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Abstract—Markov Chain Monte Carlo (MCMC) based methods have been the main tool used for Bayesian Inference by practitioners

and researchers due to their flexibility and theoretical properties that guarantee unbiased sampling-based estimates. Nevertheless,

with the availability of large data sets and the constant need to develop more complex models that better capture the targeted problem,

significant computational challenges have been presented. Current approaches, based on multi-core CPUs, GPUs, and FPGAs, aim to

accelerate the execution time of the MCMC methods using subsampling techniques or custom precision arithmetic, resulting to biased

estimates. In this work, a novel FPGA-based construction is proposed that utilises the custom precision support of FPGA devices in

order to accelerate the computations, guaranteeing at the same time asymptotically unbiased estimates. Key to this approach is the

extension of the parameter space by an extra parameter that indicates the required precision in the computation of the likelihood of a

data point. The work proposes an FPGA architecture for the above algorithm, as well as discuss its tuning for maximising the

performance of the system. The performance of the FPGA-mapped sampler is evaluated using two Bayesian logistic regression case

studies of varying complexity, which show significant speedups compared to existing FPGA- and CPU-based works that utilise double

floating point arithmetic, without any bias on the sampling-based estimates.

Index Terms—Field Programmable Gate Array, Markov Chain Monte Carlo, Custom Arithmetic Precision, Logistic Regression, MNIST

Database
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1 INTRODUCTION

BAYESIAN methods play a central role in modern Ma-
chine Learning mainly due to their ability to capture un-

certainty in parameter estimation [1]. A key step in Bayesian
inference is the sampling from an arbitrary probability
distribution [2]–[5]. Markov chain Monte Carlo (MCMC;
Chapter 6 of [3]) method is one of the most popular and
successful tools to draw samples effectively from arbitrary
probability distributions in Bayesian inference problems.
For this reason, it has been widely used in a range of
statistical applications, including computational physics,
population genetics and statistical classifications [2], [4], [6].

The MCMC algorithms allow sampling from a large class
of distributions and scales well with the dimensionality of
the sample space. They are often used to tackle the problem
of sampling from a probability distribution known up to a
normalizing constant, with the purpose of using the gen-
erated samples to estimate otherwise intractable integrals
(this task is known as Monte Carlo integration). For the
estimation of the above integrals, the MCMC algorithms
need to estimate how well the data are explained by the
sampled parameters (i.e. likelihood function estimation),
which becomes the dominant computational bottleneck
when large datasets are targeted. Thus, speeding up the
likelihood computation has attracted the focus in academia
and industry in order to allow the application of MCMC
to models with large-scale dataset. Currently, the lack of
sufficiently fast MCMC methods limits their applicability
in many modern applications like genetics and machine
learning, and this situation is bound to get worse given the
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increasing adoption of big data in many fields of industry
and research.

This challenge has motivated approximate MCMC ap-
proaches [7]–[10] that are based on approximations of
the target distribution. A summary and review of current
MCMC methods used for large datasets can be found in [11].
Most of them tend to use subsampling based approaches to
provide a faster estimation of the likelihood for only a subset
of the whole data [12]–[15]. Other recent works focus on the
computation engine, and investigate the calculation of the
likelihood function based on custom precision arithmetic in
order to achieve low latency and allow for more parallelism
for a given set of hardware resources. However, both ap-
proaches lead to biased estimates that exhibit large variance
due to the approximations of the target distribution. Even
though a controlled biased estimate can be accepted in cer-
tain applications [16], there is a large number of applications
where unbiased estimates 1 of the given parameters of the
sampling distribution are required, and MCMC algorithms
are expected to perform exact inference in these problems
[17].

In this work we are focusing on problems that are
compute-bounded, having the evaluation of the likelihood
function as the limiting performance factor. Towards ad-
dressing this problem, a novel MCMC construction is pro-
posed, the custom-precision firefly MCMC (CF-MCMC),
that samples from the exact posterior distribution even
though it operates under a custom precision regime, and
its implementation in an FPGA device. The key idea behind
this work, that enables custom precision arithmetic in the

1. Please note that the estimates are at best asymptotically unbiased
for MCMC [3]. In the rest of the paper, for brevity and clarity, the term
“unbiased” is used instead of “asymptotically unbiased”.
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computation of the likelihood function, is the introduction
of an extra parameter in the problem parameter space that
models the mode of the computations, i.e. the arithmetic
precision, in the calculation of the likelihood function. The
paper shows that by properly sampling the new augmented
space, unbiased estimates of the parameter of the distribu-
tion are computed even though part of the computations are
performed under custom precision arithmetic.

This article extends our prior work [18], by (1) investigat-
ing and comparing alternative custom precision likelihood
construction approximates targeting improved performance
(i.e. effective samples per second) and (2) proposing a
method to maximize the performance of the algorithm by
selecting the optimal arithmetic precision based on perform-
ing short MCMC pre-runs on a set of candidate precisions.
A summary of the main contributions of this work are as
follows:

• A custom-precision firefly MCMC (CF-MCMC) al-
gorithm which guarantees unbiased sampling and
custom precision arithmetic, leading to significant
performance gains;

• An optimised FPGA-based implementation of the
CF-MCMC algorithm, that capitalises on the nature
of FPGA devices to support custom arithmetic preci-
sion;

• A novel methodology for the construction of tight
lower bound functions of the target probability dis-
tribution function based on the selection of the
rounding mode of the FPGA arithmetic operators
in combination with verification tools for modelling
numerical behaviour (i.e. Gappa++) in order to max-
imise the performance of the proposed algorithm;

• A methodology for selecting the custom arithmetic
precision of the system that would maximise its per-
formance based on the system’s performance model
and the estimates of the parameters from pre-runs.

2 BACKGROUND

2.1 Markov Chain Monte Carlo

In scientific computing, we often need to compute some
integrals in a very high dimensional space such as:

I(f) =
∫

f(θ)p(θ)dθ (1)

The probability distribution p(θ) i.e. the target density, can
be a distribution from statistical physics or a conditional
distribution arising in data modelling - for example, the
posterior probability of a model’s parameters given some
observed data, where f(θ) is the function of interest.

In the field of statistics, these integrals are vital for
calculating the expectation or expected values of distribu-
tions. However many functions and distributions cannot
be integrated analytically especially for higher-dimensional
integrals. For most probabilistic models of practical interest,
these expectations cannot be evaluated by exact methods.
In these cases, a general and powerful framework, i.e. the
Markov chain Monte Carlo (MCMC) method, is employed,
which can be used to generate samples from any given
probability distribution. Using the generated samples, the

integral I(f) can be approximated by tractable sums that
converge (as the number of samples Ns tends to infinity) to
I(f). The following central limit theorem holds for suitable
test functions f under weak assumptions [19]:

Ĩ(f) =
1

Ns

Ns
∑

n=1

f(θn) −→ Normal(I(f),σ2

lim(f)) (2)

i.e. the sum is an asymptotically unbiased estimator of the
integral I(f) [3].

MCMC generates samples from the probability distri-
bution p(θ) by sequentially constructing a Markov chain
that satisfies (2). In practice it is often advisable to discard
some initial states of the chain (throwing away a number
of iterations at the beginning of an MCMC run is often
called “burn-in”), in order to reduce the initialisation bias.
In this work, the parameters of interest are denoted by θ
of D-dimensions, and it is assumed that N data points
{xn}

N
n=1

(with each component xn as a vector) have been
observed. An MCMC sampler makes transitions from a
given θ to a new θ′ such that the posterior distribution
p(θ | {xn}

N
n=1

) remains invariant. Consider the most com-
monly used MCMC algorithm (Metropolis MCMC; Chapter
7.3 of [3]) in Algorithm 1. In each iteration, a proposed move
of the chain is considered, by using a proposal such as a
Gaussian random walk ( line 2) to generate the new θ′ that
is accepted or rejected with the probability based on the
ratio of the posterior probabilities (i.e. how well the new
value explains the data) (line 4-9). The main computation
load lies in the evaluation of the full posterior probability
at every iteration in line 3. Using the Bayesian theorem and
assuming that the data {xn}

N
n=1

are i.i.d. (it is often assumed
in real applications) and θ has the prior p(θ), the posterior
distribution breaks down into a product of the likelihood of
each data point i.e. p(xn | θ) as:

p(θ | {xn}
N
n=1

) ∝ p(θ)
N
∏

n=1

p(xn | θ) (3)

For notational convenience, we write the nth likelihood term
as

Ln(θ) = p(xn | θ) (4)

Although MCMC generates statistically consistent sam-
ples from the target distribution, the samples are correlated
due to the use of a Markov chain. This dependence leads
to an increase in asymptotic variance σ2

lim of the MCMC
estimate in (2), compared to the case where independent
samples of the target distribution are used. This loss in
efficiency can be quantified by the Effective Sample Size
(ESS) [20] in (5):

ESS = Ns/(1 + 2
k
∑

j=1

ρ(j)) (5)

where Ns is the number of post burn-in MCMC samples and
∑k

j=1
ρ(j) is the sum of the first k monotone sample auto-

correlations. The ESS estimates the “effective” number of
samples, which is always lower than Ns. Thus the adopted
performance metric for MCMC samplers is ESS/sec, which
combines raw sampling speed (runtime) and ESS [20].
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ALGORITHM 1: Metropolis MCMC

Input: initial setting θ0, number of samples Ns;
Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do
2: Propose θ′ ∼ θi−1+Normal(0, s2ID); // a random

walk proposal with step size s.

3: Compute a =
p(θ′ | {xn}

N
n=1

)

p(θi−1 | {xn}
N
n=1

)
;

4: u ∼ Uniform(0,1);
5: if u ≤ a then
6: θi = θ′;
7: else
8: θi = θi−1;
9: end if

10: end for

2.2 Likelihood Computation Acceleration

For problems with large data-set, the evaluation of all N
likelihoods in (3) dominates the computational cost. The
increased computational time lies in the complete scan of
the data at each iteration through likelihood evaluations.
Significant effort has been recently spent on proposing ap-
proximate methods focusing on how to minimize the cost of
evaluating the full likelihood.

2.2.1 Data Subsampling

Many recent works are based on subsampling methods.
These approaches use subsets of data to provide a faster
estimation of the likelihood in which only a fraction of the
whole data set is employed to estimate the full likelihood.
[12] introduce an approximate Metropolis-Hasting rule with
controlled bias that allows accepting or rejecting samples
with high confidence using only a fraction of the data. [13]
propose an adaptive subsampling technique which is an
alternative approximate implementation to [12] that only
requires evaluating the likelihood of a random subset of the
data. This algorithm is a more robust approach compared to
[12] and can provide estimates under a user-controlled error.
However, both algorithms in [12] and [13] are approximate,
and they rely on a bound for the difference between the
log-likelihood contributions at the proposed and current
sample, and that of the control variates [21]. [15] propose a
subsampling of the data based on the contribution on each
likelihood term, which by a bias-correction can be turned
into an unbiased estimator of the likelihood function. This
algorithm needs to build a surrogate of the true likelihood,
using either a Gaussian process or a spline approximation.
As such, it requires computing the surrogate likelihood for
all data before running the subsampling step, thus intro-
ducing another costly requirement. [14] present an auxiliary
variable MCMC algorithm that also queries the likelihoods
of a small subset of the data but achieves exact posterior
distribution. The fundamental assumption of this approach
is that each product term in the likelihood can be approx-
imated from below by a function easier to compute. The
drawback of this method lies in the construction of these
functions as the quality of the bound depends on the target
distribution. Furthermore, the authors have demonstrated

that an acceleration is only achieved when the approxima-
tion is tight enough.

2.2.2 Specialised Hardware Approaches

When running MCMC methods in computational devices
such as GPUs and FPGAs, relaxing the requirement for high
precision allows the MCMC algorithms to execute faster
and with less energy. By utilising low precision (custom
floating point) datapaths, it consumes fewer resources and
leads to a higher degree of parallelism compared to full
precision (double floating point) datapaths for a fixed area
resource. As such, recent works that target GPUs and FPGAs
have been investigating the utilisation of custom arithmetic
precision for the estimation of the likelihood. However,
departing from double precision arithmetic for likelihood
evaluation leads to biased estimates with respect to sys-
tems that employ double precision arithmetic throughout
the computations, because of the approximations in each
likelihood term. When exact estimates are required, the util-
isation of high precision data-paths with lower performance
is unavoidable.

Previous works on FPGAs using custom precision can be
found in [16], [17], [22], [23]. [23] propose the use of custom
precision arithmetic for population-based MCMC methods
where multiple parallel chains are used to improve the
mixing properties of the chain. In [22], high- and low- pre-
cision estimations are compared during run-time using the
Kolmogorov-Smirnoff metric and the precision is adapted
such that the distribution of the custom precision estimate
does not deviate more than a user specified thershold from
the high-precision distribution estimate. However, placing
such a threshold does not limit the bias in the estimate. [17]
employ an auxiliary mixed precision run to correct the bias
in the output estimates. However, their method requires
knowledge of the function of interest during the design
of the system, and as such the generated samples cannot
be used for other estimates. [16] propose a method under
which they can estimate using short pre-runs of the system
the bias of the estimate under various custom precision
schemes. The final run is performed utilising the lowest
possible precision that does not violate the user’s acceptable
bias at the estimate. In summary, the above methods do not
provide any guarantees of an unbiased estimate, and thus
are not applicable in applications where such guarantees are
required.

This work is focused on the acceleration of the like-
lihood function evaluation part of the MCMC algorithm,
but in relation to the existing works, the proposed method
guarantees unbiased estimates even when custom precision
arithmetic is employed for the generation of the samples.
The work is based on the underlying idea initially proposed
in [14], and we adapt it to the custom hardware world
for allowing the use of custom precision approximates in
the probability distribution evaluation without leading to
biased estimates. To the best of our knowledge, this is the
first work to produce and guarantee an unbiased MCMC
estimation using mixed precision designs.
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3 MIXED PRECISION MCMC METHODOLOGY

3.1 Custom-Precision Firefly MCMC (CF-MCMC)

On each iteration of MCMC, the likelihood term for each
data point must be evaluated to obtain the target density,
which is the most computation expensive part of the algo-
rithm. [14] proposed Firefly Monte Carlo (FlyMC), which
introduces an auxiliary variable for each observation which
determines whether it should be included in the exact eval-
uation of the posterior distribution or not. A lower bound
function for each likelihood term caters for the observations
that are not included in the evaluation of the posterior, and
an extra sampling step is included in the algorithm in order
to sample the above indication parameter. As such, FlyMC
generates samples from the exact target posterior rather
than from an approximation distribution. Nevertheless, the
drawback of FlyMC is that useful lower bounds can be
difficult to obtain for many problems. Moreover, [14] have
shown that the algorithm’s performance depends on the
tightness of the bound; it only achieves significant gains
when computational light and tight bounds are applicable.
The idea of using lower bounds to reduce the cost of MCMC
has been exploited previously in [24]; [11] (Section 4.3) pro-
pose construction of the lower bound that avoids specifying
a resampling fraction, but it requires the integrals of the
exponents of the lower bound functions to be tractable.

This work is based on the same principle as the FlyMC,
but the introduced auxiliary parameter is utilised to indicate
whether or not the likelihood computation for each data
point is performed under double precision or custom pre-
cision regime. Thus, instead of requiring the derivation and
use of approximate functions for the likelihood terms, the
work utilises custom precision approximations and utilize
precision-related tools to guarantee that these approxima-
tions are indeed a lower bound to the true likelihood term
(which is a requirement for [14] to generate samples from
the posterior distribution), removing the need to manually
design the approximation function as in FlyMC. Thus, the
proposed framework produces lower bounds automatically
regardless of the class of problem.

In the rest of the paper, LDn(θ) and LCn(θ) denote
the double precision likelihood term and the custom preci-
sion lower bound of the likelihood of the nth data point,
respectively. For each data point xn, a binary auxiliary
variable zn ∈ {0, 1} is introduced, indicating the type of the
likelihood term computation i.e. double or custom precision.
Assuming that LCn(θ) has been constructed such as it is
always less than the double precision likelihood LDn(θ),
i.e. LCn(θ) ≤ LDn(θ) (such construction is shown later on
in the paper), then each zn is modelled to have the following
Bernoulli distribution conditioned on the relative difference
between these two precision values:

zn ∼ Bernoulli(1− LCn(θ)/LDn(θ)) (6)

The augmented posterior distribution is shown below:

p(θ, {zn}
N
n=1

| {xn}
N
n=1

) ∝ p(θ)
N
∏

n=1

p(xn | θ)p(zn | xn, θ)

(7)

As in other auxiliary variable methods, this augmentation
does not damage the target distribution in (3):

∑

z1

...
∑

zN

p(θ)
N
∏

n=1

p(xn | θ)p(zn | xn, θ)

= p(θ)
N
∏

n=1

p(xn | θ)
∑

zn

p(zn | xn, θ)

= p(θ)
N
∏

n=1

p(xn | θ)

(8)

Therefore, the marginal distribution over θ in (7) is still the
correct posterior distribution given in Equation (3).

Consider each product of the joint distribution:

p(xn | θ)p(zn | xn, θ)

= LDn(θ)[
LDn(θ)− LCn(θ)

LDn(θ)
]zn [

LCn(θ)

LDn(θ)
]1−zn

=

{

LDn(θ)− LCn(θ) if zn = 1

LCn(θ) if zn = 0
.

(9)

Please note that the double precision likelihood LDn(θ)
now only appears in those data (let’s call them “bright data”
to follow FlyMC terminology) for which zn = 1. At any
given iteration, the data points for which zn = 0 (let’s call
them “dark data”), we compute their likelihoods in reduced
precision. Therefore, the full likelihood is now given by:

L(θ) =
zi=1
∏

i

(LDi(θ)− LCi(θ)) ∗
zj=0
∏

j

LCj(θ) (10)

This algorithm can be seen as shifting the computational
burden from evaluating LDn(θ) to evaluating LCn(θ) plus
a step to sample this new parameter. The computational
gains are coming from evaluating some likelihoods in cus-
tom precision instead of utilising double precision in all
likelihood evaluations.

For the rest of the paper, the above proposed algorithm
is called custom-precision firefly MCMC (CF-MCMC) algo-
rithm and its steps are shown in Algorithm 2. The overhead
of introducing a sampling stage of the auxiliary variable
zn, has a small penalty in the performance of the algorithm
as this resampling is performed only for a random fixed-
size subset of the data [14]. This results from the fact that
at every iteration most of the binary variables are kept
unchanged. The sampling step for zn is shown in lines 8-11
and 14-19 of Algorithm 2, which is performed immediately
after the computation of the likelihood. Since the likelihoods
of the bright data points have already been evaluated in
the MCMC step of line 7, the implementation of the algo-
rithm can reuse these values and resample all the instances
that correspond to “bright data” points without any extra
computational cost. As only few zn variables that zn = 0
change in each iteration (assuming a tight lower bound),
the resampling of the dark points’ variables is performed
at a fixed rate (1/ResampleFraction as shown in line 15),
to avoid computing the full precision likelihoods for all the
dark data in each iteration2. The above partial resampling
leads to a chain with slower mixing rate. However, as

2. Setting the value of ResampleFraction is discussed in Section 4.
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ALGORITHM 2: CF-MCMC Algorithm

Input: initial setting θ0 and {zn}
N
n=1

, Ns;
Output: parameter samples θi, i = 1, ..., Ns;

1: for i = 1 to Ns do
2: Propose θ′ ∼ θi−1+Normal(0, s2ID);
3: L(θ′) = 1; // likelihood initialization
4: for n = 1 to N do
5: u1 ∼ Uniform(0,1);
6: if zn = 1 then
7: // likelihood computation for bright data

L(θ′) = L(θ′) ∗ (LDn(θ′)− LCn(θ′));
8: // zn sampling
9: if 1− LCn(θ′)/LDn(θ′) ≤ u1 then

10: zn = 0;
11: end if
12: else
13: // likelihood computation for dark data

L(θ′) = L(θ′) ∗ LCn(θ′);
14: // partial sampling of zn for dark data
15: if n%ResampleFraction =

RandInteger(1, ResampleFraction) then
16: if 1− LCn(θ′)/LDn(θ′) > u1 then
17: zn = 1;
18: end if
19: end if
20: end if
21: end for

22: Compute a =
L(θ′)

L(θi−1)
;

23: u2 ∼ Uniform(0,1);
24: if u2 ≤ a then
25: θi = θ′;
26: else
27: θi = θi−1;
28: end if
29: end for

indicated in [14], the approach works well in practice as
the bottleneck for mixing is usually in the space of θ. For a
given budget in likelihood evaluations, allowing more steps
in the θ space is intuitively likely to reduce initialization bias
faster than resampling all variables at each iteration.

3.2 Lower Bound Function Construction

In order for the samples to come from the original poste-
rior distribution when the augmented posterior distribution
is utilised, the custom precision likelihood LCn(θ) is re-
quired to be a lower bound on the full precision likelihood
LDn(θ), i.e. LCn(θ) ≤ LDn(θ). In order to achieve this
in a custom precision setting, in our prior work [18] we
proposed to use the tool Gappa++ [25] which determines
and verifies numerical behaviour, and particularly rounding
error in computations with floating point operations. The
tool manipulates logical formulas stating the enclosures of
expressions in some intervals. In particular, Gappa++ allows
bounding computational errors due to floating point arith-
metic. It works effectively and fast across a range of function
constructions and especially for the linear functions. For

most problems it takes less than a minute to obtain the
precision-related error bound [25].

Let’s denote the maximum absolute error bound be-
tween two floating point precision constructions of p(xn |
θ), one under double precision arithmetic (i.e. LDn(θ))
and one under a custom precision p(xn | θ)c, that is
provided by the Gappa++ tool as ε, where ε ≥ 0 (i.e.
|LDn(θ)− p(xn | θ)c| < ε). Then, LCn(θ), is defined as:

LCn(θ) = p(xn | θ)c − ε (11)

which ensures that LCn(θ) ≤ LDn(θ), i.e. that LCn(θ) is a
lower bound of LDn(θ).

The tightness of the lower bound construction is impor-
tant to the performance of the CF-MCMC algorithm because
it impacts the number of bright data points at each iteration,
which essentially determines the execution time of the CF-
MCMC algorithm. In our prior work, Gappa++ was used
solely in order to obtain the lower bounds for the likelihood
function. However, the tightness of the bounds provided by
Gappa++ (i.e. ε) depend on the actual operations involved
in the function under investigation. [25].

In this work, we propose an alternative lower bound
function construction in order to provide a tighter custom
precision bounds, further boosting the performance of the
algorithm.

The proposed approach capitalises on the fact that in
FPGA designs the user can tune the rounding modes of the
floating point operators. As such, by appropriately tuning
the rounding mode of the operators under a custom preci-
sion implementation, the user can guarantee a lower bound
by construction. To take advantage of this, we separate the
parts of the likelihoods for which lower bound guarantees
are obtained by construction (for example in the case where
there is an addition of two positive quantities) and to parts
for which this is not possible and their error bounds are
estimated through Gappa++. The proposed lower bound
function design allows utilization of the Gappa++ tool in
combination with the rounding mode configuration of the
arithmetic operators on FPGAs, producing tighter lower
bounds for a given custom precision, with respect to the
existing methodology.

Given the logistic regression likelihood function in Equa-
tion (12) as an example, the previous proposal in [18] of the
lower bound function (13) is based on the error bound ε1 of
the whole function which is provided by Gappa++.

Ln(θ) =
1

1 + exp{θTxn}
(12)

LCn(θ) =
1

1 + exp{θTxn}
− ε1 (13)

Here we show how the lower bound function is con-
structed in this work. Firstly, we use Gappa++ to obtain the
rounding error ε2 of the dot product operation inside the
exponent operation. Then we add ε2 to the custom preci-
sion dot product values. Secondly, we set specific rounding
modes (round up or round down) for the other operators
that are monotonic, in order to guarantee the final result is
a lower bound. The proposed lower bound function can be
shown as the following equation:

LCn(θ) =div(1, add(1, exp(θTxn + ε2,RoundUp),

RoundUp),RoundDown))
(14)
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Fig. 1. (a) The overall architecture of the FPGA-mapped MCMC sampler
which mainly contains the generic and likelihood L(θ) evaluator block.
(b) The architecture of double-precision floating point likelihood L(θ)
evaluator design with the conventional parallel implementation at P = 4.

4 FPGA IMPLEMENTATION

4.1 Proposed Hardware Architecture

FPGA devices have been considered by researchers and
practitioners for MCMC acceleration because of their ability
to implement many processing elements for the likelihood
calculation, as well as due to their flexibility to implement
any custom arithmetic precision regime. Assuming that
the data points can fit in the on-chip memory blocks (an
assumption that will be lifted later on), an FPGA system
that implements an MCMC sampler is given in Figure 1a,
where high memory bandwidth that matches the computa-
tional capabilities of the processing elements (for likelihood
evaluation) is provided through the on-chip memories.

The FPGA-mapped MCMC sampler (not considering
the off-chip memory access) generally contains two blocks
as shown in Figure 1a: a hardware block for the generic
MCMC operations (i.e. propose new sample, accept/reject
ratio calculation) and a block to compute the full likelihood
L(θ) in the logarithmic domain in order to avoid numerical
instability in the evaluation of the likelihood [26]. Because
likelihood evaluations dominate the computational cost, the
performance of the MCMC sampler can be improved by
implementing many parallel likelihood evaluation blocks.
When the likelihood evaluation can be decomposed into
sub-components due to i.i.d assumption of the data (which
is also assumed in this article), FPGA implementations
typically use a likelihood evaluation block which consists
of parallel likelihood modules [27]. Let’s denote the number
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Fig. 2. The architecture of CF-MCMC algorithm using mixed precision
design at PH = 2 and PL = 4. The full likelihood is computed and
the binary variables are updated by two steps: 1) Bright data likelihood
computation in parallel using 2 blocks and zn sampling; 2) Dark data
likelihood computation in parallel using 4 blocks and partial zn sampling.
The light gray blocks indicate they remain idle at the corresponding step.

of modules by P , and an example of the conventional
double-precision floating point design at P = 4 is given in
Figure 1b. Accordingly the data memory is partitioned into
P blocks, thus each evaluation block processes one block
of data. Finally the total sum (i.e. the full log likelihood)
is computed by combining the outputs of the P blocks.
For compute-bounded problems (as the one considered in
this work), the goal is to maximize the number of parallel
block within the available resources in the FPGA device,
minimizing as such the execution time of a single MCMC
iteration. This motivates the idea in this article to implement
low precision data paths in order to save computational
resources and increase the sampling throughput.

In our prior work, we showed the FPGA architecture
of the CF-MCMC Algorithm where only a single high-
precision datapath was utilised in the design [18]. Building
on the previous architecture, a more generic design which
utilizes multiple high-precision datapaths is presented here
and it is depicted in Figure 2. We denote each parallel degree
of the high and low precision datapaths as PH and PL

respectively (PH < PL). Accordingly, the data are stored in
PL memories and each data memory is attached with a set
of BM and DM memories to store the indexes of the bright
and dark data points respectively. Rather than storing the
binary value of each zn, we store the indexes of the bright
and dark binary variables separately in the two independent
memories (BM and DM). Also, for each memory, the system
keeps track of the total number of bright and dark points.
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For each iteration, the system needs to perform the likeli-
hood computation and zn sampling for the bright and dark
points. Thus two steps (as shown in Figure 2) are performed
in sequence to accept/reject the proposed sample. First, in
Step 1, the system accesses PH BM memories in parallel
to use the bright data index to access the bright data in
the corresponding data memories, which are then passed
to the high-precision data paths to evaluate the sum of
the log likelihood of the data points with zn = 1. At the
same time, these bright data are also passed to the first PH

low-precision data paths to compare the difference between
these two values LDn(θ) and LCn(θ) in order to update zn
required for the next iteration. Therefore, the other (PL−PH )
low-precision datapaths remain idle (appear light gray in
the figure) during this step. The above process continues
till all the bright data points are processed. Then, in Step
2, the PL DM memories are read in parallel to access the
dark data points in parallel, which are passed through the
PL low-precision data paths. Accordingly, at every cycle,
PH out of the PL dark data will be chosen randomly to
go through the PH high-precision data paths for updating
the corresponding zn. Therefore only PH/PL of the dark
variables are resampled, and all the data paths are fully
utilised in this second step. Since the dark data can be
resampled at a fixed fraction rate as mentioned previously,
the system samples the dark data at the fraction rate PH/PL

based on the degree of parallelism that has been achieved
for the high and low precision paths, in order to maintain
all data paths busy and maximize utilization.

As many applications target sets of data that do not
fit in the on-chip memory of FPGAs, external memories
are utilised to store the data. In such situation, the system
segments the data set into smaller subsets, and operates on
them in a sequential order until all the subsets are processed.
Standard techniques can be applied such as double buffer-
ing, in order to match the computational and memory band-
width capabilities of the system. The overall processing on
the FPGA device remains the same, but for every iteration
the system needs to transfer data from the external memory.
As a result, compared to the on-chip memory which can
be directly addressed and accessed by the datapaths, the
communication between the FPGA and off-chip memory
can limit the FPGA performance if the memory bandwidth
is not enough to constantly feed the processing elements.

4.2 Intelligent Data Distribution

In order to maximise the performance of the system, the
bright data and dark data points need to be equally dis-
tributed in the memories, otherwise there may be a de-
viation in the utilization of the datapaths when executed
in parallel. This work proposes a methodology based on
proportional allocation for redistributing the data to the
memories in an intelligent way in order to maximize the
performance of the system. The goal is to rebalance the dark
data points across the available memories, in order to reduce
the overall latency of each iteration of the MCMC algorithm.

Assuming the case where all data can fit in the on-
chip memories, the system can introduce a rebalancing step
after each iteration in order to minimize the latency of each
iteration by maximizing the utilisation of the processing
elements.

At every point in time, the system keeps track of the
number of total bright and dark points stored in each
memory block. After each iteration, the system checks the
percentage of the bright or dark points stored in each
memory block against to the average number of bright and
dart points respectively in the system. Then, a reshuffle of
the data points is initiated in order to result in memory
blocks that have equal proportion of dark points.

To briefly demonstrate the benefit of rebalancing the
dark data points among memories, assume that we have
two memories and each memory contains M1 and M2 dark
data (M1 > M2) at one iteration. Let CPE denote the input
throughput of the evaluation block in cycles. The execution
time (in clock cycles) to process these data points without
data distribution is T1 = max(M1CPE ,M2CPE), where if a
distribution step is introduced to the system, the execution
time T2 is given by

T2 =
M1 −M2

2
CM +

M1 +M2

2
CPE

where CM models the clock cycles needed to transfer a

data point from one memory to another, and
M1 −M2

2
CM

models the time taken for data distribution. Assuming that
one data point can be read/stored in the memory in every
cycle (i.e. CM = 1), it is easy to show that T1 ≥ T2 always
holds if CPE ≥ 1. The above implies that it always pays off
to rebalance the dark data points, when it takes more than
one clock cycle to consume a data point and the data points
can be transferred from one memory block to another in
one clock cycle. The above model is used to decide whether
a redistribution of the data would improve the performance
of the system.

In the case where off-chip memories are used to store
the data, the above redistribution of the data takes place
when the data are transferred from the external memory to
the on-chip memories on FPGA, removing any time penalty
imposed by the distribution of the data as a separate process
as in the case where the data are stored in on-chip memories.

4.3 Performance Model

In this section, an analytical performance model of the
system is derived in order to reason on how the selected
custom precision impacts the execution time of the system.
The total processing time (in cycles) of the MCMC method
for generating Ns samples consists of the time spent for per-
forming the MCMC sampling TMCMC , assuming the data
are already on chip, and the time required to transfer the
data on-chip/off-chip, Ttransfer , which is shown in Equation
(15).

Ttotal = TMCMC + Ttransfer (15)

In the case of a double-precision MCMC design (i.e.
baseline), a sample is generated every N/PDP clock cycles.
Thus, the total time spent for generating Ns samples is:

TDP−MCMC = Ns ∗N /PDP (16)

where N is the number of the data points and PDP is the
parallelism of double-precision MCMC design. In compari-
son, the time needed for the CF-MCMC architecture in total
is given by:

TCF−MCMC = Ns ∗ (Nα/PH + N (1 − α)/PL) (17)
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where α is the proportion of bright data, and PH , PL

are the parallelism of the high- and low-precision paths
respectively.

In the case where no off-chip memory is used, Ttransfer

can be omitted otherwise Ttransfer can be modelled as:

Ttransfer =
Ns ∗ (N ∗D ∗ sizeof (data) + N ∗ ⌈logN ⌉)

bandwidth
(18)

where D is the dimension of the each data point and ⌈logN⌉
is the bit-width of the index for the z(n) variables.

Please note that the above execution time Ttotal only
refers to the raw execution time (i.e. time needed to gen-
erate Ns samples) of the corresponding MCMC sampler.
As mentioned in Section 2, the sampling efficiency metric
which is used to compare the performance of different
MCMC algorithms and their implementations also needs
to include the effect of sample dependency using the ESS
metric given in (5). The rate of effective samples per clock
cycle can be derived by dividing ESS by the execution
time i.e. ESS/Ttotal , which can also be seen as the effective
throughput of the MCMC system.

5 CUSTOM PRECISION TUNING

Even though the above construction guarantees unbiased
estimates for any adopted custom precision, the selected
custom precision has impact on the performance of the
system and needs to be tuned. In order to achieve the
maximum performance in terms of effective throughput, the
designer needs to consider the impact of custom precision
selection to the parallelisation factor achieved, as well as the
percentage of bright data points during the execution of the
algorithm. As the precision is reduced, more parallelism can
be obtained for a set of resources, and thus reducing the total
execution time of the system; however the percentage of the
bright data points increases accordingly, as the gap between
the lower bound function and the target likelihood function
increases, which in turn introduces additional runtime as
more high-precision computations need to be performed.
Here, the work focuses on exploiting the optimal precision
selection, in order to maximise the performance of the
system.

In this work, a static analysis selection method is pro-
posed by modelling the processing time and resources
versus the utilised custom precision. Please note that the
ESS cannot be modelled during static analysis, so the work
targets to maximise samples per cycle that are generated
by the system (i.e. raw speed). The proposed methodology
consists of two steps:

1) Resources v.s. Precision
The first step is to compute how the resource utilisation

varies with the custom precision of the system. This step
only requires the pre-synthesis of the floating point IPs
under different precisions on FPGA in order to estimate the
total resource utilisation of the likelihood function evalua-
tion block under different custom precision regimes. Then,
for a give target FPGA device the maximum achievable
parallel degree, i.e. P , can be obtained for each custom
precision candidate.

2) Bright Data v.s. Precision

The second step needs to consider the percentage of the
bright data points during the execution of the algorithm in
order to estimate the optimal configuration of the system.
An estimate of the number of bright data points M , is given
by:

M =
N
∑

n=1

∫

p(θ | {xn}
N
n=1

)
LDn(θ)− LCn(θ)

LDn(θ)
dθ (19)

However, in order to estimate the above quantity, we
need to draw samples from the actual target distribution
p(θ | {xn}

N
n=1

), which is the reason for the design of such
system. Following [16], M can be estimated by short MCMC

pre-runs. As the
LDn(θ)− LCn(θ)

LDn(θ)
factor in equation (19)

takes small values, the variance of the estimation of M will
drop down fast as the number of samples increases. Here we
propose that M is estimated using short FPGA-mapped pre-
runs, taking advantage at the same time of the parallelism
offered by FPGA devices across the different runs, as have
been demonstrated in [16].

Utilising information from these two steps, i.e. informa-
tion on the resource requirements for likelihood function
evaluation under different custom precisions and an esti-
mate of the number of bright points M , the performance
model introduced before is utilised in order to provide
estimates of the theoretical raw speedup leading to the
selection of the optimal custom precision of the system.
Please note that the ESS effect is only known at runtime and
cannot be captured by the above static analysis based model.
However, as the obtained results indicate, the above model
can provide an informative prediction of the performance of
the system.

6 PERFORMANCE EVALUATION

6.1 Case Studies

Logistic regression is used in many fields, including med-
ical and social sciences. Here we consider two Bayesian
problems with different dimensionality and data size that
utilize a logistic regression model. Both case studies are
representative of the distributions normally targeted by
MCMC, both in terms of the types of arithmetic operators
used, as well as the problem size they incorporate.

6.1.1 Synthetic Problem

Initially, the performance of the proposed system is evalu-
ated by performing logistic regression on a synthetic data
set, a two-class classification problem in two dimensions
(and one bias dimension). As such, the ground truth of
the parameters is known and it is used for the evaluation
of the obtained estimates. Here the linear model in (20) is
used: a set of 500 independent data x = x1:500 is gener-
ated randomly; the data set y1:500 ∈ {−1, 1} is simulated
using the parameters β = (−10, 5, 10). The logistic regres-
sion likelihood of each data point is given by (21), where
θ = (β0,β1,β2) are the parameters, and the bias parameter
is absorbed into θ by including 1 as an entry in xn.

y = sign(β0 + β1x1 + β2x2) (20)

Ln(θ) =
1

1 + exp{−ynθTxn}
(21)
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Fig. 3. Distribution of the mean value of the first parameter samples
in the synthetic problem with 3,000 runs of DP-MCMC (at precision
s52e11), CP-MCMC and CF-MCMC (both at precision s8e8).

6.1.2 MNIST Classification

The second case study focuses on a real problem, which is
the logistic regression task described in [5]. The task is to
classify handwritten digits (7s and 9s) in the large MNIST
database, which has been widely used for training and
testing in the field of machine learning [28]. The first 12
principal components (and one bias) are used as features.
A set of 2000 data points are chosen from the total 12,2214
data so the MCMC algorithm queries 2000 likelihood terms
per iteration in this experiment. Each likelihood takes the
form shown in (21) where xn is the set of features for
the nth data point. As opposed to the first case study, the
parameter dimension increases to 12 plus a bias, where the
total number of likelihood terms increases from 500 to 2000.

6.2 Hardware Implementation Details

The architecture in Figure 2 is implemented on a Xilinx
Virtex-6 LX240T FPGA. The arithmetic operators of the
generic MCMC block are implemented in double-precision
floating point. The high and low likelihood evaluation
blocks which are fully pipelined are implemented under
double precision floating point arithmetic and reduced cus-
tom precision arithmetic respectively, using floating point
operators generated by FloPoCo [29]. All designs run on a
single 150 MHz clock and fully utilized the available FPGA’s
resources. All results are post place and route.

6.3 Quality of MCMC Samples

We first assess the quality of the generated samples of three
algorithms: the proposed CF-MCMC, a double-precision
implementation MCMC (DP-MCMC), which is used as a ref-
erence design, and a custom-precision MCMC (CP-MCMC),
which uses the reduced precision for the computation of all
likelihood terms i.e. existing approach in digital hardware
design community. For convenience, the notation sAeB is
used in this article to denote a floating point representation,
where A is the number of significant bits and B is the
number of exponent bits.

Figure 3 shows the distributions of the predictive mean
of parameter β1 for the synthetic problem using the above
three Monte Carlo simulations. In each MCMC simulation,
N = 30, 000 sample points are generated, and each of
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Fig. 4. The bias and its variance estimates of the parameter for MNIST
problem, where DP-MCMC runs in double precision (s52e11), CP-
MCMC and CF-MCMC run in the precision with the number of significant
bits from 5 to 23. The green line indicates the average percentage of the
bright data by 10,000 iterations in each of the 100 CF-MCMC runs.

three algorithms are repeated for 3, 000 times with different
random seeds. Both CP-MCMC and CF-MCMC algorithms
utilised a custom precision of s8e8 (i.e. 8 significant bits
and 8 bits for the exponent). As the results indicate, for
CP-MCMC simulations where the reduced precision data-
paths are used for all the likelihood terms and models
the existing hardware design approaches, the mean value
of the parameter has a significant bias and also a larger
variance compared to the DP-MCMC results, supporting
the results obtained in [16], [17]. However, the CF-MCMC
sample distributions have the same variance and mean as
DP-MCMC samples, which demonstrates that the proposed
algorithm removes any bias introduced in the results due to
low-precision computations. Please note that even though
the actual value of the estimated parameter is 5, the data
that have been generated by the model support a parameter
value of 5.12 (the mean estimate of DP-MCMC and CF-
MCMC algorithms).

Figure 4 depicts the bias and the variance in estimating
the predictive mean on MNIST dataset, for a range of
reduced custom precisions (with the number of significant
bits varying from 5 to 23 and a fixed exponent bits number
of 8) for CP-MCMC and CF-MCMC algorithms with com-
parison to DP-MCMC simulations (where double precision
with the significant bits 52 and the exponent bits 11 used).
For each algorithm, 10,000 sample points are generated,
and each MCMC simulation is repeated for 100 times. As
shown in the figure, for every design point, both bias and
standard deviation increase as the utilised custom precision
uses fewer bits in the case of CP-MCMC. However, for
the proposed algorithm, CF-MCMC, the obtained estimates
have the same mean value and deviation as in the case of
DP-MCMC algorithm regardless of how much the precision
is reduced (apart when the number of significant bit is
reduced to 5, but still there is no bias in the estimate). Figure
4 also shows the proportion of bright data point of the data
set for CF-MCMC under different reduced precisions. The
proportion of bright data is only 0.0005% at single-precision
s23e8, but increase to 67% at a very small precision s5e8,
indicating the the lower bound function becomes less tight
as the precision decreases.
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TABLE 1
Resources of the generic block and one log-likelihood evaluation block using double floating point arithmetic operators, and memory size for

CF-MCMC on Xilinx Virtex-6 LX240T.

Resources (double-precision) Slices Registers LUTs Slices DSP48E1s Memory Size

Generic block 2853 4837 1722 11 -

Log Likelihood Synthetic Problem 5203 7666 2533 47 9.2 KB

Evaluation block MNIST Problem 13168 18919 6242 143 0.2 MB

In summary, the two case studies indicate that the pro-
posed system can produce unbiased estimates even under
custom precision regimes without any noticeable difference
in the variance of the estimate compared to an implementa-
tion that utilises double-precision floating point arithmetic
throughout the system, except in the case where the preci-
sion is reduced significantly (i.e. 5 bits for the significant).
Furthermore, it is observed that the current techniques that
utilise custom precision in the likelihood evaluation lead to
biased estimate, as it is expected.

6.4 Resource Utilization

The proposed architecture CF-MCMC shown in Figure 2,
and the double-precision architecture (DP-MCMC) shown
in Figure 1b have been implemented in the target de-
vice. Table 1 gives the resource utilization (Registers, LUTs,
Slices etc.) of the generic MCMC block which uses double
precision floating point arithmetic operators, and also the
resources required by one log-likelihood evaluation block at
double-precision for both case studies. Here we also show
the total memory size needed by both architectures to store
the data and the auxiliary variables.

Figures 5a and 5b show the resource utilization of a
single likelihood evaluation block of the synthetic example
and MNIST problem under different reduced precisions
respectively. The double-precision block’s resources in Table
1 are also plotted in this figure. The figures imply that a
factor of parallelism between 4-5 can be extracted when part
of the computations can be mapped to reduced precision
likelihood evaluation blocks utilising a precision between
8-18 significant bits. The above figure provides an expecta-
tion of the maximum gain in the performance that can be
delivered by the proposed system compared to a double
precision floating point implementation.

6.5 Effective Sampling Throughput

In this section, the Effective Sampling Throughout speed-up
is investigated for the proposed architecture. As the aim
is to achieve the maximum throughput, full utilization of
the FPGA logic resources is assumed for both architectures
(CF-MCMC and DP-MCMC). Therefore, a maximum
number of parallel log-likelihood evaluation blocks is
obtained for each sampler, by selecting the optimal
configuration of high and custom precision likelihood
calculation blocks, PH and PL, using the proposed
performance model. The effective sampling throughput
is measured by ESS/Ttotal as described in Section 4.3.
We compare the speedups in the throughput for our
proposed CF-MCMC accelerator over DP-MCMC design,
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Fig. 5. The resource utilization of a single likelihood evaluation block of
(a) the two-dimension (plus a bias) problem and (b) the MNIST problem
with custom precision where the significant bits range from 5 to 23 and
a fixed exponent bits at 8, and also double precision.

and the results for both problems are shown in Figure
6 for a range of values of the number of significant bits
utilised in the CF-MCMC system. For the precision shown
in the figure, the optimal configurations (PH and PL)
that fully utilise the targeted FPGA device are: (PH , PL) =
{(8, 22), (8, 20), (4, 36), (1, 46), (1, 38), (1, 36), (1, 34), (1, 30)}
for the synthetic problem, and (PH , PL) =
{(2, 22), (2, 20), (2, 16), (1, 14), (1, 12), (1, 12), (1, 10), (1, 10)}
for the MNIST problem.

As the figure shows, the speedups obtained for the two
problems with the evaluated precisions are in the order of
0.72x-3.67x and 0.51x-4.07x, for the synthetic and the MNIST
problem respectively. The results show that by reducing the
utilised precision in CF-MCMC, a higher degree of paral-
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Fig. 6. The speedups in terms of the effective sampling throughput of
CF-MCMC architecture over DP-MCMC on the target device for the two
case studies.

lelism is possible. However, at the same time, the proportion
of the bright data increases, which in turn introduces extra
latency as the computation for bright data likelihood is
executed in a lower parallel degree. Furthermore, there is a
reduction in the effective sample size (ESS) as the precision
is reduced. This is evident by the obtained results, where a
peak in effective sampling throughput speedup is observed
at a specific precision configuration. Furthermore, it is ob-
served that the proposed system can be outperformed by
the double precision implementation when few significant
bits are utilised (less than 6), indicating the need to have in
place a performance model that predicts the throughput of
the system. The optimal precisions for both problems are (s,
e) = (15, 8), with the corresponding speedup of 3.67x and
4.07x.

Another metric to compare the performance of MCMC
algorithms is the mean squared error (or risk) in the estimate
of (2), i.e. R = (I − Ĩ)2, where the expectation is taken over
multiple simulations of the Markov chain [12]. The risk can
be decomposed as the sum of squared bias and variance,
and the objective of MCMC in practice is to obtain estimates
with lower risk. Figure 7 shows how the logarithm of the
risk in estimating the mean of the parameter for MNIST,
decreases as a function of the execution time. The experi-
ment configuration is the same as in [12]: we first estimate
the true mean using a long run of regular MCMC; then we
compute multiple estimates of the mean from the algorithms
under investigation and obtain the risk in these estimates.
In our test, the average risk is based on 100 runs for each
algorithm. The figure demonstrates that the proposed CF-
MCMC algorithm largely reduces the risk compared to that
of DP-MCMC, by reducing the variance faster within the
same time period.

6.6 Theoretical Performance Model Evaluation

In this subsection, the accuracy of the theoretical perfor-
mance model proposed in Section 5 is evaluated, and it
is shown how it can be utilised in order to maximise the
performance of the proposed system. For this investigation,
the MNIST case study is utilised.
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The evaluation of the framework is performed under
three metrics: 1) the Theoretical speedup, which is com-
puted by the theoretical performance model TCF−MCMC =
M/PH +(N −M)/PL using the parallelism PH and PL we
achieved in the target hardware and the bright data point
M in Equation (19); 2) the actual Raw speedup, which is
computed using the actual runtime by executing the config-
uration in the FPGA device at each precision; 3) the Effective
Sample speedup, which is computed through ESS/Ttotal

i.e. the effective sampling throughput as described in the
above subsection, and it includes the actual runtime when
executed in the FPGA device and also the ESS effect in the
generated samples (this speedup is used in the rest of the
article unless explicitly stated).

Figure 8a shows the Theoretical, Raw, and Effective
speedups for a range of precisions between the proposed
architecture CF-MCMC and DP-MCMC. In total 100 runs
were conducted in order to capture the possible variations
in ESS. The results confirm that the derived performance
model captures well the performance of the system under
all the precisions, where the ESS effect, even though it is
not captured by the performance model, does not have
significant impact on the model’s performance prediction
accuracy. The confidence interval bars denote the variation
in the Effective Sample speedup performance along differ-
ent runs of the system for 95% confidence interval.

As has been described before, the performance model
utilises the estimation of the number of bright points based
on short pre-runs (e.g. 1000 samples). Given that this esti-
mate is not exactly the same as the converged parameter
values and thus it only provides an approximation of the
number of bright points in the system, it is necessary to in-
vestigate the sensitivity of the predicted speedups obtained
by the performance model with respect to the variation of
the actual number of bright points from the predicted one.
In this investigation, the number of bright points M is set to
take values in an interval [M∗(1− x) M∗(1 + x)], where
M∗ denotes the estimate of (19) based on short pre-runs,
and then compute the theoretical speedups according to
the number of bright data in this interval. The results for
x = 15% are shown in Figure 8b.
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Fig. 8. The theoretical performance model is evaluated by (a) compar-
isons of the Theoretical speed (estimated time), actual Raw speedup
(execution time in FPGA), and the Effective Sample speedup (execution
time in FPGA and including the ESS effects); and (b) the range (max and
min values as denoted by the bars) of the theoretical speedup assuming
a maximum deviation between the actual and predicted number of bright
points of up to 15%.

The results indicate that at high precisions, the theo-
retical speedups have little variation with respect to the
number of bright points. However, the above variations do
not have an impact on the choice for the optimal custom
precision that should be employed by the system, and thus
the provided theoretical performance model and optimal
precision selection method are still valid even in the case
where the estimates of (19) have up to 15% deviation from
the real values.

6.7 Lower Bound Construction Comparison

In this subsection, the construction of the lower bound
functions proposed in Section 3.2 is investigated in order
to assess how the lower bound constructions impact the
speedups of the CF-MCMC algorithm. The MNIST case
study is used for this investigation. Three different construc-
tions are compared. The first construction is the method pro-
posed in our prior work that utilises only Gappa++ in order
to estimate the error bound (Gappa++). The second method
is the method proposed in this work which estimates the
error bound for part of the function through Gappa++ and
utilises specific rounding modes in order to ensure a lower
bound construction (proposed). The third method utilises
the round mode for part of the function (similar as before),
but now the final error bound for the whole function is
estimated through simulations using the MPFR library [30]
(MPFR). The third method does not provide any guarantees,

5 7 9 11 13 15 19 23
0

1

2

3

4

5

Number of significant bits

S
p

e
e

d
u

p
s

 

 

Gappa++

proposed

MPFR

Fig. 9. The speed-ups (Effective Sample speed-up) of CF-MCMC ar-
chitecture over DP-MCMC implementations on the target device for the
MNIST problem, under the three lower bound function constructions.

but it can be seen as a reference of the maximum speedups
of the CF-MCMC algorithm that could be achieved. The
results in terms of Effective Sample Speedup performance
for the MNIST problem are shown in Figure 9, while all
constructions have no obvious influence on the bias and
variance of the generated samples.

As shown in the figure, the proposed construction,
which is based on the rounding mode, results in systems
that outperform systems that are based on the construction
of the lower bound function based on our previous work
(Gappa++). Furthermore, the proposed approach which
guarantees a lower bound construction gives similar per-
formance results to the method that is based on simula-
tions (MPFR) and no guarantees in the construction can
be provided. Nevertheless, all constructions lead to similar
speedups when high precisions are utilised.

The above observation can be further generalised be-
yond the specific case study. Let us rewrite the perfor-
mance model provided in Section 4.3. Assuming PH = 1,
the execution time to generate one sample: Tsample =
Nα + N(1 − α)/PL can be rewritten as: Tsample = N ∗
(1/PL + (1 − 1/PL)α). For a given utilised precision, the
number of parallel low precision units PL is fixed on a
target device. If the proportion of the bright data points (i.e.
α, which depends on the lower bound proposal) satisfies
(1 − 1/PL)α << 1/PL i.e. α << 1/(PL − 1), then the
execution time Tsample will be almost equal to N/PL which
doesn’t depend on the quality of the lower bound con-
struction. As such, all constructions would provide similar
speedup when high custom precision evaluation blocks are
utilised.

For example, for the MNIST problem when the pre-
cision bits are at 5, 7 and 9, PL = [29 26 22] (for
PH = 1) and 1/(PL − 1) = [0.0357 0.04 0.048] while
α = [0.10 0.025 0.0066]. When more than 11 significant bits
are used, α << 1/(PL − 1) and thus all the constructions
provide similar speedups.

Looking further into the obtained results, the last two
methods (i.e. the proposed method and the MPFR method),
provide the best performance when PH = 1 instead of
PH = 2, which is the case for the first method (Gappa++) for
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TABLE 2
Speed-ups of DP-MCMC and CF-MCMC FPGA samplers against an 8-core CPU sampler.

FPGA designs DP-MCMC
CF-MCMC at various precisions (number of significant bits)

5 7 9 11 13 15 19 23

Speedup vs. 8-core CPU 44.3x 22.5x 56.1x 115.6x 156.7x 169.6x 180.5x 157.5x 148.0x

precisions 7 and 9. This is due to the fact that the proposed
method and MPFR provide tighter bounds than the first
method (Gappa++), and as a result the proportion of bright
data decreases at these two precisions points, leading to
configurations that utilise fewer high precision evaluation
units.

6.8 Comparison to a Multi-core CPU Implementation

The proposed system was also evaluated against an opti-
mised version of the standard (i.e. double precision) MCMC
algorithm that was running on a multicore system using the
MNIST case study. The selected system was running CentOS
7 64-bit and utilised an Intel i7-3770 processor with 8 cores
and 8 GBs of RAM, where the compiler is the gcc version
4.8.3. The CPU-based system was developed using OpenMP
in order to utilise all the available cores in the system (i.e.
8), as well as using -O3 optimisations. The program takes
full advantage of the available cores (100% utilisation), as
the likelihood calculations are distributed evenly across the
available cores (assumption of i.i.d data).

The obtained speedup results (i.e. Effective Speed-up)
are shown in Table 2. The DP-MCMC implementation
achieves a speedup around 44.3x against the CPU, where
the proposed CF-MCMC achieves speedups in the range
between 22.5x to 180.5x. depending on the utilised custom-
precision. The above results demonstrate the speedup gains
of the proposed system.

6.9 Comparison to an FPGA Implemented FlyMC Algo-
rithm

Finally, a comparison against the FlyMC algorithm pro-
posed in [14] is performed in this section, as this is the clos-
est work to ours. FlyMC algorithm can provide considerable
speed ups when it is compared against a regular MCMC
algorithm implementation in software, as is acknowledged
by the authors [14]. For this to be the case, a lower bound
function needs to be constructed as well as tuning for each
data point needs to be performed through MAP in order
to ensure tight bounds at the data points. The authors in
[14] call this version of the algorithm MAP-tuned MCMC.
However, such lower bound functions can be difficult to
be obtained for many problems [14], and MAP tuning for
each data point is required prior to the execution of the
system imposing overheads to the overall execution time
of the algorithm. The authors also investigate an alternative
implementation of FlyMCMC that skips the MAP tuning
for each data point and call this algorithm Untuned FlyMC.
However, their obtained results show that the actual speed
ups compared to regular MCMC are less impressive and
sometimes it can lead to longer execution times compared
to regular MCMC.
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Fig. 10. Achieved speed-ups in terms of the resulting sampling efficiency
of the original FlyMC algorithm in [14] and our proposed algorithms over
the double-precision MCMC implementation (DP-MCMC) on the target
device for the MNIST problem.

The important point of departure between this work and
[14], is that the lower bound functions are custom precision
versions of the target distribution and are automatically
calculated by our system. As such, our proposed algorithm
can be applied to any problem but as a trade-off it does
not give the impressive speed ups claimed in [14] (i.e. for
the MNIST problem, the authors claim 22x speedup for
the MAP-tuned FlyMC compared to their regular MCMC
implementation in a CPU).

In order to investigate the performance of the FlyMC
algorithm in an FPGA, and how it compares against an
implementation of a regular MCMC and the proposed CF-
MCMC algorithm, the untuned FlyMC was mapped in
an FPGA. To further explore the custom precision sup-
ported by the FPGA device, the lower bound function in
the FlyMC architecture was implemented under different
precision regimes (i.e. 23 significant bits correspond to a
single precision floating point implementation of the lower
bound function suggested by [14] for the MNIST problem).
The obtained results are shown in Figure 10. As the results
indicate, the FlyMC’s performance (in terms of effective
samples per second) is inferior to the regular MCMC FPGA
implementation following the patters that was observed in
the corresponding CPU implementations [14]. Furthermore,
the use of custom precision in the implementation of the
lower bound function leads to similar performance systems.
In both cases, the underlying reason for leading to these
performance points is the loose lower bound function used
in the system. In any case, the proposed algorithm outper-
forms the FPGA implementation of the FlyMC.
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7 CONCLUSIONS

In this work, the CF-MCMC algorithm and its mapping to
an FPGA device was presented. The proposed algorithm
exploits the custom precision support of FPGAs in order
to accelerate computational bounded MCMC problems, by
utilising low precision calculations of the likelihood func-
tion in an intelligent way. The key contribution of this
work is that by introducing a set of auxiliary variables, the
proposed CF-MCMC accelerator guarantees the generation
of unbiased estimates which is important for applications
that cannot tolerate any bias in the estimates. Experimental
results show that notable speedups over double-precision
designs can be achieved with our proposed architecture in
both SW and HW implementations. Future work will focus
on extending this methodology to support multiple lower
bound functions and their corresponding lower precision
computational blocks, as well as investigating the impact to
the performance of the system of MAP tuned lower bound
functions per data point as in MAP-tuned FlyMC.
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