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Abstract

This paper examines the seismic performance of steel buildings with alterna-
tive framing systems subjected to bi-directional ground-motion. Peak drifts
of one-way (perimeter framing) and two-way (space framing) systems are as-
sessed by means of scalar and vector-valued probabilistic methods. Extensive
non-linear response history analyses over idealized 3D structures representing
6- and 9-storey buildings are performed under pairs of linearly scaled ground-
motions. Both far-field and near-field non-pulselike acceleration series are
considered. The spectral acceleration of the geometric mean of the two hor-
izontal components (Sa,GM) is taken as the primary intensity measure (IM)
while four other ground-motion parameters are employed to construct IM-
vectors including: the spectral acceleration ratio (RT3,T1), the spectral shape
parameter (Np), and two frequency content parameters (Tm and To). This
paper shows that incorporating the vector ⟨Sa,GM , Np⟩ into the assessment of
bi-directionally loaded 3D buildings yields up to 40 % lower conditional stan-
dard deviations than a purely scalar formulation at large drift levels while the
vector ⟨Sa,GM , RT3,T1⟩ is more efficient at smaller drifts. The effects of alter-
native framing systems on structural fragilities are found to differ depending
on the number of storeys. For 6-storey structures, consistently higher capac-
ities are observed in two-way layouts with respect to one-way systems but
they are associated with increasing variabilities at larger demand levels. Con-
versely, the 9-storey two-way building experiences 5 % lower mean capacities
than its one-way counterpart. Finally, drift hazard curves are calculated by
combining the building fragilities with idealized ground-motion hazard esti-
mates. The results indicate that one-way buildings experience consistently
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lower drift exceedance rates regardless of the ground-motion type, especially
for drift levels larger than 2 % although the differences are larger for the
9-storey frames in comparison with their 6-storey counterparts. This study
represents a first attempt to implement vector-valued analysis in the context
of bi-directionally loaded structures and its results constitute an important
step towards discerning the most favourable framing system at different seis-
mic performance levels.

Keywords: steel framing systems, bi-directional seismic loads, 3D steel
frames, seismic fragilities, performance-based seismic design, vector-valued
seismic assessment

1. Introduction

Distinct structural systems prevail in different regions of the world de-
pending on the construction skills, history and industrial context of each
particular community. This is the case of Japan on the one hand and North
America and Europe on the other where two distinguishable steel framing
systems have been traditionally employed. Japanese engineers have usually
adopted a two-way (space framing) layout consisting of 3D beam-column
assemblages designed to resist seismic and gravity loads simultaneously [1].
By contrast, American and European seismic codes differentiate clearly be-
tween primary and secondary lateral resisting systems and seek to provide
the primary frames with adequate seismic strength and ductility while the
secondary, or gravity, frames are designed to resist gravity loads only (e.g.
perimeter framing). These secondary frames, which do not contribute signifi-
cantly in terms of base shear or stiffness at low deformation levels, are known
to exhibit large elastic deformation capacities and can enhance the overall
post-elastic response of the building if properly designed [2, 3]. Therefore,
the question arises as to which of the two building configurations (one-way
or two-way frames) has a better performance at different levels of seismic
demand.

Likewise, although the importance of considering bi-directional earth-
quake actions in structural assessments has long been recognised [4, 5] and
the torsional response of non-symmetric buildings has been the subject of
extensive research [6, 7] including the development of simplified assessment
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and modelling procedures [8, 9], comparative studies on the behaviour of dif-
ferent framing systems under bi-directional loads are lacking and no previous
study has taken advantage of the benefits brought about by vector-based ap-
proaches. Liao et al. [10] developed 3D models of 3-storey Moment Resisting
Frame (MRF) buildings with pre and post-Northridge connection details and
used them to evaluate the effects of connection fracture, gravity frame con-
tribution and column deformation on the whole building performance. Al-
though not directly addressing the influence of alternative framing systems,
this study indicated that pre-Northridge buildings have a much higher prob-
ability of failure than the newer designs at all performance levels. Tagawa et
al. [1] evaluated the seismic performance of two 3-storey 3D building mod-
els with one-way and two-way framing through inelastic dynamic analyses.
It was shown that the two-way layout had a smaller mean annual proba-
bility of exceedance for inter-storey drifts of less than 3 % whereas larger
mean annual probabilities of exceedance were observed for greater drifts.
Nevertheless, this study focused only on 3-storey MRFs, used Spectral Ac-
celeration as the single scalar ground-motion intensity measure, and applied
single-component recorded acceleration records at 45o to the building axes.
More recently, Erduran and Ryan [11] examined the response of a 3-storey
Concentrically-Braced (CB) frame building with varying mass eccentricities
under bi-directional loading. Storey drifts from bi-directional excitations
were found to be much larger than those resulting from uni-directional earth-
quake action. Also, it was argued that buildings with CB frames closer to the
mass centre may have the potential for significant peak drift reduction but
no confirmation of this was offered. However, no study incorporated vector-
based approaches for bi-directional shaking and no comparative assessment
of the response of multi-storey mid-rise buildings has been offered.

Given the uncertainties involved, the evaluation of the performance of
alternative framing systems ought to be carried out within an explicit prob-
abilistic framework, the formalization of which came about one and a half
decades ago in the form of guidelines published by the US Federal Emergency
Management Agency (FEMA) [12]. Such probabilistic assessment framework
can be expressed as:

λEDP (x) =

∫

IM
P (EDP > x | IM = im)× |dλIM (im)| (1)

where λEDP (x) is the mean annual rate of exceeding a certain value of EDP ,
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EDP stands for Engineering Demand Parameter and represents the variable
under which judgements can be made in terms of structural performance, and
IM stands for Intensity Measure and defines the ground-motion intensity at
the site under study. In the case of steel MRF, the EDP of choice is cus-
tomarily the maximum inter-storey drift, θmax, due to the strong correlation
between θmax and earthquake damage, while the elastic 5 %-damped Spec-
tral Acceleration at the first structural period, Sa(T1), is usually taken as
the intensity measure thus making IM both site as well as structure specific.
Noteworthy, the first term of the product inside the integral in Equation 1
is commonly referred to as the fragility of the structure. It expresses the
probability of exceeding the EDP value of interest given that the IM ad-
mits a certain value, im. Similarly, the second term inside the integral in
Equation 1 is the site hazard (i.e. the mean annual rate of exceeding a value
of IM). It should be noted that under this definition, im is a scalar quantity
and therefore Equation 1 presupposes that the ground-motion can be well-
characterized by a single parameter.

The possible lack of sufficiency of a single intensity parameter to charac-
terize the ground-motion has lead researchers to express the above mentioned
probabilistic assessment framework in vector form [13]. The sufficiency of an
IM is associated with the degree to which the conditional probability distri-
bution referred to in Equation 1 is independent from other ground-motion
parameters. It is an intuitive remark that a complicated phenomenon such
as an earthquake ground-motion cannot be be described by a single inten-
sity measure, even if this is structure specific in a particular way. With this
purpose, Equation 1 can be reformulated as:

λEDP (x) =

∫

IM1

∫

IM2

P (EDP > x | IM1 = im1, IM2 = im2)×|dλIM1,IM2(im1, im2)|

(2)
which involves two Intensity Measures (IM1 and IM2). The concept can
be extended if more than two intensity measures are considered. By tak-
ing into account more ground-motion parameters, improved estimations of
structural response are expected which should allow for a better performance
assessment. Although vector-valued approaches are conceptually a simple ex-
tension of the scalar case, their implementation in practice has not been well
established [14] and the identification of a suitable vector of IM remains
constrained by the availability of adequate prediction equations and by the
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efficiency of their combination [15]. An efficient IM set will allow for a
reduced variability in the quantification of the structural response, hence de-
creasing the standard error on the sample mean of the EDP and potentially
cutting down the number of analyses required to achieve a given accuracy in
the response estimation. To this end, Faggella et al. [16] performed a prob-
abilistic evaluation of the 3D seismic response of a single reinforced-concrete
building and identified the shortcomings of using Sa(T1) as the only IM .
The authors advocated strongly for the use of vector formulations when 3D
structures are considered. However, they did not perform a vector-IM-based
assessment of probabilistic demands. Similarly, no comparative assessment
of the response of multi-storey mid-rise buildings with different framing lay-
outs have been carried out to date. Especially from a vector-valued seismic
assessment perspective.

In light of the above discussion, the objective of this paper is twofold: i)
first, it seeks to provide a detailed quantification of the benefits of employing
a vector-valued analysis over a scalar formulation when evaluating maximum
inter-storey drifts in 3D buildings, including an appraisal of the suitability
of various vector-IMs for bi-directional seismic actions; and ii) to offer a rig-
orous comparison of the response of steel buildings with alternative framing
configurations by means of vector-valued probabilistic evaluations. To this
end, four vector-IMs related to the ground-motion frequency content and
spectral shape are studied. First, the one-way and two-way structures under
consideration and their corresponding finite element models are presented fol-
lowed by the ground-motion dataset considered. Practical aspects related to
the bi-directional loading and parameter definition are then introduced and
fragility curves as well as fragility surfaces are defined by means of scalar and
vector formulations, respectively. The application of the probabilistic frame-
work to the estimation of drift hazard curves is also presented. This study
constitutes the first attempt to implement a vector-based comparison of the
world’s two most prevailing steel framing systems when subjected to realistic
bi-directional earthquake action. The results presented herein represent an
important step towards identifying the steel framing layout with the most
favourable seismic performance at different demand levels.
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2. Structural systems and earthquake ground-motions

This section describes the buildings under study as well as the simplified
numerical models employed to represent them. Structures of 6 and 9 storeys
with one-way and two-way framing systems are examined. The main char-
acteristics of the ground-motion datasets used, including far-field as well as
non pulselike near-field records, are also introduced below.

2.1. Framing systems
Figure 1 presents the layout of the two main framing systems exam-

ined in this study, namely: one-way and two-way frames. As noted above,
two-way buildings are designed such that all structural elements resist lat-
eral loads. On the other hand, a few selected frames (usually towards the
building perimeter) are designed to sustain the entirety of lateral actions
in one-way buildings while the other frames are assumed to carry gravity
loads only. Symmetric five bay-by-five bay layouts with 5-metre bays and
5 % mass-eccentricity are examined. It is believed that these can offer an
insight into the general behavioural trends of the two building systems anal-
ysed and provide a good basis for future studies incorporating a wider range
of geometric variations. Besides, the symmetric nature of the frames under
study facilitates the analysis of the extent to which different vectors of IM
influence the response estimation. The storey height is kept constant at 3
m while 6-storey and 9-storey buildings are considered making a total of 4
structures. The 6-storey and 9-storey structures were designed to resist a
total base shear of 13 and 10 % their weight, respectively. As noted before
the design of one-way buildings disregarded the stiffness and strength con-
tribution of secondary systems in accordance with common practice in such
cases. W14x38 and W12x35 beams were employed for the lower 4 and upper
2 storeys in 6-storey buildings, respectively. Similarly, W14x38 to W14x30
sections were used for the 9-storey building. Square hollow sections rang-
ing between 400x400x16 mm and 300x300x12.5 mm were employed for the
columns in two-way frames while HEB400 to HEB320 column sections were
used in one-way buildings. More specific details of the frames can be found
elsewhere [17, 18]. The main structural characteristics of the frames are sum-
marized in Table 1 where T1 stands for the period of the first vibration mode
while Vy/Wtot is the yield strength normalized over the total building weight
as obtained from a static non-linear analysis with a constant first mode lat-
eral loading profile along the height of the building.
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The onerous computational demands associated with bi-directional response-
history analyses are alleviated herein by employing equivalent fish-bone mod-
els of reduced number of degrees of freedom to represent the buildings as
schematically depicted in Figure 2. In the case of one-way structures (Fig-
ure 2b), the lateral resisting frames acting primarily in-plane are simulated
by four primary frames with pin-ended beams fully fixed to the columns. In
turn, all the gravity frames are summed up in a single continuous column
connected to the other frames by means of rigid diaphragm constraints. On
the other hand, the two-way framed buildings (Figure 2a) are modelled with
four columns and fully fixed beam-to-column connections at both beam ends.
The adequacy of these simplified models to estimate peak deformations of
multi-storey buildings, including bi-directionally loaded ones, has been ex-
tensively established in previous studies [17, 19, 20]. Fibre-based FE models
were constructed in OpenSees [21] accounting for material and geometric
non-linearities. Force-based elements with at least 60 sectional fibres were
employed to represent all structural elements, including the gravity frames.
A corotational geometric transformation was utilized and a superimposed
load of 3000 N/m2 was assumed for all storeys. In addition, a Bilinear steel
material model was considered with an Elastic Modulus of 210 GPa and 3 %
post-elastic strain hardening. This value of material strain hardening was
assumed based on typical modelling practice [22, 23]. It is worth noting
however that the use of values between 0 and 0.5 % are not expected to have
a notable influence in the response for the range of displacement demands
of interest for the present study, where collapse prediction is not the focus,
as illustrated by [24, 25]. The FE models employed and their fundamental
modes are depicted in Figure 3.

2.2. Ground-motion records

The two sets of acceleration series suggested by the Federal Emergency
Management Agency [26] were employed herein including far-field and near-
field non-pulselike records. All 14 pairs of records in the near-field cate-
gory with no pulses as proposed in [26] were considered as well as the first
16 record pairs with the largest geometric mean peak ground accelerations
(PGAGM) form the far-field set. The original unscaled series available in
the NGA-West2 database [27] were employed. Since this work is concerned
with bi-directional analyses, the axis orientation of the horizontal accelera-
tion components was randomized following the findings of Beyer and Bommer
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[28] who noted that the response to horizontal ground-motion components
with randomly oriented axes can be used for the estimation of unbiased me-
dian EDP responses. This is of particular importance for the near-field
pairs which were consistently reported in the fault-parallel and fault-normal
directions in their original form [26, 27]. Therefore, new pairs of horizontal
acceleration components were defined in this study according to:

(
ax(α)(t)
ay(α)(t)

)
=

[
cos(α) sin(α)
−sin(α) cos(α)

](
ax(t)
ay(t)

)
(3)

where α is the randomized angle of rotation, ax(t) and ay(t) are the original
ground-motion horizontal components in x and y directions, respectively, and
ax(α)(t) and ay(α)(t) are the obtained rotated components. Table 2 summa-
rizes the catalogue of earthquakes employed including their Moment Magni-
tude (Mw), PGA, and α, while their corresponding spectra are presented in
Figure 4.

3. Non-linear response history analyses and intensity measures

A series of non-linear response history analyses were performed on the
FE models described above by linearly scaling each pair of ground-motion
records to pre-defined levels of intensity. The hunt and fill algorithm pro-
posed by Vamvatsikos and Cornell [29, 30] was applied to this effect while
spline interpolation was used to obtain continuous IM versus EDP relation-
ships [30]. Since this paper is concerned with the bi-directional response of
3D models, ground-motion scaling was performed on the spectral accelera-
tion of the geometric mean of the two horizontal components, Sa,GM [28].
This is particularly relevant to the structures considered here since they are
symmetric (i.e. T1 ≈ T2). Besides, Sa,GM is directly applicable for coupling
fragility analysis with hazard estimates [31]. Similarly, the absolute maxi-
mum inter-storey drift in any direction along the height of the building, θmax,
was taken as the EDP . Also, since the interest of this study is on the slight
to extensive damage states that tend to dominate loss estimates rather than
on collapse prediction, a target maximum drift of θmax = 7 % was employed
to set the limits of analysis. As noted by [32], care should be taken when
utilizing linearly scaled ground-motion records within a vector-IM based
framework. This is due to the fact that different intensity measures scale
differently for the same scaling level. However, ground-motion scaling was

8



considered adequate for the present study since its main interest lies in the
identification of behavioural trends for which the preservation of the natural
correlations between IMs is not of primary importance. Furthermore, none
of the secondary IM employed scales with spectral ordinates and therefore
consistency is maintained among all parameter combinations studied.

From a structural engineer’s perspective, the selection of a second inten-
sity measure (IM2 in Equation 2) should be such that the requirements for
more demanding calculations are balanced by an improvement in the expla-
nation of the structural response. To this end, besides the spectral accelera-
tion Sa,GM(T1), four additional ground-motion parameters were employed to
construct vectors of IM , including:

• the spectral acceleration ratio, RT3,T1, which is the ratio between the
spectral accelerations at the third and first structural periods (Sa,GM(T3)
and Sa,GM(T1)), respectively. Given the symmetric nature of the build-
ings analysed where T1 ≈ T2, the third period was selected in order to
consider the effects of higher modes in the structural response while
keeping the estimate of RT3,T1 stable.

• the spectral shape parameter, Np. This parameter was proposed by
Bojórquez and Iervolino [33] and was defined as the average of uni-
directional spectral ordinates normalized by Sa(T1). The efficiency of
the vector ⟨IM1, IM2⟩ = ⟨Sa, Np⟩ has been proved for planar structures
[33]. In the present study, this parameter is extended to bi-directional
ground-motion by operating over the geometric mean of the two hori-
zontal components such that:

Np =
Sa,avg(T1...TN)

Sa,GM(T1)
=

(∏N
i=1 Sa,GM(Ti)

)1/N

Sa,GM(T1)
(4)

where TN is a period that defines the portion of the spectrum to the
right of the elastic period that is considered for the characterization of
the ground-motion. It follows that Np aims to incorporate the effects
of inelastic periods in the ground-motion characterization. A value
of TN = 2T1 and a step of ∆Ti=0.001 second was used herein which
enabled stable estimates of Np to be made. Although ground-motion
models do not currently exist to predict Np, they can be obtained
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on the basis of a prediction equation for spectral accelerations and a
correlation model for different spectral ordinates. Th formulation of
one of such models is shown later in this paper.

• finally the frequency content parameters, Tm and T0, were also in-
cluded in the seismic assessment. Importantly, ground-motion pre-
diction equations have already been developed for the estimation of
Tm and T0 [34]. Also, the Mean Period, Tm of the ground-motion has
been previously found to improve the estimation of peak displacements
in steel structures [35, 36] subjected to one-directional loading. Tm

is calculated by weighting the amplitudes of the Fourier Spectrum as
follows:

Tm =

∑
i
β2
i

1
fi

∑
i
β2
i

, for 0.25 Hz ≤ fi ≤ 20 Hz (5)

where βi is the Fourier Amplitude Coefficient at frequency fi. A mini-
mum frequency step of ∆f ≤ 0.05 Hz is used for the Fourier Transform
in order to get a stable representation of its frequency content as rec-
ommended in [37]. Additionally, the Smoothed Predominant Period,
To, which is based on the 5 %-damped elastic response spectrum rather
than the Fourier spectrum was also evaluated. To is defined as:

To =

∑
i
Ti · ln

(
Sa(Ti)
PGA

)

∑
i
ln
(

Sa(Ti)
PGA

) , for Ti with
Sa

PGA
≥ 1.2, ∆ log Ti ≤ 0.02 (6)

Therefore, only the periods for which Sa ≥ 1.2 PGA are considered in
the calculation of T0 while equal spacing is adopted in the logarithmic
space. As a result, To is more representative of the the high to moder-
ate frequencies in the spectrum.

It is important to note that the calculation of all ground-motion param-
eters have to be carried out in consistency with the bi-directional nature
of the analyses carried out in this study. To this end, the Fourier ampli-
tude coefficients in equation 5 were combined by means of the Euclidean
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norm [34] when calculating Tm while a Geometric Mean spectrum was
used for the computation of To, Np and RT1,T1.

Extensive analyses were performed by subjecting the 3D FE models de-
scribed above to the two sets of ground-motion pairs previously introduced.
Linear ground-motion scaling was applied as outlined in the previous section
and the corresponding peak deformations were recorded. The data gathered
forms the basis for the statistical analyses that follow. The estimation of
fractile capacity relationships for the four models under study at different
damage states and considering both scalar as well as vector intensity mea-
sures for one-way and two-way frames is presented below.

4. Fragility estimations

Probabilistic seismic demand assessment is centred around the estimation
of mean annual rates of exceedance of certain EDP levels according to Equa-
tions 1 and 2. This section deals with the first multiplication terms inside
the integrals of Equations 1 and 2 that express the probability of exceeding a
given value of EDP conditional on the intensity of the ground-motion. This
function corresponds to a fragility curve if a scalar IM is employed and to a
fragility surface if a IM-vector is used.

4.1. Scalar-based fragility curves

When the distribution of the EDP is assumed to be conditional on a
single ground-motion characteristic, a scalar IM can be considered and the
complementary cumulative distribution function, which defines the probabil-
ity P (EDP > x | IM = im), can be estimated directly. Previous statis-
tical analyses have proven the log-normality of fragility curves [38]. Hence,
a log-normal distribution of IM conditional on a given level of EDP can
be fitted to the numerical data [39]. The cumulative distribution function,
P (IM < im | EDP = x), is then used as the fragility function. The method
of moments was applied herein in order to estimate the log-normal distribu-
tion median, µlnIM , and standard deviation, σlnIM [40] for a set of N records
where lnIMi is the i-th capacity value. This procedure is illustrated in Fig-
ure 5 for a limit state defined by θmax = 0.05 and for the four structures
examined in this study.
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Tables 3 and 4 summarize the median capacities and their associated
dispersion values for far-field and near-field records, respectively. Three
limit states associated with slight, moderate and severe damage, namely
θmax = {0.007, 0, 025, 0.05}, are reported. It can be observed from Tables 3
and 4 that, in general, a smaller dispersion is associated with the response
of 6-storey buildings in comparison with 9-storey ones. This can in princi-
ple be explained by the effects of higher modes which increase with struc-
tural height. However, for larger drift demands, a significant portion of this
variability should also be attributed to inelastic period lengthening as will
be argued later with reference to the incorporation of Np in an IM-vector.
Finally, the efficiency of the scalar intensity measure (quantified herein by
σlnIM) decreases significantly as the drift limit increases. This is a direct
consequence of the larger levels of inelastic excursions at higher drifts for
which the first elastic period becomes less relevant. The same observations
hold true also for the case of near-fault records (Table 4).

4.2. Vector-valued fragility surfaces

The proven lack of sufficiency associated with scalar IMs can lead to er-
roneous and biased results, especially in the case of 3D analysis. In order to
avoid these shortcomings and quantify their effects, this section presents the
statistical modelling assumptions adopted for the definition of vector-valued
fragility surfaces. It starts with a preliminary comparison of current mod-
elling alternatives and leads to the comparative assessment of the efficiency
of alternative intensity measures presented later in the paper.

In total, three different statistical modelling approaches were evaluated
in terms of their applicability to the estimation of fragility surfaces of bi-
directionally excited 3D buildings. Firstly, the Logistic Regression initially
proposed by Shome and Cornell [41] was considered. This method was orig-
inally used to characterise the collapse and non-collapse response and was
later employed by Bojórquez et al. [42] to estimate fragilities by treating
(EDP > x) as a binary variable. To this end, a binary response can be
inferred by regressing on the known binary outcomes at each Sa,GM(T1) level
of interest. Hence, the probability of failure can be expressed as:

P (fail | Sa,GM(T1) = sa,GM , IM2 = im2) =
1

1 + e−(b0+b1·im2)
(7)
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where the coefficients b0 and b1 are estimated by means of logistic re-
gression [43] while the probability of exceeding a certain value of EDP for
the non-failure data is calculated using linear regression. Severe inconsisten-
cies arose between results at successive Sa,GM levels when the method was
applied to the dataset generated in this study. These anomalies might have
been caused by the effects of scaling and spline interpolation [30] or the num-
ber of record pairs employed.

Subsequently, the Improved Logistic Regression methodology proposed
by Bojórquez et al. [42] was also evaluated. To this end, regressions were
performed utilizing both primary and secondary intensity measures as esti-
mators such that:

P (fail | Sa,GM(T1) = sa,GM , IM2 = im2) =
1

1 + e−(b0+b1·sa,GM+b2·im2)
(8)

where the coefficients b0, b1 and b2 are calculated using logistic regres-
sion on the whole dataset. Figure 6 illustrates the application of multi-
ple logistic regression to the 6-storey two-way frame using RT3,T1 as sec-
ondary intensity measure. It can be appreciated from this figure that the
values of P (EDP > x | Sa,GM (T1) = sa,GM 1, IM2 = im2) are non zero for
Sa,GM(T1) = 0. This has important implications for the estimation of drift
hazard curves since coupling conservative values of fragility at low levels of
IM with the corresponding high ground-motion hazard at those levels can
lead to significant overestimations of λEDP (x). Similar issues have been iden-
tified by Gehl et al. [14] while using linear regression procedures, instead of
logistic regression, for the response evaluation of planar unreinforced ma-
sonry structures.

Finally, linear regression which can be considered as an extension of scalar
fragility fitting [39], was adopted. In this case, the probability of exceeding
an EDP value is given by:

P (EDP > x | Sa,GM = sa, IM2 = im2) = Φ

(
ln(sa,GM)− (b0 + b1 × ln(im2))

σ̂cap

)

(9)
where bi are regression coefficients, σ̂cap is the standard error of the resid-

uals and Φ is the cumulative density function of the distribution. Figure
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7 presents a fragility surface obtained by means of linear regression for the
6-storey two-way frame considering Np as secondary intensity measure while
Figure 8 presents similar results for RT3,T1 and Sa,GM(T3). The corresponding
linear regression fitting is also shown in Figure 8. The coefficient of deter-
mination R2 is included as a goodness of fit measure. The results are also
summarized in Table 5. Additionally, the p-value of the b1 coefficient defined
as the T-statistic of the null hypothesis for the statistical significance of b1
(i.e. b1=0) is also reported. A small value of p implies the statistical signifi-
cance of the second IM [44].

It should be noted that problems may arise when implementing linear
regression with vectors incorporating strongly correlated IMs. The case of
Sa,GM(T3) is presented in Figures 8c and 8d as an example. It can be seen
from these figures that the positive correlation between IM1 and IM2 has
led to very high values of P (EDP > x) at low Sa,GM(T1) levels which can be
unsuitable for coupling fragilities and hazard estimations. Similar problems
have been reported in [14] when a linear combination of SaT1

and SaT2
was

used as a scalar IM . On the other hand, the dimensionless ratio RT3,T1 com-
puted from the geometric mean spectrum is shown to produce better results
in Figure 8a.

5. Simplified drift hazard estimations

The differences in seismic behaviour associated with alternative framing
systems, including the effects of σlnIM on P (EDP > x), can be further ex-
amined by comparing their responses in terms of drift hazard curves. To this
end, the fragilities calculated above should be combined with ground-motion
hazard estimates so as to obtain mean annual rates of exceedance of EDP
levels. This section outlines the procedure followed in order to obtain the
drift hazard curves employed for comparison purposed. To this end, sim-
plified seismic scenarios associated with punctual sources located at 16 and
4 km from the building site in consistency with the far-field and near-field
assumptions, respectively, are utilized. It is fully recognized that simplifying
the seismic hazard to a point source is not necessarily comparable with a
real Probabilistic Seismic Hazard Assessment for which several sources are
usually considered. Despite these simplifying assumptions, important gen-
eral tendencies can be identified from these analyses as will be discussed

14



in the following sections. In what follows, attention is given to the scalar
IM1 = Sa,GM and the vector ⟨IM1, IM2⟩ = ⟨Sa,GM , Np⟩ for brevity.

In light of the single distance assumption, the Marginal Moment Distri-
bution can be taken as the joint distribution of magnitude and distance. To
this end, a doubly-bounded Gutenberg-Richter exponential distribution with
b = 1.0 was assumed:

FM(m) =
1− e−β(m−mmin)

1− e−β(mmax−mmin)
(10)

where β = ln(10) · b, and mmin = 5 and mmax = 7 are the minimum and
maximum Moment values that the source can produce, respectively. The
Boore and Atkinson [45] ground-motion prediction model was used herein in
light of its simplicity.

The second term in Equations 1 and 2 is known as the mean rate density
(MRD) [13]. Assuming a discretized moment distribution, this MRD can
be estimated as:

MRDIM (im) = νtot

{
∑

M

fIM (im | m, r)PM (m)

}

(11)

where fIM (im | m, r) is the probability density function of the scalar in-
tensity measure given an earthquake scenario of known magnitude, m, and
distance, r.

In the case of a vector-IM formulation, the MRD is defined as:

MRDIM1,IM2(im1, im2) =
N∑

i=1

νi

{∫

R

∫

M

fIM1,IM2 (im1, im2 | m, r) fM,R (m, r) dmdr

}

i

(12)
In contrast with Equation 11, Equation 12 now requires the specification

of a joint distribution of IMs given an earthquake scenario of the form:

fIM1,IM2 (im1, im2 | m, r) (13)

This distribution can be decomposed into the product of a marginal dis-
tribution of IM1, as defined in Equation 2, and a conditional distribution of
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IM2 conditional on IM1. Assuming log-normality, this conditional distribu-
tion can be represented by:

µlnIM2|im1,m,r = µlnIM2|m,r + ρIM1,IM2

σlnIM2|m,r

σlnIM1|m,r

(
lnim1 − µlnIM1|m,r

)
(14)

σlnIM2|im1,m,r = σlnIM2|m,r

√
1− ρ2IM1,IM2

(15)

where µlnIM2|m,r and σlnIM2|m,r are the logarithmic mean and standard
deviation of the marginal distribution of IM2, respectively and ρIM1,IM2 is the
correlation between the two IMs. If Np is considered as secondary intensity
measure, these parameters can be obtained as follows. First, taking the
logarithm of Equation 4 we get:

lnNp =
1

N

N∑

i=1

lnSa,GM (Ti)− lnSa,GM(T1) (16)

Subsequently, the logarithmic mean and variance of the marginal distri-
bution of lnNp can be calculated as:

µlnNp =
1

N

N∑

i=1

µlnSa,GM(Ti) − µlnSa,GM(T1) (17)

V ar[lnNp] = V ar[lnSa,GM,avg(T1...T2)] + V ar[lnSa,GM (T1)]

− 2ρln[Sa,GM,avg(T1...TN)],ln[Sa,GM(T1)]σln[Sa,GM,avg(T1...TN )]σln[Sa,GM (T1)] (18)

where

V ar {ln[Sa,GM,avg(T1...TN )} =

1

N2

N∑

i=1

N∑

j=1

ρln[Sa,GM (Ti],ln[Sa,GM(Tj)]σln[Sa,GM (Ti)]σln[Sa,GM (Tj)] (19)

and
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ρln[Sa,GM,avg(T1...TN)],ln[Sa,GM (T1)] =∑N
i=1 ρln[Sa,GM (Ti],ln[Sa,GM(T1)]σln[Sa,GM (Ti)]√∑N

i=1

∑N
j=1 ρln[Sa,GM (Ti],ln[Sa,GM(Tj)]σln[Sa,GM (Ti)]σln[Sa,GM (Tj)]

(20)

Equation 20 was first deduced in [46] and was recapitulated in [33] to be
used in conjunction with Inoue and Cornell’s correlation relationship between
spectral ordinates at different periods [47]. In the present study, the correla-
tion model proposed by Baker and Jayaram [48] was used for the correlation
between two spectral acceleration values in Equation 20. The applicability of
this correlation model for the geometric mean of two horizontal components
has been documented in [49].

In the original study [33], Np was employed within a seismic hazard assess-
ment framework based on a log-normally distributed hybrid scalar intensity
measure INp instead of performing a full vector-valued probabilistic seis-
mic hazard analysis. INp was defined in [33] as a linear combination of the
logarithm of Np and Sa(T1):

ln(INp) = ln(Sa(T1)) + α · ln(Np) (21)

Such intensity measure emerges from Equation 9 where α corresponds to
−b1 and the mean and standard deviation of the logarithm are the intercept
(b0) of the linear regression and the standard error of the residuals (σcap).
However, the use of such intensity measure would require the site seismic
hazard to be defined as a function of the parameter α and is therefore de-
pendent on the fragility of the structure. In the present study, in order to
allow for a site seismic hazard for the vector-IM, a direct correlation function
between lnSa(T1) and lnNp was sought such that:

COV [lnNp, lnSa,GM(T1)] = COV [lnSa,GM,avg(T1...TN )− lnSa,GM (T1), lnSa,GM (T1)]

= COV [lnSa,GM,avg(T1...TN), lnSa,GM (T1)]− COV [lnSa,GM (T1), lnSa,GM (T1)]
(22)
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⇔ ρlnNp,ln[Sa,GM (T1)] =

ρln[Sa,GM,avg(T1...TN )],ln[Sa,GM(T1)]σln[Sa,GM,avg(T1...TN )]σln[Sa,GM (T1)] − σ2
ln[Sa,GM (T1)]

σlnNpσln[Sa,GM (T1)]

(23)

It should be noted that in the case of a vector of the form ⟨IM1, IM2⟩ =
⟨Sa,GM(T1), RT3,T1⟩, the joint hazard is a simplified version of the above for-
mulation since RT1,T3 can be thought as a rendition of Np with the nominator
consisting of a single value of Sa rather than a geometric mean of multiple
values.

6. Comparison between scalar and vector formulations

This section compares the scalar versus vector performance assessments
of the buildings under consideration. The comparison is firstly done in terms
of scalar and vector fragilities. This is followed by an analysis of their im-
plications on drift hazard estimations. The results presented in this section
will be used in latter parts of this paper to evaluate the relative performance
of alternative building configurations.

6.1. Fragility functions

Fragility surfaces were calculated by means of linear regression for all
structures considered and all IM combinations taking Sa,GM(T1) as the pri-
mary intensity measure. The results of these regression analyses are sum-
marized in Tables 5 and 6 for far-field and near-field record datasets, respec-
tively. In addition, Figures 9 to 11 present representative fragility curves
conditioned on the minimum and maximum values of IM2 within the cor-
responding record set. The values of the slope of the linear regression (b1)
are provided in Tables 5 and 6 along with their p-value, the goodness of fit
measure (R2) and the conditional standard deviation (σ̂cap).

Performing vector-valued fragility analyses with the smoothed predomi-
nant period, To, as the secondary intensity measure was found to provide
no added benefit over a pure scalar calculation. This can be observed from
Tables 5 and 6 where high p-values are associated with To for all framing
configurations. By and large, very little further explanation of the structural
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response is provided by To since the fragility surfaces were conditional almost
exclusively on Sa,GM(T1) when ⟨Sa,GM , To⟩ was used.

On the other hand, including the mean period, Tm (calculated from the
Euclidean norm of the Fourier spectra of the two ground-motion components)
in the IM vector leads to a moderate improvement of the fragility estimations
at lower drifts for the 9-storey building and under far-field ground-motions
only. In this case, the p-values at the θmax = 0.007 limit are 0.106 and 0.136
for two-way and one-way frames, respectively while a reduction of around
5 % in the dispersion is brought about by including Tm in the vector of IMs.
This can be verified by comparing the corresponding values of standard de-
viation reported in Tables 3 and 5. Figure 9 presents the scalar fragility
along with additional fragilities conditional on Tm evaluated at the maxi-
mum and minimum Tm values from the record set employed. The reduction
in the ability of Tm to express additional information at larger drift levels
is evident from the closeness of the fragility curves observed in Figure 9c at
θmax = 0.025 relative to those presented in Figure 9a at θmax = 0.007. Also,
a minor tendency of Tm to be more efficient for the 9-storey two-way frame
than for the 9-storey one-way structure can be observed from Table 5 and
Figures 9b and 9d. Furthermore, the mild benefits described above for the
vector ⟨Sa,GM(T1), Tm⟩ are absent when near-field earthquakes are employed.

The spectral ratio, RT3,T1 , as obtained from the geometric mean spectrum
was found useful at lower drift limits (θmax = 0.007) for all the structures
considered under far-field records. p-values smaller than 0.05 were found in
all cases except for the 6-storey one-way building for which a p-value of 0.16
was observed. Even then, this p-value is the smallest of all secondary IMs
examined at this level of deformation (i.e. θmax = 0.007). The ability of
RT3,T1 to provide additional explanation of the structural response dimin-
ishes with increasing drift values. This is a direct consequence of the higher
mode dependence of the response at small θmax values which period range is
well characterized by RT3,T1. As the deformation increases, plastic behaviour
introduces increasing levels of period lengthening, hence altering the range
of periods governing the structural response. When Tables 3 and 5 are com-
pared at the θmax = 0.007 limit state, the use of the vector ⟨Sa,GM , RT3,T1⟩
results in reductions in the associated standard deviations of over 10 % in
all structures considered with the exception of the 6-storey one-way building
where a 5 % reduction is observed. Figure 10 presents the comparison of
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vector and scalar fragilities associated with θmax = 0.007 for far-field earth-
quakes. Table 5 also shows that approximately 25 % of the variance of the
scalar IM can be explained by the secondary IM (i.e. R2 ≈ 0.25 for RT3,T1)
In contrast, when near-field responses are considered (Table 6), the inclusion
of RT3,T1 as secondary IM seems to bring very little benefit for all 3D build-
ing configurations examined.

A more favourable performance is observed for the spectral shape parame-
ter, Np, obtained from the geometric mean spectrum, at larger deformations.
It can be concluded from the results reported in Tables 5 and 6 that all
fragility estimations at large peak drifts (i.e. θmax = 0.05) are affected signif-
icantly by the consideration of Np as a secondary IM . This is true regardless
of the framing system under consideration and holds for both far-field and
near-field ground-motion sets, although lower improvements are evident for
near-field relative to far-field records. On the other hand, the statistical
significance of Np is rather small for lower levels of peak drift. Very small
p-values are obtained in all θmax = 0.05 cases with reductions in the corre-
sponding standard deviation of up to 40 % in the case of 9-storey buildings
(both one-way and two-way) subjected to far-field acceleration series when
compared with the scalar case (Table 5). However, smaller reductions of
standard deviation, in the order of 20 %, are observed for 6-storey struc-
tures. In the case of near-field actions these reductions are 30 % and 10 %
for 9 and 6-storey buildings, respectively. Additionally, with reference to
the R2 values in Table 5, it should be noted that around 40 % and 66 %
of the variance of the scalar IM can be explained by the secondary IM in
⟨Sa,GM , Np⟩ in the case of 6- and 9-storey structures, respectively. These
values are reduced to 20 % and 50 % for the 6- and 9-storey buildings when
near-field ground-motion pairs are considered (Table 6). The benefits of em-
ploying the vector ⟨Sa,GM , Np⟩ are also evident from Figure 11 where steeper
curves are associated with the vector formulation in comparison with the
scalar case. Furthermore, this figure also exemplifies the improved ability of
this ground-motion parameter to explain the response of the taller 9-storey
structures in comparison with the 6-storey ones. The stronger performance
of Np for 9-storey buildings may indicate that the variability in the response
of these structures is associated with their non-linear response to a greater
degree than for 6-storey structures.
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6.2. Drift hazard curves

Figure 12 presents a typical comparison of the drift hazard curves ob-
tained by means of the scalar (IM = Sa,GM(T1)) and vector (⟨IM1, IM2⟩ =
⟨Sa,GM(T1), Np⟩) models as outlined in Section 5. Results are presented for
far-field and near-field record sets. It is evident from this figure that by con-
sidering the shape factor parameter, Np, as a secondary IM a higher propor-
tion of the structural response is explained, leading to lower drift exceedance
rates, especially at larger peak drift levels (θmax > 0.02). For example, the
consideration of the vector ⟨Sa,GM(T1), Np⟩ reduces the hazard in about 50%
for θmax = 0.05. It is also evident from Figure 12 that the effects of a reduced
dispersion brought about by the secondary IM are larger for far-field than
for near-field records. However, it should be noted that the higher drift haz-
ards associated with near-field events are a direct result of the larger MRD
of the closer seismic source assumed, as described in the previous section.

7. Response comparison of alternative framing systems

From the results presented in previous sections, and summarized in Tables
3 to 6, it cam be observed that different responses are obtained for 6-storey
and 9-storey buildings In the case of 6-storey structures, consistently higher
capacities (i.e. µlnIM around 5 % higher) are observed for two-way framing
systems at all θmax limits for both near-field and far-field records. Conversely,
5 % lower mean capacities are associated with two-way frames in 9-storey
buildings. These trends hold for both near-field non-pulselike as well as far-
field ground-motions. These differences can be attributed to the relative
importance of second order effects in taller structures coupled with the sus-
ceptibility of two-way frames to form plastic hinges almost simultaneously in
all its lateral resisting elements. In comparison, due to their inherent flex-
ibility, the gravity frames present in one-way structures will not experience
plastic demands up to large levels of θmax making one-way systems relatively
more resilient to the effects of increased second-order forces [3].

A number of studies have dealt with the effects of a adequate modelling
of gravity frames in steel structures [50, 51, 52, 53] and there is a consensus
on the higher collapse capacities brought about by the consideration of the
additional stiffness and strength of gravity systems and connection as well as
the benefits of a continuous secondary frame in mitigating the concentration
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of plastic deformation in a single storey. However, these improved responses
have generally been found with reference to 2D models and for θmax values
well above 2 %. By contrast, it is evident from the results presented in Ta-
bles 3 and 4 that, specially for taller buildings, the benefits of a continuous
gravity frame system in enhancing the median building capacities extend to
drift levels as low as θmax = 0.007 and hold for both near-field and far-field
records. These differences are attributed to the effects of the spatial distri-
bution of strength, stiffness and spectral response in one-way systems that
can only be captured through a 3D modelling approach.

Finally, in terms of dispersion (i.e. σlnIM), significantly lower disper-
sions are observed for the 6-storey two-way frame in comparison with its
one-way counterpart for θmax = 0.007 under both near-field and far-field
accelerograms. For all other drift limits, the use of two-way frames is asso-
ciated with relatively higher σlnIM values. Similarly, although comparable
values of dispersion are evident for one-way and two-way 9-storey structures
at θmax = 0.007 and θmax = 0.025, for θmax = 0.05 a significantly larger
variability is evident in the response of two-way buildings (e.g. over 10 %
higher σlnIM values at θmax = 0.05). It is important to note that for a given
median capacity value (i.e. µlnIM), an increase in the dispersion (i.e. higher
σlnIM) results in a higher probability P (EDP > x) for values of Sa,GM(T1)
lower than the median and a lower probability of exceedance associated with
larger Sa,GM(T1) values. This has important implications on the calculation
of λ(EDP > x) as observed by Eads et al. [54] for scalar approaches. If the
results of the fragility function are integrated in accordance with Equation 1,
higher values of P (EDP > x) for low Sa,GM(T1) values will be coupled with
high hazard levels, thus resulting in an increased overall λ(EDP > x). The
same phenomenon is observed here for vector-valued formulations (Equation
2). This lays behind the higher likelihood of exceeding given EDP levels ob-
served in 6-storey two-way structures which have otherwise greater median
capacities than their one-way counterparts and highlights the importance of
an accurate quantification of the dispersions in the structural response.

A direct comparison of the effects of alternative framing configurations,
including the positive reductions in the dispersion σlnIM introduced by the
vector approach, can be established with reference to the drift hazard curves
depicted in Figure 13. To this end, Figures 13a and 13b present a compara-
tive assessment of structures with one-way and two-way framing systems un-
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der far-field and non-pulselike near-field ground-motions, respectively. These
curves have been obtained following the procedure outlined in the previous
section. It can be appreciated from these figures that the responses of 6-
and 9-storey structures follow clear and differentiated trends with higher
hazards associated with 6-storey buildings regardless of the ground-motion
type. Also, it is evident from Figure 13 that one-way buildings experience
consistently lower drift exceedance rates, especially for drift levels larger than
2 %. The smaller drift hazards experienced by one-way systems relative to
two-way frames are more evident for the taller 9-storey structures and be-
come more significant as the drift demand level increases. These results align
well with those reported by Tawaga et al. [1] for a couple of 3-storey struc-
tures subjected to single-component ground-motions who ascribed higher
drift exceedance rates to the two-way layout at drifts larger than 3 %. The
lower variability and slightly higher relative capacities associated with one-
way frames at larger drifts together with the presence of gravity frames that
are able to mitigate the second-order effects in taller structures while at the
same time reducing the concentration of plastic deformations explain the be-
havioural trends reported herein.

8. Conclusions

This paper has examined the response of one-way and two-way steel
framing systems under bi-directional seismic action with reference to 6- and
9-storey buildings. Far-field as well as near-field non-pulselike earthquake
records have been considered. The following findings can be offered in re-
lation to the relative seismic performance of one-way and two-way building
configurations:

• Different tendencies are observed for the fragilities of two-way and one-
way framing systems depending on the number of storeys. In the case
of 6-storey structures, consistently higher capacities are observed for
two-way layouts at all peak drift limits for both near-field and far-field
records. Conversely, 5 % lower mean capacities are obtained for two-
way frames in 9-storey buildings. These differences can be attributed to
the increased effect of second order actions in taller structures coupled
with the susceptibility of two-way frames to the simultaneous formation
of plastic hinges in all its lateral resisting elements.
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• By assuming simplified (single-point source) seismic hazard, higher
drift hazards are obtained for 6-storey buildings in comparison with
their 9-storey counterparts regardless of the ground-motion type or
framing system adopted.

• One-way framing systems experience consistently lower drift exceedance
rates than two-way frames for drift demands of θmax > 0.02. These dif-
ferences between the drift hazards of one-way and two-way buildings
are more evident for 9-storey structures and become more significant as
the deformation demands increase. These trends are attributed to the
lower variability on the response of one-way buildings coupled with the
presence of gravity frames that help to reduce the concentration of plas-
tic deformations and mitigate second-order effects which will be higher
in 9-storey than in 6-storey structures. The stronger performance of
the ground-motion shape parameter, Np, for 9-storey buildings also
points towards a greater influence of plastic deformation patters in the
response of these structures.

In addition, the following conclusions can be drawn regarding the use of
vector-based assessment for bi-directionally loaded structures:

• Linear regression was found to produce more consistent and realistic
vector fragility forms for the cases of the bi-directionally excited 3D
buildings studied herein.

• The inclusion of the spectral shape parameter, Np, calculated herein
from the geometric mean spectrum of the two horizontal components,
significantly reduces the dispersion in the estimation of drift demands
of bi-directionally loaded buildings at large deformation levels. As the
efficiency of the spectral acceleration, Sa,GM , decreases with increasing
levels of non-linear response, the benefits of including a spectral shape
ground-motion parameter like Np, which accounts for longer periods,
become increasingly more evident.

• The improvements on the fragility estimations at larger peak drifts (i.e.
θmax = 0.02) induced by the consideration of Np as a secondary IM
are evident irrespective of the framing system under consideration or
the nature of the ground-motion set employed (i.e. far-field or non-
pulselike near-field). Such improvements were quantified in this study.
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Reductions of up to 40 % were observed in the associated standard
deviation when the vector ⟨Sa,GM , Np⟩ was considered in comparison
to a purely scalar formulation for both one-way and two-way buildings
subjected to far-field acceleration series.

• Around 40 % and 66 % of the variance of the scalar IM can be explained
by the secondary IM in ⟨Sa,GM , Np⟩ in the case of 6- and 9-storey 3D
structures, respectively, subjected to far-field acceleration pairs. These
values are reduced to 20 % and 50 % for the 6- and 9-storey buildings
when near-field ground-motion pairs are considered. These improved
explanations of the bi-directional structural response brought about by
a vector-IM analysis translates into correspondingly lower rates of drift
limits exceedance at higher performance levels.

• At lower drift levels (e.g. θmax = 0.007), the spectral ratio, RT3,T1 ,
produces statistically significant enhancements in the estimation of the
response for all the structures considered under far-field records. The
associated reductions in standard deviation are in the order of 10 %
with respect to scalar formulations. Similarly, approximately 25 % of
the variance of the scalar IM can be explained by RT3,T1 acting as
secondary IM . In contrast, when near-field responses are considered,
the inclusion of RT3,T1 as secondary IM seems to bring limited benefits
for all 3D building configurations examined.

• The improvements associated with the implementation of a full vector
model are larger when far-field records are considered with respect to
non-pulselike far-field ground-motions.

This study constitutes the first attempt to implement a vector-based com-
parison of the response of the most common steel framing configurations cur-
rently employed under realistic bi-directional earthquake action. The results
presented in this paper constitute an important step towards discerning the
steel framing layout with the most favourable seismic performance at different
deformation demand levels while the methods employed provide a compre-
hensive platform to be used by earthquake engineers in future comparative
studies. Although the tendencies documented above are expected to hold for
more irregular structures, further work is needed on this topic. This explo-
rations should include the incorporation of the non-stationary characteristics
of the ground-motion alongside the frequency related parameters employed
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herein in the formulation of IM vectors. All these are matters of on-going
and future research.
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Tables

Table 1: Structural characteristics of the 3D frames considered in this study

Frame ID Number of storeys Structural system T1 (s) Vy/Wtot

6-1W 6 one-way 1.18 0.29
6-2W 6 two-way 1.14 0.31
9-1W 9 one-way 1.43 0.23
9-2W 9 two-way 1.44 0.25
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Table 2: Ground motion record summary. Adapted from [26].

ID No. Rec. Seq. N. Event name Recording Station Mw α (◦ ) PGA (g)
Far-field records

1 125 Friuli, Italy Tolmezzo 6.5 293.30 0.36
2 169 Imperial Valley Delta 6.5 326.09 0.27
3 174 Imperial Valley El Centro Array #11 6.5 45.715 0.38
4 721 Superstition Hills El Centro Imp. Co. 6.5 328.82 0.28
5 725 Superstition Hills Poe Road (temp) 6.5 227.65 0.34
6 752 Loma Prieta Capitola 6.9 35.115 0.45
7 767 Loma Prieta Gilroy Array #3 6.9 100.26 0.44
8 848 Landers Coolwater 7.3 196.88 0.30
9 953 Northridge Beverly Hills - Mulhol 6.7 344.70 0.43
10 960 Northridge Canyon Country-WLC 6.7 347.36 0.41
11 1111 Kobe, Japan Nishi-Akashi 6.9 56.741 0.37
12 1158 Kocaeli, Turkey Duzce 7.5 349.41 0.33
13 1244 Chi-Chi, Taiwan CHY101 7.6 344.58 0.39
14 1485 Chi-Chi, Taiwan TCU045 7.6 174.74 0.49
15 1602 Duzce, Turkey Bolu 7.1 288.10 0.76
16 1633 Manjil, Iran Abbar 7.4 51.079 0.53

Near-field records. No pulse
17 126 Gazli, USSR Karakyr 6.8 151.83 0.70
18 160 Imperial Valley-06 Bonds Corner 6.5 329.66 0.68
19 165 Imperial Valley-06 Chihuahua 6.5 285.19 0.25
20 495 Nahanni, Canada Site 1 6.8 345.42 1.07
21 496 Nahanni, Canada Site 2 6.8 236.07 0.41
22 741 Loma Prieta BRAN 6.9 12.856 0.47
23 753 Loma Prieta Corralitos 6.9 305.69 0.50
24 825 Cape Mendocino Cape Mendocino 7.0 336.24 1.43
25 1004 Northridge-01 LA - Sepulveda VA 6.7 244.34 0.78
26 1048 Northridge-01 Northridge - Saticoy 6.7 272.79 0.40
27 1176 Kocaeli, Turkey Yarimca 7.5 267.53 0.27
28 1504 Chi-Chi, Taiwan TCU067 7.6 141.20 0.39
29 1517 Chi-Chi, Taiwan TCU084 7.6 235.97 0.74
30 2114 Denali, Alaska TAPS Pump Sta. #10 7.6 61.627 0.33
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Table 3: Median EDP capacity and dispersion for IM = Sa,GM (T1) . Far-field records
set.

Building
θmax = 0.007 θmax = 0.025 θmax = 0.05

µlnIM (g) σlnIM µlnIM (g) σlnIM µlnIM (g) σlnIM

6 storey two-way 0.136 0.111 0.576 0.198 1.243 0.273
6 storey one-way 0.128 0.148 0.548 0.154 1.197 0.255
9 storey two-way 0.117 0.200 0.519 0.195 1.242 0.331
9 storey one-way 0.122 0.196 0.540 0.192 1.295 0.297

Table 4: Median EDP capacity and dispersion for IM = Sa,GM (T1) . Near-field records
set.

Building
θmax = 0.007 θmax = 0.025 θmax = 0.05

µlnIM (g) σlnIM µlnIM (g) σlnIM µlnIM (g) σlnIM

6 storey two-way 0.133 0.172 0.608 0.155 1.294 0.271
6 storey one-way 0.124 0.185 0.584 0.164 1.233 0.248
9 storey two-way 0.120 0.161 0.528 0.233 1.175 0.268
9 storey one-way 0.124 0.154 0.550 0.222 1.272 0.272
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Table 5: Vector-valued fragilities linear regression summary. Far-field records set.

θmax = 0.007 θmax = 0.025 θmax = 0.05
IM b1 p R2 σ̂cap b1 p R2 σ̂cap b1 p R2 σ̂cap

6-storey two-way frame
RT3,T1 -0.14 0.050 0.25 0.099 -0.16 0.256 0.09 0.196 0.07 0.714 0.01 0.281
Np 0.11 0.374 0.06 0.111 -0.21 0.342 0.06 0.198 -0.67 0.013 0.36 0.225
Tm 0.13 0.187 0.12 0.107 0.14 0.451 0.04 0.201 -0.20 0.420 0.05 0.276
To 0.13 0.218 0.11 0.108 0.08 0.685 0.01 0.204 0.04 0.898 0.00 0.283

6-storey one-way frame
RT3,T1 -0.08 0.429 0.05 0.149 -0.10 0.321 0.07 0.154 0.02 0.923 0.00 0.264
Np 0.20 0.165 0.13 0.142 -0.15 0.321 0.07 0.154 -0.63 0.006 0.43 0.200
Tm 0.08 0.536 0.03 0.151 0.04 0.767 0.01 0.159 -0.14 0.549 0.03 0.260
To 0.11 0.448 0.04 0.150 0.05 0.729 0.01 0.159 0.17 0.497 0.03 0.259

9-storey two-way frame
RT3,T1 -0.24 0.024 0.32 0.172 -0.10 0.360 0.06 0.196 -0.03 0.875 0.00 0.342
Np 0.07 0.662 0.01 0.206 -0.17 0.241 0.10 0.192 -0.75 0.000 0.67 0.198
Tm 0.28 0.106 0.18 0.188 -0.20 0.246 0.09 0.192 -0.34 0.252 0.09 0.326
To 0.12 0.566 0.02 0.205 -0.18 0.357 0.06 0.196 -0.02 0.949 0.00 0.342

9-storey one-way frame
RT3,T1 -0.21 0.049 0.25 0.176 -0.09 0.396 0.05 0.193 -0.05 0.791 0.01 0.307
Np 0.07 0.647 0.02 0.201 -0.19 0.177 0.13 0.185 -0.67 0.000 0.66 0.179
Tm 0.26 0.136 0.15 0.187 -0.17 0.332 0.07 0.191 -0.29 0.282 0.08 0.295
To 0.13 0.514 0.03 0.200 -0.12 0.540 0.03 0.195 0.01 0.962 0.00 0.308
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Table 6: Vector-valued fragilities linear regression summary. Near-field records set.

θmax = 0.007 θmax = 0.025 θmax = 0.05
IM b1 p R2 σ̂cap b1 p R2 σ̂cap b1 p R2 σ̂cap

6-storey two-way frame
RT3,T1 -0.04 0.717 0.01 0.178 0.10 0.277 0.10 0.153 0.16 0.304 0.09 0.270
Np 0.27 0.295 0.09 0.171 -0.11 0.627 0.02 0.160 -0.65 0.095 0.21 0.250
Tm 0.06 0.542 0.03 0.176 -0.11 0.243 0.11 0.152 -0.20 0.212 0.13 0.264
To 0.01 0.880 0.00 0.179 -0.06 0.380 0.06 0.156 -0.06 0.642 0.02 0.280

6-storey one-way frame
RT3,T1 -0.10 0.324 0.08 0.185 0.04 0.668 0.02 0.169 0.10 0.476 0.04 0.253
Np 0.26 0.287 0.09 0.183 -0.22 0.322 0.08 0.163 -0.57 0.074 0.24 0.225
Tm 0.08 0.486 0.04 0.189 -0.09 0.370 0.07 0.165 -0.19 0.202 0.13 0.241
To 0.01 0.870 0.00 0.192 -0.04 0.578 0.03 0.168 -0.06 0.616 0.02 0.255

9-storey two-way frame
RT3,T1 -0.14 0.074 0.24 0.146 -0.02 0.855 0.00 0.242 0.13 0.346 0.07 0.269
Np 0.41 0.102 0.21 0.149 -0.71 0.046 0.29 0.204 -1.06 0.005 0.49 0.199
Tm 0.06 0.512 0.04 0.165 -0.02 0.905 0.00 0.243 -0.10 0.530 0.03 0.275
To 0.05 0.545 0.03 0.165 -0.00 0.966 0.00 0.243 0.03 0.831 0.00 0.279

9-storey one-way frame
RT3,T1 -0.10 0.205 0.13 0.149 -0.02 0.854 0.00 0.231 0.14 0.301 0.09 0.270
Np 0.34 0.147 0.17 0.146 -0.71 0.025 0.35 0.186 -1.06 0.004 0.52 0.196
Tm 0.03 0.772 0.01 0.159 -0.00 0.980 0.00 0.231 -0.12 0.486 0.04 0.277
To 0.03 0.700 0.01 0.159 0.02 0.882 0.00 0.231 0.02 0.849 0.00 0.283

36



Figures

 
 
 
 
 

 
 

 
 
 

  

5 
@

 5
 m

 

5 @ 5 m 

Two-way framing One-way framing  
(Primary MRF + gravity frames) 

Primary MR system  Nominally pinned connection Fully-rigid connection 

5 
@

 5
 m

 

5 @ 5 m 

Figure 1: Framing systems plan layout.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rigid diaphragm  

(a) Two-way.

 

 

 

 

 

 

 

 

 

 

 

 

 

Rigid diaphragm  Gravity column 
(connections not shown)  

Primary 
resisting system 

Vertically restrained 
supports 

(b) One-way.

Figure 2: Schematic view of simplified 3D models.
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(a) T1=1.14s. (b) T1=1.44s. (c) T1=1.18s. (d) T1=1.43s.

Figure 3: FE models employed and their fundamental vibration modes: (a) 6-storey two-
way, (b) 9-storey two-way, (c) 6-storey one-way, and (d) 9-storey one-way.
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Figure 4: Elastic response spectra of ground-motion records employed. Geometric mean
of two horizontal components rotated according to Table 2.
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(c) 9-storey two-way frame. Far-field.
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(d) 9-storey one-way frame. Far-field.
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(e) 6-storey two-way frame. Near-field.
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(f) 6-storey one-way frame. Near-field.
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(g) 9-storey two-way frame. Near-field.
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Figure 5: IDA curves and fitted log-normal distributions for 5 % peak drift limit.
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Figure 6: Fragility surface obtained by multiple logistic regression. ⟨IM1, IM2⟩ =
⟨Sa,GM (T1), RT3,T1⟩, 6-storey two-way frame, θmax = 0.05 limit.
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Figure 7: Fragility surface obtained by linear regression. ⟨IM1, IM2⟩ = ⟨Sa,GM , Np⟩,
6-storey two-way frame, θmax = 0.05 limit.
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Figure 8: Linear regression for θmax = 0.05 limit, 6-storey two-way frame. Far-field
records.
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(a) Two-way frame, θ = 0.007.
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(b) Two-way frame, θ = 0.05.
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(c) Two-way frame, θ = 0.025.
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(d) One-way frame, θ = 0.025.

Figure 9: Scalar and vector fragility comparison for far-field records. 9-storey buildings.
Dashed black line: scalar IM = Sa,GM , continuous blue and red lines: IM = ⟨Sa,GM , Tm⟩
conditional on minimum and maximum value of Tm in the record set.
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(a) 6-storey two-way frame.
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(b) 6-storey one-way frame.
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(c) 9-storey two-way frame.
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(d) 9-storey one-way frame.

Figure 10: Scalar and vector fragility comparison for θ = 0.007 peak drift limit and far-
field records set. Dashed black line: scalar IM = Sa,GM , continuous blue and red lines:
IM = ⟨Sa,GM , RT3,T1⟩ conditional on minimum and maximum value of RT3,T1 in the
record set.
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(a) 6-storey two-way frame.
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(b) 6-storey one-way frame.
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(c) 9-storey two-way frame.
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(d) 9-storey one-way frame.

Figure 11: Scalar and vector fragility comparison for θ = 0.05 peak drift limit and far-
field records set. Dashed black line: scalar IM = Sa,GM , continuous blue and red lines:
IM = ⟨Sa,GM , Np⟩ conditional on minimum and maximum value of Np in the record set.

45



θmax

0.01 0.02 0.03 0.04 0.05 0.06 0.07

λ
(E

D
P

>
x
)

10-8

10-6

10-4

10-2

100

Vector, IM = ⟨ Sa,GM, Np⟩
Scalar, IM = Sa,GM

(a) Far-field records set

θmax

0.01 0.02 0.03 0.04 0.05 0.06 0.07

λ
(E

D
P

>
x
)

10-8

10-6

10-4

10-2

100

Vector, IM = ⟨ Sa,GM, Np⟩
Scalar, IM = Sa,GM

(b) Near-field records set

Figure 12: Comparison of drift hazard curves obtained with scalar and vector IM . 9-storey
two-way frame.
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Figure 13: Drift hazard curves. IM = ⟨Sa,GM , Np⟩.
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