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ABSTRACT

Conventional full-waveform seismic inversion attempts to find
a model of the subsurface that is able to predict observed seismic
waveforms exactly; it proceeds by minimizing the difference be-
tween the observed and predicted data directly, iterating in a
series of linearized steps from an assumed starting model. If this
starting model is too far removed from the true model, then this
approach leads to a spurious model in which the predicted data
are cycle skipped with respect to the observed data. Adaptive
waveform inversion (AWI) provides a new form of full-waveform
inversion (FWI) that appears to be immune to the problems oth-
erwise generated by cycle skipping. In this method, least-squares
convolutional filters are designed that transform the predicted
data into the observed data. The inversion problem is formulated

such that the subsurface model is iteratively updated to force these
Wiener filters toward zero-lag delta functions. As that is achieved,
the predicted data evolve toward the observed data and the as-
sumed model evolves toward the true model. This new method
is able to invert synthetic data successfully, beginning from start-
ing models and under conditions for which conventional FWI
fails entirely. AWI has a similar computational cost to conven-
tional FWI per iteration, and it appears to converge at a similar
rate. The principal advantages of this new method are that it al-
lows waveform inversion to begin from less-accurate starting
models, does not require the presence of low frequencies in the
field data, and appears to provide a better balance between the
influence of refracted and reflected arrivals upon the final-veloc-
ity model. The AWI is also able to invert successfully when the
assumed source wavelet is severely in error.

INTRODUCTION

Full-waveform inversion (FWI) of 3D seismic data is a technique
for generating high-resolution high-fidelity models of physical
properties in the subsurface that has become technically and com-
mercially feasible for field data over the past few years. The method
is able to produce dramatic improvements in depth-migrated images
of conventional reflection data (Sirgue et al., 2010; Warner et al.,
2013) and to produce interpretable images of physical properties
directly at the reservoir (Lazaratos et al., 2011). Despite these and
other successes (Vigh et al., 2010; Lu et al., 2013; Mancini et al.,
2015), and its widening uptake across the industry (Kapoor et al.,
2013), current implementations of FWI suffer from significant
shortcomings; most prominent among these is the problem of local

minima in the objective function produced by cycle skipping (Vir-
ieux and Operto, 2009).
Adaptive waveform inversion (AWI), the topic of this paper, refor-

mulates FWI using adaptive matching filters, and in so doing, it ap-
pears to provide a robust, effective, and efficient means to overcome
cycle skipping during waveform inversion (Guasch and Warner,
2014; Warner and Guasch, 2014a); AWI also provides some addi-
tional advantages over conventional FWI (Warner and Guasch,
2014b, 2015). Here, we present the AWImethodology and the ration-
ale behind it. We demonstrate the benefits and properties of AWI by
applying it to a variety of synthetic data sets, and we discuss its ante-
cedents and its relationship to other inversion methodologies. In a
companion paper, we apply the AWI approach to a full anisotropic
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3D field data set and demonstrate that it significantly outperforms
conventional FWI.
Cycle skipping occurs because seismic data are oscillatory.

Conventional FWI seeks to find an earth model that minimizes
an objective function formed from the sum of the squares of the
sample-by-sample differences between the observed data and an
equivalent synthetic data set predicted by applying the wave equa-
tion to that earth model. The FWI algorithm is sometimes config-
ured instead to seek for a model that maximizes the zero lag of the
crosscorrelation of the observed and predicted data sets (Routh et al.,
2011). In either case, cycle skipping occurs when a model is found
that provides a good match between the observed and predicted
data, but for which all or part of the data are misaligned in time
by approximately an integer number of wave cycles. Such a
cycle-skipped model represents a local minimum in a conventional
FWI objective function, so that perturbing this model in any direc-
tion will worsen the fit to the observed data even though it may
improve the fit to the true model.
Cycle-skipped local minima provide a major challenge when de-

signing robust FWI workflows. In most practical implementations,
the problem is addressed by beginning the inversion at low frequen-
cies that are typically approximately 2–4 Hz for surface seismic data,
by beginning the inversion from an accurate starting model that will
often have been generated using repeated applications of anisotropic
reflection traveltime tomography, by limiting the inversion to shallow
depths and short traveltimes, and by experienced practitioners
applying rigorous quality control during FWI together with careful
parameter and data selection (Warner et al., 2013). Under these cir-
cumstances, conventional FWI performs well, and its benefits be-
come manifest.
However, the disadvantages of this approach are clear. Many leg-

acy data sets do not contain sufficiently low-frequency data, and
enhanced low-frequency acquisition can add to the acquisition cost
and may compromise data quality at the highest frequencies. Ac-
curate model building can be slow and expensive, and it normally
requires expert guidance when the data and/or models become com-
plicated. In overly complicated geology, or with poorly illuminated
or noisy field data, sufficiently accurate model building may not
prove to be possible at all. The need for careful QC and expert over-
sight also provides a cost or a bar to entry for FWI. A version of
waveform inversion, able to provide the benefits of FWI without its
limitations related to cycle skipping, would therefore reduce the
cost and the total elapsed time required to complete FWI, and would
increase the number of data sets and range of problems to which this
high-resolution technique could be usefully applied.
In contrast to FWI, AWI does not seek to minimize the difference

between the observed and predicted data sets directly. Instead, it
proceeds by finding a suite of data-adaptive matching filters that
transform one of these data sets into the other. These data-adaptive
filters necessarily depend on the observed and the predicted data,
which in turn depend on the true and the assumed earth models. If
the true and assumed earth models are the same, then these data-
adaptive matching filters will necessarily degenerate to become triv-
ial identity filters; an identity filter does not alter its input data, in-
stead it simply passes the input data forward unaltered to its output.
The waveform inversion problem can therefore be setup so that it

minimizes not the data misfit directly but instead minimizes the mis-
fit between the filters required to match the two data sets and the
ideal identity filter. This is the basis of AWI. In the simple version

that we describe here, we use 1D, least-squares, convolutional, Wie-
ner filters, designed and applied trace-by-trace, to achieve the data-
adaptive matching, configuring the inversion, so that it drives these
Wiener filters toward zero-lag delta functions. When AWI is appro-
priately configured and parameterized, it appears to be immune to
the effects of cycle skipping without any significant detrimental side
effects, and with minimal computational overhead.
Several other waveform-inversion methods have been previously

proposed to overcome cycle skipping. These methods currently ap-
pear to fall into one of two groups: either the methods are efficient
and affordable on commercial data sets in three dimensions, but fail
to converge when the data and/or the model are realistically com-
plicated, or the methods work well on realistic data, but have not so
far been proven to be affordably achievable on 3D field data. Meth-
ods in the first group include those of van Leeuwen and Mulder
(2008, 2010), Luo and Sava (2011), and perhaps Ma and Hale
(2013), and methods in the second group include those of van Leeu-
wen and Herrmann (2013) and Biondi and Almomin (2012, 2015).
Mathematically, our approach is most closely related to the first two
methods, but it takes two important concepts from the other meth-
ods, and it is these concepts that seem to be central to the success of
AWI on realistic data sets.
The first of these two concepts is that the method is formulated in

such a way that the predicted and observed data form a close match
even in the presence of significant differences between the starting
and true models. We expect this to be a common feature of any
successful, broadly applicable, waveform-inversion method. Conven-
tional FWI achieves this by using low frequencies and a good starting
model; AWI and Ma and Hale’s (2013) approach achieve this by us-
ing matching filters; and AWI, van Leeuwen and Herrmann (2013),
and Biondi and Almomin (2015) all achieve it by reformulating the
underlying problem so that the predicted data need no longer obey a
physical wave equation.
The second concept, explored in depth by Symes (2008), is that the

dimensionality of the unknown model space is hugely expanded —
by the Wiener-filter coefficients in AWI, by adding an additional di-
mension to the subsurface model in Biondi and Almomin’s (2015)
approach, and by treating the entire wavefield as part of the unknown
model space in the approach of van Leeuwen and Herrmann (2013).
It is not clear if this is an essential feature for a successful method, but
we note that it is common to all the methods that currently appear
able to overcome cycle skipping during waveform inversion in com-
plicated models.
We developed AWI by trying to incorporate both these concepts

into conventional FWI, while at the same time trying to adapt the
approach of Biondi and Almomin (2012, 2015), so that it became
realistically affordable. Although the genesis of our approach origi-
nally lay elsewhere, AWI is mathematically more closely related to
the approaches of van Leeuwen and Mulder (2010) and Luo and
Sava (2011); we discuss the relationship of AWI with these and
other methods later in the paper.

THEORY

There is not as yet a uniformly agreed mathematical formulation
within which to present FWI theory. Here, we adopt the simplest
formulation that is consistent with our methodology. This formu-
lation is not designed for its mathematical rigor, but it does have
the benefits of clarity and of closely mimicking the operations that
are performed within practical computational implementations. In
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Appendix A, we show how the same result can be obtained using
the more rigorous adjoint-state method.
We present the method entirely in the time domain. FWI made

significant early progress by working in the frequency domain using
mono- or sparse-frequency data (Pratt, 1999), but this is not an ap-
proach that is likely to be fruitful for AWI, which is fundamentally a
finite-bandwidth concept. The simplest implementation of AWI op-
erates at the level of a single trace representing one source-receiver
pair. All our equations therefore refer to just one such time-domain
data trace. In any practical implementation, there will always be a
summation over many source-receiver pairs to calculate, for exam-
ple, the gradient, the Hessian, or a model update; to simplify the
notation, this implied summation over all source-receiver pairs is
not made explicit in our equations.

Formulation

We describe a single observed time-domain data trace using the
column vector d, and we describe the equivalent predicted data trace
using the column vector p. The predicted data trace will have been
obtained using an earth model, which we write as the column vector
m. In simple applications, m is likely to contain the values of slow-
ness at points on a regular 3D grid, but in principle, m can contain
any useful description of the model. Conventional FWI then seeks
to minimize an objective function f with respect to the model m,
where f is given by

f ¼ 1

2
kp − dk2; (1)

and kak2 represents the sum of the squares of the elements of a col-
umn vector a, or equivalently the inner product aTa. If the starting
model generates predicted data that differ from the observed data by
more than half a cycle, then this objective function will tend to lead
towards a model that is cycle skipped.
In contrast, AWI proceeds by defining a convolutional matching

filter w which, when convolved with the predicted data trace p, pro-
vides the best least-squares match to the observed data trace d. The
coefficients that define the filter w are, therefore, those that mini-
mize the function g given by

g ¼ 1

2
kPw − dk2; (2)

where P is a Toeplitz matrix containing the predicted data trace p in
each column, such that it represents the temporal convolution of p
with w (e.g., Hansen, 2002). In equation 2, w is a simple 1D acausal
Wiener filter that is applied to a single predicted trace to generate a
good match to the equivalent observed trace. The filter coefficients in
w are necessarily functions of p and d, which in turn are functions of
the true and predicted earth models. When used for AWI, the match-
ing filter represented byw will typically be at least as long as the data
trace d. This filter is not designed to match each event in p separately
to an equivalent event in d; rather it matches an entire predicted trace
p to an entire observed trace d. The AWI method is based directly on
matching observed wavefields; it contains no concept of matching
individual isolated events or matching explicit arrival times.
Equation 2 represents a linear least-squares problem; it has a sin-

gle global minimum and no secondary local minima, so that cycle
skipping is not an issue. Its solution is given by

w ¼ ðPTPÞ−1PTd: (3)

This well-known equation represents the crosscorrelation of the
observed and predicted data, deconvolved by the autocorrelation
of the predicted data. Any practical implementation would normally
also apply some form of stabilization, for example, by adding a small
positive number to the diagonal of the autocorrelation matrix PTP.
For a convolutional Wiener filter, the identity filter that leaves the

input data unchanged is simply a unit-amplitude delta function at zero
lag. We therefore setup the seismic inversion problem using an ob-
jective function f that acts to force w toward a delta function at zero
lag. There are several potential ways to achieve this. The method that
we describe here does this by minimizing (or maximizing) an objec-
tive function f with respect to the model m, where f is given by

f ¼ 1

2

kTwk2
kwk2 ; (4)

where T is a diagonal matrix that acts to weight the coefficients of w
by some continuous monotonic function of the magnitude of their
temporal lag. The simplest usable form for T weights the coefficients
directly by the magnitude of their lag up to somemaximum value, but
more sophisticated forms for T can provide more rapid and more
stable convergence. If T is a function that is zero at zero lag, and that
increases with increasing absolute lag, then f should be minimized. If
instead, T has a maximum value at zero lag and decreases toward
zero at larger lags, then f should be maximized. Symes (2008)
and van Leeuwen and Mulder (2010) discuss strategies for choosing
a particular form for T in applications of this kind; we have not, how-
ever, found AWI to be especially sensitive to the exact form of T.
Equation 4 works by penalizing Wiener coefficients at large lags,

and the penalty increases as the lag increases; the latter is an im-
portant feature of the AWI approach. As the method is iterated, this
objective function forces the Wiener filter w toward a delta function
at zero lag. As equation 4 is written, no account is taken of any ab-
solute mismatch in amplitude between the observed and predicted
traces, but it is straightforward to devise forms that are analogous
to equation 4 that do consider absolute amplitudes in circumstances
in which that is advantageous. One way to achieve this would be to
multiply the objective function by a factor of 1þ ðΔrms∕ΣrmsÞ, where
Δrms is the absolute difference of the root-mean-square (rms)
amplitudes, and Σrms is the sum of the rms amplitudes, of the two
traces being compared, but many other possibilities exist.
The normalization of equation 4, as represented here by the term

in the denominator, is important. Without some form of normaliza-
tion, f could be minimized simply by decreasing all the coefficients
of w. This would be equivalent to increasing all the amplitudes
within the predicted data trace p, for example, by increasing all re-
flection coefficients in the model. This is not a behavior that will
move toward the true earth model, and so normalization of the ob-
jective function is always necessary in some form to obtain a prac-
tical AWI algorithm.
The form of AWI represented by equations 3 and 4 is concep-

tually the most straightforward, but it does not lead to the simplest
mathematical outcome. A simpler outcome is obtained instead by
finding a filter v that transforms the observed data d into the pre-
dicted data p, that is by solving

v ¼ ðDTDÞ−1DTp; (5)
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and minimizing

f ¼ 1

2

kTvk2
kvk2 ; (6)

where D represents convolution by the observed data. Note that the
two filters w and v are least-squares convolutional inverses; that is,
if w and v are convolved together, then the result will be a band-
limited, zero-lag, unit-amplitude delta function. In the discussion
below, we refer to the version of AWI represented by equations 3
and 4 as forward AWI, and that represented by equations 5 and 6 as
reverse AWI; both versions, however, seek to solve analogous seis-
mic inverse problems.

Gradient and adjoint source

To solve the problem at hand, which is to find the best-fitting
earth model, we must minimize (or maximize) f with respect to the
earth model in equation 4 or 6. First, we write the discretized wave
equation as

Au ¼ s; (7)

where A is a matrix representation of the numerical operator used to
implement the wave equation. Most typically this will be a finite-
difference time-stepping explicit implementation of the 3D, aniso-
tropic, variable density, acoustic-wave equation, but it can be any
useful numerical implementation of any appropriate wave equation.
The form of A depends on the numerical implementation, and also
upon the earth model m. In equation 7, s is the seismic source de-
fined at all points and all times in the model, and u is the wavefield
generated at all points and all times by the source s in the model m.
We note that there is a linear relationship between the wavefield u
and the source s, and a nonlinear relationship between the wavefield
and modelm. We also note that the predicted data p form a subset of
the wavefield u, so that p ¼ Ru, where R is a restriction operator
that acts to select the wavefield only at the receiver positions.
Because the source s does not depend on the modelm, equation 7

implies that

∂u
∂m

¼ −A−1 ∂A
∂m

u; (8)

which, when restricted to the receivers becomes

∂p
∂m

¼ −RA−1 ∂A
∂m

u: (9)

Following the approach of Pratt et al. (1998), the gradient of an
objective function f with respect to the model parametersm for any
objective function of the form f ¼ ð1∕2ÞxTx, where x is a function
of the observed and predicted data, is given by

∂f
∂m

¼ ∂xT

∂m
x ¼

�
∂x
∂p

∂p
∂m

�
T

x ¼ −
�
∂x
∂p

RA−1 ∂A
∂m

u
�

T

x

¼ −uT
�
∂A
∂m

�
T

A−TRT
∂xT

∂p
x: (10)

This quantity is invariably referred to as the gradient. This equa-
tion is more conveniently written as

∂f
∂m

¼ −uT
�
∂A
∂m

�
T

A−TRTδs; (11)

where δs is the adjoint source, which we derive below for AWI. Read-
ing from right to left, equation 11 says, that to calculate the gradient,
we must find the adjoint source δs, inject this into the model, back
propagate to obtain the adjoint wavefield everywhere in the model,
modify this wavefield in a way that depends on the details of the
numerical implementation and the model, and crosscorrelate the re-
sult of this with the forward wavefield u, which was generated using
the original source s.
In equation 11, the adjoint source is given by the gradient of the

objective function with respect to the predicted data

δs ¼ ∂xT

∂p
x ¼ ∂f

∂p
: (12)

In conventional FWI, as defined in equation 1, the adjoint source
is simply the data residual (p − d). However, in AWI, the adjoint
source is more complicated. If we use equation 2 to define the
matching filter, then the AWI adjoint source is given by

δs ¼ WTPðPTPÞ−1
�
2fI − T2

wTw

�
w; (13)

where WT represents crosscorrelation with the filter w, and I is the
identity matrix. The derivation of equation 13 is given in Appendix B.
Reading this equation from right to left, it says that to calculate the

adjoint source, we must find the Wiener filter w that matches the
predicted to the observed data in a least-squares sense, we must nor-
malize this by its inner product wTw, we must weight the coefficients
using the function represented by the matrix (2fI − T2) that depends
on the lag of each coefficient and the current value of the objective
function, we must deconvolve this by the autocorrelation PTP of
the predicted data, convolve the result with the predicted data P,
and finally crosscorrelate this result with the original Wiener filter
W. These are all computationally inexpensive 1D operations applied
to a single trace corresponding to a particular source-receiver pair.
The result of this is to generate the adjoint source that corresponds
to this source-receiver pair.
If instead, we use equations 5 and 6 to define the reverse AWI

functional, then the adjoint source is given by

δs ¼ DðDTDÞ−1
�
T2 − 2fI

vTv

�
v; (14)

where f is now as defined in equation 6. We derive this equation
using the adjoint-state method in Appendix A.
The AWI methodology, in its simplest manifestation, therefore,

consists of first computing a forward wavefield for each physical
source, from which the predicted data can be extracted. A suite
of 1D acausal Wiener filters can then be generated, each of which
transforms a predicted data trace into its equivalent observed data
trace (or vice versa if using reverse AWI). There will be a different
filter for each source-receiver pair. These filters are then manipu-
lated, according to equation 13 or 14, to obtain a suite of adjoint
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sources. In practice, there is no requirement to find the Wiener fil-
ters explicitly; all that is required is that we manipulate the observed
and predicted data to generate the appropriate adjoint source δs.
These adjoint sources are then back propagated in place of the con-
ventional data residuals, and the results manipulated and crosscor-
related with the forward wavefield, as in conventional FWI, to obtain
the gradient. This gradient can then be used in a steepest descent or
more sophisticated local-inversion scheme to generate a model update,
and the process iterated. The AWI algorithm is, therefore, straightfor-
ward and inexpensive to incorporate into any existing time-domain
FWI computer code, and it can use the same workflows and all of
the preprocessing, preconditioning, regularization, stabilization, and
other heuristic methodologies that are typically found within practical
FWI implementations.

RESULTS

In this section, we demonstrate the performance and advantages of
AWI by applying it to three synthetic data sets, each of which exem-
plifies different beneficial characteristics of the method. In the first
example, reflections and refractions contribute to model updates ap-
proximately equivalently; we discuss this example at some length. In
the other two examples, we examine AWI performance for a data set
that is dominated by back-scattered reflected arrivals, and for a data
set inverted using an incorrect estimate of the source wavelet. Else-
where (Guasch andWarner, 2014), we apply AWI directly to 3D field
data and discuss its practical parameterization and quality control. For
each of the synthetic examples below, the detailed modeling and in-
version parameters used to generate the data and to perform the in-
versions are listed in Appendix C.

Example 1: Combined reflection and refraction
inversion

The Marmousi model is well-known. It is a small, shallow model
that has a significant vertical velocity gradient; it is an easy model to
invert given low-frequency data, sufficient long-offset illumination,
and an accurate long-wavelength starting model. In many ways, the
Marmousi model is ideally preconditioned for low-frequency com-
bined refraction-reflection wide-angle FWI. Figure 1a shows the
version of Marmousi that we use here to demonstrate AWI.
Figure 1b shows the 1D starting model that was used to invert

synthetic data generated by the true model. In this study, it is signifi-
cant that the starting model was not obtained using the true model, by
smoothing or some similar operation. Such a procedure would have
ensured that the long-wavelength macrovelocity in the starting model
was unduly accurate, and such an unjustified assumption is one of the
reasons that synthetic inversions of the Marmousi model are often
unrealistically successful. Here, the starting velocity model is correct
above the seabed, below which it increases smoothly and monoton-
ically toward higher velocities at the bottom of the model. It is trivial
to obtain such a model from the observed data after a few minutes of
analysis without any knowledge of the true model.
Figure 2a shows a shot record obtained from the true model, and

Figure 2b shows the equivalent record obtained from the starting
model. Both data sets use a free surface, and so include the effects
of surface multiples and source and receiver ghosts. The power spec-
trum of both data sets, shown in the inset in Figure 1b, peaks at ap-
proximately 10 Hz, and the power rolls off rapidly at lower and higher
frequencies, principally as result of these ghosts.We have added a low

Figure 1. Marmousi acoustic velocity model. (a) True model.
(b) Starting model. Insert shows mean power spectrum of the true
synthetic data. The model includes a free surface; 91 sources and 187
receivers were used throughout. The velocity scale is identical for all
subsequent Marmousi figures.

Figure 2. (a) Shot record generated using the true velocity model
from Figure 1a. (b) Shot record generated using the starting model
from Figure 1b; the first-arrival data are cycle skipped with respect
to Figure 2a.
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level of band-limited noise to the true data to ensure that low frequen-
cies cannot be spuriously recovered during the inversion.
Figure 3 demonstrates that parts of the predicted data, generated

using the starting model, are cycle skipped at 10 Hz with respect to
the true data. Consequently, to invert these data successfully with
conventional FWI, the starting model would need to be improved,
the inversion would need to begin at less than 10 Hz, or a sophis-
ticated strategy of depth, time, and offset windowing would need to
be implemented. For this shallow, simple, Marmousi model, such
strategies are straightforward to implement, and can be made to
work well; but for deeper, more complicated, noisy, band limited,
3D, field data sets, such strategies typically range from difficult and
expensive to near impossible to achieve with certainty.
Figure 4 shows the result of using conventional FWI to invert the

synthetic data generated by Figure 1a, beginning from the starting
model in Figure 1b, using the full data bandwidth, and the full time
and offset range, at all iterations. The detrimental effects of cycle
skipping are immediately apparent, and the resultant model is far
from the true model. Several generic features in Figure 4 are note-
worthy. The original long-wavelength macrovelocity model has not

changed significantly from the starting model. Fine structure has
appeared in the model, but it is generally poorly focused, misplaced
in depth, and of insufficient contrast with the macromodel. The ef-
fects of cycle skipping are most readily apparent within the shallow
fault block in the right center of the model. This block should be of
higher velocity than its surroundings, but cycle skipping has pushed
the velocity within it toward lower values as the seismic data have
become misaligned on the wrong cycle. The detailed structure of this
cycle-skipped model is a strong function of the exact parameters,
starting model, and software that are used to generate it; cycle-
skipped FWI is unstable, and so small changes in any one of these
will tend to lead the model to a different local minimum. The sig-
nificant result is that these local minima are all spurious and all share
the generic features outlined above.
It is also worth noting that the recovered model in Figure 4 has

evolved features that could appear to be geologically reasonable,
and that these match qualitatively to analogous features in the true
model. Although familiarity with Marmousi makes it clear that Fig-
ure 4 is badly in error, if this were a result obtained from real field
data, then the apparent match to geologic expectation might provide

undue confidence in its veracity. Although it is
difficult to demonstrate definitively, we suspect
that the detrimental effects of cycle skipping dur-
ing commercial FWI of field data may be more
prevalent than is generally believed, though these
effects are not typically of the intensity displayed
by Figure 4.
Figure 5 shows data generated by the recovered

FWI model; it demonstrates how FWI attempts to
deal with cycle skipping in the starting data. It
brings the two data sets into good phase alignment,
and there are many features that suggest a good
data match; however, this match uses the wrong
cycle over a significant portion of the early arrivals.
Conventional FWI also modifies the model, so that
the unmatched cycles in the predicted data have
their amplitudes suppressed. Watching the model
evolution, and using these perfectly modeled low-
noise data, the effects of cycle skipping are ob-
vious. But in noisier, less-perfectly matched field
data, cycle-skipped models can produce synthetic

data that give even careful and experienced practitioners significant
difficulty in detecting the presence of cycle skipping in the final result.
We note that the FWI objective function here drops systematically at
every iteration, and that the zero lag of the crosscorrelation of the field
and predicted data increases almost everywhere during the inversion,
so that neither of these parameters can be used easily to detect cycle
skipping.
Figure 6 shows the result of applying AWI to these synthetic data.

This result is now unaffected by cycle skipping, and the dramati-
cally improved match to the true model is immediately apparent.
The AWI result is not perfect. It is, as is conventional FWI, still
limited by the bandwidth, receiver aperture, shot location, and sub-
surface illumination provided by the observed data set. We show
below, in example 2, that AWI can also help to push successfully
a little harder against these acquisition limitations than conventional
FWI. The only significant difference between the two computer co-
des that generated Figures 4 and 6 was the adjoint source. For FWI,
the adjoint source is just the data residual, whereas for AWI, it is

Figure 3. A portion of the shot record from Figure 2 showing the observed and predicted
data interleaved. The observed data, from the true model, are indicated by yellow; the
predicted data, from the start model, are indicated by green. The starting model generates
first-arrival data that are late by about a cycle in the offset range 2000–3000m, and that are
early by about a cycle at longer offsets in the range 4000–5000 m. The starting model,
therefore, generates data that are badly cycle skipped with respect to the true data.

Figure 4. Velocity model recovered by conventional FWI obtained
when the starting data are badly cycle skipped. The deep structure is
poorly focused; the intense low-velocity region within the shallow
high-velocity fault block at center right is a symptom of cycle skip-
ping — the FWI updates here have the wrong sign because they act
to move the predicted data toward the wrong cycle.
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given by either equation 13 or 14 as appropriate. Everything else in
the two codes, including the approximate Hessian, data preprocess-
ing, gradient preconditioning, data bandwidth, step-length calcula-
tion, and inversion parameterization were identical between the
two runs, and the parameters that were used correspond to those
that we would typically adopt for conventional FWI (Warner
et al., 2013).
Figure 7, which is directly analogous to Figure 5, shows the pre-

dicted data generated by the AWI-recovered model. The match to
the true data, qualitative and quantitative, is now much improved;
the correct phases are aligned, and there is no evidence that the pre-
dicted data have been affected by cycle skipping during inversion.
The inversion here proceeds following a distinctive pattern that ap-
pears to characterize the AWI process (Figure 8). AWI initially im-
proves the model where the data coverage is best, and brings deeper
structure rapidly into focus even though the shallow model is not yet
correct. As the inversion proceeds, and the shallow model improves,
the deep structure evolves smoothly toward the correct depth, and
the improvement in model quality and in data match move succes-
sively outward and downward into regions of the model and regions
of the data where the coverage is less complete. FWI and AWI are
ultimately trying to solve similar problems, but their different ob-
jective functions result in two significantly different solution spaces.
Consequently, the path that each method follows, and the models
that they visit during their respective attempts to reach a global sol-
ution, can be completely different.

Example 2: Reflection dominated inversion

Although we developed AWI as a means of overcoming cycle
skipping, it rapidly became clear that the method has additional ad-
vantages over conventional FWI even for data sets for which cycle
skipping is not an issue. One such advantage appears to be that AWI
is better able to deal with reflections than is conventional FWI. In
particular, AWI appears more able to push deeper into a model, be-
low the deepest refracted arrivals, to recover macrovelocities at in-
termediate scale lengths.
Figure 9a shows a synthetic model that generates data that are

dominated by back-scattered, subcritical, reflected arrivals. It con-
tains a water layer, a weak positive vertical velocity gradient, and
strongly reflecting heterogeneities with horizontal and vertical
boundaries. The model contains a free surface, and the resultant sur-
face seismic data display free-surface and interbed multiples. The

starting model (Figure 9b) is 1D; the starting model is not cycle
skipped at 5 Hz, but it also does not correspond to the correct
long-wavelength velocity model. The acquisition geometry used
in this experiment represents a single towed marine streamer with
a maximum offset of 5 km, which is equal to the maximum target
depth in the model. With this acquisition geometry, recorded re-
fracted arrivals do not penetrate the model any deeper than the sec-
ond layer of heterogeneities.
Figure 10a shows the results of applying conventional FWI

to these data. Here, we have stopped iterating after 50 iterations on
each source, which is equivalent to considerably more computa-
tional effort than would typically be used to invert 3D field data.
Because these synthetic data are noise free, and the forward and
inverse modeling are identical, continued iteration would slowly
continue to improve the recovered model almost without limit by
matching ever-finer details within the observed data; such over-iter-
ated synthetic results though have little relevance to behavior on real
data. In Figure 10a, FWI has recovered the velocity structure accu-
rately within the top two layers, principally by matching the shallow
refracted arrivals. At greater depth, FWI is able to partially recover
the fine structure using back-scattered reflected arrivals, but the im-
age is rather weak, and there has been only minimal change to the
underlying long and intermediate-wavelength velocity model. It is

Figure 5. Shot record generated using the FWI-recovered model
from Figure 4. Careful comparison with Figure 2a shows that the
data are still cycle skipped.

Figure 6. Velocity model recovered by AWI when the starting-
model data are badly cycle skipped. The AWI result is clearly supe-
rior to the conventional FWI result from Figure 4. The result shows
no evidence of cycle skipping, and its limitations are caused prin-
cipally by the limited bandwidth and limited coverage of the ob-
served data.

Figure 7. Shot record generated using the AWI-recovered model
from Figure 6. The data are no longer cycle skipped.
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possible to add several enhancements to FWI
(and AWI) to improve model recovery from
pure-reflection data (for example, Yao and
Warner, 2015); no such enhancements have been
included in this example.
Figure 10b shows exactly analogous results

obtained using AWI. As before, the AWI adjoint
source was the only difference between the algo-
rithms used to generate the results shown in
Figure 10a and 10b. The AWI result is clearly
superior to the FWI result though the differences
are not as significant as in the cycle-skipped ex-
ample 1. The AWI method is able to make more
use of reflected phases, and to push more deeply
into the model below the deepest turning rays, to
recover a more-accurate velocity model, espe-
cially at intermediate wavelengths. AWI has also
moved the long-wavelength velocity model closer
to the true model in that region of the model that is
imaged only by reflections. The AWI algorithm is
also able, in synthetic and field data, to push a lit-
tle harder into regions at the edge of the model
where the data coverage is less complete.
Although this enhanced sensitivity was unex-

pected, in retrospect it is perhaps not so surpris-
ing. In AWI, missing reflectors within the current
model will typically contribute to Wiener coeffi-
cients at large lags, and these will have a strong
effect upon the objective function; FWI does not
up-weight reflections in this way. In addition,
FWI responds directly only to point-by-point
amplitude differences between observed and pre-
dicted data; it responds to arrival-time differences
only indirectly through their effect upon these
amplitude differences. AWI, however, is able to
respond directly to arrival-time mismatches be-
cause these are directly related to the lags that
appear in the Wiener filters, and larger lags are
more strongly penalized by the AWI objective
function. Consequently, AWI has enhanced sen-
sitivity to build missing reflectors and enhanced
sensitivity to mismatches in the moveout of the
reflections that subsequently appear from these
reflectors; AWI has correspondingly reduced
sensitivity to amplitude mismatches, which also
tends to favor the recovery of longer wavelength
velocity structure from reflections.
The characteristics of AWI displayed in Fig-

ure 10, and the additional sensitivity to reflection
data beyond that achieved by FWI, appear to be
general and repeatable features of AWI. We
stress, however, that this additional uplift is rel-
atively modest, and AWI alone does not provide
a complete solution to the difficult problem of
recovering an unknown long-wavelength veloc-
ity model from pure-reflection data via waveform
inversion, but AWI can make a greater contribu-
tion to the solution of this problem than can con-
ventional FWI. We see exactly this behavior

Figure 8. Model evolution during AWI. The starting model is top left, the final model is
bottom left, and the true model is bottom right. Intermediate models are spaced at ap-
proximately equal steps in the logarithm of the total number of iterations. The central
shallow portion of the model is recovered early, and improvements in the model tend to
spread outward and downward from that region. Note that the high-velocity layer at
bottom left is formed initially at the wrong depth, but it evolves toward the correct depth
as the shallow velocities improve.

Figure 9. Model used to demonstrate the performance of FWI and AWI on reflection-
dominated data sets. (a) True model. (b) Starting model.
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replicated in tests with blind synthetics (Warner
and Guasch, 2015) and 3D field data (Guasch
and Warner, 2014).

Example 3: Inversion assuming an
incorrect source wavelet

Because AWI has a strong relationship to
source-wavelet inversion — see the “Discussion”
section — the method might be supposed to have
undue sensitivity to the quality of the source
wavelet assumed during inversion. In the exam-
ples above, the source wavelet used during inver-
sion was exact; in this example, we explore the
consequences for FWI and AWI when the as-
sumed source wavelet is not correct. For this
test, we use the same true model and acquisition
parameters as for example 1, but we begin from a
more-accurate starting model because we wish to compare FWI and
AWI in the absence of cycle skipping.
Figure 11 shows the two wavelets that were used; the true source

is the wavelet required to generate the real data. We first established
a benchmark for AWI and FWI by using the correct wavelet and
using a good starting model for the inversion. Figure 12 shows
the results of this for AWI and FWI; this figure also shows a useful
comparison between the two approaches for this ideal case. The
two recovered models are similar, they differ in their fine details,
and they are both limited in their accuracy by the limitations of
the observed data. The AWI result is marginally sharper and better
focused, but it is also a little more noisy and more influenced by the
finite-source spacing. The practical differences here though are
subtle.
Figure 13 shows FWI and AWI inversion results obtained when

using a poor estimate of the true source; in this case, the source in
Figure 11a was used to generate the data, but the source in Fig-
ure 11b was used to invert them. The bandwidth of both sources
is similar, but their waveforms are quite different; there is approx-
imately a 90° phase shift between the major peaks in the two wave-
lets. Figure 13a shows the FWI result. Not surprisingly, this result is
poor; the assumed wavelet is badly in error, and FWI cannot recover
from that position without, for example, including an explicit inver-
sion for the sourcewavelet into the algorithm. The result in Figure 13a
shares some characteristics with the cycle-skipped result in Figure 4.
Indeed, this FWI result is now cycle skipped because the spurious
source wavelet acts to cause some arrivals to become incorrectly
aligned between observed and predicted data even though the starting
model is accurate.
Figure 13b shows the analogous result for AWI. Surprisingly, this

result is much better than the FWI result, and it is clear that AWI is
more robust against errors in the assumed source wavelet than is
FWI. Comparison of Figures 12b and 13b demonstrates that use of
the correct wavelet is beneficial, but that even a wavelet as signifi-
cantly in error as that shown in Figure 11b can produce a reasonably
accurate outcome. The principal differences introduced here by use
of the wrong wavelet are an increase in noise, spurious shallow
layering that presumably acts to extend the duration of the effective
wavelet to fit the observed data better, and an over-intense recovery
of the higher velocity regions within the deeper portion of the
model. None of these errors is catastrophic, and the resultant model
is clearly superior to its FWI equivalent.

Figure 10. Results of inverting data generated by the model in Figure 9a. (a) Using FWI.
(b) Using AWI.

Figure 11. Source wavelets used to test FWI and AWI. (a) Wavelet
used to generate synthetic data, and to produce the inversions shown
in Figure 12. (b) Incorrect wavelet used to produce the inversions
shown in Figure 13.

Figure 12. Inversion results for the Marmousi model generated us-
ing the correct source wavelet. (a) FWI result. (b) AWI result.
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Interestingly, the synthetic data generated by model 13b, when
combined with the wrong wavelet, do not match in phase to the true
data, and the 90° phase shift in the assumed source is largely retained
in the final synthetics. This characteristic of AWI means that source
errors do not readily corrupt the velocity model. In contrast, the FWI
result does generate synthetic data that are predominantly locked in
phase to the true data, but this match in phase is now spurious. This is
a more general characteristic of FWI and AWI. The former always
acts to try to bring predicted and observed data into close phase align-
ment, whereas there is no direct requirement on AWI to phase lock
the data in this way. When there is already a good match between
predicted and observed data, phase locking is desirable, and it will
typically lead to the highest resolution and highest fidelity in the final
model. In contrast, when there are differences still to be explained in
the observed data, phase locking has the potential to lead to spurious
outcomes, and its avoidance by AWI is then desirable. This difference
in behavior and outcome will typically lead to workflows in which
inversion should begin with AWI, subsequently switching to FWI as
the inversion proceeds.

ANALYSIS AND DISCUSSION

AWI is a new method. Consequently, we would like to develop
insight into how and why it works beyond the mathematics of its
formulation and its performance on test data sets. Here, we explore
its relationship to other methods for seismic inversion, and outline
some of the ways in which AWI can be advanced beyond the simple
scheme that we have described above.

Crosscorrelation

Conventional FWI can be configured to use an objective function
that is based on the crosscorrelation in time of the observed and

predicted data at the receivers. AWI is one of this class of methods,
which at least conceptually, represent evolution from early work by
Luo and Schuster (1991). In Appendix D, we list the objective func-
tions and corresponding adjoint sources, using a consistent notation,
for the correlation-based methods that have the most mathematical
similarity to AWI.
The simplest version of a crosscorrelation method behaves sim-

ilarly to conventional FWI. In that version, an objective function is
formed that seeks to maximize the zero lag of the temporal cross-
correlation of the observed and predicted data. This approach can be
less sensitive to missing data when it is used in conjunction with
methods that form composite sources (Routh et al., 2011), but it
confers no particular immunity to cycle skipping.
A crosscorrelation method that is immune to cycle skipping is

introduced by van Leeuwen and Mulder (2008, 2010) for wave-
equation traveltime tomography, and this method is also applicable
to FWI. In this approach, temporal crosscorrelation between ob-
served and predicted data is performed at the receivers, but instead
of seeking to maximize only the amplitude of the zero lag of this,
the method seeks also to reduce the amplitudes of all nonzero lags,
and to increase the penalty as the magnitude of the lag increases.
Their approach, therefore, is similar to AWI except that they use
simple crosscorrelation rather than Wiener filtering. Two versions
of this approach have been proposed: one normalized and one not;
we show adjoint sources for both versions in Appendix D.
This method works well in simple models that have a single main

arrival. However, the method is not effective in more complicated
models that have several arrivals. In that case, there is crosstalk in
the crosscorrelation between the different arrivals, and the method
does not then converge to a useful result. The reason for this is clear.
When the recovered model is near perfect, the observed and predicted
data will be near identical. The crosscorrelation will then have high
amplitudes close to zero lag. However, there will also be significant
amplitude at large nonzero lags that represents the crosscorrelation of
events that are separated in their arrival times. The objective function
will, therefore, continue to penalize these amplitudes at large lags,
and the resultant adjoint source will tend to act to drive the near-per-
fect model toward a new less-perfect model in an attempt to minimize
the energy present at these large lags. The resultant model will not
then provide a good fit to the true model.
AWiener filter also involves the crosscorrelation of the two data

sets that it seeks to match, and so it might be thought that AWI
would suffer from the same problem. However, a Wiener filter also
involves a deconvolution by the autocorrelation of one of the data
sets. It is this feature of AWI that removes the problem of crosstalk
because, when the true and recovered models are near identical, the
crosscorrelation of the two data sets is practically the same as the
autocorrelation of one of them, so that deconvolution by the auto-
correlation collapses the crosstalk into near-zero lags. AWI, there-
fore, retains the cycle-skipping immunity of van Leeuwen and
Mulder’s (2010) approach, but it exactly overcomes the problem
of crosstalk in the crosscorrelation, which otherwise limits the ef-
fectiveness of that approach for field data.
Luo and Sava (2011) introduce a method that was designed to

improve the resolution of van Leeuwen and Mulder’s (2010) ap-
proach. They introduce a deconvolution-based objective function,
deconvolving the crosscorrelation by the autocorrelation of the
observed data, with the primary motivation that this deconvolution
would increase the resolution of the objective function and hence

Figure 13. Inversion results for the Marmousi model generated us-
ing the incorrect source wavelet. (a) FWI result. (b) AWI result.
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the spatial resolution of the gradient. This approach is algorithmi-
cally similar to AWI, but does not include normalization in the ob-
jective function; that is, there is no denominator in the equivalent of
equation 4. Our experience is that some form of normalization is
essential in any AWI-like algorithm to produce a useful outcome.
In the forward version of AWI, its omission will lead the algorithm
to tend to increase the amplitudes of the predicted data without limit,
so that all the Wiener coefficients become small. And in the reverse
version of AWI that is directly analogous to Luo and Sava’s (2011)
formulation, omission of some form of normalization will tend to
drive the predicted data toward zero. The best-fitting model, for
the un-normalized reverse method for surface data, will then tend to
evolve toward one that contains no reflectors and that includes a
strong negative vertical velocity gradient, such that no energy reaches
the receivers; appropriately normalized AWI does not suffer from this
problem.
Examination of the adjoint sources in Appendix D for forward

and reverse AWI, normalized and un-normalized weighted cross-
correlation, and deconvolution approaches, shows the mathematical
relationships between these methods. The adjoint sources in equa-
tions D-1 and D-2 for the two methods that are un-normalized differ
significantly from those that are normalized in that they contain
only one term in the adjoint source. The form of these adjoint
sources also demonstrates a systematic progression in complexity
as the method moves from correlation to Wiener filter, from un-nor-
malized to normalized, and from reverse to forward AWI.

Source inversion

Consider a single observed seismic trace d generated by a single
source and a single receiver. Consider also the corresponding pre-
dicted trace p generated using an initial earth model m and an esti-
mated source wavelet s. There are two ways that could be used in
principle to modify this prediction to improve the match to the ob-
served data. We could modify the earth modelm; this is the primary
objective of FWI and AWI. There is a complicated nonlinear rela-
tionship between the model m and the predicted data p, and so
waveform-inversion methods are themselves complicated and are
invariably iterative. We could, however, leave the model unchanged,
and instead modify the source wavelet s. Because the relationship
between the predicted data and the source wavelet is linear, this sec-
ond method is much more straightforward.
For a single source and receiver, and for any nonpathological

model, there will always be a source wavelet that can explain the
observed data, to any required degree of accuracy. The required
wavelet is likely to be acausal, and it may be infinite in time in both
directions, but nonetheless it can provide an accurate explanation of
the observed data without modifying the earth model.
In AWI, we do not use source wavelets that are of infinite dura-

tion; instead, we use Wiener filters to find the best least-squares
finite-length approximation to these infinite-source wavelets. We
can, therefore, regard AWI as performing a form of source inversion
that allows for a different source wavelet for every source-receiver
pair. These effective source wavelets are simply the convolution of
the AWI Wiener filters with the source wavelet used to synthesize
the predicted data. The AWI approach then modifies the earth model
so that these different effective sources evolve toward the true physi-
cal source that was used to acquire the observed data. In this proc-
ess, the source inversion is linear, whereas the earth-model
inversion is nonlinear; like FWI, AWI must, therefore, be iterated,

and the linear source inversion must be recomputed at each
iteration.
The effective source wavelets introduced by AWI are clearly non-

physical because they require a different experiment to have been
performed for each source-receiver pair. Thus, an alternative view of
AWI would be to regard it as a method that involves a form of model
extension that introduces nonphysical sources. The inversion then
modifies the earth model, such that it squeezes this nonphysical ex-
tension out of the final model to produce a physical outcome that
fits the observed data and real-word physics. From this viewpoint,
AWI is immune to cycle skipping because the nonphysical pre-
dicted data always provide a near-perfect fit to the observed data,
and it achieves this by modifying the effective source wavelet trace
by trace.
AWI involves an objective function that contains the Wiener filter

coefficients. These Wiener coefficients are oscillatory, and so it
might be argued that this objective function could reintroduce cycle
skipping. In this objective function though, no comparison is made
between two oscillating signals that might move out of phase. In-
stead, the objective function has regard to the properties of just one
signal, and it forces this signal smoothly and continuously toward
zero lag. Because there is no comparison between different signals
in this objective function, there can be no possibility of cycle skip-
ping between them.
AWI is not the only method that has been proposed, which uses a

form of source inversion to form an objective function that can be
solved to recover the earth model. Pratt and Symes (2002), follow-
ing ideas from Symes (1994), use differential semblance between
different source estimates at a single frequency to form such an ob-
jective function. In a synthetic crosshole experiment in a simple
model, they show that this function has a much broader zone of
attraction than that of conventional FWI, so that this approach
has immunity to cycle skipping. This early work was not developed
further, in part because the approach does not appear to work well
for models that generate more than one arrival (W. W. Symes, per-
sonal communication, 2014). AWI is able to deal successfully with
such models, and this appears to be in part because the AWI ob-
jective function also includes a feature that encourages focusing to-
ward zero lag; such focusing is of course a feature of many other
inversion schemes.
Regarding AWI as a perverse form of source inversion also per-

haps indicates why the method works well when using only simple,
temporal, single-channel, time-invariant Wiener filters. The wave
equation itself is linear in the source wavelet, and it involves a tem-
poral, single-channel, time-invariant convolution of the source
wavelet that is exactly analogous to the operation performed during
AWI. We suspect that the close match between the AWI algorithm
and this characteristic of the wave equation helps to make AWI par-
ticularly effective for seismic inversion.

Matching filters

AWI uses Wiener filters to adapt one data set to another. This is
an entirely general approach, and many other forms of matching
filter might be used to similar effect. We note first that conventional
FWI can also be considered to proceed by using a perverse form
of matching. In FWI, the matching filter is trivial. It operates on
the predicted data by adding the observed data and subtracting
the predicted data. This provides a perfect match to the observed
data. The identity filter is obtained when this matching filter leaves
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the input data unchanged, which means that the observed minus the
predicted data must be zero, and so we arrive at conventional FWI.
With this view of FWI, the matching filter is immune to cycle skip-
ping because the data match is perfect, but the objective function
reintroduces the cycle skipping because it involves the comparison
of two oscillating signals.
We could attempt to construct a similar trivial matching filter in

which the predicted data are multiplied by the observed data and
divided by the predicted data. This also provides a perfect matching
provided that the predicted data are never zero. This is the approach
taken by AWI with the additional feature that the required multipli-
cation and division take place, suitably stabilized to avoid division
by zero, in the temporal frequency domain. Multiplication and di-
vision in the frequency domain are of course equivalent to convo-
lution and deconvolution in the original time domain.
We can then write the problems that FWI and AWI seek to solve,

at least conceptually, as

FWI∶p − d → 0; AWI∶p∕d → 1; (15)

so that FWI acts to force the difference of two data sets to zero,
whereas AWI acts to force the ratio of two data sets to unity,
andWiener filters provide the stabilized least-squares version of this
conceptual division of one data set by the other. If the observed and
predicted data are perfect, that is if the former has no noise and the
latter involves all the correct physics, and if both inversion schemes
are driven to their global minima, then both methods will produce
the same final outcome. However, if these methods are implemented
using a linearized iterative local-descent method, then the routes
that the two methods will follow through model space in their at-
tempts to reach the global minimum will typically be quite different;
one can lead to a cycle-skipped local minimum, whereas the other
can lead successfully to the global minimum. We note also that, if
the data or its simulation is imperfect, then the two methods need
not lead to the same global minimum.
Ma and Hale (2013) introduce a more explicit form of matching

into FWI, using dynamic time warping to match the two data sets.
Unlike AWI, this method and others like it assume that the matching
is bijective and diffeomorphic; that is, they assume that each point
or event in one data set corresponds uniquely and smoothly to an
equivalent point or event in the other. This restriction means that the
predicted data must have the correct number of events present to
match the observed data, and more significantly that geometric com-
plications should have the same topology in both data sets. This
requires events in the two data sets to appear in the same temporal
order, and that caustics, shadows, multipathing, and analogous fea-
tures should appear with similar geometries in both data sets. In com-
plicated models, this represents a significant restriction that is difficult
to ensure in field data; typically, it will require that the starting model
must already provide a close match to the true model, or that the true
model be very simple.
We reiterate that AWI does not assume any relationship between

events in one data set and the other, it does not explicitly match one
event to another, and it is not analogous to the use of short-length
Wiener filters to match local wavelets. Instead, AWI uses a filter that
is typically longer than the trace length to match one entire trace to
another entire trace that may contain significantly different numbers
and categories of events that may arrive in a different temporal
sequence. AWI makes no assumption about starting from a close

match, and it will tend to act to move, to transpose, to create, or
to destroy events in the predicted data as required to match the ob-
served data. In contrast, in conventional seismic processing, most of
the operations that are labeled as matching filters do not behave in
this way; rather, they are designed to operate locally in a more lim-
ited fashion. Long-duration Wiener filters instead operate globally
across a trace, matching every part of one trace into every part of
the other.

Wave-equation migration velocity analysis

Wave-equation migration velocity analysis (WEMVA) is an au-
tomated inversion scheme that seeks to recover the background
macrovelocity model from pure-reflection data (Shen et al.,
2003; Sava and Biondi, 2004). It operates in the image domain
rather than in the data domain that is used in conventional FWI
and in AWI. It does not suffer from cycle skipping, but it cannot
easily deal with surface or interbed multiples, or with other nonpri-
mary arrivals. In 3D, WEMVA is typically more expensive than
FWI or AWI.
Most WEMVA-like schemes involve the concept of a nonphysi-

cal extended model (Symes, 2008), and they setup the inversion
such that models evolve toward physical outcomes. In conventional
WEMVA, the model is extended by introducing a subsurface offset.
This represents nonphysical scattering in the subsurface, whereby an
incident wavefield at one location generates a coeval scattered wave-
field at another location. The inversion is then formulated to focus the
energy to zero subsurface offset, thus producing a physical outcome
in which the incident and scattered wavefields are coincident.
AWI has important features in common with WEMVA, and it

extends the model in an analogous nonphysical way; it is this fea-
ture that makes AWI immune to cycle skipping. In AWI, the Wiener
filters can be regarded as a means of redistributing energy, non-
physically, in time. In AWI, energy arriving at a receiver at a par-
ticular time produces a signal at that receiver that extends to earlier
and later times. These nonphysical arrivals disappear when the filter
becomes a zero-lag delta function; this corresponds to a physical
outcome. Conventional WEMVA involves nonphysical action at
a distance in the subsurface, whereas AWI involves nonphysical in-
teraction across time at the receivers. We can therefore regard AWI
as a data-domain analog of WEMVA that seeks to focus energy —
all energy and not only primary reflections — to zero temporal lag
at all the receivers just as WEMVA seeks to focus primary reflec-
tions to zero spatial lag at all points in the subsurface.
WEMVA, however, has some important disadvantages that are

not shared by AWI. First, WEMVA involves a convolution in the
subsurface in space at all points in the model, for all time steps. In
3D models, this WEMVA convolution can become prohibitively
expensive, especially if subsurface offset is treated as a vector rather
than a scalar quantity. Second, because WEMVA operates in the
image domain, it can properly image only primary events; multiples
of all kinds and other nonprimary events will not focus in the same
velocity model as do the primaries. If nonprimary arrivals are in-
cluded within its input data, then the model recovered by WEMVA
will represent a compromise between the various different velocity
models that fit these various different types of event. In practice, this
can be a serious problem (Mulder, 2008) even when the input data
are nominally free of surface-related multiples, interbed multiples,
and mode conversions. In contrast because AWI operates in the data
domain, it does not suffer from this problem, and it does not require
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data to be preprocessed to remove particular categories of arrival.
Finally, WEMVA is not a high-resolution method. It aims to match
the kinematics of primary reflections, and it does not attempt to fit
detailed waveforms; some version of the latter is normally a require-
ment of methods that attempt to resolve more finely than that of a
single Fresnel zone.

Advanced methods

Several new waveform-inversion methods have appeared recently
that also have abilities to overcome cycle skipping. In common with
AWI, these methods have yet to move substantially beyond the
groups that initially developed them, and until that happens, it will
be difficult for others to assess fully their utility, potential, and lim-
itations.
Biondi and Almomin (2012, 2015) introduce a methodology that

combines a form of WEMVAwith a version of FWI to produce the
method of tomographic FWI (T-FWI). This approach appears able
to combine the high spatial resolution of FWI with the cycle-skip-
ping immunity of WEMVA. In T-FWI, focusing in subsurface spa-
tial offset is replaced by focusing in subsurface temporal offset;
AWI uses a similar approach, but limits its attention only to receiver
locations with a consequent reduction in computational cost. T-FWI
also introduces temporal offset directly into the velocity model and
the wave equation such that the observed data can always be well-
matched by the predicted data. T-FWI appears to work well on syn-
thetic data, and the early success of this method on the Marmousi
model (Biondi and Almomin, 2012) was one of the drivers that
encouraged us to pursue AWI to a successful conclusion. However,
T-FWI also appears to have two disadvantages that are not shared by
AWI: The method is much more computationally demanding than
conventional FWI, especially in 3D, and the observed data require
preprocessing so that only primary arrivals are used within the
WEMVA portion of the inversion.
van Leeuwen and Herrmann (2013) and van Leeuwen et al.

(2014) introduce wavefield reconstruction inversion (WRI) as an
alternative to FWI that is able to circumvent local minima in the
conventional FWI objective function. Like AWI, this method intro-
duces a nonphysical model extension, and then attempts to recover
an earth model by collapsing this extended model onto a physical
model that is still able to explain the observed data. Unlike AWI,
this method extends the model by relaxing the requirement that the
subsurface wavefield should honor the wave equation. The wave
equation is then used to focus this extended model onto a physical
model. In contrast, AWI relaxes the requirement that the wavefield
should honor the wave equation at the receivers. WRI appears to
work well in 2D in the frequency domain; it remains an open ques-
tion as to whether it can be made to work efficiently in 3D, and
whether it can be extended to the anisotropic time-stepping codes
that are commonly used in commercial FWI.
Several authors (Alkhalifah and Choi, 2012; Shah et al., 2012;

Choi and Alkhalifah, 2014) have attempted to solve cycle skipping
during FWI by unwrapping phase in various ways. The most devel-
oped of these approaches appears to be that of Jiao et al. (2015),
who introduce matching pursuit FWI. Automated phase unwrap-
ping of field data is difficult, and although this suite of methods
appears to be promising, their potential has yet to be fully demon-
strated. These approaches do not seem to be obviously related
to AWI; they appear to work best, and perhaps only, for models that

generate clear isolated arrivals, or that can be preprocessed to gen-
erate such an outcome.
AWI, T-FWI, WRI, and phase-unwrapping FWI schemes are all

attempts to overcome the most important limitation of conventional
FWI. All these methods appear able to achieve that on appropriate
synthetic data; the challenge for each of these methods, including
AWI, is to demonstrate them robustly and efficiently on full 3D
field data.

Pathological models

It is possible to devise simple pathological models for which AWI
seemingly behaves inappropriately; however, none of these exam-
ples will easily arise during the practical inversion of real data. We
discuss some of these pathological cases here.
The objective function expressed by equation 4 is insensitive to

the polarity of the predicted trace with respect to the observed trace.
Thus, it might be supposed to be possible for AWI to recover a
model, at the global minimum, for which the polarity of the pre-
dicted data was reversed, perhaps by spuriously reversing the polar-
ity of every reflector for one or more source-receiver pairs. Note
that, for this effect to manifest, it would be necessary to reverse
the polarity of all arrivals on a particular trace; the effect cannot
appear merely by reversing a subset of arrivals, which will always
produce an increased AWI mismatch. In any real-world data set,
there will always be at least one reference arrival that is impossible,
or at least extremely difficult, to reverse using any reasonable physi-
cal model. These include the direct arrival, the primary sea-bottom
reflection, and most primary refractions, head waves, and turning
arrivals. Provided that at least one of these reference arrivals is
present in the field data, then the global minimum will always cor-
respond to a model that also has the correct polarity for all other
events. We note, however, that, unlike most other waveform-inver-
sion methodologies, AWI will deal correctly with a data set within
which a subset of traces have had their polarity spuriously reversed,
or for which the assumed source polarity is erroneous.
A second pathological possibility is apparently obtained when

the predicted and observed data differ only by a constant time shift.
In this case, the Wiener filter appears to consist of one nonzero co-
efficient at a nonzero lag. This circumstance leads to a value of zero
for the expression ð2fI − T2Þw in equation 13, so that the adjoint
source, and hence the calculated gradient, both become zero even
though the earth model is clearly in error. In any real data set, how-
ever, this circumstance will not arise because it rests on an implicit
assumption of infinite bandwidth. More correctly, in a discrete
rather than a continuous formulation, this conclusion assumes that
the bandwidth extends to the Nyquist frequency with amplitudes
that lie well above the level of stabilization applied in deriving
the Wiener filter. In any real observed or simulated data set, the
bandwidth will be finite, and in any discrete data set, the bandwidth
will not extend to the Nyquist frequency at high amplitude. Con-
sequently, the Wiener filter that is obtained by matching two time-
shifted and otherwise identical data sets does not contain only a
single nonzero coefficient. Rather, it consists of a band-limited delta
function of finite temporal duration. This filter does not then lead to
a value of zero in equation 13; rather it produces the correct nonzero
adjoint source, which leads to a finite gradient that continues to in-
dicate the direction required to improve the model. Thus, in any real
problem, this apparent pathology is not manifest. It is worth noting
that, by using an assumption of infinite bandwidth, conventional
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FWI can also be made to produce analogous pathological outcomes
in which the gradient is zero for arbitrarily incorrect earth models.
The final possibility that we consider here is that obtained when

either the observed or predicted data contain no arrivals. Such a cir-
cumstance will of course break AWI, and any practical implementa-
tion will therefore need to deal sensibly with dead traces. More
significantly though is the case of reflection-dominated field data sets
when the starting model is sufficiently smooth that it does not gen-
erate reflections. It might be thought therefore that AWI cannot deal
with this circumstance; Figure 10 demonstrates that it can. All that is
required is that there is some arrival of some kind present in each
predicted data set. This arrival can be a direct arrival, it can be a
water-bottom reflection, it can be a multiple, and indeed it can be
anything that is source generated. The long-duration Wiener filters
used by AWI can and do generate a full suite of reflected arrivals
from one unrelated predicted arrival, and these then serve to bootstrap
AWI by migrating those reflections into the starting model.

Enhancements and developments

Wiener filters are well-understood. They can operate in space
rather than time, they can be extended into two or more dimensions,
they can be time varying, they can be regularized so that they vary
smoothly in some dimensions, and they can be extended so that they
represent a generalized multidimensional convolution that uses a
different operator for every output sample. All these variations po-
tentially lead to variations in the AWI methodology.
Our early numerical experiments appear to show that the tempo-

ral version of AWI that we have presented here is significantly supe-
rior to AWI schemes that use Wiener filters implemented in space
within individual shot records. We speculate that this is because
time-domain convolution arises naturally within the wave equation
if the earth model does not vary with time over the duration of a shot
record, which it does not normally do. In contrast, the earth model
does typically vary over space within the extent of a shot record, so
that spatial convolution does not have the same intimate relationship
to the wave equation. Spatial convolution in the shot domain for field
data will often also be complicated by irregular acquisition geometry,
and by the necessity for multidimensional Wiener filters in 3D sur-
veys. Spatial implementations, however, would perhaps represent one
way that an AWI-like scheme could be configured in the sparse tem-
poral-frequency domain.
Wiener filters that vary in time are widely used in seismic process-

ing. They are an obvious choice around which to build an AWI-like
scheme, although, they do not have the same relationship to the wave
equation that the time-stationaryWiener filter has. If the timewindow
used to construct the time-variant filter is rather short, then this
version of AWI comes more to resemble FWI based on dynamic time
warping. Although the time-variant version of AWI will not be
strictly diffeomorphic, it will begin to map single events in one data
set into single events in the other. A great advantage of conventional
FWI, and of the simple time-invariant AWI method, is that there need
be no initial one-to-one correspondence between events in the pre-
dicted and observed data sets. Indeed, there seldom is such a corre-
spondence because the starting model is typically smooth, whereas
the true earth model is not. A time-variant version of AWI, therefore,
will have nothing to match in the predicted data at late times in typical
starting models, and the method will not then be able to build the
required structure because the time-variant filter will not properly

capture this from the observed data. Using long, time-stationary
Wiener filters for AWI does not suffer from this problem.
The Wiener filters generated by AWI can vary laterally quite rap-

idly. Some form of regularization of the Wiener filters, or of the
adjoint source, can serve to suppress this effect, and Wiener filters
that vary smoothly in space are often used in conventional seismic
processing. It is also possible to configure AWI so that it uses an
objective function other than that expressed in equation 4; all that is
required is that the function serves to drive the Wiener coefficients
toward zero lag, that it is constructed so that it does not also drive
them in some other undesirable direction, for example, toward very
small or very large values, and that the functional itself does not re-
introduce cycle skipping. There are likely to be many such pos-
sibilities.
The AWI method appears to have complete and unconditional

immunity to cycle skipping. This is because it uses an objective
functions that does not form differences of oscillatory functions,
and consequently does not have minima when the predicted data
are shifted by an integer number of cycles with respect to the ob-
served data. This immunity to cycle skipping does not of course
confer immunity to other causes of nonlinearity and local minima
that are unrelated to cycle skipping, and it is probable that at least
some of these other causes will become increasingly important as
the starting velocity model moves further from reality. Only exten-
sive testing using synthetic and field data will ultimately reveal how
far AWI can be pushed before it fails. Our limited tests to date sug-
gest that AWI can be expected to function satisfactorily when start-
ing-model errors are around three times as large as those for which
FWI fails; that is, AWI seems to be able to deal successfully with
starting models that predict data that are incorrect in time by approx-
imately one and a half cycles, whereas FWI will succeed only when
this initial uncertainty lies below half a cycle. In practice, for many
field data sets, the former can be achieved readily by picking stack-
ing velocities on prestack time-migrated reflection data, whereas the
later will more typically often require iterated reflection traveltime
tomography applied to prestack depth-migrated data.

CONCLUSION

AWI appears to provide a form of FWI in the data domain that is
immune to the effects of cycle skipping. It achieves this by extend-
ing the model space nonphysically, so that it becomes of a similar
size to the data space. The extension can be thought of as either
allowing for a different effective source wavelet to be used for each
source-receiver pair, or equivalently by allowing for a nonphysical
interaction across time at the individual receivers that is analogous
to the nonphysical interaction in subsurface offset that is introduced
in WEMVA-like methods. However, in contrast to most other
useful model extensions, AWI is computationally inexpensive and
is straightforward to implement in 3D time-domain codes. It is ap-
plied trace by trace, it requires no communication between different
sources, it requires no additional operations to be undertaken in the
subsurface, it involves only 1D operations, and the model extension
is performed only at the individual receiver positions.
Our analysis does not rule out that there may be other types of

local minima to which AWI might be especially susceptible that are
unrelated to cycle skipping. The synthetic tests presented here, how-
ever, demonstrate that any such susceptibility is not readily mani-
fest, and AWI appears to be effective over a wide range of models
and data sets. Conventional FWI is itself susceptible to various
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types of local minima that are unrelated to cycle skipping. AWI will
undoubtedly be susceptible to at least some of these same issues, but
it is not susceptible to the more serious problem caused by cycle
skipping, and it does not appear to have any obvious new suscep-
tibilities that are not also displayed by conventional FWI.
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APPENDIX A

DERIVATION OF THE REVERSE-AWI GRADIENT
VIA THE ADJOINT-STATE METHOD

To find the gradient of the objective function f with respect to the
model parameters m, where

f ¼ 1

2

kTvk2
kvk2 subject to

v ¼ ðDTDÞ−1DTRu
Au ¼ s

(A-1)

we define Lagrange multipliers λv and λu, and form the Lagrangian
functional L

Lðm; v; uÞ ¼ f þ hλv; v − ðDTDÞ−1DTRui þ hλu;Au − si:
(A-2)

Now, we find the derivatives of the Lagrangian with respect to v
and u

∂L
∂v

¼ 1

vTv
ðT2 − 2IfÞvþ λv

∂L
∂u

¼ −½ðDTDÞ−1DTR�Tλv þ ATλu. (A-3)

Setting these to zero, solving for the Lagrange multipliers, and
substituting these results into the derivative of the Lagrangian with
respect to the model parameters m gives

∂L
∂m

¼
�
∂A
∂m

u
�

T

λu

¼ −uT
�
∂A
∂m

�
T

A−TRTDðDTDÞ−1
�
T2 − 2fI

vTv

�
v; (A-4)

which is the same as the gradient obtained by combining equa-
tions 11 and 14.

APPENDIX B

DERIVATION OF THE ADJOINT SOURCE FOR
FORWARD AWI BY DIRECT DIFFERENTIATION

To derive the expression for the adjoint source δs shown in equa-
tion 13, first, find the differential of the Wiener filter w with respect
to the predicted data p

∂w
∂p

¼ ðPTPÞ−1 ∂P
T

∂p
d − ðPTPÞ−1 ∂P

T

∂p
PðPTPÞ−1PTd

− ðPTPÞ−1PT
∂P
∂p

ðPTPÞ−1PTd: (B-1)

Now because Pw ¼ d, we have PðPTPÞ−1PTd ¼ d. Thus, the
first two terms in equation B-1 cancel, and the remaining term sim-
plifies to give

∂w
∂p

¼ −ðPTPÞ−1PT
∂P
∂p

w ¼ −ðPTPÞ−1PTW; (B-2)

where the last step is obtained because convolution is commutative
so that

∂P
∂p

w ¼ W
∂p
∂p

¼ W; (B-3)

where W is a Toeplitz matrix containing w in each column.
Using the definition of f given in equation 4, and the definition of

the adjoint source given in equation 12, the adjoint source can thus
be written as

δs¼∂f
∂p

¼ 1

ðwTwÞ2
�
wTw

�
T
∂w
∂p

�
T

Tw−ðTwÞTTw∂wT

∂p
w
�
;

(B-4)

and this can be simplified using equation B-2 and the definition of f
to give the final result

δs ¼ WTPðPTPÞ−1
�
2fI − T2

wTw

�
w: (B-5)

APPENDIX C

MODELING AND INVERSION PARAMETERS FOR
SYNTHETIC EXAMPLES

The parameters used for the modeling and inversion are stated
below. These parameters may not be optimal, necessary, or suffi-
cient for a particular outcome.

All examples

The time-domain forward modeling is isotropic acoustic and in-
cludes a variable density parameterized using Gardner’s law. Free-
surface ghosts and all multiples are included. The inversions use
steepest descent, preconditioned using an approximate diagonal
Hessian; the code includes numerous heuristics designed to speed
convergence and mitigate against noise and spurious amplitude mis-
matches — the more important of these are outlined in Warner et
al. (2013). No model-domain regularization was used. For the AWI
inversions, we used a simple reverse AWI algorithm with 10% noise
stabilization, a maximum lag equal to the data length, and a Gaus-
sian weighting function configured so that the objective function is
to be maximized. In all three examples, the weighting function was
the same, and the standard deviation of the Gaussian function was
5% of the maximum lag used.
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Example 1

The model measures 7680 × 2000 mwith a mesh spacing of 40 m.
We used 91 sources and 187 receivers; sources and receivers were
located at a depth of 37.5 m below the free surface giving a peak
amplitude at 10 Hz. The 1D starting model was built by picking typ-
ical moveouts on time-migrated gathers; it increases approximately
linearly from 1550 m∕s at the seabed to 2550 m∕s at 1000 m depth,
then less slowly to reach a velocity of 3250 m∕s at the base of the
model. The source was a Ricker wavelet at 10 Hz. The inversion was
run in the time domain for 200 iterations, using all sources every
iteration and a low-pass filter at 10 Hz.

Example 2

The model measures 20 × 5 km with a mesh spacing of 50 m. We
used 200 sources and 400 receivers; sources were one cell below the
free surface, and receivers were close to the sea bed. The checkers
measure 500 × 500 m, and represent a �10% perturbation of veloc-
ity except in the shallowest section, where the velocity is constrained
not to fall below 1550 m∕s so that the perturbation falls to �7%.
The starting velocity model increases linearly from 1550 m∕s at the
sea bed to 2000 m∕s at the base of the model, and it is approximately
7% lower than the mean of the true model. The source was a Ricker
wavelet at 4 Hz. The inversion was run in the time domain for 50
inversions using all sources every iteration using a single 5 Hz low-
pass filter.

Example 3

Details are as in example 1 except that the source signatures used
were as shown in Figure 11, the starting model was a smoothed
version of the true model, and the inversion was run for 25 iterations
at each of 4, 5, 6, 8, 10, and 12 Hz low-pass filters.

APPENDIX D

OBJECTIVE FUNCTIONS AND ADJOINT SOURCES
FOR RELATED METHODS

Crosscorrelation without normalization
(van Leeuwen and Mulder, 2010)

f ¼ 1

2
kTck2; c ¼ DTp; δs ¼ DT2c: (D-1)

Deconvolution without normalization
(Luo and Sava, 2011)

f¼1

2
kTvk2; v¼ðDTDÞ−1DTp; δs¼DðDTDÞ−1T2v: (D-2)

Crosscorrelation with normalization
(van Leeuwen and Mulder, 2008)

f ¼ 1

2

kTck2
kck2 ; c ¼ DTp; δs ¼ D

�
T2 − 2fI

cTc

�
c: (D-3)

Reverse AWI (this paper)

f¼1

2

kTvk2
kvk2 ; v¼ðDTDÞ−1DTp; δs¼DðDTDÞ

�
T2−2fI
vTv

�
v:

(D-4)

Forward AWI (this paper)

f ¼ 1

2

kTwk2
kwk2 ; w ¼ ðPTPÞ−1PTd;

δs ¼ WTPðPTPÞ−1
�
2fI − T2

wTw

�
w: (D-5)
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