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ABSTRACT We consider a network composed of a finite set of communicating nodes that send individual
particles to each other, and each particle can carry binary information. Though our main motivation is related
to communications in nanonetworks with electrons that carry magnetic spin as the bipolar information, one
can also imagine that the particles may be molecules that use chirality to convey information. Since it is
difficult for a particle to carry an identifier that conveys the identity of the source or destination, each node
receives particles whose source cannot be ascertained since physical imperfections may result in particles
being directed to the wrong destination in a manner that interferes with the correctly directed particles, and
particles that should arrive at a node may be received by some other node. In addition, noise may randomly
switch the polarity of particles, and in the case of magnetic spin, we can also have the effect of entanglement.
We estimate the error probability in such a multipoint network as a function of the rate of flow of particles,
and the power consumption per communicating pair of nodes. We then design a bipolar detector and show
that it can significantly eliminate the effect of errors.

INDEX TERMS Electron spin, nanonetworks, energy, interference, error probabilities, bipolar detector,
quantum entanglement.

I. INTRODUCTION
Computing devices are composed of modules which carry
out computational steps, whose results need to be com-
municated as inputs to other modules. Thus ‘‘on device’’
computation and communication are intricately related. The
massive and increasing energy use by information and
telecommunication technology reaching 4.7% of the world’s
electricity consumption [19], [20] motivates significant
interest in low power computing communications including
nano-networks at the molecular scale [27]. In addition to
conventional techniques based on smart management of
existing technologies [24], computation and communication
with spins [5], [6], [26] may in the long run find useful
low power applications. In any computation or communica-
tion system, energy consumed per computational step, and
performance including the probability of error which
ultimately affects response times, are intimately related [23],
and many recent applicatons based on massive simula-
tions [21] require intense communications and computation.
Thus one must consider technologies that are require little
energy, and yet result in low error probabilities [8], [13] since

errors will have to be mitigated by hardware redundancy,
temporal redundancy such as retransmissions, or the
reprocessing of data, resulting in additional overhead and
additional energy consumption.

In this paper we consider a network of nodes that
communicate using flows of particles that carry simple
bipolar information: we can think of the particles as electrons,
and we can think of bipolar information as being spins [12].

In the model we consider, the received spins can be
corrupted by three effects: the random switching of polarity
or spin noise [17], the routing of some of the flows to the
wrong receiving node (e.g. due to physical imperfections in
the network) causing interference among distinct streams,
quantum entanglement between particles’ spin, and finally
the injection of noise at the receivers. Since there is no way to
‘‘number or individually identify’’ the successive particles in
a way that weeds out the ones arriving ‘‘accidentally’’ from
the wrong source, or of maintaining all the correctly arriving
particles in sequence [10], the interference we mention takes
the form of misdirected particles arriving to a node, which
may carry a spin polarity different from the intended one.
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Obviously the particles’ spin must be detected at the
receivers [11], [16] and the difference between the original
intentionally imparted spin and the spin of the particles
received at the receiver results in probabilistic errors.
Assuming Poisson flows of particles emanating from the
sources, we compute in Section III the error probability per
particle received for a detector that recognises the polarity of
the particles at the receiver using methods usually asociated
with network performance analysis [1], [2], [4], [9], [22]. The
energy consumption per correctly received particle is also
discussed.

Detection of spins [16] can be achieved with ferromagnetic
devices. Thus in Section IV we suggest a detector based on
two bipolar counters or detectors: one of them increments
its state with arriving positive spins and decrements it with
negative spins, and the other has the opposite behaviour. Both
counters have an identical random decay which limits their
memory span. We show that if the incoming flow of particles
is split equally at the receiver between the two counters,
and the counters are then combined for decision making, the
effect of noise can be eliminated with a finite arrival rate
(current and power) of particles that matches the rate at which
the bipolar detectors delete their memory.

The effect of currents of entangled particles is discussed
and the corresponding current flows are computed
in Section V. We show that if polarity switching errors are
symmetric, then entanglement has no effect on the outcome
of our analysis, both for the primary flows and the flows of
interfering particles.

II. THE MATHEMATICAL MODEL
Consider a network of m communicating nodes where some
node i communicates with another node j by sending to
it a Poisson flow of particles which may have negative or
positive spin, of rate (intensity) R+ij and R−ij , respectively,
so that Rij = R+ij + R−ij . Some fraction fij,k of the flow
directed from i to j is diverted to node k by errors induced
by physical imperfections, causing unwanted interference at
other receivers. The fraction of the flow that is not diverted
and arrives at j is: Fij = 1−

∑
k 6=j fij,k . Due to random effects

in the course of transmission, some of these particles may
change polarity from +1 to −1 with probability Q+ij , and
from negative to positive spin with probability Q−ij . On top
of this, ‘‘noise’’ particles of positive and negative spin also
arrive to the receiver at rates Bj, bj respectively. As a result,
the intensity of the total flow of particles with positive and
negative spin arriving at node j are r+ij and r−ij respectively:

r+ij = Fij[R
+

ij (1− Q
+

ij )+ R
−

ij Q
−

ij ]+ Bj

+

m,m∑
l=1,k=1;l 6=i,k 6=j

flk,j[R
+

lk (1− Q
+

lj )+ R
−

lkQ
−

lj ], (1)

r−ij = Fij[R
−

ij (1− Q
−

ij )+ R
+

ij Q
+

ij ]+ bj

+

m.m∑
l=1,k=1;l 6=i,k 6=j

flk,j[R
−

lk (1− Q
−

lj )+ R
+

lkQ
+

lj ]. (2)

We can write this as the sum of the signal, plus the noise
including the interference:

r+ij = R+ij + Nij, (3)

r−ij = R−ij + nij, (4)

where (r+ij , r
−

ij ) represents the total received signal at j result-
ing from the transmitted signal (R+ij ,R

−

ij ), and the additional
effects totalling (Nij, nij), which include the interference and
the noise Bj, bj:

Nij = −R
+

ij (1− Fij)+ Fij[R
−

ij Q
−

ij − R
+

ij Q
+

ij ]+ Bj

+

m,m∑
l=1,k=1,k 6=j

flk,j[R
+

lk (1− Q
+

lj )+ R
−

lkQ
−

lj ], (5)

nij = −R
−

ij (1− Fij)+ Fij[R
+

ij Q
+

ij − R
−

ij Q
−

ij ]+ bj

+

m,m∑
l=1,k=1,k 6=j

flk,j[R
−

lk (1− Q
−

lj )+ R
+

lkQ
+

lj ]. (6)

Let the total noise rate be βj = Bj + bj, and the total
interference be Iij = I+ij + I

−

ij where:

I+ij =
m,m∑

l=1,k=1,k 6=j

flk,j[R
+

lk (1− Q
+

lj )+ R
−

lkQ
−

lj ], (7)

I−ij =
m,m∑

l=1,k=1,k 6=j

flk,j[R
−

lk (1− Q
−

lj )+ R
+

lkQ
+

lj ]. (8)

In the special case where the source i sends particles to j at
rate 3, assuming all the particles sent initially have positive
spin, the total noise plus interference terms are:

N+ij = −3(1− Fij)−3FijQ
+

ij + Bj + I
+

ij , (9)

n+ij = 3FijQ
+

ij + bj + I
−

ij , (10)

so that under the assumption that the positive and negative
flows of pure noise Bj = bj are of equal rate, and that the
interference positive and negative spike trains are also of
equal rate I+ij = I−ij , we have

N+ij − n
+

ij = −3(1− Fij)− 23FijQ
+

ij , (11)

N+ij + n
+

ij = −3(1− Fij)+ βj + Iij. (12)

Similarly if the source i sends particles to j at rate3, assuming
all the particles sent initially have negative spin, then the total
noise plus interference terms are:

N−ij = 3FijQ
−

ij + Bj + I
+

ij , (13)

n−ij = −3(1− Fij)−3FijQ
−

ij + bj + I
−

ij . (14)

Assuming that the positive and negative flows of pure noise
Bj = bj are of equal intensity, and that the flows of positive
and negative interference particles are also of equal intensity
I+ij = I−ij , we have

N−ij − n
−

ij = 3(1− Fij)+ 23FijQ
−

ij , (15)

N−ij + n
−

ij = 3(1− Fij)+ βj + Iij. (16)
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Remark 1: Under the only condition that Q+ij = Q−ij we see
that N+ij − n

+

ij = n−ij − N
−

ij . Furthermore if also Bj = bj and
I+ij = I−ij , it follows that N

+

ij = n−ij and n+ij = N−ij . These
conditions as a whole will be called the Symmetric System
Conditions.

III. ERROR PROBABILITY FOR A SINGLE
SPIN DETECTOR
Single particle spin detectors have been suggested to detect
polarity when single particles are used to transfer binary data.
Thus it is of interest to predict the probability of error in the
detection of bipolar signals carried by single particles, and
we first consider the case without entangled particles. The
probability that a positive spin particle is sent by the
source i to j is:

Sij =
R+ij
Rij

(17)

and obviously (1 − Sij) is the probability that the sent
particle’s spin is negative. Since Rij is the total rate at which
the sender i sends particles to j, the receiver will expect to
receive them on average each 1/FijRij time units. Thus the
probability that an interfering particle, from noise or other
sources, arrives at j before the particle that was sent from i can
arrive is:

sij =
Iij + bj + Bj

Iij + FijRij + bj + Bj
, (18)

in which case the receiver will interpret the interfering
particle as being the original sent particle. Notice that sij does
not depend on the value of the bipolar random variable Vij
representing the spin of a particle sent from i to j. Also let
vij represent the spin of a received particle.

Since the error probability for the simple detector is due
either to an interfering particle of opposite polarity being
received, or to a change in polarity of the particle that is sent:

Eij = P[vij = −1 ∩ Vij = 1]+ P[vij = 1 ∩ Vij=−1],

= P[vij=−1|Vij=1]Sij + P[vij = 1|Vij=−1](1− Sij),

and

Eij = [
I−ij + bj

Iij + βj
sij + (1− sij)Q

+

ij ]Sij

+ [
I+ij + Bj

Iij + βj
sij + (1− sij)Q

−

ij ](1− Sij). (19)

Result 1: Assuming both spin polarities are equally
probable for the transmitted particles Sij = 1

2 and writing
Qij = Q+ij + Q

−

ij we have:

Eij =
1
2

Iij + βj
FijRij + Iij + βj

+
1
2
(1− sij)Qij. (20)

If the total rate at which the source sends particles is3 = Rij
then:

Eij =
1
2

Iij + βj
3Fij + Iij + βj

+
1
2
(1− sij)Qij. (21)

Result 2 (See Fig. 1): When all the sources have identical
behaviour, and those particles that are diverted as interference
head towards other destinations with equal probability, then
Iij = 3(1− Fij) so that after some algebra we have:

Eij =
1
2
−

1
2
3Fij(1− Qij)
3+ βj

. (22)

Remark 2:We can readily see from (22) that increasing the
rate 3 at which the particles are sent, will reduce the error,
with a lower bound given as follows:

Eminij =
1
2
[1− Fij(1− Qij)] ≤ Eij. (23)

Eminij can only be attained for βj > 0 when 3→+∞.

FIGURE 1. The error probability Eij plotted from (22) against 3 for
Fij (1−Qij ) = 0.8 and three values of βj = 0.1, 1, 10.

A. POWER AND ENERGY
Remark 2 tells us that the error probability Eij can be reduced
by increasing the rate at which particles are transmitted.
However this will obviously come at some cost in terms of
power and energy consumption. From the above discussion
we see that increasing the rate at which particles are
transmitted by a node can result in fewer errors. However,
the increase in 3 will result in greater energy consumption.
If the particles being considered are electrons, and a

field of V volts is used to move the electrons from
the source to the destination node, then the amount of
energy needed per electron will be V Electron-Volts,
or E = V × 1.602176565(35)× 10−19 Joules. Hence the
power consumption for each node to node communication
will be directly proportional to 3, i.e. 5 = 3.E .

Since the bit error probability per particle is Eij, the rate of
correctly received particles is computed via (22) as:

D = 3(1− Eij) =
3

2
+
32Fij(1− Qij)
2(3+ βj)

, (24)

where we recall that Fij is the fraction of the flow sent from i
that does arrive at j. Notice also that the derivative of D with
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respect to 3 is:

∂D
∂3
=

1
2
[1+

32Fij(1− Qij)− 1
(3+ βj)2

]. (25)

Since Fij should not be too small, and will be close to 1
for a properly designed system, and 3 � 1, we see that
in the parameter ranges of interest D will be an increasing
function of 3, which also suggests operating the system at
higher power levels.

IV. NOISE REDUCTION VIA A BIPOLAR DETECTOR
We will now suggest a detection scheme for the spin polarity
which can lead to lower error probabilities based on the
following principle:
• First, at each receiver j, the flows of arriving particles
are channeled with equal probability into two distinct
counters Hij(t), Lij(t). Let Mij(t) = +1,−1 if the
receiver receives a particle at time t that has positive or
negative spin, respectively at time t . Mij(t) = 0 if no
particle arrives at time t .

• The two counters are updated as follows:
– If Mij(t) 6= 0 then either Hij(t) or Lij(t) is

incremented with equal probability;
– If Hij(t) is incremented, then Hij(t+) = max[0,
Hij(t) + Mij(t)] where t+ denotes the instant right
after t , i.e. Hij(t) is incremented by one whenever
a positive spin particle arrives, and decremented by
one (as long as its value is positive) if a negative
spin particle arrives.

– Otherwise, Lij(t+) = max[0,Hij − Sij(t)], so that
positive spin particles will decrement Lij(t) and
increment Hij(t), proceeding in the opposite direc-
tion with the arrival of negative spin particles.

Note that neither counter can have a value which is
negative, and that each one of them receives exactly
one half of the flow arriving at the receiver j.

• Furthermore in order to limit their memory span, when
a counter is positive it depletes its value at rate µ which
represents ‘‘forgetfulness’’ with respect to older events.

The detector Dij(t) then operates as follows:
• If Hij(t) > Lij(t) then Dij(t) detects a +1 spin,
• If Lij(t) > Hij(t), it detects a −1 spin,
• If Hij(t) = Lij(t) then it detects either +1 or −1 at
random with equal probability.

Therefore:

P[Dij(t) = 1]

= P[Hij(t) > Lij(t)]+
1
2
P[Hij(t) = Lij(t)]. (26)

A. ERROR ANALYSIS
With Poisson arrivals for all particles, and exponentially
distributed ‘‘forgetfulness’’, we can show that if Vij < 1 and
cij < 1 then:

lim
t→∞

P[Hij(t) = k] = (1− Cij)Ck
ij , k = 0, 1,.. (27)

lim
t→∞

P[Lij(t) = k] = (1− cij)ckij, k = 0, 1,.. (28)

where:

Cij =
R+ij + Nij

2µ+ R−ij + nij
, cij =

R−ij + nij

2µ+ R+ij + Nij
, (29)

so that we can derive:

Uij = lim
t→∞

P[Hij(t) > Lij(t)] =
Cij(1− cij)
1− Cijcij

, (30)

uij = lim
t→∞

P[Hij(t) < Lij(t)] =
cij(1− Cij)
1− Cijcij

, (31)

lim
t→

P[Hij(t) = Lij(t)] =
1− Cij − cij + Cijcij

1− Cijcij
. (32)

Assuming that we have equally likely polarities for Vij, the
probability of error for Dij(t) is:

eij(t) =
1
2
P[Dij(t) = −1 ∩ Vij = 1]

+
1
2
P[Dij(t) = 1 ∩ Vij = −1], (33)

and asymptotically we have:

eij = lim
t→∞

eij(t) (34)

Now if the Symmetric System Conditions hold then
N+ = n− and n+ = N−, and using Remark 1 we obtain.
Result 3: Under the Symmetric System Conditions, and

assuming that all sent particles have positive spin:

eij =
1
2
−

1
2
Cij − cij
1− Cijcij

=
1
2
−
3

2µ
1
2
Fij(1− Qij). (35)

Note that we must have 3 < 2µ; but if we set 3 as large as
possible, i.e. 3→ 2µ, then eij is minimised:

eminij =
1
2
[1− Fij]+ FijQij ≤ eij. (36)

Proof:We can write:

C+ − c+

1− C+c+

=
32
+ (N+)2+23N+ + 23µ+2µN+ − 2µn+ − (n+)2

4µ2+2µ(N+n+)+ n+N+2µ3−3n+ − n+N+
,

=
3

2µ

3+ N+ + n+ + 2µ+(N+ − n+)3+N
+
+n++2µ
3

2µ+ N+ + n+ +3
],

(37)

resulting in:

C+ − c+

1− C+c+
=

3

2µ
[1+

N+ − n+

3
],

=
3

2µ
[1− (1− Fij)− 2FijQ

+

ij ]

=
3

2µ
Fij(1− 2Q+ij ). (38)

Now because the Symmetric System Conditions imply that
Qij = 2Q+ij the proof is complete.
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Note that eminij is the smallest possible value of the error that
we may expect since it includes just the effect of the fraction
of particles that do not arrive at the receiver, plus those that
do arrive but which switch polarity.
Remark 5: We note that eij does not depend at all on the

‘‘pure noise’’ term βj. Thus the bipolar detector eliminates
the noise term from error probability. Furthermore if we set
βj = 0 in Eij of (22), we obtain eij when 3 = 2µ. Obviously
the bipolar detector allows us to eliminate the noise effect βj
from the error term, without requiring infinite power, i.e. at
the power value 5∗b = 4αµ2.
Remark 6: With the bipolar detector, the system power

need not exceed 5 = 3V Electron-Volts, since at this level
the detection error probability is zero.

V. THE EFFECT OF ENTANGLED PARTICLE PAIRS
Suppose that within each flow that a source i sends to j, there
are also two flows of positive and negative spin entangled
particles of intensities λ+ij , λ

−

ij , where these intensities are
equal so that λij ≡ λ

+

ij = λ
−

ij . As with other particles, some
of these may indeed find their way to j with probability Fij
while others may be diverted to some other channel with
probability fij,k . As before, the probabilities Q+ij and Q−ij
represent the spin switching effect of the fields present in the
channel (i, j), and we denote by r2+ij and re−ij the rate at which
positive and negative spin particles are received from channel
(i, j) at j in the presence of entanglement. Then because the
companion entangled particles are assumed to switch spin in
unison and in opposite direction:
• If, with probability (Fij)2 both entangled particles indeed
go from i to j, then
– The probability that a positive spin particle switches

to negative, inducing its ‘‘partner’’ to switch to
positive, is Q+ij (1 − Q

−

ij ), resulting in no change in
the flows of entangled particles from i to j.

– While the probability that a negative spin particle
switches to positive, with its positive companion
switching the other way under this effect is
Q−ij (1 − Q+ij ) again with no change in the flows of
entangled particles,

– If both are induced to switch by the field in
channel (i, j) with probability Q+ij · Q

−

ij , we will
assume that the result is indeterminate and the
switch may or may not occur, and in both cases
there will be no change in the number and flow of
entangled particles.

• If the particle pairs go into distinct channels with
probability Fij · (1 − Fij) then depending on whether
the positive or negative spin particle that remains in
the channel, as far as this particular channel (i, j) is
concerned they will behave singly; however they will
create correlations with other channels.

• If the particle pairs, rather than entering channel (i, j) go
together into the channel (i, k) with probability (fij,k )2,
then as above, the resulting flow is impervious to the
switching effects of the fields in the channel.

Thus the equations (2), (3) with the inclusion of the effect of
entangled particles become:

re+ij = Fij[(R
+

ij − λij)(1− Q
+

ij )+ (R−ij − λij)Q
−

ij ]

+Fij(1− Fij)λij[Q
−

ij + 1− Q+ij ]+ (Fij)2λij + Bj
(39)

+

m,m∑
l=1,k=1
l 6=i,k 6=j

flk,j[(R
+

lk − λlk )(1− Q
+

lj )+ (R−lk − λlk )Q
−

lj ]

+

m,m∑
l=1,k=1
l 6=i,k 6=j

λlk [(flk,j)2 + flk,j(1− flk,j)(1− Q
+

ij + Q
−

ij )],

(40)

re−ij = Fij(R
−

ij − λij)(1− Q
−

ij )+ (R+ij − λij)Q
+

ij ]

+Fij(1− Fij)λij[Q
+

ij + 1− Q−ij ]+ (Fij)2λij + bj

+

m,m∑
l=1,k=1
l 6=i,k 6=j

flk,j[(R
−

lk − λlk )(1− Q
−

lj )+ (R+lk − λlk )Q
+

lj ]

+

m,m∑
l=1,k=1
l 6=i,k 6=j

λlk [(flk,j)2 + flk,j(1− flk,j)(1− Q
−

lj + Q
+

lj )],

(41)

yielding:

re+ij = Fij[R
+

ij (1− Q
+

ij )+ R
−

ij Q
−

ij ]+ λij(Fij)2(Q
+

ij − Q
−

ij )

+

m,m∑
l=1,k=1
l 6=i,k 6=j

flk,j[R
+

lk (1− Q
+

lj )+ R
−

lkQ
−

lj ]

+

m,m∑
l=1,k=1
l 6=i,k 6=j

λlk (flk,j)2(Q
+

lj − Q
−

lj )+ Bj, (42)

re−ij = Fij[R
−

ij (1− Q
−

ij )+ R
+

ij Q
+

ij ]+ λij(Fij)2(Q
−

ij − Q
+

ij )

+

m,m∑
l=1,k=1
l 6=i,k 6=j

flk,j[R
−

lk (1− Q
−

lj )+ R
+

lkQ
+

lj ]

+

m,m∑
l=1,k=1
l 6=i,k 6=j

λlk (flk,j)2(Q
−

lj − Q
+

lj )+ bj. (43)

Remark 7: If Q+ij = Q−ij for all (i, j) then all the re+ij = r+ij
and re−ij = r−ij term by term, and all the previous results that
were derived without considering the effect of the flows
of entangled particles, are identical when we also have
entangled particles.

VI. CONCLUSION
This paper has focused on the analysis of error probabilities
for nano-communications between a set of interfering of
M nodes which may interfere with each other as they attempt
to communicate via particles that have bipolar spins. We have
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assumed Poisson flows of particles being transmitted and
received, and have included the effects of polarity switches,
the interference between communicating pairs, and noise.

When all the error and noise effects are symmetric, we have
derived the error probability for a simple detector, and the
suggested a novel bipolar detector that eliminates the effects
of noise at finite power as long as noise is symmetric. Power
and energy considerations have also been introduced. We
have also considered the specific effect of entangled particles
and shown that they do not affect the overall results as long
as spin polarity switches are symmetric.

Future work will focus on asymmetric systems, i.e. sys-
tems where the fields which may be viewed as noise result
in asymmetric error probabilities. Also, we should consider
multi-hop communications where a succession of nodes are
traversed, either with a detection at each node and a transmis-
sion of a new flow of particles, or when the same particles
are routed through multiple nodes, but with additional error
effects at each stage.
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