empirical, parametric, time copulas etc. For 
the purposes of this research, we will focus on parametric 
copulas, which are copula functions that can be fully 
described by a family and corresponding parameters. The 
idea is to identify the family and parameters that give rise to 
a copula that best matches the dependency of historical 
variables.  

In terms of the families of copulas, we use a multivariate 
Gaussian copula to model the stochastic variables. As 
demonstrated in [8], a Gaussian copula can efficiently capture 
the first-order notion of dependence. The Gaussian copula is 
also called normal copula and is usually signified by its 

defining distribution  𝑁𝑚(0, 𝑅), where m is the number of 

dimensions (𝑚 = 2 for bivariate) and R is the correlation 
matrix. Gaussian copula is one kind of elliptical copula that 
only has mean dependence with no upper or lower tail 
dependencies. The range of pairwise correlations is  𝜌 ∈
[−1,1]. Mathematically, when using a multivariate Gaussian 
copula, equation (3) can be written as: 

𝑓(𝑥1, … , 𝑥𝑚) = (∏ 𝑓𝑖(𝑥𝑖)

𝑚

𝑖=1

) |𝑅|
1
2exp {−

1

2
𝑧𝑇(𝑅−1

− 𝐼)𝑧} (4) 

where 𝑧𝑖 = Φ−1(𝐹𝑖(𝑋𝑖)) ∽ 𝒩1(0,1),  𝑧 = (𝑧1, … , 𝑧𝑚),  and 

Φ is the standard Gaussian cumulative distribution function. 



A visual illustration of the bivariate Gaussian copula is given 
in Fig. 3. 

 
Fig. 3. Examples of bivariate Gaussian copulas with parameter 𝜌 = 0.8 (a) 

and with parameter 𝜌 = 0.2 (b). 

To generate dependent load and wind observations, the 
procedure for parameterising and sampling from a 
multivariate Gaussian copula are as follows: 

1) Using equation (1) to transform marginal 
distributions of historical variables from actual 
domain to the uniform domain in [0,1] through the 
ECDFs. 

2) Build the multivariate Gaussian copula model based 
on uniformly distributed variables. Parameters of the 
constructed model can be estimated by calculating the 
correlation matrix, as introduce in [20]. 

3) Generate sampled variables in [0,1]  and transform 
back to actual domain by using equation (2), the 
inverse ECDFs of historical data.  

Note that the parameterized model is capable of providing as 
many samples as required in the Monte Carlo simulation for 
solving the TNEP problem. 

IV. PROPOSED TNEP MODEL 

A. Mathematical Formulation 

The TNEP problem aims to minimize the total system 
cost by determining the optimal transmission expansion 
decisions along with the optimal operational decisions. 
Taking into account inter-spatial correlations between 
load/wind farms across various locations, the proposed TNEP 
model can be formulated as follows: 

min ∑ 𝐶𝑖𝑗𝑛𝑖𝑗

𝑖,𝑗∈Λ𝑛𝑒𝑤

+ ∑ τ

𝑇

𝑡=1

⋅ 𝑝𝑡 ∙ 𝚵(𝑛𝑖𝑗, 𝑫𝒕, 𝑷𝑾
𝒕 𝒎𝒂𝒙

)  (5) 

s.t.  

𝑛𝑖𝑗 ∈ {0,1}，∀𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤               (6) 

where 

𝚵(𝑛𝑖𝑗 , 𝑫𝒕, 𝑷𝑾
𝒕 𝒎𝒂𝒙

) = min ∑ 𝜋𝑔 ⋅ 𝑃𝑔
𝑡

𝑔∈𝐺

+ ∑ Υ ⋅ 𝑈𝑑
𝑡

𝑑∈𝑁𝑑

 (7) 

s.t.  

𝐒(𝑷Γ 
𝒕 + 𝑷𝑾

𝒕 + 𝑼𝒕 − 𝑫𝒕) = 𝑭                     (8) 

𝟎 ≤ 𝑷𝑾
𝒕 ≤ 𝑷𝑾

𝒕 𝒎𝒂𝒙
                                 (9) 

𝟎 ≤ 𝑷𝚪 
𝒕 ≤ 𝑷𝚪 

𝒎𝒂𝒙                                   (10) 

𝟎 ≤ 𝑼𝒕 ≤ 𝑫𝒕                                         (11) 

−𝑓𝑖𝑗
𝑚𝑎𝑥 ≤ 𝑓𝑖𝑗

𝑡 ≤ 𝑓𝑖𝑗
𝑚𝑎𝑥, ∀ 𝑖, 𝑗 ∈ Λ              (12) 

𝑓𝑖𝑗
𝑡 = 𝐵𝑖𝑗(𝜃𝑖

𝑡 − 𝜃𝑗
𝑡), ∀ 𝑖, 𝑗 ∈ Λ                (13) 

−𝑛𝑖𝑗𝑓𝑖𝑗
𝑚𝑎𝑥 ≤ 𝑓𝑖𝑗

𝑡 ≤ 𝑛𝑖𝑗𝑓𝑖𝑗
𝑚𝑎𝑥                            

∶  𝜇
𝑖𝑗

𝑡
, 𝜇𝑖𝑗

𝑡 , ∀ 𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤    (14) 

−𝑀(1 − 𝑛𝑖𝑗) ≤ 𝑓𝑖𝑗
𝑡 − 𝐵𝑖𝑗

𝑛𝑒𝑤(𝜃𝑖
𝑡 − 𝜃𝑗

𝑡) ≤ 𝑀(1 − 𝑛𝑖𝑗)  

: 𝜈𝑖𝑗
𝑡

, 𝜈𝑖𝑗
𝑡 , ∀ 𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤     (15) 

In the above model, transmission expansion decisions are 
determined in the first stage, represented by binary 
variables,  𝑛𝑖𝑗 . In the second stage, the linear objective 

function includes generation costs as well as the cost of load 
curtailment, as presented in (7). In (5), the expected operating 

cost,  𝚵(𝑛𝑖𝑗 , 𝑫𝒕, 𝑷𝑾
𝒕 𝒎𝒂𝒙

) , in the proposed model is 

approximated by the products of the operating hours (τ), the 
probability (𝑝𝑡) of scenario 𝑡, and the optimal solution of (7), 
summed across all operating scenarios t. Note that in this 
case, 𝑝𝑡 = 1/T, where T is the number of samples being 
considered. The branch-node incidence matrix 𝐒  is built 
based on the configuration of the network. In addition, 
constraint (8) represents power balance including load 
curtailment. Maximum capacity limits of thermal and wind 
generators are given in (9) and (10).  Load curtailment 𝑼 is 
limited by the sampled load 𝑫, as shown in (11). Finally, 
constraints (12)-(15) denote thermal capacity limits as well 
as DC power flow constraints for existing and candidate 
transmission lines. In particular, dual variables 

𝜇
𝑖𝑗

𝑡
, 𝜇𝑖𝑗

𝑡 , 𝜈𝑖𝑗
𝑡

, 𝜈𝑖𝑗
𝑡  are extracted from constraints (14) and (15). 

Also, 𝑀 is a large value for the disjunctive constraint (15). 

B. Benders’ Decomposition 

Benders’ decomposition [23] is one of the most widely-
used techniques to solve the mix integer problem. In this case, 
our proposed TNEP model can be decomposed into a master 
problem and a subproblem via Benders’ decomposition. Note 
that a multi-cut formulation has been adopted, as in [24]. Let 
κ ∈ Κ denote the index iterations, the master problem at the 
κth iteration can be presented as: 

min ∑ 𝐶𝑖𝑗𝑛𝑖𝑗

𝑖,𝑗∈Λ𝑛𝑒𝑤

+ 𝑧                            (16) 

s.t. 

𝑛𝑖𝑗 ∈ {0,1}，∀𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤                                          (17) 

 𝑧 ≥ ∑ τ ∙ 𝑝𝑡 ∙ {𝑦̂κ
𝑡 + ∑ [(𝜇

𝑖𝑗

𝑡κ
+ 𝜇𝑖𝑗

𝑡κ) 𝑓𝑖𝑗
𝑚𝑎𝑥  −𝑖𝑗∈Λ𝑛𝑒𝑤

𝑇
𝑡=1

𝑀(𝜈̅𝑖𝑗
𝑡κ + 𝜈𝑖𝑗

𝑡κ)] ∙ (𝑛𝑖𝑗 − 𝑛̂𝑖𝑗
κ )}, ∀ κ ∈ Κ      (18) 

z ≥ 0                                                                               (19) 

where 𝑛̂𝑖𝑗
κ  is the solution of the master problem at iteration κ, 

𝑦̂κ
𝑡 = 𝚵(𝑛̂𝑖𝑗

κ , 𝑫𝒕, 𝑷𝑾
𝒕 𝒎𝒂𝒙

) and 𝜇
𝑖𝑗

𝑡κ
, 𝜇𝑖𝑗

𝑡κ, 𝜈𝑖𝑗
𝑡κ

, 𝜈𝑖𝑗
𝑡κ is the optimal 

operation cost and dual variables of the subproblem at 
iteration κ  under scenario t. 𝑧  is an approximation of the 
second stage costs.   For each scenario, the objective function 
of the subproblem is (7) with it constraints from (8) to (15). 
Note that the binary variables in (14) and (15) are also 
replaced by  𝑛̂𝑖𝑗

κ . The procedure of solving the proposed 



TNEP problem by using Benders’ decomposition can be 

concluded as follows. Firstly, we initialize ε = 0.02 ，
feasible integer solution  𝑛𝑖𝑗 = 1，∀𝑖, 𝑗 ∈ Λ𝑛𝑒𝑤 , lower 

bound LB = −∞, upper bound UB = ∞, and iteration κ = 0. 
After that the solutions of the subproblem with the above 
initial parameters are used as inputs to solve the master 
problem to get  𝑛̂𝑖𝑗

κ  and 𝑧𝜅. Accordingly, the lower bound for 

the κth iteration can be updated as LB = ∑ 𝐶𝑖𝑗𝑛̂𝑖𝑗
κ

𝑖,𝑗∈Λ𝑛𝑒𝑤
+

𝑧𝜅. The next step is to solve the subproblem using 𝑛̂𝑖𝑗
κ  to get 

the optimal operation cost 𝑦̂κ
𝑡  and dual 

variables𝜇
𝑖𝑗

𝑡κ
, 𝜇𝑖𝑗

𝑡κ, 𝜈𝑖𝑗
𝑡κ

, 𝜈𝑖𝑗
𝑡κ. Also, the upper bound is updated 

byUB = min {UB, ∑ 𝐶𝑖𝑗𝑛𝑖𝑗𝑖,𝑗∈Λ𝑛𝑒𝑤
 + ∑ τ𝑇

𝑡=1 ⋅ 𝑝𝑡 ∙ 𝑦̂κ
𝑡}. If the 

difference between LB and UB is lower than a determined 
value (e.g. ε ∙ min {UB, LB} ), the iteration should be 
terminated. Otherwise, another benders’ cut (18) is built and 
appended  to the master problem for the (κ + 1)th iteration. 

V. SIMULATION STUDY AND RESULTS ANALYSIS 

In this section, the performance of the proposed TNEP 
model along with the multivariate Gaussian copula modeling 
framework is demonstrated based on a modified version of 
the IEEE 118-bus system. As detailed in [8], a confidence 
interval (CI) on the optimality gap of the problem’s solution 
is constructed to determine the solution quality of different 
planning models.  

A. Test System and Multivariate Load and Wind Modeling  

The original IEEE 118-bus system consisting of 54 

generators and 186 lines has been modified to also include 

10 wind farms of size 100MW as well as 10 more candidate 

transmission lines with capacity 500 MW. For the historical 

database of stochastic variables, we map 118 demand buses 

and 10 wind generators onto the test system from historical 

load and renewable injection measurements that were 

provided by RTE, the French Transmission System 

Operator. The original library includes 14,251 

measurements at 15-minute intervals over the course of two 

months, from January to February 2012, and spans over 

7,000 load buses and 200 wind plants [17]. In this paper we 

focus on a subset; a 128-dimensional dataset consisting of 

118 demand buses and 10 wind generators chosen at random. 

The process of mapping the selected  variables is to scale 

them by a constant that obtained by calculating the ratio 

between the maximum coincident peak demand of the 

original data and the sum of  active power demand across all 

buses defined in the system. In this way, the complex 

dependence structure between the stochastic variables can be 

maintained. Also note that in this research, value of lost load 

Υ is set to $4,000/MWh. The annualized investment cost for 

building one candidate transmission line is  𝐶𝑖𝑗 =

$5,000,000/year . Also, we use τ = 8,760  and M =
20,000,000. 

In order to illustrate the comparative advantage of 

sampling stochastic scenarios using a multivariate copula 

model that captures inter-spatial correlations, we generate 

the load and wind samples by the following methods for 

comparison;  

1) Consider total load and total wind power as two 

independent variables (BiInd);  

2) Consider total load and total wind power as two 

dependent variables and model them via a bivariate Gaussian 

copula (BiGc);  

3) Consider load and wind power as multivariate 

dependent variables and model them via a multivariate 

Gaussian copula (MGC).  

Note that in methods 1 and 2, load and wind at different 

locations are assumed to be perfectly correlated, 

respectively, which means static sharing factors between 

each bus/wind farm are assumed in these cases. An example 

of comparing historical ( 𝑁ℎ𝑖𝑠𝑡 = 1,4251 ) and sampled 

( 𝑁𝑠 = 2,0000 )  data generated by the three different 

methods is shown in Fig. 4  via the scatter plot of a single 

load variable and a single wind infeed variable chosen at 

random. In Fig.4 (a), the point-cloud of historical data is 

shown to be composed of several sub-groups of highly non-

linear dependence and complex data features. Moreover, the 

sampled data points in Fig.4  (b) and  Fig. 4(c) are biased 

towards the bottom with almost zero and non-zero linear 

correlations, respectively, resulting from the assumption of 

the static sharing factors. The superiority of the proposed 

MGC method (Fig. 4(d)) compared to the BiInd method 

(Fig.5(b)) and the BiGc method (Fig.5(c)), is clearly 

reflected in the reconstruction quality of the dependence 

strucutre.  To this end, it is demonsrated that the disaggreated 

correlations between load/wind can be successfully retained 

in the sampled data by using the MGC method. 

 
Fig. 4: Scatter plots of historical data (a), scatter plots of generated data 

using BiInd method (d), BiGc method (c) and the proposed MGC method 

(d). 

 

B. Solution Quality Evaluation  

We proceed by assessing the impact that the proposed 
stochastic modelling methodology has on the TNEP problem. 
For this purpose we make use of a Monte Carlo bounding 
technique originally proposed in [25] and implemented in [8] 
to calculate a confidence interval (CI) on the optimality gap 
of a candidate expansion plan. In this case, the optimality gap 
is denoted by the difference between a candidate solution 

𝜓̂ = ∑ 𝐶𝑖𝑗𝑛̂𝑖𝑗𝑖,𝑗∈Λ𝑛𝑒𝑤
 + ∑ τ𝑇

𝑡=1 ⋅ 𝑝𝑡 ∙ 𝚵(𝑛̂𝑖𝑗 , 𝑫𝒕, 𝑷𝑾
𝒕 𝒎𝒂𝒙

)  and 

an optimal solution  𝜓∗ .In this way a 95% CI can be 

constructed by P{𝜓̂ − 𝜓∗ ≤ ϖ} ≈ 0.95, where ϖ is the CI 
width; a lower  ϖ value indicates a better solution quality. 
For the proposed TNEP model with MGC modeling, the 



procedure of calculating the CI width ϖ  is briefly 
summarized as follows.  

Step 1. Lower bound 𝐿 construction: Determine the number 

of samples  𝑁𝑆 = 500 as well as the number of replications 
𝑁𝐿= 50. For each replication 𝑛𝐿, we generate 𝑁𝑠 samples for 
load 𝑫  and wind  𝑷𝑾

𝒎𝒂𝒙 of size 500*118 and 500*10, 
respectively, and then solve the TNEP problem to get an 

optimal solution 𝑛̂𝑖𝑗
𝑛𝐿  and the corresponding optimal 

value 𝜓̂𝑛𝐿. Then the lower bound can be calculated by 𝐿 =
1

𝑁𝐿
∑ 𝜓̂𝑛𝐿𝑁𝐿

𝑛𝐿=1 , with its sampling error 𝑒𝐿 =

𝑠𝑡𝑑(𝜓̂𝑛𝐿)
𝑡𝑁𝐿−1,𝛼/2

√𝑁𝐿
, where 𝑠𝑡𝑑(∙) is the standard deviation, 

and 𝑡𝑁𝐿−1,𝛼/2 is defined as the (1 −  𝛼/2) level quantile of 

a Student's t-distribution with 𝑁𝐿 − 1 degrees of freedom. 

Step 2. Candidate solution 𝑛̂𝑖𝑗 selection: Use the built MGC 

model to generate 𝑁𝑐 = 1000  sampled load 𝑫̃  and 

wind 𝑷̃𝑾
𝒎𝒂𝒙, and solve the TNEP problem with the solution 

𝑛̂𝑖𝑗
𝑛𝐿  of each replication in Step 1. The candidate solution 

can be obtained by 𝑛̂𝑖𝑗 ∈

argmin
𝑛̂𝑖𝑗

1,…,𝑛̂𝑖𝑗
𝑁𝐿 {∑ 𝐶𝑖𝑗𝑛̂𝑖𝑗

𝑛𝐿
𝑖,𝑗∈Λ𝑛𝑒𝑤

+ ∑ τ𝑇
𝑡=1 ⋅ 𝑝𝑡 ∙

𝚵(𝑛̂𝑖𝑗
𝑛𝐿 , 𝑫̃𝒕, 𝑷̃𝑾

𝒕 𝒎𝒂𝒙
)}. 

Step 3. Upper bound 𝑈 construction: Perform the simulation 

with 𝑁𝑈 = 20,000 load and wind samples, 𝐃 and  𝐏𝑾

𝒎𝒂𝒙
  . 

The upper bound can be constructed by  𝑈 =
1

𝑁𝑈
∑ 𝜓̂𝑛𝑈𝑁𝑈

𝑛𝑈=1  

with the sampling error 𝑒𝑈 = 𝑠𝑡𝑑(𝜓̂𝑛𝑈)
𝑡𝑁𝑈−1,𝛼/2

√𝑁𝑈
. Note that 

we have 𝜓̂𝑛𝑈 = ∑ 𝐶𝑖𝑗𝑛̂𝑖𝑗𝑖,𝑗∈Λ𝑛𝑒𝑤
+ τ ∙ 𝚵 (𝑛̂𝑖𝑗 , 𝐃

𝒕
,  𝐏𝑾

𝒕 𝒎𝒂𝒙

). 

Step 4. CI width ϖ calculation.  The final CI width can be 

calculated by ϖ = 𝑒𝑈 + 𝑒𝐿 + [𝑈 − 𝐿]+. 

Detailed information of the above steps are illustrated in 

[8]. In addition, the CI widths of the TNEP solutions using 

BiInd and BiGc modeling algorithms are also calculated 

following the above procedures with the results shown in 

Table I. Note that the modeling methods (i.e. BiInd, BiGc, 

and MGC) and the TNEP optimization problem were 

implemented in MATLAB and FICO Xpress, respectively, 

and run on an Intel Xeon E5-2690 PC with 8 cores. For 

comparison, the time consumption of these three methods 

for generating 500 samples are given in Table II. 

TABLE I. SOLUTION QUALITY EVALUATION FOR DIFFERENT 

METHODS (500 SAMPLES FOR EACH METHOD) 

 Investment cost 
($ million/year) 

𝑼  
($M/year) 

𝑳 

($M/year) 

𝛡 

BiInd 30 1,727.41 1,684.72 231.78 

BiGc 30 1,625.93 1,649.83 57.83 

MGC 15 1,201.87 1,195.76 21.60 

TABLE II. COMPUTATION TIMES FOR DIFFERENT METHODS (500 

SAMPLES FOR EACH METHOD)  

 CPU Times (s) 

BiInd 2.24 

BiGc 3.12 

MGC 5.21 

 

When using the proposed MGC method, only three lines 

are required to be built, whereas the other two methods both 

cost double (i.e. $30 million/year) in the investment stage. 

Furthermore, regarding the upper bound 𝑈  and the CI 

width ϖ, the superiority of the proposed MGC method can 

be well demonstrated by exhibiting much lower cost values 

than the other two methods. Compared to the BiInd method, 

there are approximately 6% and 75% expected cost 

reductions in 𝑈  and  ϖ , respectively, when taking into 

account the bivariate dependence between total load and 

total wind.  

Most importantly, a substantial improvement on the 

solution variability (i.e. 30% lower 𝑈 and 91% lower ϖ) is 

obtained by capturing the inter-spatial dependence between 

stochastic variables through the MGC. The other methods 

examined give rise to unrealistic and highly divergent 

scenarios which lead to inefficient investment decisions. The 

gradual improvement, from independent to bivariate to 

multivariate and from aggregated to disaggregated variables 

that pertain to the specific network locations highlights the 

importance of capturing stochastic dependence at the level 

of individual variables when performing transmission 

expansion planning. The amount of operational variability 

and importance of capturing spatial correlation is bound to 

increase in the future due to higher penetration of renewables 

and the looming electrification of the transport and heating 

sectors [26]. 

VI. CONCLUSIONS 

The present paper proposes a two-stage TNEP model 
integrated with a multivariate Gaussian copula modeling 
framework. A modified version of IEEE 118-bus system is 
used as the test network in this research. Based on real 
historical stochastic variables from the French transmission 
system, multivariate dependent load and wind samples of 128 
dimensions are generated b y the proposed MGC algorithm, 
and compared with the results of BiInd and BiGc methods. A 
visual comparison between these three methods shows that 
the inter-spatial dependence can be re-constructed much 
more accurately when employing a multivariate Gaussian 
copula model. Furthermore, to evaluate the solution quality, 
a Monte Carlo bounding technique is implemented to build a 
95% CI on the optimality gap of the solution of each method. 
The results of the comparison suggest that the CI width and 
the expected total cost of the TNEP problem can be 
substantially reduced when considering the multivariate 
dependence of load and wind. 

Further research will focus on applying some more 
advanced high-dimensional modeling techniques in the 
TNEP problem to deal with more complex dependence 
structure between stochastic variables. In the future, 
contingency constraints could also be appended to the TNEP 
model. Another application of interest is to solve a multistage 
TNEP problem considering load and wind farm uncertainties. 
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