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Abstract

The present thesis deals with microfluidic systems under the influence of electric fields.

The purpose of this research is to identify key behaviours which are highly relevant

for applications in lab-on-chip devices such as pH control, patterning, mixing and cell

trapping. In the first part of the thesis we consider the electrokinetics of charged, porous

membranes and present a mathematical model for the ionic transport under the effects of

a horizontal electric field. First, we investigate the behaviour of a system that consists of

one anion membrane with two reservoirs and produce numerical solutions with the aim

to gain a better understanding of the mechanisms that lead to overlimiting current. We

then analyse the features of a system where a bipolar membrane is held in an electrolyte

bath with water and a salt. We use our model to confirm findings from experiments

such as the hysteretic behaviour of the IV curve and the water splitting phenomenon.

In the second part of the thesis we examine the behaviour of interfaces between two

fluids that are sandwiched between two electrodes. We find that introducing a constant

flow rate into the system leads to time modulated travelling waves. In the case of flat

channel walls these look like moving strips which are reminiscent of the patterns found

in the no flow case. Adding corrugations on one or both electrodes leads to a rich variety

of dynamics. We develop a Floquet stability analysis which takes into account the fact

that the base state of the system is nonuniform. This is a very useful tool for identifying

the different types of behaviours which arise as we change the applied voltage and the

overall flow rate. We examine the streamlines of the fluid to explore the advantages of

the different regimes: just by changing the applied voltage it is possible to transition

from an environment which is favourable to efficient mixing to one which could enhance

cell trapping.
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1. Introduction

Ion selective membranes have long been used for the production of potable water and for

the treatment of industrial waste (Strathmann et al., 2013; Xu, 2005). In more recent

years they have been integrated into microfluidic devices and their features have been

exploited to enhance a variety of processes on diagnostic chips (see Slouka et al. (2014)

for a comprehensive review). The main feature is ion selectivity and is described in a

review by Sollner (1950) as the ability of a charged porous membrane to allow the passage

of counter-ions and to prevent the flow of co-ions. This is achieved by restricting the

width of the pores to be narrow enough for the fixed surfaces charges to have an effect.

The maximum pore/channel size that ensures ion selectivity is found by estimating the

Debye length. This is the characteristic thickness of the layer that forms near a charged

surface: a charged plate will attract oppositely charged ions (counter-ions) that will

rearrange themselves to form the electrical double layer (see figure 1.1). The charge

of this layer will balance the surface charge of the plate in order for the system to

remain electroneutral. It is necessary for the double layers to overlap in nanopores and

nanochannels to create a barrier for co-ions and enable the free flow of counter-ions.

Ion exchange membranes are mostly used in large scale industrial processes, but are also

incorporated in microfluidic devices in particular for proteomics analyses (Ko et al., 2012;

Lee et al., 2008; Wang et al., 2005). One of the challenges of analysing small samples of

blood is the large variation of protein concentration. Microfluidic devices operate with

nano and pico litre volumes of fluid meaning it is harder to detect some biomolecules

which exist in low concentration in the sample. Wang et al. (2005) and Lee et al. (2008)

developed biomolecule preconcentrators to collect and trap analytes. They used an ion

selective nanofluidic filter to generate an ion-depletion region to prevent convection of

molecules and trap them upstream (see figure 1.2).

By joining a cation and an anion membrane to form a p-n junction a bipolar membrane

is created. Applying a forward bias causes the formation of an ion enrichment region at

the junction. A reverse bias causes the ions to deplete at the junction thus increasing

the local electric field which at high enough voltages splits water into H+ and OH− ions

(Cheng & Chang, 2011; Conroy et al., 2012). This phenomenon can be exploited for pH
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Chapter 1. Introduction

Figure 1.1. Schematic of an electrical double layer in a liquid in contact with a posi-
tively charged surface (Image taken from DoITPoMS Teaching and Learn-
ing Packages).

Figure 1.2. (a) A cation-exchange membrane built into a microfluidic channel. (b)
The membrane causes a depletion region to form on one side which is used
to concentrate charged dye molecules. Abbreviation: EOF, electroosmotic
flow. Figure and caption taken from Slouka et al. (2014)
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Chapter 1. Introduction

Figure 1.3. (a) Abrupt pH profile builds up near the pH actuators upstream. Different
pH gradients were generated across a 500 lm wide channel downstream
after passing through a 0.8mm long (b) or a 2mm long (c) , 50 lm wide
narrowed channel. The scale bars in images indicate 200 lm. Figure and
caption taken from Cheng & Chang (2011)

control which in turn is used to achieve isoelectric focusing for molecular separation in

microfluidic devices (Cheng & Chang, 2011; Kohlheyer et al., 2007) (see figure 1.3).

1.1. Ion exchange membranes

Figure 1.4. Schematic of an anion selective membrane where Σ is the membrane charge.
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Chapter 1. Introduction

Figure 1.5. Current-voltage characteristics of a nanoslot (inset) for varying ionic
strengths. Figure and caption taken from Yossifon et al. (2009)

One of the most interesting aspects of ion exchange membranes which is still not

fully explained theoretically is overlimiting current (OLC), a behaviour that was known

decades ago (Frilette, 1957). The setup of the system is shown in fig. 1.4: an ion se-

lective nano-porous membrane is placed in, say, a symmetric 1 : 1 electrolyte bath and

an electric field E is applied to the system. At low voltages the current voltage curve

has an Ohmic behaviour and this is called the underlimiting regime. However as the

voltage increases the applied electric field causes the counter-ions to move into the mem-

brane and the co-ions away from it until the concentration of counter-ions there drops to

nearly zero. The co-ions also drop to almost zero in order to keep electroneutrality in the

reservoirs thus creating a depletion region on one side of the membrane which prevents

the flow of the current: this is when the system is in the limiting regime. However it

has been observed experimentally that for sufficiently high voltages the current exceeds

the classical limit derived theoretically by Levich (1962) and the current voltage curve

enters a second linear region called the overlimiting region (see figure 1.5).

There is a considerable amount of literature aimed at understanding the mechanisms

that lead to OLC. Manzanares et al. (1993), for instance, considered the one-dimensional,

time-dependent, non equilibrium problem of a system with a membrane and two reser-

voirs. They conducted a numerical study and found that in the depletion side, the
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classical electroneutrality assumption breaks down: there is in fact a space charge layer

which allows current to flow. The ion concentrations in this layer are small but the fluxes

are constant throughout the system which means that there must be an increase in the

electric field: it is this space charge region that allows the flow of currents that exceed

the limiting current. Ben & Chang (2002) analysed a similar system and used matched

asymptotic expansions from the extended polarised region to the membrane to smooth

out a singularity that arises when electroneutrality is assumed. They also derived an

expression for the flux beyond the limiting current.

Yossifon et al. (2009) conducted numerical simulations for a slightly different geometry:

a nanochannel with axisymmetric micro-reservoirs on both sides. They also concluded

that the presence of OLC is due to space charge and to field-focusing effects: as all the

current tries to flow from the bulk into the nano slot a space charge region forms at

the depletion side. The existence of depletion and enrichment regions was confirmed by

Wang et al. (2009) who conducted a full 2D numerical study which included hydrody-

namic effects. Moreover, they found that the behaviour of the ion concentrations in the

longitudinal direction corresponds to findings from one dimensional studies.

Other mechanisms were found to have a role in the formation of OLC: Rubinstein &

Zaltzman (2000) first predicted the existence of a microvortex instability at an ion se-

lective membrane. This was later verified experimentally and thought to be connected

to OLC (Rubinstein et al., 2008). There are many more studies of this microvortex

instability which are not included here as they are not relevant to the work presented in

this thesis. The reader is referred to a review on the effect of microhydrodynamics on

nanofluidic flow by Chang et al. (2012).

Yet another mechanism was proposed by Andersen et al. (2012) who suggested that OLC

is due to current induced membrane discharge. They proposed a model which included

the transport of water ions through the membrane, the water self-ionisation reaction and

the reaction of the membrane with the water. According to this model the membrane

surface groups react with the water which leads to loss of selectivity of the membrane

and hence allows the passage of currents higher than the limiting current. In this model

no space charge appears at the depletion side.

In this thesis asymptotic and numerical methods are developed to study the problem of

OLC in an anion selective membrane and this will be presented in section §3.
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1.2. Bipolar membranes

Figure 1.6. Schematic of a bipolar membrane.

Field enhanced water dissociation is a curious phenomenon that occurs in bipolar

membranes under reverse bias. The setup of the system is shown in fig.1.6: a bipolar

membrane (BM) is formed by joining a negatively charged membrane to a positively

charged membrane. The BM is held in an electrolyte bath with water and a salt. An

electric field is applied across the membrane which causes the salt ions to deplete at the

junction and the water to dissociate into H+ and OH− ions.

Mafe & Ramirez (1997) considered the steady state problem with a model that assumed

ion depletion in the electric double layer and a smooth ion concentration variation across

the whole membrane. They proposed two mechanisms for field enhanced water dissoci-

ation: the second Wien effect according to which the water dissociation rate depends on

the electric field and the chemical reaction model which takes into account the reaction

of water with the surface groups of the membrane. Both mechanisms are modelled by

an Arrhenius dependence:

kd = A exp

(
− Ea
RT

)
(1.1)

where kd is the dissociation rate, A is the dissociation rate before the electric field

is applied, R is the molar gas constant, T is the absolute temperature and Ea is the

activation energy which takes different forms depending on the model.

Cheng & Chang (2011) did experiments with bipolar membranes with an applied electric

field that is first increased then decreased. Their results show that the IV curve (current

against potential) has a hysteretic behaviour (figure 1.7) which implies that the problem

is time dependent.

These findings have motivated Conroy et al. (2012) to use a transient model. They
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Figure 1.7. (c) I-V curve measured by Cheng & Chang (2011) in the reverse bias
region showing large overlimiting current and hysteresis. The spike at −2V
during the backward scan is due to residual ions from water splitting in
the bipolar membrane. Equilibration to the limiting current at −5V occurs
after the depletion of residual ions. The numbers 1, 2, and 3 represent the
hysteresis, saturation, and water-splitting regimes, respectively. (d) Image
of pH-sensitive dye across the bipolar membrane showing ejection of H+

and OH− ions. Figure taken from Slouka et al. (2014).

use a linearised Arrhenius dependence for the water dissociation rate and their results

confirm the hysteretic behaviour of the IV curve and the water splitting predicted by

the experiments.

This analysis is repeated in section §4 of this work. New results are also presented: a

second salt is added to the system (§4.2) and a non-linear Arrhenius dependence is used

to model the water dissociation rate (§4.3).
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2. Mathematical formulation

2.1. Governing equations

In this section we provide the mathematical formulation for the fluid flow and the ionic

transport in a porous membrane (Conroy et al., 2012). An electric field E is applied to

the system which is irrotational hence it is expressed it in terms of the voltage potential

E = −∇φ. The membrane is considered to be porous so Darcy’s law applies for the bulk

fluid flow:

∇P = − µ
Π

u + ρeE (2.1)

∇ · u = 0 (2.2)

where u = (u, 0, w) is the filtration rate, P is the pressure, µ is the viscosity, Π is the

permeability and ρe is the charge density defined by:

ρe = F
∑
i

ziCi

where Ci is the ionic concentration of species i, zi is the valency, F = NAe is the

Faraday constant, e is the charge of an electron and NA is the Avogadro number.

The transport of ionic concentrations is governed by the Nernst-Planck equations which

are derived from the mass conservation for each species i (Chang & Yeo, 2010):

n
∂Ci
∂t

+ u · ∇Ci = ωikBT∇ ·
(
zi

e

kBT
Ci∇φ+∇Ci

)
+Ri (2.3)

where n is the porosity, kB is Boltzmann’s constant, T is the absolute temperature, ωi

the ion mobility and Ri is the generation rate of the species. The first two terms on the

right hand side represent contributions to the flux due to electromigration and diffusion.

The mobility ωi represents how easily a charged particle in a solution can move when an

electric field E acts on it and it is related to the ionic diffusion coefficient through the
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Chapter 2. Mathematical formulation

Stokes-Einstein relation (Chang & Yeo, 2010):

ωi =
Di

kbTNA

The voltage potential is described by the Poisson equation:

ε0ε∇2φ = ρe + FΣ (2.4)

where ε0 is the free space permittivity, ε is the relative permittivity and Σ is the charge

of the membrane.

The equations are non-dimensionalised with the following scalings (Conroy et al., 2012):

x = Lx′, z = Hz′, (u,w) =
Π|Σ|kBTF

µeL
(u′, δw′), (2.5)

φ = φcφ
′, t =

nL2

kBTω
t′, P =

|Σ|kBTF
e

P ′, (2.6)

where φc is the maximum potential, L is the half-length of the domain, H is the

domain depth and δ = H/L � 1 is a small parameter. For simplicity all dashes are

dropped. The dimensionless continuity equations and Darcy’s law take the following

form:

∂u

∂x
+
∂w

∂z
= 0 (2.7)

∂P

∂x
= −u− ψρe∂φ

∂x
(2.8)

∂P

∂z
= −δw − ψρe∂φ

∂z
(2.9)

where ψ = φce/kBT represents the dimensionless strength of the electric field. The

dimensionless Nernst-Planck equations are:

∂Ci
∂t

+ Pe

(
u
∂Ci
∂x

+ w
∂Ci
∂z

)
=αi

∂

∂x

(
ψCi

∂φ

∂x
+
∂Ci
∂x

)
δ2αi

∂

∂z

(
ψCi

∂φ

∂z
+
∂Ci
∂z

)
+DaR (2.10)

The following dimensionless groups emerge:
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αi =
ωi
ω1
, Pe =

ΠF |Σ|
µeω

, Da =
LkaCaεr
kBTω|Σ|

(2.11)

where Pe is the Peclet number which represents the ratio between convection and

diffusion of ions and the Damkholer number Da is the ratio of water dissociation to ion

diffusion (the latter will be discussed more in depth in §4). The Poisson equation for

the voltage becomes:

∂2φ

∂x2
+ δ2

∂2φ

∂z2
= −χ2ρe − χ2Σ̄, (2.12)

ρe =
∑
i

Ci (2.13)

where χ = FL2|Σ|e/ψεε0kBT is the inverse Debye length and Σ̄ is the dimensionless

membrane charge.

We assume that the membrane is long and this i.e. δ � 1 and derive a one dimensional

system. Hydrodynamic effects are ignored by setting Pe � 1 which is consistent with

the assumption of a constant water concentration and has been done in previous work.

This leads to the following system:

∂2φ

∂x2
= −χ2(ρe + Σ̄) (2.14)

∂Ci
∂t

= αi
∂

∂x

(
ψCi

∂φ

∂x
+
∂Ci
∂x

)
+DaR0 (2.15)

This system of equations will be analysed in the case of an anion selective membrane

(§3) and in the case of a bipolar membrane (§4). The boundary conditions will be defined

for each case in the next sections.

2.2. Numerical methods

The behaviour of the above system of equations (2.14-2.15) has been analysed using two

time dependent, numerical codes. The first one was written in MATLAB specifically

for this problem, the second one was based on PDECOL, a FORTRAN solver for PDEs

(Madsen & Sincovec, 1979). Both codes rely on the method of lines, a numerical approach

through which the spatial partial derivatives are replaced by algebraic approximations
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at each grid point (Schiesser, 2012). This reduces a system of m PDEs to a system of

m × N ODEs in just one variable t, with N the number of grid points in the spatial

variable x. The spatial discretisation in the MATLAB code is performed using second

order, finite difference formulae. The spatial discretisation in the PDECOL solver is

based on a finite element routine where the domain is subdivided by an equally spaced

grid of N points and the solution is approximated by a cubic spline in each interval.

Once the system of PDEs is transformed into a time-dependant system of ODEs, the

latter needs to be solved with the help of an implicit numerical procedure. The main

disadvantage of an implicit scheme is that the code needs to solve the matrix equation

at every step. However this is counteracted by the advantage offered by the ability to

choose a relatively large time step which would not otherwise be possible when solving for

stiff systems. The time integration is performed by using the stiff ODE solver ode15s in

MATLAB while in PDECOL it is performed using a technique based on Gear’s method.

The results from the two numerical schemes were in perfect agreement with each other

but the MATLAB code was soon abandoned in favour of PDECOL due to the higher

efficiency of the latter.
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3. Overlimiting current (OLC) in an

anion selective membrane

3.1. Guoy-Chapman equilibrium theory and Levich’s

expression for OLC

In this chapter we consider a binary monovalent electrolyte on an anion membrane of

charge σ placed at |x| < Lmen between two reservoirs, where Lmem is half the length

of the membrane. The ion concentrations are C+ for the positive ions and C− for the

negative ions. The governing equations (2.14-2.15) take the following form:

∂2φ

∂x2
= −χ2(C+ − C− + Σ) (3.1)

∂C±

∂t
=

∂

∂x

(
∂C±

∂x
± C±∂φ

∂x

)
(3.2)

where Σ is the surface charge of the membrane:

Σ =

σ, for |x| < Lmem

0, for |x| > Lmem

In the numerical scheme the step function in Σ is approximated by a tanh function.

The boundary conditions are: C±(±L) = C0, φ
′(−L) = −I, φ(L) = 0 where L is the

half length of the domain in the x direction, C0 is the bulk concentration and I is the

total current through the system.

We begin by considering a system in electrical equilibrium and we look at the classi-

cal Guoy-Chapman theory (Chang et al., 2012). We assume that ion transport is in

equilibrium and so there is no ionic flux and the ionic transport equations become:

∂C±

∂x
± C±∂φ

∂x
= 0 (3.3)
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and so the concentrations are given by a Boltzmann distribution that depends on the

local electric potential φ:

C± = C0e
∓φ (3.4)

The above expression means that the net charge in the membrane is given by C+ −
C− = −2C0 sinhφ. The charge of the membrane σ must balance the net charge of the

mobile ions in order to preserve electroneutrality which leads to the expression for the

Donnan potential in the membrane:

φd = sinh−1
(
−σ
2C0

)
(3.5)

Next we consider the system with a forcing i.e. the electric field E: after a transient

stage the system reaches a steady state. Levich (1962) first observed that after equili-

bration counterions will have moved into the membrane causing their concentration to

drop on one side of the membrane. The concentration of co-ions will also drop there to

preserve electroneutrality thus creating a depletion region. The total concentration of

ions in the bulk C = C+ + C− decreases linearly from the reservoir to the boundary:

C = 2C0 − J(x+ L) (3.6)

where J is the total flux. Assuming that the total concentrations of ions C drops to

zero in the depletion region we get the following expression for the limiting current:

Jlim =
2C0

L− Lmem
(3.7)

where Lmem is half the length of the membrane. It has been found in experiments

that for high enough voltage the current in the system goes above this limit: there have

been many theories on the reason behind this but none of them has fully explained this

overlimiting behaviour.
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Figure 3.1. Concentration profiles for t = ∞ in the limiting current regime (a) Salt
ion concentration profiles (solid line - C+, dashed line - C−). (b) Voltage
potential. Boundary condition for the voltage potential: φ′(−L) = −1.5.
σ = 2.

3.2. Numerical results for the transient problem

Manzanares et al. (1993) performed transient simulations of the problem described above

and found that for large enough voltages a space charge region forms on the depletion

side and allows current above the limit to flow. In this section a numerical scheme is used

to reproduce results by Manzanares et al. (1993), this is useful as a reliable numerical

method is required to produce the results that are then compared to asymptotics.

Our computations are performed for L = 1.5, Lmen = 0.5, C0 = 1, σ = 2 and χ = 103.

Figures 3.1 and 3.2 exhibit the solutions at t = ∞ for the limiting current case and

overlimiting current case respectively. We see from figure 3.1 that the solution reaches a

steady state with both the ion concentrations and the potential varying almost linearly

in the three regions and we later show that in this regime the electroneutral assumption

leads to an analytical solution that gives reasonable agreement with the full numerical

solution.

We see from figure 3.2 that for overlimiting currents a depletion region forms at the

interface between the reservoir and the membrane on the anodic side. Fig. 3.3 depicts

the depletion region and the space charge in that region where ρ = −(C+ − C− + Σ).

This space charge is responsible for overlimiting current according to Manzanares et al.

(1993).
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Figure 3.2. Overlimiting current. (a) Salt ion concentration profiles (solid line - C−,
dashed line - C+). (b) Voltage potential. Boundary condition for the
voltage potential: φ′(−L) = −6.
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Figure 3.3. (a) Salt ion concentration profiles at depletion side, (solid line - C−, dashed
line - C+). (b) Space charge layer at depletion layer. Boundary condition
for the voltage potential: φ′(−L) = −6.
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Figure 3.4. (a) Salt ion concentration profiles and (b) voltage potential. Solid line -
analytic solution, dashed line - numerical solution. Boundary condition for
the voltage potential: φ′(−L) = −1.5. σ = 2.

3.3. Analytical solution for the case with currents below

the limiting current

In this section we present an analytical solution of the steady state for the full membrane

and reservoirs system in the underlimiting current regime and with χ � 1. Such a

solution was previously found by Andersen & Bruus (2012) using the expression for

the Donnan potential given in eq.3.5 to determine the matching conditions between the

membrane and the reservoirs. Here we present an analytical solution calculated using a

different set of matching conditions which are based on mathematical arguments without

assuming electroneutrality in the membrane.

For simplicity, let us define two constants a and b as the sum a = J+−J− and difference

b = J+ + J− of the two fluxes J±. The solution in the region −L ≤ x < −Lmem will be

denoted by a subscript 1, that in the region |x| < Lmem by a subscript 2 and a subscript

3 for Lmem < x ≤ L. Electroneutrality in the reservoirs is assumed as the current is

below the limiting current. The governing equations (3.2) become:

C+ − C− + Σ = 0 (3.8)

2
∂C−

∂x
− Σ

∂φ

∂x
= −b (3.9)

(2C− − Σ)
∂φ

∂x
= −a (3.10)
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In regions 1 and 2 there is no membrane charge (Σ = 0) and so the solution in the

region x < −Lmem is given by:

C±1 = C0 −
b

2
(x+ L) (3.11)

φ1 =
a

b
ln(C0 −

b

2
(x+ L)) +A (3.12)

where A is a constant and in the region x > Lmem:

C±3 = C0 −
b

2
(x− L) (3.13)

φ3 =
a

b
ln(C0 −

b

2
(x− L))− a

b
ln(C0) (3.14)

The solution inside the membrane |x| < Lmem is more complex:

C−2 = −aσ
2b

(W(d exp ηx) + 1) +
σ

2
(3.15)

where η = b2/σa and d is an integration constant to be found. W is the Lambert W

function (Corless et al., 1996) that satisfies:

W(z) exp (W(z)) = z

In order to find φ in this region we need to solve the following ODE:

∂φ

∂x
=

a

(σ − 2C−2 )
=

b

σ(W + 1)
(3.16)

From numerics we know that for σ = 2, η is small enough so we approximate

W(d exp ηx) with a Taylor expansion (Corless et al., 1996):

W(d exp ηx) ≈W(d(1 + ηx+ η2x2)) =
∞∑
n=1

(−n)n−1

n!
(d(1 + ηx+ η2x2))n

= a0 + a1ηx+ a2η
2x2 +O(η3x3)

(3.17)

where a0, a1 and a2 have the following form:
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a0 =
∞∑
n=1

(−n)n−1

n!
dn;

a1 =

∞∑
n=1

(−1)n−1nn

n!
dn;

a2 = d+
∞∑
n=2

(−n)n−1

n!

((
n

n− 2

)
+

(
n

n− 1

))
dn;

φ is found by substituting the expression from eq. (3.17) for W into (3.16):

∂φ2
∂x

=
a

(σ − 2C−2 )
=

b

σ(a0 + a1ηx+ a2η2x2 + 1)

φ2 =
b

ση
√
a2
√
a0 + 1− a21/4a2

arctan

√
a2ηx+ a1/2

√
a2√

a0 + 1− a21/4a2
+B (3.18)

where B is a constant. We find a by adding the two equations for C± (eq.3.8-3.10)

to get φ′(−L) = −I = −a/2C0. Integrating the two equations for C± (eq.3.8-3.10) and

subtracting the resulting equations one from the other, we get one constraint for b and

d: ∫ L

−L
(C+ − C−)

∂φ

∂x
dx = −2Lb

which leads to the following relation:

∫ −Lmem+α

−Lmem−α
(C+ − C−)

∂φ

∂x
dx+

∫ Lmem+α

Lmem−α
(C+ − C−)

∂φ

∂x
dx

−

[
b

η
√
a2
√
a0 + 1− a21/4a2

arctan

√
a2ηx+ a1/2

√
a2√

a0 + 1− a21/4a2

]Lmem

−Lmem

= −2Lb

(3.19)

where α > 0 is a small parameter.

C± and φ have a jump at x = ±Lmem so the first integral on the left hand side of

equation (3.19) is approximated by:
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−σ(φ2(−Lmem + α)− φ1(−Lmem − α))

∫ −Lmem+α

−Lmem−α
H(x)Lmemdx =

−σ(φ2(−Lmem + α)− φ1(−Lmem − α))/2 (3.20)

Similarly, the second integral on the left hand side of equation (3.19) becomes:

−σ(φ3(Lmem + α)− φ2(Lmem − α))

∫ Lmem+α

Lmem−α
H(x)Lmem(x)dx =

−σ(φ3(Lmem + α)− φ2(Lmem − α))/2 (3.21)

In order to use (3.20) and (3.21) we need to find the two constants A and B in (3.12)

and (3.18). B is found by adding the two equations for C± (eq. 3.8-3.10) and integrating

over the jump at x = Lmem:

[
C+ + C−

]Lmem+α

Lmem−α +

∫ Lmem+α

Lmem−α
(C+ − C−)

∂φ

∂x
dx =

���
���

���: 0

−
∫ Lmem+α

Lmem−α
b dx (3.22)

which leads to:

2C±3 (Lmem + α)− 2C−2 (Lmem − α) + σ − σ(−1

2
)B = 0 (3.23)

A is found in a similar way by integrating the sum of the two equations for C± over

the jump at x = −Lmem.

From Manzanares et al. (1993) we have the second constraint for b and d:

a− b
a+ b

=

∫ L
−LC

−dx∫ L
−LC

+dx
(3.24)

which leads to the following relation:

a− b
a+ b

=
2a0Lmem + 2a2η

2L3
mem/3 + 2Lmem − 2bLmem/a− 4bC0/aσ

2a0Lmem + 2a2η2L3
mem/3 + 2Lmem + 2bLmem/a− 4bC0/aσ

(3.25)

The system of two equations (3.19) and (3.25) is solved numerically to find constants

b and d. Figure 3.4 shows reasonable agreement between the analytical solution and the

numerical solution for large times found in the previous section. The analytical solution
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presented here was compared with the one in Andersen & Bruus (2012) and the latter

gave a more accurate agreement with the transient numerical solution.

3.4. Summary of research

We analysed a system with an anion exchange membrane, two reservoirs and a mono-

valent electrolyte. We first presented the classical Guoy-Chapman equilibrium theory

and derived Levich’s expression for the limiting current. We then solved the system

numerically for the underlimiting and the overlimiting current regimes to compare with

previous results by Manzanares et al. (1993). Similarly to their work, we found that the

electroneutrality assumption is not valid at the depletion side of the membrane and a

space charge region forms to allow the passage of current.

Next, we derived an analytical solution for the steady state in the underlimiting cur-

rent regime: we assumed electroneutrality and this gave a solution that had reasonable

agreement with the full numerical solution. Instead of using the Donnan potential as was

done by Andersen & Bruus (2012), we evaluated the jumps at the membrane/reservoir

interfaces and used an integral constraint for the matching conditions which is an alter-

native way of solving the system. We succeeded in finding an analytical solution that

has good agreement with the numerical solution.
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4. Water dissociation in a bipolar

membrane

We analyse the bipolar membrane system and reproduce the numerical results by Conroy

et al. (2012) in section §4.1. Sections §4.2 and §4.3 illustrate numerical solutions of

modified versions of this problem.

Conroy et al. (2012) considered two membranes with charges Σ1 (x < 0) and Σ2 (x > 0)

respectively, joined at x = 0 to form a bipolar membrane which is held in a bath with

a symmetric electrolyte C+
b , C−b such that their valencies are z+ = −z− = 1. Water

of concentration Ca is also added to the system; when an electric field E is applied

across the membrane, the water splits into positive and negative ions C+
a and C−a . The

governing equations (2.1-2.4) take the following form:

∇P = − µ
Π

u + ρeE (4.1)

∇ · u = 0 (4.2)

ρe = F (C+
a − C−a + C+

b − C
−
b ) (4.3)

n
∂C±a
∂t

+ u · ∇C±a = ω±a kBT∇ ·
(
± e

kBT
C±a ∇φ+∇C±a

)
+ (mfCa −mrC

+
a C
−
a ) (4.4)

n
∂C±b
∂t

+ u · ∇C±b = ω+
b kBT∇ ·

(
± e

kBT
C±b ∇φ+∇C±b

)
(4.5)

ε0ε∇2φ = ρe − F (Σ1H(−x) + Σ2H(x)) (4.6)

The last term in eq. (4.4) is the reaction term where mf and mr are the dissociation

and association rates of water ions: mr is a constant while mf is a linearised Arrhenius
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term that depends on the electric field according to the second Wien effect theory:

mf = ka(1 + εr(e/kBT )|φx|), with constants ka and εr.

The above equations are non dimensionalised, the membrane is assumed to be long and

thin and hydrodynamic effects are ignored as in chapter §2.2. φ′ is the perturbation

potential such that φ = φ′ + β(t)x, with β(t) the applied electric field.

∂2φ′

∂x2
= −χ2(C+

a − C−a + C+
b − C

−
b + Σ1H(−x) + Σ2H(x)) (4.7)

∂C±a
∂t

= α±a
∂

∂x

(
±ψC±a

(
∂φ′

∂x
+ β(t)

)
+
∂C±a
∂x

)
+DaR0 (4.8)

∂C±b
∂t

= α±b
∂

∂x

(
±ψC±b

(
∂φ′

∂x
+ β(t)

)
+
∂C±b
∂x

)
(4.9)

The reaction term is given by:

R0 = mK0 − C+
a C
−
a = m

(
εψ|φ′x + β|+ 1

)
− C+

a C
−
a (4.10)

where m is a constant related to the initial concentration of water ions when they are

set to the equilibrium value.

The boundary conditions are ∂C±a,b/∂x(±L, t) = 0 and φ(±L, t) = ±β, where L is the

half length of the domain in the x direction.

The initial conditions are C±a =
√
m, C+

b = |Σ1|H(−x) and C−b = |Σ2|H(x), so that the

salt maintains electroneutrality with the membrane.

Ion fluxes are defined as J±a,b/α
±
a,b = ±ψC±a,b (φ′x + β(t))+∂C±a,b/∂x to express the current

I = −(J+
a − J−a + J+

b − J
−
b ).

4.1. Water and one salt

In this section we repeat the numerical analysis in Conroy et al. (2012). In the ex-

periments by Cheng & Chang (2011) the electric field depends on time and it is first

increased and then decreased. In order to model this, the applied electric potential is

given by a ramp function that depends on time:

β(t) =

2t/tfin, for 0 ≤ t ≤ tfin/2

2(1− 1/tfin), for tfin/2 < t ≤ tfin
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Figure 4.1. Top panels: current against potential and ion fluxes −J+
b (dashed line) and

−J+
a (solid line) against time at measuring point x = −0.5255. Bottom

panels: salt and water ion concentrations in the left membrane at times t1
(solid line), t2 (dashed line), t3 (dash-dot line) and t4 (dotted line). The
vertical solid line corresponds to the measuring point x = −0.5255. Final
time tfin = 5 × 10−3, α+

a = 3, α−a = 2, α±b = 1, m = 10−6, ψ = 5 × 103,
Da = 1× 106, ε = 1× 10−2, χ = 10.
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Figure 4.2. (a) Sum of salt and water ion concentrations close to the junction and
(b) voltage potential at times t1 (solid line), t2 (dashed line), t3 (dash-dot
line), t4 (dotted line).

Figure 4.1 shows the solution for the salt and water ion concentrations in the left

membrane at four different times, the IV curve (a plot of the current versus potential)

and the ionic fluxes. We clearly see the hysteresis of the IV curve in figure 4.1a where

voltage and current are measured at x = −0.5255 (the measuring point is emphasised

by the vertical solid line in figures 4.1c,d): as the voltage is swept from zero to negative

values, the current intensity increases linearly until time t1 when it starts dropping and

then at time t2 the current intensity starts increasing again; at time t3 the applied electric

field β(t) starts decreasing and so does the current intensity but without following the

same path as for increasing β(t).

Figures 4.1b,c give the water and salt positive ion concentrations C+
a and C+

b at times

t1 = 3.5× 10−4, t2 = 6.75× 10−4, t3 = 2.5× 10−3 and t4 = 4.8× 10−3 to highlight how

the various ion fluxes contribute to the current I. As the electric field is switched on, the

salt ions start moving away from the junction. At first, they are sufficiently close and

the current is mainly due to β(t). At time t1 the ion depletion region at the junction is

large enough to increase the potential difference φ′ which starts dissociating water at t2.

The concentration of positive water ions C+
a increases in the left membrane as it tries to

replace the positive salt ions in order to maintain electroneutrality with the membrane.

When β(t) is reversed at t3 the ion depletion region and thus the voltage potential

difference shrink. As β(t) is decreased to zero, a depletion region is still present so φ′x

does not go to zero at tfin and the IV curve does not follow the same path when β(t)

is reversed.
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Previously Conroy et al. (2012) thought that when β(t) is reversed the salt has already

been swept away from the measuring point and that the current is only due to the water

ions. From figure 4.1d we see that at t3 both the positive salt and positive water ions are

at the measuring point. Hence, the current I at a measuring point in the left membrane

is given by both the positive ion fluxes J+
a and J+

b (figure 4.1b).Figure 4.2 shows the

sum of the ions in both membrane and the voltage φ at the corresponding times. This

is to highlight the formation of the depletion region and how it increases the potential

drop across that region.

We have successfully repeated the numerical analysis presented in Conroy et al. (2012)

and have gained a deeper understanding of the physical mechanisms responsible for the

hysteresis of the IV curve. In the next sections we build upon this analysis to investigate

the system further.

4.2. Two salts

In this section new results are presented: the behaviour of the system with two salts is

analysed numerically. The aim was to find an IV curve with two minima instead of one,

with each minimum corresponding to a salt being washed out of the system. This was

based on the incorrect assumption that the minimum in the IV curve corresponds to

the salt being flushed past the measuring point. It turns out that in the two salts case

the IV curve is qualitatively the same as in the one salt case. This is due to the fact

that the minimum in the IV curve happens at the time when the ion depletion region

is wide enough to increase the potential drop φ′ across the junction and not when the

salt has gone past the measuring point.

In this case, eq. (4.7) becomes:

∂2φ′

∂x2
= −χ2(C+

a − C−a + C+
b − C

−
b + C+

c − C−c + Σ) (4.11)

where C±c are the positive and negative ions of the additional salt. The Nerst-Planck

equations for the additional salt are as follows:

∂C±c
∂t

= α±c
∂

∂x

(
±ψC±c

(
∂φ′

∂x
+ β(t)

)
+
∂C±c
∂x

)
(4.12)

The boundary conditions are the same as for the one salt case with the addition of

∂C±c /∂x(±L, t) = 0. The initial conditions are:

C+
b = |Σ+

b |H(−x)
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Figure 4.3. Top left panel: current against voltage at measuring point x = −1.8021.
The other three panels show ion concentrations at times t1 (solid line),
t2 (dashed line), t3 (dash-dot line) and t4 (dotted line). The vertical line
corresponds to the measuring point x = −1.8021. Applied electric poten-
tial β(t) = t, α+

a = 1, α−a = 0.5, α±b = 1, α+
c = 5, α−c = 0.5, m = 10−6,

ψ = 5× 102, Da = 1× 105, ε = 1× 10−1, χ = 5.
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Figure 4.4. Left panel: ion fluxes −J+
b (dashed line), −J+

a (solid line) and −J+
c (dot-

dashed line) against potential at measuring point x = −1.8021. Right
panel: sum of salt 1, salt 2 and water ion concentrations close to the
junction at times t1 (solid line), t2 (dashed line), t3 (dash-dot line) and
t4 (dotted line). As before, the vertical line corresponds to the measuring
point x = −1.8021. Same parameters as figure 4.3.

C−b = |Σ−b |H(x)

C+
c = |Σ+

c |H(−x)

C−c = |Σ−c |H(x)

with |Σ+
b |+ |Σ

+
c | = |Σ1| and |Σ−b |+ |Σ

−
c | = |Σ2| for electro-neutrality.

The current is given by I = −(J+
a − J−a + J+

b − J
−
b + J+

c − J−c ).

Figures 4.3 and 4.4 illustrate the behaviour of the system for |Σ±b | = 1 and |Σ±c | = 2 so

|Σ1,2| = 3 with mobilities α+
a = 1, α−a = 0.5, α±b = 1, α+

c = 5 and α−c = 0.5. Initially,

the ions of both salts are in equilibrium with the surface charges of the membrane as in

§4.1. As the applied potential β(t) is switched on, the ions start moving away from the

junction. Since the mobility of salt ion C+
c is five times higher than the mobility of salt

ion C+
b , the former propagates away from the junction faster than the latter. However,

the salt ion C+
b tries to preserve electroneutrality with the membrane, which is why it

develops peaks (figure 4.3c). At the same time, the ion depletion region at the junction

grows bigger which causes the water to split. Both positive salt ions and the positive

water ion try to balance the membrane surface charges (figure 4.4b).

The current I at measuring point x = −1.8021 is given by the fluxes −J+
a , −J+

b and

−J+
c . The sum of these fluxes gives a linear increase in the current intensity from time
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t2 to tfin in a similar way to the case with just one salt in §4.1. Unfortunately the IV

curve gives no indication of when the various salts are swept past the measuring point

as previously hoped.

4.3. Reaction term

Onsager (1934) established that the dissociation rate for weak electrolytes depends on

the applied electric field intensity - this phenomenon is referred to in the literature as

the second Wien effect. In the case of bipolar membranes the dissociation rate can

be modelled by the Arrhenius dependence given in (1.1) with the activation energy Ea

given by the applied electric field intensity (Mafe & Ramirez, 1997). Conroy et al.

(2012) use a linearised Arrhenius term (4.10). The aim of this section is to investigate

the consequences of including a nonlinear Arrhenius term in the model:

Rexp = mKexp − C+
a C
−
a = m exp(εψ|φ′x + β|)− C+

a C
−
a (4.13)

Kexp can be approximated by K0 for ε = 10−4 since Kexp = K0 + O(10−1) in this

case. For this value of ε the IV curve does not have a current spike because the Wien

effect is too weak.

When ε = 10−3 for Kexp and ε = 10−1 for K0, maxx∈(−L,L)Kexp and maxx∈(−L,L)K0

are of the same order of magnitude. A plot comparing the solutions for these two cases

is shown in fig. 4.5. We see that salt and water ions propagate to approximately the

same distance for the two solutions but the IV curve has a different behaviour in each

case.

This result is interesting as the experimentally measured IV curve is nonlinear (fig.1.7)

which suggests that the dissociation rate in the model should indeed depend exponen-

tially on the electric field intensity.

4.4. Summary of research

We analysed a system with a bipolar membrane, water and a salt under the effect of

an electric field. We first considered the system where only one salt is present and

reproduced the results by Conroy et al. (2012). As before, we found the IV curve to

have a hysteretic behaviour. The initial spike in the current intensity is due to the

applied electric field, its subsequent decrease is due to the appearance of a depletion

region at the junction. As the salt ions move away from the junction they are replaced

by the dissociating water ions in an attempt to maintain electroneutrality. As the applied
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Figure 4.5. Comparison between solutions when reaction term is of the form R0

(dashed line) and Rexp (solid line). ε = 10−1 for the case with R0 and ε =
10−3 for the case with Rexp. Top panels: IV curve and positive ion fluxes
evaluated at point x = −2.8026. Figure (b): −J+

a (R0 - solid line, Rexp -
dash-dot line), −J+

b (R0 - dashed line, Rexp - dotted line). Bottom panels:
salt and water ions concentrations evaluated at times t1 = 1.44 × 10−2,
t2 = 1.92×10−2, t3 = 7.98×10−2 and t4 = 1.1164×10−1. Applied electric
potential β(t) = t (0 ≤ t ≤ 2tf/3), β(t) = 2(tf − t) (2tf/3 < t ≤ tf )
with tf = 0.12. α+

a = 1, α−a = 0.5, α±b = 1, m = 10−6, ψ = 5 × 103,
Da = 1× 105.
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Chapter 4. Water dissociation in a bipolar membrane

electric field is decreased so is the depletion junction which is still present even when the

electric field has dropped to zero. Contrary to what was thought before, the initial spike

in the current does not correspond to the salt being swept past the measuring point.

We looked at the behaviour of this same system with the presence of an extra salt

and found the qualitative behaviour of the IV curve unchanged. This is because when

the salt ions with the higher mobility are swept away from the junction, the second

salt ions and the water ions move in its place to balance the membrane and preserve

electroneutrality.

Finally we considered a non linearised Arrhenius term in the model and the numerically

calculated IV curve exhibited a nonlinear behaviour that was similar to the IV curve

found experimentally.
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5. Concluding remarks

We have presented a mathematical model for the ionic transport through a porous

membrane under the effects of an electric field. We assumed the length of the system to

be much larger than the depth and hence derived a one dimensional model. The Peclet

number which represents the ratio between convection and diffusion of ions is taken to be

small which allows us to ignore hydrodynamic effects. The resulting system of equations

is solved numerically using PDECOL, a FORTRAN PDE solver that relies on a finite

element scheme for spatial discretisation and a routine based on Gear’s method for the

time integration.

We have analysed the behaviour of a binary monovalent electrolyte placed in a system

made up of an anion membrane and two reservoirs. We compute the full time dependant

solution and find that at large times the profiles of the salt concentrations and of the

voltage potential reach a steady state. In the underlimiting current regime both the

ion concentrations and the voltage potential vary almost linearly in the three regions.

We assume electroneutrality in the reservoirs and derive an analytical solution for the

system which is in excellent agreement with the full numerical solution at large times.

In the overlimiting current regime our numerical solution confirms the existence of the

space charge region that forms at the anodic side of the membrane.

We proceed to analyse the system in which an anion and a cation membranes are joined

together to form a p-n junction and are held in an electrolyte bath with water and a salt.

We compute the full numerical solution and reproduce the results found by Conroy et al.

(2012). The IV curve has the same hysteretic behaviour as the one found in experiments

by Cheng & Chang (2011) and we show that the initial dip in the current is due to the

applied electric field rather than to the salt being swept past the measuring point as was

previously thought.

We then presented original results in which we investigated the behaviour of the system

with the addition of a second salt of higher mobility. Its ions appear to be swept away

from the junction faster, with the first salt and the water ions moving in its place to

balance the charge of the membrane and preserve electroneutrality. This leads to an IV

curve with the same qualitative behaviour as in the one salt case.
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Chapter 5. Concluding remarks

Finally we considered a non linearised Arrhenius dependence to express the reaction

term which led to a nonlinear behaviour of the IV curve. This curve was qualitatively

more similar to the IV curve found experimentally than the one found by Conroy et al.

(2012). This similarity is encouraging and suggests that nonlinear phenomena play an

important role and that using the full nonlinear Arrhenius term leads to a more accurate

description of the system.
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Part II.

Interfacial flows under the effects

of electric fields
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6. Introduction

Thin liquid films appear in a wide variety of scenarios ranging from large scale geophysical

flows, such as gravity driven currents (Huppert, 2006), to small scale microfluidic devices,

such as lab-on-chip technology (Toner & Irimia, 2005). These flows are encountered in

physical systems like lava flows (Balmforth & Craster, 2000) and ice sheets (Baral et al.,

2001) and are also relevant in biological systems, such as in the study of liquid linings of

pulmonary airways (Grotberg, 1994). The understanding of the dynamics of thin film

flows is of crucial importance for many industrial applications such as polymer patterning

at the micro and nano scale (Nie & Kumacheva, 2008), nanofluidic technology (Eijkel &

Berg, 2005) and lab-on-chip devices that are able to perform specific blood analyses using

small samples of fluid (SooHoo & Walker, 2009). The applications and main features of

thin film flows are summarised in the review by Craster & Matar (2009).

In this part of the thesis, we consider thin film flows under the effect of electric forces.

These can destabilise the free surface, in the case of a single fluid, or the fluid-fluid

interface, in the case of two fluids, and lead to rupture of the film or to the creation of

interesting patterns. The fluids can be perfect dielectrics, where no free charge is present

or leaky dielectrics, where the charge accumulates at the interface to ensure current

conservation when there is a jump in conductivities. The fluid motion of film flows

under the effect of electric fields is governed by the Navier-Stokes equations and when

the fluid is a leaky dielectric we need to include an equation for the conservation of current

based on Ohmic conductivity. Magnetic effects are ignored since under static conditions

magnetic and electric fields are independent of each other (Feynman et al., 1979). The

coupling between the electric field and the fluid flow only occurs at the interface where

there is a discontinuity in electric permittivities and conductivities. When the fluids are

perfect dielectrics the electric stress is balanced by a combination of interfacial tension

and the changes of interfacial shape. For leaky dielectrics the interfacial conditions are

different: the free charge at the surface modifies the electric field and viscous stresses

balance the tangential components of the field that act on the charge. Such a treatment

of electrohydrodynamics first emerged in a review by Melcher & Taylor (1969). One of

the earliest works that deals with such systems by Melcher & Smith (1969) investigated
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Figure 6.1. Schematic of a liquid film coating process and the physical mechanisms
involved. Figure taken from Schweizer & Kistler (2012).

the behaviour of a plane interface between two fluids stressed by initially perpendicular

electric fields which led to the conclusion that the presence of even a small amount

of surface charge brings down the value of the critical voltage required for instability

compared to the case with no surface charge. Saville (1997) summarised the model

proposed by Melcher & Taylor (1969) and gave a review on the effects of electric fields

on interfacial dynamics for fluid drops, cylinders and suspensions.

The following chapters are aimed at analysing the behaviour of the free surface of an

electrified fluid sheet under the influence of a tangential electric field (§8) and the effect

of a transverse electric field on the interface between two fluids in a channel (§9 & §10).

In the next two sections we give an overview on previous work on these two problems.

6.1. Effects of a tangential electric field on a fluid sheet

Free liquid films arise in a variety of physical situations and industrial applications. One

of the central phenomena in thin film dynamics is the rupturing process which occurs

in many colloid systems such as coalescence of emulsions (Kumar et al., 2002; Marrucci,

1969), biological membranes (Knutton, 1979) and soap films (Sheludko, 1967). In in-

dustrial systems rupture occurs in atomisation by film formation (Lefebvre, 1988) and

coating processes (Ramkrishnan & Kumar, 2013; Schweizer & Kistler, 2012; Weinstein

& Ruschak, 2004). To achieve the latter, it is important to maintain the thin film at

a constant thickness and to prevent rupture in order to deposit a uniform liquid layer

on the surface that needs to be coated (see Figure 6.1 for a schematic of a hypothetical

coating process). Erneux & Davis (1993) investigated the nonlinear stability to sym-
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metric disturbances of a free film using a one dimensional long-wave model and found

that van der Waals forces are necessary for rupture. Vaynblat et al. (2001) extended

the problem to two dimensions and found similarity solutions for a line rupture and a

point rupture. This problem was further extended to three dimensions by Miksis & Ida

(1998a,b).

The introduction of a tangential electric field has interesting effects on the behaviour

of free surfaces of thin films such as the suppression of instability and the increase in

speed of capillary waves (Melcher & Schwarz, 1968). There have been several studies on

this topic, in particular Tilley et al. (2001) considered a non-conducting, inviscid fluid

sheet and found that the electric field delays rupture but does not prevent it. They

derived nonlinear long wave evolution equations with the electric field entering as a non-

local term and constructed travelling waves. Savettaseranee et al. (2003) considered the

same problem but for a viscous fluid and with the inclusion of van der Waals forces.

Rupturing solutions were found to be surface tension dominated with similarity scalings

consistent with Vaynblat et al. (2001). Papageorgiou & Vanden-Broeck (2004b) con-

structed symmetric travelling waves for the same system as the one analysed by Tilley

et al. (2001) and recovered their results in the long wave limit. The full model derived

by Papageorgiou & Vanden-Broeck (2004b) however made no assumptions regarding the

size of wave amplitudes and lengths. They found that a tangential electric field smoothes

out otherwise steep waves and for certain values of relative electric permittivity stronger

electric fields lead to an increase in wave speed. Similar results were found for the case of

antisymmetric waves (Papageorgiou & Vanden-Broeck, 2004a). The studies by Zubarev

(2004); Zubarev & Kochurin (2013); Zubarev & Zubareva (2010) also considered inter-

facial waves using analytical tools and found that waves of small but finite amplitude

can propagate without shape distortion along the interface between two non-conducting

fluids in the direction of the electric field.

Papageorgiou & Petropoulos (2004) considered a model similar to the one analysed by

Savettaseranee et al. (2003) but ignored van der Waals forces and instead looked at the

effect of including a surface charge. They established through a linear analysis that the

effect of the electric field is no longer stabilising when the liquid sheet has finite conduc-

tivity. These results were confirmed by the work of Ozen et al. (2006) in which numerical

simulations show that the sheet structure is that of drops connected by long thinning

necks and that rupture is possible at asymptotically large times. Both Papageorgiou &

Petropoulos (2004) and Ozen et al. (2006) made the assumption of fast charge relaxation

times which led to a simplification of the charge equation.

Grandison et al. (2007) extended the work by (Papageorgiou & Vanden-Broeck, 2004a,b)
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by considering the dynamics of a fluid sheet surrounded by a second fluid. In the limit

where the second fluid has zero density they recovered the results in Papageorgiou &

Vanden-Broeck (2004a,b). Through linear theory they found that the surrounding fluid

reduces the steepness of both symmetric and antisymmetric nonlinear waves and can act

to stabilise the KelvinHelmholtz instability even in the absence of surface tension. There

are several more studies that consider the interface between two fluids under the effects

of a tangential electric field and this is used to suppress the Rayleigh-Taylor instability

(see Barannyk et al. (2012) for a nonlinear study and Cimpeanu et al. (2014) for a direct

numerical simulation). A related study by Hunt et al. (2014) considers a film hanging

from a dielectric slab and shows that the electric field is able to suppress the gravita-

tional instability. This agrees with the study by Barannyk et al. (2015b) which considers

the same problem as in Barannyk et al. (2012) but also analyses the wall touch-up that

occurs when the electric field is weak or absent for which a similarity solution of the

second kind is found. Liu et al. (2016) conducted a linear stability analysis for the be-

haviour of a viscous electrified sheet surrounded by compressible gas streams under the

effect of a transverse electric field; they found that an electrified sheet is more unstable

than a non electrified one.

In the present study we consider a system similar to the one examined by Ozen et al.

(2006) and take the ratio of fluid to electric time scales to be of O(1) and nonlinear cou-

pled evolution equations are derived for the thickness of the sheet, the horizontal fluid

velocity and the surface charge. We find that without the assumption of fast charge

relaxation times the interface can rupture at finite times.

6.2. Effects of a transverse electric field on the interface

between two fluids

Multilayer flows under the effect of electric fields have a huge range of applications such

as in micro engineering and point of care diagnostics technology (see Gubala et al. (2011)

and Figure 6.2). In recent years there has been growing interest in the miniaturisation

of electronic tools and much research has gone into finding appropriate techniques to

pattern polymers. Details on the applications and techniques of polymer patterning can

be found in the review by Nie & Kumacheva (2008). One such technique exploits the

electrohydrodynamic instabilities of a system to induce ordered patterns and it was first

explored in two experimental papers contemporary to each other (see Chou & Zhuang

(1999); Schaffer et al. (2000) and Figure 6.3). Since then, electrohydrodynamic instabil-
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Figure 6.2. Schematic of an idealised point of care diagnostics device. Figure taken
from Gubala et al. (2011).

Figure 6.3. Schematic representation of electrically induced pattern transfer and an
image of the topographic pattern produced. Figure taken from Schaffer
et al. (2000).
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ity induced structures have been the focus of much research due to the simplicity and the

low cost of this patterning method, details of which can be found in the review by Wu

& Russell (2009). Linear stability analyses have been conducted using both the perfect

dielectric (Schaffer et al., 2001) and the leaky dielectric (Pease & Russell, 2002) models.

Both predict experimental data reasonably well, with the leaky dielectric decreasing pil-

lar spacing and increasing their rate of formation.

Linear stability analyses and full numerical simulations have been done for a variety of

similar setups. Li et al. (2007) considered the linear stability of the interface between

two conducting fluids bounded by two flat electrodes and found that the electric field

has a destabilising effect for perfect dielectrics and either a stabilising or destabilising

effect for leaky dielectrics with either Couette or Poiseuille base flows. Craster & Matar

(2005) conducted full numerical simulations for an equivalent system with no base flow

and showed that initially small perturbations developed into spatially periodic columnar

structures. Maehlmann & Papageorgiou (2011) found that including a Couette type

flow in such a system caused the interface to evolve into fingerlike structures that were

driven away from the centre line due to the presence of background flow. In this study

we combine these setups and look at a pressure driven two layer flow between one flat

and one sinusoidal electrode.

There has been some recent work on flow of fluids over surface topography in a setup

similar to the one in this thesis, mostly involving a fluid-air interface. Many previous

studies considered gravity-driven flow of a single layer of fluid over topography (Tseluiko

& Blyth, 2009; Tseluiko et al., 2013, 2008a,b). Tseluiko et al. (2008b) looked at steady

solutions for the gravity-driven flow of a single layer of electrified viscous fluid over steps,

trenches and mounds and showed that the presence of an electric field can alter some

of the interfacial features. Luo & Pozrikidis (2006) considered the interface between

two viscous fluids flowing between one flat boundary and one with periodic steps for a

gravity-driven flow and with a sinusoidal lower wall and found the interfacial features

to be in phase with the topography. Pollak & Aksel (2013b) conducted an experimental

study of the stability of gravity-driven flow over sinusoidal topography. They observed

the formation of eddies and found values of the viscosity and Reynolds numbers that

are necessary for the eddies to form. A similar experimental study was conducted by

Schorner et al. (2015): they examined 5 different topographies and found that the linear

stability of the system is unaffected by the shape of the lower boundary.

There are a few studies for flows over topography without an incline: Lenz & Kumar

(2007) considered a geometry similar to the one analysed by Luo & Pozrikidis (2006)

but with flow over a flat plane. They analysed the steady states of the system and found
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that the step causes the formation or a capillary ridge at the interface. Yang et al.

(2013a,b) modelled the evolution of the fluid-air interface with a flat electrode on the

bottom and a sinusoidally-patterned electrode on the top and found that the interface

deformation is consistent with the shape of the wavy electrode. Ramkrishnan & Kumar

(2014) investigated the fluid-air interface in the flow between a patterned and a flat elec-

trode with both perfect and leaky dielectric materials considered. They found that in

the case of a perfect dielectric a small amplitude sinusoidal pattern leads to an interface

shape that mimics the electrode pattern. Karapetsas & Bontozoglou (2015) carried out

2D numerical calculations for a Newtonian fluid and a viscoelastic polymeric fluid under

a patterned mask to find that perturbations grow until they reach the top electrode and

viscoelasticity affects their wavelength.

In the present study, we consider pressure-driven two-layer flows through channels of

variable cross-section that are additionally influenced by the presence of electric fields

arising from imposing a constant voltage potential across the channel walls. Sufficiently

strong electric fields can destabilise the flow and lead to nonlinear free surface patterns

that can be useful in applications (e.g. micro-lithography). Our model closely follows

the one described by Craster & Matar (2005) but with the addition of a constant flow

rate and corrugated boundaries. Such a setup is motivated by applications in bioana-

lytical devices, many of which introduce fluid into a reactor by using a pressure driven

flow (Erickson & Li, 2004). We include electrode topography to explore the possibility

for mixing and cell trapping which are key features of many microfluidic devices for

cellomics (Yi et al., 2006). The reader is referred to the two reviews by Khandurina

& Guttman (2002) and Andersson & van den Berg (2003) for details on bioanalytical

devices.
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7. Mathematical formulation

7.1. Governing equations

In this chapter we give the mathematical formulation for the pressure driven flow of two

films of viscous fluid that are sandwiched between two electrodes. The electrodes can be

either flat and parallel to the undisturbed interface or corrugated with the shape of the

bottom given by z(x) and the top one by β(x) (figure 7.1). The fluids are taken to be

Newtonian and incompressible and the electric fields are governed by the electrostatic

approximation of Maxwell’s equations. Fluid 1 is placed in the region 0 ≤ y ≤ β(x)H

and fluid 2 in −z(x)H ≤ y ≤ 0 with the undisturbed interface at y = 0. The electrodes

are kept at a constant voltage V1 = 0 at the top and V2 = Ṽb at the bottom. A leaky

dielectric model (Saville, 1997) is considered: the charge q(x, t) is accumulated on the

interface h(x, t) and the electric field only plays a role at the interface because the bulk

is assumed to be electroneutral and conduction along the interface is neglected.

Here we give the general governing equations for fluid 1 (upper) and fluid 2 (lower),

that have viscosities µ1,2, densities ρ1,2, dielectric constants ε1,2 and conductivities σ1,2.

The velocity in fluid i is ui = (ui, vi, 0) where ui and vi are the velocity components in

the x and the y direction respectively; Pi is the pressure in fluid i and Q is the overall

flow rate. Due to the small scale of the film thickness gravity can be neglected. For the

present, we do not include intermolecular forces into the problem.

Figure 7.1. Setup of the system.
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The fluid flow is governed by the Navier-Stokes equations and the continuity equation:

ρi(uit + ui · ∇ui) = −∇Pi + µi∇2ui, i = 1, 2; (7.1)

∇ · ui = 0, i = 1, 2. (7.2)

The above equations are subject to interfacial conditions such as continuity of the

fluid velocity at the interface:

[u · n] = [u · t] = 0, (7.3)

where n = (−hx, 1)/
√

1 + h2x is the outward pointing normal vector and

t = (1, hx)/
√

1 + h2x is the tangent vector. The stress tensor T has a fluid part TF and

an electrical part TE:

T = TF + TE, (7.4)

where

TF = −pI + µ(∇u +∇uT ), TE = εi

(
EE− 1

2
|E|2I

)
. (7.5)

The jumps in the normal and tangential stresses are given by:

[n ·T · n] = γκ,
[
t ·TF · n

]
= qE · t, (7.6)

where κ is the curvature and γ is the surface tension. The expression for the tangential

stress balance follows from Gauss’ law where q is the interfacial charge and E is the

electric field. In addition, we have no slip and no penetration at both boundaries y =

−z(x)H and y = β(x)H.

The electric field Ei is irrotational, hence it can be expressed using a voltage potential

which is governed by a Laplacian:

∇2Vi = 0, (7.7)

where Ei = −∇Vi. The voltage potential is continuous across the interface as is its

tangential part. The jump in the normal direction is given by Gauss’ law:
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[Vi] = 0, [t ·E] = 0, [εE · n] = −q. (7.8)

The voltages are kept constant at the boundaries: V1 = 0 at y = β(x)H and V2 = Ṽb

at y = −z(x)H.

The interfacial charge is governed by the following conservation equation:

qt + u · ∇q − qn · (n · ∇)u = −σ1E1 · n + σ2E2 · n. (7.9)

To complete the system we need an overall flow rate condition and the kinematic

condition: ∫ βH

h
u1dy +

∫ h

−Hz
u2dy = Q, vi = ht + uihx. (7.10)

In the following sections this set of nonlinear equations plus boundary conditions is

non-dimensionalised and asymptotic methods are used to derive and evolution equation

for the interface location h(x, t) and for the charge q(x, t) when it is present. In section

§7.2 focuses on the behaviour of the interface between a viscous electrified fluid and a

conducting medium while section §7.3 analyses the interface between two fluids that flow

between two electrodes.

7.2. Evolution equation for a single liquid sheet

In this section we derive the evolution equations for a viscous, conducting, liquid sheet

surrounded by a conducting medium with an electric field E applied parallel to the

undisturbed interfaces (figure 7.2). The sheet is symmetric about the x-axis and it is

assumed that all perturbations are also symmetric so it is enough to consider the top

half of the sheet.

7.2.1. Dimensionless equations

We take the governing equations from section §7.1 with the upper fluid 1 replaced by

a conducting medium. Since there is no flow outside the layer of fluid, the subscripts

in the fluid equations are dropped. The equations are non-dimensionalised using the

following scales:
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Figure 7.2. Setup of the system and governing equations.

x = Lx′, y = dy′, (u, v) = U(u′, δv′), V = VbV
′,

h = dh′, t =
L

U
t′, P = ρU2P ′, q =

ε1V0
L

q′,
(7.11)

where δ = d/L� 1 is a small parameter.

For simplicity all dashes are dropped and the non-dimensional equations take the fol-

lowing form:

ut + uux + vuy =− Px +
1

Re

(
uxx +

1

δ2
uyy

)
, (7.12)

δ2(vt + uvx + vvy) =− Py +
δ2

Re

(
vxx +

1

δ2
vyy

)
, (7.13)

ux + vy =0, (7.14)

δ2Vixx + Viyy = 0, i = 1, 2. (7.15)

where Re is the Reynolds number. These equations are solved together with interfacial

conditions such as the non-dimensional normal and tangential stress balances:
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−p+
2

Re(1 + δ2h2x)

(
ux(δ2h2x − 1)− hx(uy + δ2vx)

)
+

+
Eb

1 + δ2h2x

[
εi

1− δ2h2x
2

(
V 2
y

δ2
− V 2

x

)
− 2hx(εiVxVy)

]
=

=
δ

Re Ca

hxx

(1 + δ2h2x)
3
2

,

(7.16)

2δ2hx(vy − ux) + (1− δ2h2x)(uy + δ2vx) = Re Eb δq(V2x + V2yhx)
√

1 + δ2h2x, (7.17)

and the kinematic condition and the symmetry conditions about y = 0:

v = ht + uhx, uy(x, 0, t) = v(x, 0, t) = Vy(x, 0, t) = 0. (7.18)

The tangential component of the electric field is continuous and the jump in its normal

component is given by Gauss’ law:

[Vx + hxVy]
2
1 = 0. (7.19)

εp(δ
2hxV2x − V2y)− (δ2hxV1x − V1y) = −δq

√
1 + δ2h2x. (7.20)

The dimensionless charge conservation equation takes the following form:

qt − δ2
hthx

1 + δ2h2x
qx +

1√
1 + δ2h2x

(
u+ δ2vhx√

1 + δ2h2x

)
x

q + δ2hxx
v − uhx

(1 + δ2h2x)2
q =

− T√
1 + δ2h2x

[
V2y
δ
− δhxV2x − σR

(
V1y
δ
− δhxV1x

)]
.

(7.21)

We combine the expression for the tangential stress balance (7.17) and Gauss’ law

(7.20) to get:

2δ2hx(vy − ux) + (1− δ2h2x)(uy + δ2vx) =

Re Eb (V2x + V2yhx)[εp(δ
2hxV2x − V2y)− (δ2hxV1x − V1y). (7.22)
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The advantage of scaling is that seven non-dimensional parameters emerge:

Re =
ρUL

µ
, Ca =

µU

γ
, Eb =

V 2
b ε1

L2ρU2
,

εp =
ε2
ε1
, σR =

σ2
σ1
, T =

Lσ1
Uε1

, δ =
d

L
,

where Re is the Reynolds number, Ca is the capillary number, Eb is the electric Weber

number which expresses the ratio of electric to capillary forces, εp and σR which give the

ratios of electrical permittivities and conductivities respectively, T is the ratio of fluid

to electric time scales and δ is the aspect ratio. We can explore the properties of the

system in distinguished limits where different pieces of physics dominate.

7.2.2. Long-wave asymptotics

We assume that the wavelength of interfacial disturbances is long compared to the thick-

ness of the sheet and we take the aspect ratio to be very small: δ � 1. We introduce

the following asymptotic expansions:

u = u0 + δu1 + δ2u2 + ...,

v = v0 + δv1 + δ2v2 + ...,

P = P0 + δP1 + ...,

h = H0 + δH1 + ...,

q = δq1 + ...

Substituting these into the Navier-Stokes equations (7.12-7.14) and using symmetry

conditions gives the vertical and horizontal fluid velocities to leading order:

u0 = C(x, t), v0 = −yCx. (7.23)

Similarly we can find u1 and v1 which are set to zero without loss of generality.

Laplace’s equation is solved for the voltage V1,2 along with the symmetry condition.The

voltage can be expressed as the sum of undisturbed plus disturbed part:

Vi =
x

2
+ δV̄i
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where the undisturbed part represents the applied electric field. We note that in the

region where y ∼ δ−1, we need to introduce an outer variable Y = δy in order to solve

equation (7.15) to find the voltage in the outer layer. The details are in the appendix

and it is found that this outer solution is equal to zero and we do not have to worry

about it.

Solving equation (7.15) in the inner layer where y ∼ 1 gives:

V1 =
x

2
+ δV11(x, t) + δ2(A(x, t) + yB(x, t)) +O(δ3), (7.24)

V2 =
x

2
+ δV21(x, t) + δ2V22(x, t) +O(δ3). (7.25)

(7.26)

The continuity of tangential electric field (7.19) is used to match V1 and V2 at the

boundary to get:

V21(x, t) = V11(x, t),

V22x = Ax + yBx +H0xB, ⇒ V22 = A+BH0.

The charge conservation equation (7.21) at leading order becomes:

q1t + Cxq1 = T

(
σRB +

H0x

2
(1− σR)

)
, (7.27)

and using Gauss’ law (7.20) we find B:

B =
1− εp

2
H0x − q1. (7.28)

In order to include surface tension and electrical effects, the following scalings are

considered:

Eb ∼ 1, Ca = Σ/δ.

Physically this means that viscous forces are large compared to capillary forces which

are of the same order of magnitude as electrical stresses. If we take a different scaling

for the electric Weber number the system is not affected by the electric field and this is

the simplest scaling to include it.
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At O(1) the normal stress equation and the y-momentum equation take the form:

− P0 −
2

Re
Cx =

Σ

Re
H0xx, P0 = P0(x, t). (7.29)

Equation (7.22) at order δ2 gives:

− 4H0xCx − yCxx + u2y = −Re Eb

2
q1. (7.30)

Taking the x-momentum equation (7.12) at order δ2 and then integrating in y gives:

u2y = yRe [Ct + CCx + P0x]− yCxx. (7.31)

Combining equations (7.29-7.31) and (7.27) and using the kinematic condition at

y = H0 we get three coupled evolution equations for H0(x, t), C(x, t) and q1(x, t) (we

drop the 0’s and 1’s for convenience):

Ht + (CH)x = 0, (7.32)

Ct + CCx =
Σ

Re
Hxxx +

4

Re

(HCx)x
H

− Eb

2H
q, (7.33)

qt + Cxq = −TσR
2

(σ̃RHx + 2q) , (7.34)

where σ̃R = (εpσR − 1)/σR.

In this study we have assumed that the relaxation time is slow i.e. T ∼ 1. This

system has been analysed previously by Ozen et al. (2006) with the assumption of fast

relaxation time T � 1. However, T may become small in case of rupture and so their

T � 1 assumption can break down.

Taking the limit T � 1 the evolution equations from Ozen et al. (2006) for H(x, t) and

C(x, t) are recovered:

Ht + (CH)x = 0, (7.35)

Ct + CCx =
Σ

Re
Hxxx +

4

Re

(HCx)x
H

+
EbHx

4H

(
εpσR − 1

σR

)
. (7.36)
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7.3. Evolution equations for two layer flow between

electrodes

In this section we derive the evolution equations for the interface between two viscous

fluids that are placed between two electrodes which when flat are parallel to the undis-

turbed interface (figure 7.3). The electrodes may have a corrugation: the shape of the

top one is given by the function β(x) and the shape of the bottom one is given by the

function z(x) (β and z are constants in the case of flat boundaries). The flow in the

channel is driven by a pressure gradient and the overall flow rate through the channel is

constant. The fluids are placed in the regions 0 ≤ y ≤ βH (fluid 1) and −Hz ≤ y ≤ 0

(fluid 2) and the undisturbed interface lies at y = 0. The electrodes have constant volt-

age potentials V1 = 0 at the top and V2 = Vb at the bottom. The interface location is

given by h(x, t) and the interfacial tension is given by the constant γ.

7.3.1. Dimensionless equations

The equations are non-dimensionalised using the following scales:

(x, y) = d(x′, y′), (u, v) = U(u′, v′), t =
d

U
t′,

V = VbV
′, q =

ε0Vb
d
q′, P =

µ1U

d
P ′.

Similarly to the previous section, a system of nonlinear equations emerge. For simplic-

ity all dashes are dropped and the non-dimensional equations take the following form:

Re(uit + uiuix + viuiy) = −Pix +mi(uixx + uiyy), (7.37)

Re(vit + uivix + viviy) = −Piy +mi(vixx + viyy), (7.38)

uix + vix = 0, (7.39)

Vixx + Viyy = 0. (7.40)

with associated conditions at the interface, namely jump conditions for the normal
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Figure 7.3. Setup of the system and governing equations.
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and tangential stresses:

[
−Pi +

2

1 + h2x

[
miviy(1− h2x)−mihx(uiy + vix)

]
+

+ε̄i
1− h2x

2(1 + h2x)
(V 2
iy − V 2

ix)− 2ε̄ihx
1 + h2x

VixViy

]
=

hxx

Ca(1 + h2x)3/2
. (7.41)

[
4hxmiviy + (1− h2x)(miuiy +mivix)

]
= q(V1x + hxV1y)

√
1 + h2x. (7.42)

The jump in the normal direction of the electric field is given by:

[hxε̄iVix − ε̄iViy] = q
√

1 + h2x. (7.43)

The overall flow rate condition and the kinematic condition take the following form:∫ β

h
u1dy +

∫ h

−z
u2dy = Q̃, vi = ht + uihx. (7.44)

where Q̃ is the dimensionless overall flow rate.

The system is completed with the boundary conditions and continuity across the interface

for the velocity:

u1 = 0 at y = β, u2 = 0 at y = −z and [ui] = 0, (7.45)

and the boundary conditions and continuity condition across the interface for the

voltage:

V1 = 0 at y = β, V2 = 1 at y = −z and [Vi] = 0. (7.46)

In the process of non-dimensionalisation the following dimensionless parameters emerge:

Re =
Uρ1H

µ1
=
ε0V

2
b ρ1d

µ21
, Ca =

Uµ1
σi

,

mi =
µi
µ1
, ε̄i =

εi
ε0
, Si =

σiH

Uε0
,
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where Re is the Reynolds number, Ca is the capillary number, mi and ri which give

the ratios of viscosities and densities respectively and ε̄i and Si which give the ratios of

electrical permittivities and conductivities respectively.

7.3.2. Base flow

For the case of both electrodes being flat (β and z are constants in this case) we isolate

the base flow by considering an undisturbed interface h = 0 and setting vi = 0 in order

to get the base flow horizontal velocities:

ū1 =
P̄1x

2m1
(y2 − β2) + a1(y − β), (7.47)

ū2 =
P̄2x

2m2
(y2 − z2) + a2(y + z). (7.48)

We conclude from the normal stress balance that the pressure gradient is constant and

we denote it by P̄x. The constants P̄x, a1 and a2 can be determined using the tangential

stress balance (7.42), the continuity of velocities across the interface and the boundary

conditions (7.45) (see appendix for details).

In the case of corrugated electrodes the undisturbed interface is no longer flat so we do

not isolate the base flow and set ū1,2 = 0.

7.3.3. Long-wave asymptotics

Similarly to section §7.2.2 we assume that the wavelength of interfacial disturbances λ

is long compared to the channel height d and we take δ = d/λ� 1. The fluid velocities

and the pressures are written as the sum of the steady part and a disturbance and we

make the following change of variables (for convenience, the hats on the t’s and x’s will

henceforth be dropped):

ui = ūi + ũi, vi = δṽi, x =
x̂

δ
, t =

t̂

δ
,

Pi = P̄i +
P̃i
δ
, Vi =Ṽi, q = δαq̃.

(7.49)

The scaling for the vertical velocities vi follows from the continuity equations while

the one for the pressures is required for pressure driven flow at leading order. The order

of magnitude of the charge q is left undetermined for now and will depend on the size
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of the electric permittivities ε̄i and the conductivities Si.

In non-dimensional terms the momentum equations and continuity equation become:

δRe(ũit + ūiũix + ũiũix + ṽiūiy + ṽiũiy) = −P̃ix +mi(δ
2ũixx + ũiyy), (7.50)

δ2Re(ṽit + ūiṽix + ũiṽix + ṽiṽiy) = − P̃iy
δ

+mi(δ
3ṽixx + δṽiyy), (7.51)

ũix + ṽiy = 0. (7.52)

Laplace’s equation for the voltages:

Ṽiyy + δ2Ṽixx = 0. (7.53)

Normal stress balance:

[
−P̄i −

P̃i
δ

+
2δ

1 + δ2h2x

[
miṽiy(1− δ2h2x)−mihx(ūiy + ũiy + δ2ṽix)

]
+

+ε̄i
1− δ2h2x

2(1 + δ2h2x)

(
Ṽ 2
iy − δ2Ṽ 2

ix

)
− 2ε̄ihxδ

2

1 + δ2h2x
Ṽix(Ṽiy)

]
=

δ2hxx

Ca(1 + δ2h2x)3/2
. (7.54)

Tangential stress balance:

[4δ2mihxṽiy + (1− δ2h2x)(miūiy +miũiy + δ2miṽix)] =

δα+1q̃(Ṽ1x + hx(Ṽ1y))
√

1 + δ2h2x. (7.55)

Gauss’ law:

[ε̄iδhxṼix − ε̄iṼiy] = δαq̃
√

1 + δ2h2x. (7.56)

Overall flow rate condition:∫ β

h
(ū1 + ũ1)dy +

∫ h

−z
(ū2 + ũ2)dy = Q̃. (7.57)

Kinematic condition:
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hit + (ūi + ũi)hix − ṽi = 0. (7.58)

Interfacial charge conservation equation:

δαq̃t + δα(ūi + ũi)q̃x +
δhxq̃

1 + δ2h2x
(−δ2hxũix + ūiy + ũiy)−

− q̃

1 + δ2h2x
(−δα+2hxṽix + δαṽiy) =

= S1(−δ2hxṼ1x + Ṽ1y)− S2(−δ2hxṼ2x + Ṽ2y). (7.59)

In section §7.3.4 we consider the case when the electrical permittivity is of order one

which implies that α = 0 and Ca ∼ δ2 in order for the effects of the charge and surface

tension to be included. The case of large electrical permittivity (ε̄i ∼ 1/δ) is discussed

in section §7.3.5 and this time we have α = −1 and Ca ∼ δ3. These are the simplest

scalings that include the effects of the electric field and of the surface tension on the

system. We can distinguish the two cases, case A: moderate permittivity (§7.3.4) and

case B: large permittivity (§7.3.5). In both cases we will expand the solutions in powers

of δ:

(ũi, ṽi, P̃i, Ṽi, q̃i) = (u
(0)
i , v

(0)
i , p

(0)
i , V

(0)
i , q

(0)
i ) + δ(u

(1)
i , v

(1)
i , p

(1)
i , V

(1)
i , q

(1)
i ) +O(δ2).

Due to the small scale of the film thickness, we assume that the Reynolds number is

small (Re ∼ δ) and so the kinematic condition (7.58) can be written in integral form

using the continuity equation (7.52) (cf. Papaefthymiou et al. (2013)) :

ht +

(∫ h

−z
ū2dy +

∫ h

−z
ũ
(0)
2 + δũ

(1)
2 dy

)
x

= 0. (7.60)

We take the electrical conductivities to be small (S1,2 ∼ δ) to include the effects

of charge evolution and rewrite the interfacial charge concentration equation (7.59) as

follows:

q̃
(0)
t +

(
(ū1 + u

(0)
1 )|y=hq(0)

)
x

= S1V
(0)
1y − S2V

(0)
2y . (7.61)

Now we need to determine u
(0)
i , u

(1)
i and V

(0)
i by considering equations (7.52-7.57) at
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O(1) and O(δ) along with the boundary conditions (7.45-7.46).

7.3.4. Case A: moderate permittivity

This case corresponds to ε̄i ∼ 1 and Ca ∼ δ2 i.e. moderate permittivity and high surface

tension.

At O(1) equations (7.50-7.53) become:

miu
(0)
iyy = p

(0)
ix , (7.62)

p
(0)
iy = 0, (7.63)

u
(0)
ix + v

(0)
iy = 0, (7.64)

V
(0)
iyy = 0. (7.65)

The interfacial conditions (7.54-7.56) and the continuity of velocity across the interface

to be evaluated at y = h(x, t) are:

[p
(0)
i ] = 0, (7.66)

[miu
(0)
iy ] = 0, (7.67)

q(0) = [−ε̄iV (0)
iy ], (7.68)

[u
(0)
i ] = 0. (7.69)

The flow rate (7.57) condition is:∫ β

h
(ū1 + u

(0)
1 )dy +

∫ h

−z
(ū2 + u

(0)
2 )dy = Q̃. (7.70)

At O(δ) equations (7.50-7.52) become:

miu
(1)
iyy = p

(1)
ix , (7.71)

p
(1)
iy = 0, (7.72)

u
(1)
ix + v

(1)
iy = 0. (7.73)

The interfacial conditions (7.54-7.55) and the continuity of velocity across the interface

to be evaluated at y = h(x, t) are:
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[−p(1)i + ε̄i
(V

(0)
iy )2

2
] = hxx, (7.74)

[miu
(1)
iy ] = q(0)

(
V

(0)
1x + hxṼ

(0)
1y

)
, (7.75)

[u
(1)
i ] = 0. (7.76)

The flow rate (7.57) condition is:∫ β

h
u
(1)
1 dy +

∫ h

−z
u
(1)
2 dy = 0. (7.77)

We find the horizontal velocities and the voltage potential at O(1):

u
(0)
1 =

p
(0)
x

2m1
(y2 − β2) + e1(x, t)(y − β), (7.78)

u
(0)
2 =

p
(0)
x

2m2
(y2 − z2) + e2(x, t)(y + z), (7.79)

V
(0)
1 = d1(x, t)(y − β), (7.80)

V
(0)
2 = d2(x, t)(y + z) + Vb. (7.81)

The horizontal velocities at O(δ) are given by the following expressions:

u
(1)
1 =

p
(1)
1x

2m1
(y2 − β2) + f1(x, t)(y − β), (7.82)

u
(1)
2 =

p
(1)
2x

2m2
(y2 − z2) + f2(x, t)(y + z). (7.83)

The functions D3(x, t), D4(x, t), p
(0)
x , p

(1)
ix , di(x, t), ei(x, t) and fi(x, t), i = 1, 2 depend

on the parameters in the problem, on the interface h(x, t) and on the charge concentration

q(0) (see appendix for derivations).

We can now substitute the velocities and voltages into (7.60-7.61) and write down the

two coupled nonlinear evolution equations:
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ht +

{
D3

6m2

[
D4(P̄x + p(0)x + δp

(1)
2x ) + 3m2(a2 + e2 + δf2)

]}
x

= 0, (7.84)

q
(0)
t +

{
(h− β)

[
(P̄x + p(0)x )

(h+ β)

2m1
+ a1 + e1

]
q(0)
}
x

= S1d1 − S2d2. (7.85)

For large conductivities (Si ∼ 1/δ) the evolution equation for the charge (7.85) sim-

plifies and we can write q(0)(x, t) as a function of h(x, t):

q(0) =
ε̄1 − ε̄2R

R(h+ 1)− (h− β)
. (7.86)

where R = S1/S2. This limit is useful for validating our numerical results and this can

be done by comparing the numerical solutions of the full system of equations (7.60-7.61)

with the numerical solutions the equation (7.84) with q(0) given by the above expression

(7.86).

7.3.5. Case B: large permittivity

This case corresponds to ε̄i ∼ 1/δ and Ca ∼ δ3 i.e. large permittivity and very high

surface tension. At O(1) equations (7.50-7.53) become:

miu
(0)
iyy = p

(0)
ix (7.87)

p
(0)
iy = 0 (7.88)

u
(0)
ix + v

(0)
iy = 0 (7.89)

V
(0)
iyy = 0 (7.90)

The interfacial conditions (7.54-7.56) and the continuity of velocity across the interface

to be evaluated at y = h(x, t) are:
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[−p(0)i + ε̄i
(V

(0)
iy )2

2
] = hxx (7.91)

[miu
(0)
iy ] = q(0)

(
V

(0)
1x + hxṼ

(0)
1y

)
(7.92)

q(0) = [−ε̄iV (0)
iy ] (7.93)

[u
(0)
i ] = 0 (7.94)

The flow rate (7.57) condition is:∫ β

h
(ū1 + u

(0)
1 )dy +

∫ h

−z
(ū2 + u

(0)
2 )dy = Q̃. (7.95)

The horizontal velocities are given by the following expressions:

u
(0)
1 =

p
(1)
1x

2m1
(y2 − β2) + f1(x, t)(y − β) (7.96)

u
(0)
2 =

p
(1)
2x

2m2
(y2 − z2) + f2(x, t)(y + z) (7.97)

where f1,2 are the same as in section §7.3.4 and p
(0)
ix , i = 1, 2 are given in the appendix.

The voltages are the same as in section §7.3.4.

Substituting the velocities and voltages into (7.60-7.61) leads to the following evolution

equations:

ht +

{
D3

6m2

[
D4(P̄x + p

(0)
2x ) + 3m2(a2 + f2)

]}
x

= 0 (7.98)

q
(0)
t +

{
(h− β)

[
(P̄x + p

(0)
1x )

(h+ β)

2m1
+ a1 + f1

]
q(0)
}
x

= S1d1 − S2d2 (7.99)

If we switch off the flow in equations (7.98-7.99) and consider the case when both

boundaries are flat, we recover the case analysed by Craster & Matar (2005).
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ht +

{
D3

6m2

(
D4p

(0)
2x + 3m2f2

)}
x

= 0

q
(0)
t +

{
(h− β)

(
p
(0)
1x

(h+ β)

2m1
+ f1

)
q(0)
}
x

= S1d1 − S2d2 (7.100)

where

p
(0)
1x = p

(0)
2x + hxxx + ε1d1xd1 − ε2d2xd2

p
(0)
2x =

−E6(hxxx + ε1d1xd1 − ε2d2xd2)− E8q
(0)

E6 + E7
(7.101)

This is then ideal to answer the question whether flow affects pattern formation.

7.4. Numerical methods

The behaviour of the system of equations for the single sheet problem and the system

of equations for the two layer flow problem described in this chapter has been analysed

using two time dependent, numerical codes written in FORTRAN. Both codes rely on

the method of lines, a numerical approach described in §2.2 which reduces a system of m

PDEs to a system of m×N ODEs in just one variable t, through a spatial discretisation

with N the number of grid points in x. The first code we used is PDECOL which relies

on a finite element technique for the spatial discretisation and Gear’s method for the

time integration, a description of this solver was given in §2.2.

The second numerical scheme performs the time integration using DASSL, an ordinary

differential equations solver (Petzold, 1982). The spatial discretisation is based on a

spectral method in which differentiation is performed in spectral space and the change

from real space to spectral space is done by using Fast Fourier Transforms. The resulting

system of ODEs is solved by using DASSL which approximates derivatives using the kth

order backward differentiation formula where 1 ≤ k ≤ 5; the order k and the time step

size are chosen at every step. The resulting equation is solved using Newton’s method.

The results from the two numerical schemes were in perfect agreement with each other

but PDECOL was abandoned in the second half of this chapter in favour of the code

based on DASSL due to the higher efficiency of the latter.
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8. Rupture of electrified viscous liquid

sheets under the effect of a horizontal

electric field

8.1. Evolution equations and linear stability

In this chapter we present results for a thin, electrified liquid film under the effect of

an electric field parallel to the undisturbed interfaces. The setup of the system is as

in Figure 7.2 and the evolution equations for the interface H(x, t), the horizontal fluid

velocity C(x, t) and the interfacial charge concentration q(x, t) are as follows:

Ht + (CH)x = 0, (8.1)

Ct + CCx =
Σ

Re
Hxxx +

4

Re

(HCx)x
H

− Eb

2H
q, (8.2)

qt + Cxq = −TσR
2

(σ̃RHx + 2q) , (8.3)

where σ̃R = (εpσR − 1)/σR and T = Lσ1/Uε1.

We look for solutions proportional to exp(ikx+ st) to get a dispersion relation for the

growth rate s and the wavenumber k:

s

(
s+

4k2

Re

)
(s+ T̄ ) + k2(s+ T̄ )Wfk

2 − 1

4
k2T̄EbσRσ̃R = 0, (8.4)

where T̄ = TσR and Wf = Σ/Re. This is a cubic in s and we can then extract useful

information regarding the stability of the system.

For instance, the critical wavenumber kc, where kc is given by:

kc =

√
σ̃Eb
4Wf

.
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Figure 8.1. Growth rate s against wavenumber k with Re = 1, σ̃R = 3, Wf = 1,
Eb = 4, T̄ = 1.

Unstable modes exist below kc if σ̃ > 0 and this is in agreement with a previous

stability analysis for the same system but with fast charge relaxation times analysed by

Papageorgiou & Petropoulos (2004) and Ozen et al. (2006). Figure 8.1 shows the growth

rate s against the wavenumber k for a typical set of parameters and we see that a band

of instability is present.

8.2. Numerical results

The system of equations (7.32-7.34) is solved in time using the two numerical schemes

described in §7.4. The nonlinear evolution equations (7.32-7.34) are solved numerically

subject to the following initial conditions:

H(x, 0) = 1 + h0 cos(x), C(x, 0) = c0 sin(x), q(x, 0) = q0 sin(x),

and we choose a periodic interval −π ≤ x ≤ π.

Figure 8.2 gives the profiles of the interface height, the horizontal fluid velocity and the

charge at time t = 8.1015 for the parameters examined in figure 8.1. As predicted by the

linear stability analysis, initially small disturbances grow and, as it appears from figure

8.2.d, the sheet approaches rupture at two points in finite time. The charge and the

horizontal fluid velocity become locally unbounded at these points and increase rapidly.

This is different behaviour to the case with fast charge relaxation times analysed by
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Figure 8.2. Solutions for (7.32-7.34) at t = 8.1015. Parameters: Re = 1, σ̃R = 3,
Wf = 1, Eb = 4, T̄ = 1 and c0 = h0 = q0 = 0.2.
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Ozen et al. (2006) where rupture can only occur at asymptotically large times.

8.3. Self-similar solution

Given the apparent rupture in finite time found numerically we attempt to find a simi-

larity solution near rupture. Assuming that the interface h(x, t) goes to zero at x = xrup

at a finite time trup, we look for self-similar solutions for τ = t− ts � 1 by considering

H = ταH̄(ξ); C = τβC̄(ξ); q = τγQ̄(ξ);

Balancing terms in the evolution equations we find that close to rupture the surface

tension term is small compared to the other terms in equation (8.2) and the terms on

the right hand side of equation (8.3) are small compared to the ones on the left hand

side. We determine analytically the following scalings:

C ∼ τ−1/2,

x ∼ τ1/2,
q

H
∼ τ−3/2.

Guided by this we seek a similarity solution of the form:

H = ταH̄(ξ); C = τ−1/2C̄(ξ); q = τα−3/2Q̄(ξ); (8.5)

where ξ = (x − xrup)/τ1/2. The parameter α cannot be determined by our scaling

analysis as this is a similarity solution of the second kind (Kindal & Atkinson, 1997).

Substituting the ansatz (8.5) into the evolution equations (8.1-8.3) and retaining leading

order terms gives the following similarity equations:

1

2
ξH̄ ′ − αH̄ + (H̄C̄)′ =0, (8.6)

1

2
(ξC̄)′ +

1

2
(C̄2)′ =

4

Re

(H̄C̄ ′)′

H̄
− Eb

2

Q̄

H̄
, (8.7)

1

2
ξQ̄′ − (α− 3/2)Q̄+ Q̄C̄ ′ =0. (8.8)

Now we attempt to gain insight from numerics to validate the scalings derived ana-

lytically and to determine the value of α. We attempt to approach the point of rupture

as closely as possible by reducing the time step and doubling the number of points in
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Figure 8.3. Log-log plots with τ = trup − t where trup = 8.10323.

space in our numerical scheme. We estimate the rupture time to be trup = 8.10323 and

plot the minima and maxima of H, C, q and Cxx against τ = trup − t on a log-log plot.

Figure 8.3.b confirms the scaling found previously for the fluid velocity C and combining

it with figure 8.3.d also confirms the scaling for x. Figures 8.3.a,c confirm that the ratio

of charge q to interfacial height H scales like τ−3/2 and they also suggest that the value

of α is equal to 1/2. By evaluating the slopes in figure 8.3 we find the following estimates

for the scalings:

Hmin ∼ τ0.4250,

Cmin ∼ τ−0.6140,

qmax ∼ τ−0.9249,
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Cxmin ∼ τ−0.9971,

Cxxmin ∼ τ−1.4474.

Through the manipulation of Cxmim and Cxxmim we get x ∼ τ0.4503 which is close to

our estimation of the scaling of x from dimensional analysis. The above estimates also

suggest that H ∼ τ1/2 hence α = 1/2. We now look at the behaviour in the far field for

large ξ, here the solutions are quasi static so they must be independent of time:

H ∼ τα (x− xrup)
τ1/2

⇒ α =
1

2

and this gives us further reassurance that α = 1/2 is a reasonable estimate. We

proceed to look at the far field behaviour of the horizontal fluid velocity and the charge:

C ∼ 1

|ξ|
Q ∼ 1

ξ2

These scalings are in agreement with the full numerical results presented in figure 8.2:

the fluid velocity C decays away from the rupture points and the charge Q decays even

faster. It is also possible to derive the above far field scalings from balancing terms in

equations (8.6-8.8) when ξ is large.

Due to the singular nature of the problem there is a difficulty in an accurate calculation

of numerical results close to rupture which might lead to inaccuracies in the estimation

of scalings. We believe that a more robust numerical scheme is required in order to

make a reasonable comparison between the full time dependant numerical solution and

the solution of the similarity equations (8.6-8.8), but this is beyond the scope of this

thesis.

8.4. Summary of research

We have examined the stability of the free surface of an electrified liquid sheet under

the effect of a horizontal electric field. The ratio of fluid to electric time scales is taken

to be of O(1) and nonlinear coupled evolution equations are derived for the thickness

of the sheet, the horizontal fluid velocity and the surface charge. A linear stability

analysis suggests that instability can occur if εpσR > 1 where εp is the ratio of dielectric

permittivities and σR is the ratio of electric conductivities and this is in agreement with

previous studies by Papageorgiou & Petropoulos (2004) and Ozen et al. (2006). These

predictions are confirmed by solving the nonlinear evolution equations numerically using

two different numerical schemes, one based on approximation by cubic splines, the other,
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based on spectral methods. The results show that initially small perturbations grow in

time and may lead to rupture at two points, with the surface charge and horizontal fluid

velocity becoming locally unbounded at these two points.

We seek a similarity solution for the behaviour of the system near rupture. We are faced

with a similarity solution of the second kind where the exponents of two of the self-similar

variables cannot be determined from dimensional analysis. We attempt to fix these two

exponents using insight from numerics and comparing them with information we deduce

from analysing the far field of the solutions. In order to make a reasonable comparison

between the solution of the similarity equation and the full time dependant solution we

would require for the latter to come much closer the the point of rupture. This would

only be possible with a bespoke numerical scheme that is able to deal with the singular

nature of the problem and the development of such a code is beyond the scope of this

thesis. The reader is referred to Barannyk et al. (2015b) in which the authors find a

similarity solution of the second kind similar to the one presented here but in the case

of two fluids under the effect of a tangential electric field. They use a robust numerical

scheme that allows them to find an accurate estimation for the rupture time.
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9. Two layer flow of thin leaky dielectric

films between electrodes

9.1. Evolution equations and linear stability

In this chapter we consider the behaviour of the interface between two leaky dielectric

fluids flowing between two flat electrodes that are held at constant voltages. The setup

of the system is shown in figure 7.3 with β and z are taken to be constants. We consider

the two cases A and B and give a comparison between the two behaviours. The evolution

equations for the case of moderate permittivity (case A) were derived in §7.3 and are

given here again:

ht +

{
D3

6m2

[
D4(P̄x + p(0)x + δp

(1)
2x ) + 3m2(a2 + e2 + δf2)

]}
x

= 0, (9.1)

q
(0)
t +

{
(h− β)

[
(P̄x + p(0)x )

(h+ β)

2m1
+ a1 + e1

]
q(0)
}
x

= S1d1 − S2d2. (9.2)

The evolution equations for the case of large permittivity (case B) are:

ht +

{
D3

6m2

[
D4(P̄x + p

(0)
2x ) + 3m2(a2 + f2)

]}
x

= 0 (9.3)

q
(0)
t +

{
(h− β)

[
(P̄x + p

(0)
1x )

(h+ β)

2m1
+ a1 + f1

]
q(0)
}
x

= S1d1 − S2d2 (9.4)

The evolution equations for the two cases A and B are linearised about the following

steady state:
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Figure 9.1. Linear stability for two cases: (a) case A: ε1,2 ∼ 1, α = 0, S1,2 ∼ δ; (b) case
B ε1,2 ∼ 1

δ , α = −1. Dispersion curves compared to numerical predictions
for the growth rate from the simulations of the full PDE system (stars).
Parameters: β = 0.55, z = 1, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1, S1 = 100,
S2 = 1000.
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Figure 9.2. Neutral stability curve for case A when ε̄i ∼ 1, α = 0 when the flux Q̃ is
varied. All other parameters are the same as in figure 9.3.
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Figure 9.3. Neutral stability curves for case A when ε̄1,2 ∼ 1, α = 0. Variation of cutoff
mode kc as the physical parameters are changed. Parameters (except the
one that is varied): β = 0.55, z = 1, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1,
S1 = 100, S2 = 1000, δ = 10−1.
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(h̄, q̄) =

(
0,
S2ε̄1 − S1ε̄2
S1 + βS2

)
(9.5)

We then look for solutions proportional to exp (ikx+ st) to find a dispersion relation

for the growth rate s and the wavenumber k. The algebra was done with the help of

Maple.

Fig.9.1 shows the dispersion curve for the two cases A and B for typical values of the

parameters: β = 0.55, z = 1, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1, S1 = 100, S2 = 1000. In

both cases there is a band of unstable modes and the maximum of the real part of the

growth rate s is roughly an order of magnitude larger in case B compared to case A so

we expect small initial disturbances to grow faster in the second case. The figure shows

good agreement between values of the growth rate found analytically and numerically.

This check provides reassurance that the analysis and the numerics are both correct.

The growth rate is found from numerics in the following way: the equations are solved

with the following initial condition for the height:

h(x, 0) = h0 cos(kx),

where h0 is taken to be small. According to linear theory for early times the height takes

the following form:

h(x, t) = esnumth0 cos(kx),

where snum is the growth rate and we can find it through the following manipulation:

h(0, t) = esnumth0 ⇒ snum =
1

t
ln

∣∣∣∣h(0, t)

h0

∣∣∣∣ .
Since the solutions are in the form of travelling waves the values of h(0, t) to use have

to be at times t when the minimum of h goes through x = 0.

Unstable modes exist below a critical wavenumber kc. Figure 9.3 shows how kc depends

on each physical parameter for the case A when ε̄1,2 ∼ 1 with regions of instability

below the curves. From figure 9.3.a we can see that there exists a value of the ratio of

layer depths β for which the cutoff mode is highest and above this value kc decreases

with increasing β. Figure 9.3.b shows that as the viscosity ratio m1 increases, the cutoff

wavenumber decreases, which physically means that viscosity has a stabilising effect.

We can see that the cutoff wavenumber increases with increasing conductivity (figures

9.3.c-d) and increasing permittivity ratios (figures 9.3.e-f) which means that electrical
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Figure 9.4. Solutions of (9.7-9.8) i.e. case A at t = 0 (solid line), t = 340 (dashed line),
t = 680 (dot dashed line) and t = 1000 (dotted line). Parameters: β = 0.5,
z = 1, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1, S1 = 100, S2 = 1000. Parameters
in the initial condition: h0 = q0 = −0.01, k = 1.

effects drive the instability. It can be seen from figure 9.2 that in the linear regime the

effect of the flux Q̃ on stability is negligible.

9.2. Numerical results

The evolution equations (9.1-9.2) i.e. case A and (9.3-9.4) i.e. case B are solved using

the numerical scheme that employs spectral methods described in chapter §7.4.

The equations are solved numerically subject to the following initial conditions:

h(x, 0) = h0 cos(kx),

q(x, 0) =
S2ε̄1 − S1ε̄2
S1 + βS2

+ q0 cos(kx), (9.6)

and we choose a periodic interval −π/k ≤ x ≤ π/k.

To reassure ourselves of the validity of out model, we compute the solution of the zero

flux case and compare it to the work by Craster & Matar (2005). The equations are a

simplification of case B and are given by:
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Figure 9.5. Solutions of (7.84-7.85) i.e. case A at t = 0 (solid line), t = 340 (dashed
line), t = 680 (dot dashed line) and t = 1000 (dotted line). Parameters:
β = 0.55, z = 1, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1, S1 = 100, S2 = 500,
δ = 10−1. Parameters in the initial condition: h0 = q0 = −0.01, k = 1.

ht +

{
D3

6m2

(
D4p

(0)
2x + 3m2f2

)}
x

= 0 (9.7)

q
(0)
t +

{
(h− β)

(
p
(0)
1x

(h+ β)

2m1
+ f1

)
q(0)
}
x

= S1d1 − S2d2 (9.8)

Figure 9.4 gives the profiles of the interfacial height and the charge concentration for

t = 0 − 500 in 100 equal steps. Our results are in perfect agreement with the previous

work by Craster & Matar (2005).

We now proceed to compute the solutions to equations (9.1-9.2) and equations (9.3-9.4).

The numerical solutions were compared with linear theory in order to validate the code

and good agreement was found between the two (see section on linear stability §9.1).

Figures 9.5 and 9.6 show the profiles of the height of interfacial deformation h and of the

charge concentration q. The arrows show the direction of the flow. The solution is given

by travelling waves whose amplitude grows in time and eventually appears to become

constant. The waves have a constant speed that agrees with the speed found from linear

theory (vp = −Im{s}/k, where vp is the phase velocity, s is the growth rate and k is the

wavenumber). As predicted by our linear stability analysis, the amplitude of the waves

grows much more in case B when ε̄i ∼ 1/δ: this is due to the fact that electrical effects,

which are destabilising, come in at a higher order than in case A when ε̄i ∼ 1.
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Even though the solutions presented in figures 9.5 and 9.6 appear to be nonlinear trav-

elling waves, closer analysis of the data establishes that they are in fact travelling time-

periodic waves (such structures have been found in simpler weakly nonlinear model

equations such as the Kuramoto-Sivashinsky equation - see for example Akrivis et al.

(2011)). To accurately predict such dynamics we make use of the energy of the solution

(the L2-norm of h) defined as

E(t) =

∫ π/k

−π/k
h2(x, t) dx, (9.9)

and note that this is computed with spectral accuracy either using Parseval’s theorem

since the Fourier coefficients are known, or using trapezoidal quadrature which is spec-

trally accurate for periodic functions; we also calculate dE/dt in order to construct the

phase planes presented below. Figure 9.7.a gives the evolution of E(t) for case B with the

same parameters as the ones used to compute the results in figure 9.6. We observe time

periodic behaviour and approximately four periods of oscillation are included. Confir-

mation of the time periodicity of the solution is provided in the phase plane plot in figure

9.7.b: the two distinct loops correspond to the small and large amplitude superimposed

oscillations of the two time signals. We can conclude that the dynamics of the system

lead to the formation of periodic strips similar to the ones found by Craster & Matar

(2005). However, due to the presence of flow, these strips move at a constant speed and

they undergo time-periodic modulations of small amplitude and high frequency.

9.3. Effect of the flux

In this section the effect of the flux on the flow is examined. Figure 9.8 gives a comparison

of the real and imaginary part of the growth rate s for three different values of the flux.

The real parts are exactly the same in all three cases while the imaginary parts are

different. It follows that in the linear regime different values of the flux Q̃ only affect

the speed of the wave (vp = −Im{s}/k, where vp is the phase velocity). However, once

nonlinear effects kick in, a higher flux leads to a smaller wave amplitude as can be seen

from figures 9.9 and 9.10 where we compare the profiles of the numerical solutions for

four different values of the flux Q̃ at large times.

Figure 9.9 shows the profiles of the interface and of the charge for different values of Q̃.

When Q̃ = 0 (dotted line) we get exactly the same patterns as were found by Craster &

Matar (2005). For a small flux Q̃ = 0.1 (dot-dashed line) the patterns are still present

but they are slowly being swept down the channel with phase speed vp = 0.0886 (see
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Figure 9.6. Solutions of (7.98-7.99) i.e. case B at t = 0 (solid line), t = 340 (dashed
line), t = 680 (dot dashed line) and t = 1000 (dotted line). Parameters:
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Figure 9.8. Linear stability three different fluxes: Q̃ = 0.1 (dashed line), Q̃ = 1 (solid
line) and Q̃ = 10 (dot dashed line). Parameters: β = 0.55, z = 1, ε̄1 = 1,
ε̄2 = 2, m1 = 1, m2 = 1, S1 = 100, S2 = 1000.

fig.9.8b). For a larger flux Q̃ = 1 (dashed line) the flow is strong enough to prevent the

formation of large amplitude structures and for an even larger flux Q̃ = 10 the flow is

so strong that the interface stays nearly flat.

Figure 9.10 gives a comparison between the minima of the height for different values of

the fluxes. We see that for early times the value of hmin is the same for any value of the

flux as predicted by linear theory (see fig.9.8a). At later times nonlinear effects come

into the system and it is found that the higher the flow the smaller the patterns. We

conclude that higher fluxes tend to break electrically-induced patterns.

9.4. Summary of research

We have examined the flow of two fluids between two flat electrodes and the influence of

the electric field on the fluid-fluid interface. Two coupled nonlinear evolution equations

are derived for the moving interface and the interfacial charge. We have investigated

the linear stability for the two cases of large and small electrical permittivity and for

each case there exists a band of unstable wavenumbers. The maximum growth rate

increases with increasing electrical permittivity but increasing the overall flow rate does

not appear to influence the value of the critical wave number.

The evolution equations are solved using a numerical scheme based on spectral methods.

The results show that initially small perturbations grow in time and the constant flux

gives rise to waves that undergo time-periodic modulations and travel at constant speed.
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Figure 9.9. Solutions of (7.98-7.99) at t = 1000 for different values of the flux: Q = 0
(dotted line), Q = 0.1 (dot-dashed line), Q = 1 (dashed line) and Q = 10
(solid line). Parameters in the initial condition: h0 = q0 = −0.01, k = 1.
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Good agreement is found between the linear stability analysis and numerical predictions

for the growth rate.

Although the flux does not seem to influence the growth of perturbations in the linear

regime, numerical results show that at later times larger wave amplitudes are associated

with smaller fluxes. It is concluded that higher overall flow rates are more likely to

“break” the electrically induced patterns found by Craster & Matar (2005) in the zero

flow case.

94



10. Two layer flow of thin perfect

dielectric films over one corrugated

electrodes

10.1. Evolution equations

In this chapter we consider the behaviour of the interface between two perfect dielectric

fluids flowing between two electrodes that are held at constant voltages. The top elec-

trode is flat and parallel to the undisturbed interface while the bottom electrode has a

corrugation given by the function z(x). The setup of the system is shown in figure 7.3

with β taken to be constant. We consider the case of large permittivity (case B) and

since the fluids are assumed to be perfect dielectrics we only have one evolution equation

for the interfacial height:

ht +

{
D3

6m2

[
D4p

(0)
2x + 3m2f2

]}
x

= 0 (10.1)

We proceed to determine the stability and the numerical solutions of the evolution

equation of the interface. The initial condition used in our computations is

h(x, 0) = h0 cos(kx), (10.2)

with h0 = 0.01 (or h0 = 0 when stated) and different values of the wavenumber k. The

initial condition (10.2) is 2π
k -periodic and typically the evolution equation (10.1) is also

solved on a periodic domain of length 2π/k. We have also carried out computations on

longer domains that are integer multiples of 2π/k, in order to investigate the possibility

of subharmonic instabilities. The numerical integration is carried out to large enough

times to enable identification of the types of solutions that emerge. The flat lower

boundary case is analysed first: a linear stability analysis is done and it is used to

validate numerical results. The evolution equation is then solved numerically for the

wavy boundary case and two different types of behaviour are found. We then attempt
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to classify these two types with the help of the linear stability analysis for the flat case

and an analytical solution is found for one of the two types of solutions. Finally, we look

at a system with a large amplitude sinusoidal electrode and analyse its stability with

the help of Floquet theory. The results presented in this chapter have been submitted

for publication and are currently under review (Dubrovina et al., 2016).

10.2. Linear stability for flat boundaries

When the lower boundary is wavy, the base state is non-uniform and its stability is not

amenable to a normal mode analysis - Floquet theory is used instead as detailed later

in Section 10.8. To gain an understanding of the underlying instabilities present, in

what follows we perform a linear stability analysis for a flat lower electrode placed at

y = −Zc = 0.9. In this case the evolution equation is linearised about the steady state

h ≡ 0 and solutions proportional to exp(ikx + st) are sought leading to a dispersion

relation for the growth rate s as a function of the wavenumber k. Figure 10.1 shows

the real part of s (i.e. the growth rate - see panel (a)) and its imaginary part (i.e.

the frequency - panel (b)), for a typical set of physical parameters with an imposed

dimensionless voltage Vb = 3, a flow rate Q̃ = 0.1, a unit channel height described

by β = 1, relative permittivities ε̄1 = 1 and ε̄2 = 5, and equal viscosities so that

m1 = m2 = 1 (in order to reduce the large set of parameters that characterises our

problem, we proceed with equal viscosities throughout the rest of the chapter). The

results show that the flow is long wave unstable with a finite band of unstable modes

with short waves (large k) damped. In addition, the imaginary part of s is nonzero

and in fact linear in k, hence linear waves are predicted to travel with a constant phase

velocity. Hence we can expect that after nonlinear saturation the emerging structures

will tend to travel in the direction of increasing x. The precise nature of the emerging

coherent structures is undertaken next through detailed numerical computations.

10.3. Flat lower boundary: formation of travelling wave

structures

We begin our numerical studies by considering the case when the lower electrode is flat

and placed at y = −Zc (Zc > 0 is a constant). Figure 10.2.a shows the interfacial

deformation h(x, t) at four consecutive relatively large times (ensuring transients have

died out) for the case Zc = 0.9 (the dimensionless channel thickness is 1.9 units) -

the other parameters are the same as those of figure 10.1 so that the k = 1 mode (a
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Figure 10.1. Linear growth rate for flat bottom walls at y = −0.9 and for an applied
dimensionless voltage Vb = 3. Other parameters are the dimensionless
flow rate Q̃ = 0.1, β = 1 (i.e. the upper wall is at y = 1), dimensionless
permittivities ε̄1 = 1 and ε̄2 = 5, and viscosity ratio m2 = 1.

perturbation of wavelength 2π) is unstable. The solid curve corresponds to t = 200, the

dashed curve to t = 200.6, the dot-dashed curve to t = 201.2, and the dotted curve to

t = 201.8. The viscosities of the two fluids are chosen to be the same in order to exclude

any viscosity stratification instabilities (see Yih (1967)) and isolate electrohydrodynamic

instabilities - in the absence of a field, Vb = 0, the flow is stable and h ≡ 0. The linear

instabilities saturate to what appear to be nonlinear travelling waves that span almost

the whole extent of the channel; the interface approaches the boundaries but remains at

a small but finite distance from them for the whole duration of the computation (such

behaviour has been confirmed for much longer computations with times as large as 104

and different parameters). This is in contrast to situations with no background flow (i.e.

Q̃ = 0 in our notation) where electrostatic instabilities lead to interfacial contact with

the wall - see for example the theoretical studies of Craster & Matar (2005), Tseluiko

& Papageorgiou (2007b), Tseluiko & Papageorgiou (2007a), Barannyk et al. (2015a) for

both planar and cylindrical geometries as well as fields acting parallel to the undisturbed

interface, as well as the experiments of Schaffer et al. (2001). In figure 10.2.b we quantify

these observations in the presence of flow by monitoring the minimum distance of the

interface to the walls as Q̃ varies - to fix matters we do this for different runs and calculate

minimal approaches at a large time t = 300. The results indicate that the minimum

distance increases as Q̃ increases thus confirming the earlier findings that there is a flow-

induced stabilisation of touchdown events. As mentioned already, when Q̃ = 0 we expect
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Figure 10.2. (a) Interface h(x, t) at t = 200 (solid curve), t = 200.6 (dashed curve),
t = 201.2 (dot dashed curve) and t = 201.8 (dotted curve). Walls are
at y = −0.9 ( Zc = 0.9) and y = 1 (β = 1). Other parameters are,
Q̃ = 1, Vb = 3, ε̄1 = 1, ε̄2 = 5, m2 = 1. (b) Minimum distance between
the interface and the lower boundary at time t = 300 as the flow rate Q̃
varies.

asymptotic thinning with touchdown as t → ∞, and the finite value of approximately

0.02 given in figure 10.2.b reflects the fact that t is not large enough - larger t would

lead to smaller values (see Craster & Matar (2005), Tseluiko & Papageorgiou (2007b)

for example).

Even though the solutions presented in figure 10.2.a appear to be nonlinear travelling

waves, closer analysis of the data establishes that they are in fact travelling time-periodic

waves similar to the ones observed in the previous chapter. To accurately predict such

dynamics we make use of the energy of the solution (the L2-norm of h) defined as

E(t) =

∫ π/k

−π/k
h2(x, t) dx, (10.3)

As before, we also calculate dE/dt in order to construct phase planes presented below.

Panels 10.3.a-b give the evolution of E(t) for Q̃ = 10 and 100, respectively. In both

cases we observe time periodic behaviour (approximately five periods of oscillation are

included in each case) with the period decreasing as Q̃ increases. In fact the period for

Q̃ = 10 is approximately equal to 0.8 time units while that for Q̃ = 100 is approximately

0.08 time units, a decrease by a factor of 10 indicating that the frequency of oscillation

is proportional to Q̃ when this becomes large - an asymptotic theory along with compar-
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Figure 10.3. Time evolution of the energy E(t) for (a) Q̃ = 10 and (b) Q̃ = 100. Phase
planes of the energy: E versus dE/dt for (c) Q̃ = 10 and (d) Q̃ = 100.
All other parameters are the same as in figure 10.2.
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isons with the numerical data is presented in Section 10.10 for the more complicated case

of wavy lower boundaries. Another feature of the results in figures 10.3.a-b is the small

amplitude of the time dependent oscillations about a mean value, with these amplitudes

again decreasing as Q̃ increases. Confirmation of the time periodicity of the solution is

provided in the phase plane plots in panels 10.3.c-d that have been produced for longer

time intervals than those shown in panels (a) and (b). The two distinct loops correspond

to the small and large amplitude superimposed oscillations of the two time signals.

We conclude that the dynamics in channels with flat walls lead to the formation of

periodic “pillars” similar to the ones found experimentally by Schaffer et al. (2001) and

theoretically by Craster & Matar (2005) in the absence of a background flow. However

due to the presence of flow these structures travel down the channel and also undergo

time-periodic modulations while keeping a finite separation distance from the walls.

These findings are in agreement with the results described in the previous chapter for

the case when the two fluids are leaky dielectrics.

10.4. Wavy lower boundary: interfacial response to

non-uniform confinement geometries

In this section we present results of computations of (10.1) for a sinusoidal lower bound-

ary given by

y = −z(x) = −Zc + db cos(kb x). (10.4)

The initial condition is (10.2) as before - recall that 2π/k selects the length of the compu-

tational domain. The parameter db measures the wall amplitude and kb its wavenumber.

When db = 0 we reduce to the flat case and we will use the linear stability results of

Section 10.2 to guide the computations when db 6= 0. In particular for a given set of

parameters the linear theory predicts a critical wavenumber kc below which instability is

supported and we investigate the two cases (a) k < kc and (b) k > kc to show that they

delineate distinct types of large time solutions. In case (b) the interface very quickly

reaches a steady state and adopts the wavenumber kb of the wavy boundary but with a

much smaller amplitude; in case (a) we find travelling time periodic structures that are

similar to those for the flat boundary case (see figure 10.2 for example), but are modu-

lated due to the wavy confining wall and “squeeze” past it. Typical results are given in

figure 10.4 for wall parameters kb = 4 and db = 0.1 and mean position y = −Zc = −0.9;

the other parameters are Q̃ = 0.1 and Vb = 3. The results in panel 10.4.a correspond

to an initial condition having k = 2 (i.e. twice the wavelength of the wavy wall) which
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Figure 10.4. Flow past a sinusoidal wavy wall of mean position y = −0.9 and having
amplitude db = 0.1 and wavenumber kb = 4; the scaled relative permit-
tivities are ε̄1 = 1 and ε̄2 = 5, the flow rate is Q̃ = 0.1 and the lower
wall potential Vb = 3. (a) Initial condition (10.2) with k = 2. Interface
h(x, t) shown at time t = 100 after the solution has reached steady state.
(b) Longer initial perturbation having k = 1. Interface h(x, t) at t = 1
(dotted line), t = 25 (dot dashed line), t = 75 (dashed line) and t = 100
(solid line). The shaded area represents the lower boundary.

is larger than kc for the chosen parameters and so the flow reaches a steady state (h is

shown at t = 100 here) with the interface inheriting the pattern of the wavy wall (but

with a smaller amplitude of roughly 1.5×10−3 compared with db = 0.1). In panel 10.4.b

we set k = 1 < kc and observe that the unstable longer wavelength perturbation grows

nonlineary to travelling pillar like structures found for flat walls, but at the same time

sweeps over the topography modulating its shape as it moves downstream. Profiles are

shown at times ranging from t = 1 (dotted curve) to t = 100 (solid curve) and as found

previously for flat walls, throughout the evolution the interface gets close to the upper

and lower walls but does not touch them.

The results presented in figure 10.4 can be understood with a more detailed comparison

with linear theory for flat walls. We can anticipate that as long as the wall amplitude

db is not large (in the results db = 0.1) the bifurcation from a non-uniform steady state

to a more complicated modulated travelling wave, should correlate with flat wall linear

theory. This is confirmed in the results presented in figure 10.5. We fix k = 1 in the

initial conditions and compute solutions for a wavy wall having db = 0.1 and kb = 1 at

increasing values of Vb starting from Vb = 1.5. We quantify the solutions by estimating a

wave speed c that measures the streamwise motion of the interfacial wave (the solution
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Figure 10.5. (a) Estimated interfacial wave speeds c for flows over a sinusoidal bound-
ary with db = 0.1, kb = 1 and Zc = 0.9; (b) Neutral stability curve
showing the critical wavenumber kc as a function of Vb from linear theory
with a flat bottom wall. The star corresponds to wavenumber kc = 1 and
Vcrit = 1.75. The relative permittivities are ε̄1 = 1 and ε̄2 = 5 and the
flow rate is Q̃ = 0.1.

is not exactly a travelling wave of permanent form - it is time periodic and travelling).

This is done by following trajectories in the x− t plane of given points on the interface

and defining a speed by estimating the slope of given trajectories using least squares

regression. The results are given in figure 10.5.a and it is clearly seen that a bifurcation

from stationary waves (these are non-uniform steady states) to travelling modulated

waves takes place at a critical value Vb ≈ 1.5. A direct comparison with the flat case

linear theory is possible from the critical stability curve in kc−Vb space depicted in figure

10.5.b; in fact we find that kc varies linearly with Vb and at kc = 1 the critical value Vcrit

above which instability occurs is given by Vcrit = 1.75, in complete agreement for the

bifurcation value from steady to time modulated travelling waves for wavy walls. We

conclude that there is a direct correlation between the stability of the flat and wavy wall

cases; the critical voltage Vcrit found for the flat case corresponds to the value Vb that

marks the transition from steady state solutions to time modulated travelling waves.
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Figure 10.6. (a) Comparison between the full time dependant numerical solution (solid
line), the numerical solution of the steady state ODE (crosses) and the
analytical solution (dots) with wall amplitude ε = 0.1. (b) Comparison
between the analytical solution (solid line) and the numerical solutions
h(x)/ε for ε = 0.1 (dashed line), ε = 0.2 (dot-dashed line) and ε = 0.3
(dotted line). Same parameters as in figure 10.4(a).

10.5. Non-uniform steady states for different wall

amplitudes

The transition between the two different types of solutions for the wavy boundary prob-

lem was described above and quantified using linear theory for flat walls. We now focus

on calculating steady states of the evolution equation (10.1) by solving{
D3

6m2

[
D4p

(0)
2x + 3m2f2

]}
x

= 0 (10.5)

Equation (10.5) is solved using centred finite differences to discretise derivatives and a

Newton-Kantorovich method to solve the resulting set of nonlinear algebraic equations.

As a check the solutions were compared with those given by the time dependent code

at least for values of Vb < Vcrit where the solutions are stable - for completeness this is

included in figure 10.6.a for db = 0.1, kb = 4, Q̃ = 0.1 and Vb = 3 and it is seen that

agreement is excellent.
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10.6. Analytical solution for small wall waviness

The steady states presented in §10.5 were calculated numerically for arbitrary wall

waviness and in what follows we proceed analytically and construct asymptotic solu-

tions valid for small wall perturbations. We can do this by writing the lower wall as

z(x) = Zc + εZ(x) where ε � 1, and looking for an asymptotic solution of the form

h(x) = εH0(x) +O(ε2). Substituting these into (10.5) gives, to leading order

AH0 +BH0x + CH0xxx = −DZ − EZx, (10.6)

where A, B, C, D and E are constants that depend on the physical parameters in

the problem (they are found as needed by using the symbolic manipulator Maple).

To fix things we proceed with a sinusoidal wall perturbation of wavelength 2π/kb and

specifically take Z(x) = − cos(kbx) in order to enable comparisons with nonlinear steady

states computed for wavy wall perturbations given by (10.4). It follows that the general

solution of equation (10.6) is given by

H0(x) =
3∑
i=1

Cie
λix + C4 +Re(p) cos(kkbx)− Im(p) sin(kkbx), (10.7)

where Ci, i = 1, 2, 3, 4 are constants and λi, i = 1, 2, 3 are the roots of A+Bλ+Cλ3 = 0.

The complex number p is given by

p =
D + ikkbE

A+ ikkbB − i(kkb)3C
.

The constants Ci, i = 1, 2, 3, 4 corresponding to the homogeneous solution, are found

by imposing periodic boundary conditions over x ∈ [−π/k, π/k] and the conservation of

mass integral constraint on H0 ∫ π/k

−π/k
H0(x)dx = 0. (10.8)

In the special case when kb, k are integers with kb 6= λi for i = 1, 2, 3, it can be shown

that the roots of A+Bλ+Cλ3 = 0 are such that Re(λ) 6= 0 and hence the homogeneous

contribution to the solution cannot be spatially periodic. In such cases the expression

for the interface simplifies to

H0(x) = Re(p) cos(kkbx)− Im(p) sin(kkbx). (10.9)
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Figure 10.7. Interface h(x, t) at final times (a) t=50, (b) t=100, (c) t=152 and (d)
t=200. Other parameters are Vb = 7, Q̃ = 0.0345, db = 0.4, kb = 4,
Zc = 0.6, β = 1, ε̄1 = 1, ε̄2 = 2, and m2 = 1.

In figure 10.6.a we superimpose the leading order analytical solution (10.9) with ε = 0.1

along with the full time dependent numerical solution integrated to steady state, and the

numerical solution of (10.5). Panel 10.6.b considers larger wall amplitudes ε = 0.2, 0.3

and it can be seen that the leading order solution (10.9) is reasonably accurate even

beyond its expected range of validity. Note that inclusion of ε2 corrections is expected

to improve the agreement as found in the related studies of falling films over topography,

e.g. Tseluiko et al. (2008b).
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Figure 10.8. (a) Time evolution of the energy E(t) of the solution presented in figure
10.7. (b) Phase plane of the energy: E versus dE/dt for times between
t = 200 and t = 600.

10.7. Large amplitude sinusoidal boundary

In this section we examine the flow through highly constricted channels with wavy

boundaries that occupy nearly half of the channel width. In the computations described

next, the initial condition is chosen to be h(x, 0) = 0. In the absence of a field (or for

weak fields) we would expect to reach the non-uniform steady states given by solutions

of (10.5). For large wall amplitudes, an additional physical feature of the steady states

is the formation of vortices in the troughs that are now deep enough to accommodate

them - see below for numerical results; for related single phase problems such as falling

films over sinusoidally corrugated walls see the experiments of Pollak & Aksel (2013a).

At large enough values of the voltage parameter Vb, the unsteady numerical simulations

predict that the interface initially reaches a state state, but eventually instability sets

in with the dynamics transitioning to what we have termed “walking behaviour”. This

behaviour can be mainly characterised by three stages: first the flow looses stability

and parts of the interface get attracted to the lower wavy wall and other parts to the

flat upper wall; this transient stage continues with the interface going into the troughs

and over the crests in very close proximity to the wavy wall, with regions ahead (or

behind) reaching the upper wall; finally the dynamics enters a final state that resembles

a travelling wave parts of which hug the lower wavy wall and other parts the upper wall.

It is quite striking to discover that the resulting nonlinear dynamics are time periodic for

a large range of parameters that were studied. Representative computations are provided
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in figure 10.7 for Vb = 7, Q̃ = 0.0345, and a wavy wall with mean position y = −0.6, wall

amplitude db = 0.4 and wavenumber kb = 4. The scaled channel height is y = 1(β = 1)

and the scaled relative permittivities are ε̄1 = 1, ε̄2 = 2 (recall that m2 = 1). Panel

10.7.a shows the solution close to its unstable steady state (this is at dimensionless time

t = 50), while panels 10.7.b-d at times t = 100, 152, 200 depict solutions from the three

stages described above. For t > 200 the dynamics enters the time-periodic attractor

mentioned earlier and this is quantified further in figure 10.8 that considers the flow

from t = 200 to t = 600. Panel 10.8.a shows the evolution of the energy norm E(t)

from t = 0 until the final time t = 600; it is seen that the solution quickly reaches a

nonuniform steady state (this is characterised by the the constant value E(t) ≈ 0.2 until

approximately t = 70), and then rapidly looses stability to a much higher energy state

that eventually becomes time-periodic. Conclusive evidence of the time-periodicity is

provided in panel 10.8.b that constructs the energy phase plane which is seen to be a

closed curve consisting of four almost congruent loops - inspection of panels (a) and

(b) shows that there are four energy minima and four maxima over one period and the

period is approximately equal to 130 time units.

In order to inspect the flow more thoroughly and in particular to obtain insight re-

garding the vorticity and subsequent mixing capabilities in such systems, we write the

fluid velocity in the lower layer (analogously in the upper layer if we wish) in terms of

the streamfunction ψ(x, y) such that u
(0)
2 = ψy and v

(0)
2 = −ψx. Using the expression

for the horizontal fluid velocity given by equation (7.97) readily yields

ψ(x, y, t) =
p
(0)
2x

2m2

(
y3

3
− z(x)2 y

)
+ f2

(
y2

2
+ z(x) y

)
+ c1(x), (10.10)

where c1(x) is found by setting ψ(x,−z(x), t) = 0, i.e. the lower wall is defined to be a

zero streamline. Figure 10.9 provides the instantaneous streamlines of the flow depicted

in figure 10.7, at four consecutive times t = 96, 98, 100, 106 (the bar on the right shows

the value of ψ in the contour plots). As described earlier and seen in figure 10.9, a

distinct feature of the flow, at a fixed time, is that parts of the interface are in close

proximity to troughs while ahead (behind) of these regions the interface climbs over the

hump to reach the upper wall. What is interesting is that every time the interface goes

over the wall humps and the lower fluid extends up to the upper wall, two strong counter

rotating vortices form in close proximity to each other - see for example panel 10.9.d. As

time increases these vortices get swept along downstream by the flow. A more detailed

depiction of this flow feature is provided in figure 10.10 that shows an enlargement in the

vicinity of the wall hump where the vortices are and at times before and after the hump.
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Figure 10.9. Instantaneous streamlines at (a) t = 96, (b) t = 98, (c) t = 100 and (d)
t = 106. All other parameters as in figure 10.7.
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Figure 10.10. Instantaneous streamlines at (a) t = 106, (b) t = 126, (c) t = 146 and
(d) t = 157. All other parameters as in figure 10.7.
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Figure 10.11. (a) Interface h(x, t) and (b) streamlines at time t=100. Parameters are
the same as in figure 10.7 but with a different voltage Vb = 2.

For example, the vortices at times t = 126 and t = 146 that are just over the hump, are

seen to be more compact and the stream function attains much larger values compared

with the other two times when the vortices are either behind or ahead of the hump. In

turn, the vorticity generated is large and it may be possible to exploit such phenomena

to induce electrostatically induced mixing at low Reynolds numbers and small flow rates.

We conclude this section by considering the same large amplitude wavy boundary as

above but now take a smaller value Vb = 2. In such cases the interface reaches a steady

state with vortices and flow recirculation taking place in the troughs, with the remaining

flow unidirectionally moving over the peaks. Numerical results are given in figure 10.11

with panel (a) showing the interface at t = 100 after steady state has been reached,

and panel (b) shows the streamlines of the corresponding state. The vortices are clearly

seen in the troughs and we note that they are fairly weak with the flow in their vicinity

almost stagnant. Such flows may be useful in processes such as cell trapping with the

troughs acting as micro chambers (see Introduction for comments on cell trapping).

The results in this section indicate that for a given imposed flow rate the wall ge-

ometry can be manipulated (both its amplitude and its period in the case of sinusoidal

corrugations, for example) along with the imposed electric field, to obtain dynamical

behaviour in confined micro scale geometries that can be useful in applications. The

structures computed are fully nonlinear and are most likely not amenable to analytical

descriptions. They are underpinned by loss of stability of nonuniform steady states and

in what follows we consider such stability questions analytically using linear Floquet

analysis.
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Figure 10.12. (a) Real part of the growth rate λ as the applied voltage Vb is varied
for a flat boundary case. (b) Real part of the growth rate s versus
wavenumber k as calculated from the linear stability analysis in §10.2
for Vb = 3 (solid line), Vb = 6 (dashed line), Vb = 8.9 (dot-dashed line)
and Vb = 11.8 (dotted line). Other parameters are Q̃ = 0.1, β = 1,
ε̄1 = 1, ε̄2 = 2, m2 = 1.

10.8. Floquet stability analysis of nonuniform flows

The objective of this section is to use linear stability theory to establish ranges of values of

Vb (other parameters fixed, for instance) for which the flow transitions from nonuniform

steady states to the “walking behaviour” we described in the previous section. A natural

setting for the analysis is to use Floquet theory since the underlying flows are spatially

periodic. Given a steady state hs(x) (this is a solution of equation (10.5) for example)

we write h(x, t) = hs(x) + h̃(x, t), substitute into (10.1) and linearise to obtain

h̃t +
[
f1 h̃+ f2 h̃x + f3 h̃xxx

]
x

= 0, (10.11)

where fi = fi(hs, hsx, hsxxx, z, zx) for i = 1, 2, 3 are periodic functions of x with the

same period as the steady state solution, and they are found using Maple. Looking for

solutions of the form

h̃(x, t) = F (x) exp (λt+ ikx),
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where F (x) is a periodic function with the same spatial period as h̃(x, t) and the eigen-

value λ is complex, equation (10.11) becomes

λF + F
[
f1x + ik(f1 + f2x − k2f2 − ik3f3x + k4f3)

]
+

+ F ′
[
f1 + f2x + 2ikf2 − 3k2f3x − 4ik4f3

]
+

+ F ′′
[
f2 + 3ikf3x − 6k2f3

]
+ F ′′′ [f3x + 4ikf3] + F ′′′′ [f3] = 0. (10.12)

In the calculations that follow we consider perturbations of the same wavelength as the

underlying solution: since we are looking for solutions of the form F (x) exp (λt+ ikx),

where F (x) is a periodic function with the same spatial period as the the underlying

solution, it is sufficient to consider the case with k = 0. To clarify this point further we

write F (x) = exp ik̄x with 0 < k̄ < 1 and we see that even if k = 0 all perturbations

with the length of the domain or less are accounted for by F (x). In what follows we

analyse a typical case having flow rate Q̃ = 0.1, and sinusoidal lower wall topography

of amplitude db = 0.4, wavenumber kb = 4 and mean value y = −Zc = −0.6 (other

parameters are as before with β = 1, ε̄1 = 1, ε̄2 = 2, m2 = 1). Keeping these parameters

fixed, we vary the voltage Vb and compute the eigenvalues λ numerically. For each Vb

we find n eigenvalues where n is the number of discretisation points in x. Derivatives of

F (x) are found using spectral differentiation matrices. Since we are essentially interested

in detecting instability as Vb varies, we found it useful to track only those eigenvalues

whose real part is sufficiently large, and used Re(λ) > −0.4.

The code was tested for the trivial case of a flat wall (this in turn gives hs(x) = 0)

whose results were given in §10.2. In the Floquet setting of this problem we need to

solve

λF +AFx +BFxx + CFxxxx = 0 (10.13)

where A, B and C are the same constants as the ones found in equation (11.3). The

calculated real part of λ versus Vb is given in figure 10.12.a where as noted above, only

eigenvalues greater than −0.4 are shown. The results show different modes and how

they become unstable as Vb increases. The first mode becomes unstable when Vb = 3,

and then there are subsequent crossings by the second mode at Vb = 6, the third at

Vb = 8.9 and the fourth at Vb = 11.8. Panel 10.12.b shows the growth rate as a function

of wavenumber for different Vb as found in §10.2. The values of Vb above which the modes

k = 1, 2, 3, 4 become successively unstable, are confirmed to be the same as those found

using the Floquet analysis.
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Figure 10.13. (a) Real part of the growth rate λ versus applied voltage Vb. Same
parameters as in figure 10.12 with db = 0.4, kb = 4 and Zc = 0.6. (b)
Time evolution of the energy E(t). Applied voltage is Vb = 5.4 (dot-
dashed line) and Vb = 5.6 (solid line). The bottom figures show the
phase plane of the energy for (c) Vb = 5.4 and (d) Vb = 5.6.
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Figure 10.14. (a) Interface h(x, t) at tfinal = 300 for same parameters as figure 10.13
and Vb = 20. (b) Minimum of the gap between the interface and the
boundary against time.

Next we consider the case with a wavy boundary and parameters as given above, and

compute the eigenvalues λ from equation (10.12) with k = 0. Figure 10.13.a shows the

variation of the real part of λ with Vb, and note that the first crossing yielding instability

occurs at Vb = 2.6. This has been confirmed from the nonlinear time dependent compu-

tations that predict stability of nonuniform states for these parameters when Vb < 2.6.

The next mode crossing to become unstable occurs at around Vb = 5.2. Some intricate

behaviour is found near this point and the inset in figure 10.13.a depicts branches in

more detail. It is seen that the branch that crossed at Vb ≈ 5.2 itself pitchfork bifurcates

at Vb ≈ 5.5 into two branches. To observe the differences in the dynamics, we took values

Vb = 5.4 and Vb = 5.6 that are below and above the critical value Vb = 5.5, and ran

large time simulations of the nonlinear initial value problem. We find that the solution

transitions into the “walking behaviour” described earlier and the energy norms along

with the corresponding phase planes are included in panels 10.13.b-d. The lower voltage

energy norm is less intricate than that for Vb = 5.6 in the sense that it does not contain

as high frequency oscillations. It is also clear from figure 10.13.b that the time-averaged

energy values are different and we can conclude that the two solutions are on differ-

ent branches. More information regarding the dynamics of these solutions are given in

the phase planes in panels 10.13.c-d - even though we cannot state this conclusively,

it appears that the dynamics for Vb = 5.4 are quasi-periodic in time whereas those for

Vb = 5.6 are periodic and more analogous to those found earlier - e.g. figure 10.8.

The results presented in figure 10.13 are for moderate values of Vb ≤ 8. Even though a
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detailed bifurcation study and stability of the resulting branches is of intrinsic interest,

it is beyond the aims of this work, but we illustrate the richness of expected behaviour

by considering several larger values of Vb. For example, solution of the initial value

problem starting from a flat interface (all other parameters as in figure 10.13) and for a

relatively high voltage of Vb = 20, indicates that after some initial transient oscillations

appears to reach a steady state that is stuck at the lower wall troughs but is well

separated from the upper wall. Figure 10.14 shows the solution at a final computed time

tfinal = 300 and closer inspection of the results shows that the thin films of the lower

fluid that form on the wall humps are slowly draining with time. The minimum thickness

of these films is plotted against time in panel 10.14.b and the slow draining is clearly

observed. This solution is another attracting state (albeit quasi-static) and essentially

asymptotically traps regions of fluid 2 between successive wall humps with the upper fluid

2 flowing above them as can be seen from figure 10.14.a. We note that the simulations

indicate that the film thickness does not vanish in finite time in agreement with other

related thinning film problems - see for example Craster & Matar (2005), Tseluiko &

Papageorgiou (2007b). (Physically, addition of attracting van der Waals forces would

rupture the thin film in finite time, see Erneux & Davis (1993), Savettaseranee et al.

(2003).) For Vb = 8.5 we see the two attracting states competing with each other with the

solution going to the “stuck” behaviour first and then going into a “walking” behaviour.

In the former state, the solution undergoes time periodic oscillations without translating

down the channel, before losing stability to the “walking” state. Snapshots of the two

solutions are included in figure 10.16.a at times t = 60 (dashed curve) and t = 300 (solid

curve), along with the evolution of the energy E(t) that indicates the time periodic

behaviour at smaller times and the transition to the “walking” state at larger times.

Note that the “walking” state evolves time periodically with a much longer period than

that of the “stuck” solution.

10.9. Flows at high fluxes Q̃

So far we have explored the behaviour of the system for a low overall flow rates charac-

terised by small values of Q̃. In this section we consider the behaviour of the confined

electrified flow over large amplitude sinusoidal topography and at relatively large values

of Q̃. To fix matters we consider the same parameters as before (e.g. figure 10.13) but

now take Q̃ = 20 and vary the voltage parameter Vb.

We begin by considering the linear stability of the nonuniform steady states for Q̃

as Vb varies. The results are shown in figure 10.15 that depicts the real part of λ for
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Figure 10.15. Real part of the growth rate λ versus the applied voltage Vb. Same
parameters as figure 10.13 but with Q̃ = 20.
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Figure 10.16. (a) Interface at times t = 60 (dashed curve) and t = 300 (solid curve) for
same parameters as figure 10.13 and Vb = 8.5. (b) Energy E(t) plotted
as time is varied.
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Figure 10.17. (a) Interface h(x, t) at t = 1 (dotted line), t = 25 (dot dashed line),
t = 75 (dashed line) and t = 100 (solid line). (b) Streamlines at time
t=100. Parameters are the same as in figure 10.7 but with Vb = 14 and
Q̃ = 20.

different Vb. It is found that there is a crossing at Vb ≈ 9.1 so that all perturbations with

wavelength equal to the domain size are stable for voltages below this value. Comparing

these results with those in figure 10.13 that has Q̃ = 0.1, we can conclude that generally

a higher flow rate has a stabilising effect.

To investigate the dynamics into the unstable regime we pick Vb = 14 which according

to the results in figure 10.15 supports three unstable modes. The initial value problem

is solved starting from a flat interface initial condition and following the nonlinear de-

velopment until t = 100 or more. Representative results are given in figure 10.17; panel

10.17.a shows the interfacial shape at t = 1, 25, 75 and 100 and the results predict clearly

that at this moderately large value of Q̃ = 20 the interface is in phase with the lower wall

topography but at the same time performs small amplitude (and in fact high frequency)

time-dependent oscillations. Panel 10.17.b shows the instantaneous streamlines at the

final time t = 100 and we can see that the fluid flows over the topography without any

vortices present - we note that such regimes are therefore not advantageous for mixing

or fluid trapping phenomena found earlier.

10.10. Asymptotic Solution for large Q̃

The results in figure 10.17 (as well as several other numerical experiments not reported

here) suggest that as Q̃ increases the flow is a steady state that is modulated spatiotem-
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Figure 10.18. (a) Full numerical solution minus the steady state solution h(x, t)−h0(x)
(dashed line) compared with the asymptotic solution δH(x, τ) (solid
line) at four different times with t = τ/Q̃. (b) Phase plane of the energy
E(t). (c) E(t) plotted as time t is varied. (d) E(τ) plotted as time τ is
varied.
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porally by a small amplitude and high frequency component. This observation is now

formalised by considering asymptotic solutions to equation (10.1) for large Q̃. Setting

δ = 1/Q̃� 1, we seek a solution of (10.1) of the form

h(x, t) = h0(x) + δH(x, τ) + . . . , τ = t/δ, (10.14)

where h0(x) is the steady state solution at these parameter values, i.e. a solution of

(10.5). The equation for H(x, τ) emerges at O(δ) and reads

Hτ +
{
F̃ (h0(x), z(x))H

}
x

= 0, (10.15)

where F̃ is a function of h0(x), the lower boundary shape z(x) and its only other depen-

dence is on the physical parameters of the system.

Equation (10.15) is solved numerically for an initial condition given by the full time

dependant numerical solution at a selected time (and after transients have died out)

minus the steady state h0(x), and with Q̃ = 100 (so that δ = 0.01). The asymptotic so-

lution δH(x, t/δ) is compared with h(x, t)−h0(x) in figure 10.18.a for four different times

and we see that the agreement between the two is excellent. Panel 10.18.b shows the

phase plane of the energy of h(x, t)−h0(x) coming from the full numerical computation

- the spatiotemporal modulation mentioned above is clearly seen from the figure. Panel

10.18.c shows the evolution of E(t) over approximately ten oscillation cycles. In panel

10.18.d we include the evolution in τ of the energy Ea(τ) =
∫ π
−π δ

2H2(x, τ)dx of the

asymptotic correction, where once again ten oscillation cycles are included. This data

was used to estimate the frequencies ft and fτ of oscillation of the full and asymptotic

solutions, respectively. We find that ft/fτ ≈ 100 = Q̃ = 1/δ as expected. This provides

additional evidence of the relevance of the asymptotic solutions at large Q̃ (in fact we

found good agreement for Q̃ as small as 10).

10.11. Summary of research

We have examined the behaviour of an interface between two fluids sandwiched between

a flat electrode and a patterned electrode. The case with a flat lower boundary is ex-

plored first: a linear stability analysis shows that the system is unstable for a finite

range of wave numbers. To confirm this prediction, the evolution equation is solved nu-

merically: in the flat boundary case the results show that initially small perturbations

take the form of columnar structures that are reminiscent of those found in the previous

chapter.
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Next, a relatively small waviness is imposed on the lower boundary and two types of

behaviour are observed. For wavenumbers that are unstable in the flat case, moving

structures develop with their shape affected by the wavy boundary. For stable wavenum-

bers, the interface reaches a steady state that mimics the lower boundary. By tracking

the speed of the waves in the wavy boundary case, it is shown that the transition from

one type of behaviour to the other occurs at a critical voltage which is in agreement with

the critical voltage found from the linear stability analysis of the flat boundary case. An

analytical solution is found for the case when the voltage is below critical.

The amplitude of the boundary is increased and the full numerical solution shows that

the boundary has a much stronger influence on interfacial dynamics and the linear anal-

ysis for the flat case is no longer helpful to make any predictions on stability. In the case

with four humps that occupy nearly half of the height of the domain, the interface reaches

a non uniform steady state that mimics the topography and for large enough voltages,

it starts sliding over the boundary. For low voltages, the interface stays at the steady

state and fluid recirculates inside the troughs making this a favourable environment for

cell trapping. For a range of voltages, the interface exhibits a “walking” motion which

causes the fluid in the lower layer to alternate between sliding through the troughs and

forming strong vortices above the peaks suggesting that this particular behaviour of the

system is desirable for efficient mixing. A Floquet analysis gives the ranges of voltages

for each type of behaviour. To complete the analysis, we look at the system with very

strong overall flow rate and find that increasing the fluid flux has a stabilising effect on

the system and the vortices in the lower layer are suppressed making such a solution

less desirable for efficient mixing. Full numerical results show that for a much higher

flow the topography has a stronger influence on interfacial dynamics even for low am-

plitudes of the wavy boundary. Finally, an asymptotic solution is found for large values

of the overall flow rate Q̃ which is used to find the frequency of oscillation of the interface.
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11. Two layer flow of thin perfect

dielectric films between two

corrugated electrodes

In this chapter, we aim to explore how the inclusion of topography on the top boundary

influences the types of behaviour identified in the previous section. We extend the

analysis described in §10 to a system with corrugations on both the top and the bottom

boundaries i.e. when z(x) = −Zc + db1 cos(kb1x) and β(x) = Bc − db2 cos(kb2x + φ)

where Bc, Zc, db1, db2 and φ are constants and kb1, kb2 are the wavenumbers. We

consider the top and the bottom boundaries to have the same sinusoidal shape with

the same wavenumber kb1 = kb2 = 4 and same distance from the undisturbed interface

Zc = Bc = 0.9 and db1,2 = 0.2. We look at two cases: the case when the top is offset from

the bottom by φ = π (see §11.1) and the case when the top and the bottom corrugations

are symmetrical i.e. φ = 0 (see §11.2). The evolution equation is the same as before:

ht +

{
D3

6m2

[
D4p

(0)
2x + 3m2f2

]}
x

= 0 (11.1)

where D3 = (h + z)2 and D4 = h − 2z and f2 and p
(0)
2x are functions of h(x, t), its

derivatives and the functions that define the shapes of the two boundaries z(x) and β(x).

We begin our investigation by extending the Floquet analysis presented in §10.8 to

include a non-constant top boundary. As before, we consider perturbations of the same

wavelength as the underlying solution and obtain the following eigenvalue problem:

λF + Ff1x + Fxf1 + f2x + Fxxf2 + Fxxxf3x + Fxxxxf3 = 0 (11.2)

where F (x) is a periodic function with the same spatial period as the solution. In this

case the functions fi (i = 1, 2, 3) also depend on β(x):

fi = fi(hs, hsx, hsxxx, z, zx, β, βx)
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Figure 11.1. Real part of the growth rate λ vs applied voltage Vb. Top offset.

We choose to analyse a typical case when Q̃ = 0.0345, ε̄1 = 1, ε̄2 = 2, m1 = 1, m2 = 1.

We keep these parameters fixed and vary the voltage Vb to investigate the stability of

the system. In the next two sections we present the plots of the real part of the eigen-

values λ against the voltage for two different geometries and compare this with full time

dependant results.

11.1. Offset boundaries

In this section we analyse the stability of the system when the upper and lower boundaries

have the following shapes: y = −0.9 + 0.2 cos(4x) and β(x) = 0.9− 0.2 cos(4x+ π). We

begin by plotting the real parts of the eigenvalues λ against the voltages Vb in figure 11.1

to get an idea of the points where changes in the behaviour of the system might occur.

The first crossing of the x-axis is at Vb = 2.6 which is the same value of the voltage

for which we have a first crossing in the case of just a single wavy boundary. There

is a crossing of two branches of eigenvalues at Vb = 10.8 which leads us to look at the

full time dependant solutions for voltages both below and above that value to see if we

detect any changes in the behaviour of the system.

As before we make use of the energy and examine the plots of the L2-norm of h against

time for four values of the voltage. We also compute the full time dependant numerical

simulation: figure 11.3 shows the profiles of the interface for each of these four voltages

at time t = 400. From figure 11.2.a we see that for voltages that are quite far from the

crossing of the two branches of eigenvalues such as Vb = 8 the energy plot has a similar
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Figure 11.2. Energies at different voltages (a) Vb = 8, (b) Vb = 8.7, (c) Vb = 10.7 and
(d) Vb = 10.9. Top corrugation is offset from the bottom by φ = π.
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Figure 11.3. Interface at t = 400 at voltages (a) Vb = 8, (b) Vb = 8.7, (c) Vb = 10.7
and (d) Vb = 10.9. Top corrugation is offset from the bottom by φ = π.
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structure to the one corresponding to the “walking” behaviour which we analysed in the

case of a flat top: there is an initial time period when the interface is stable and hence the

energy is constant; at a later time the solution takes the form of a time modulated wave

which leads to the doubly peaked profile of the energy (compare with figure 10.13.b).

When we compute the full time dependant solution we find that indeed the interface

evolves in a “walking” motion, and a profile of it is given at time t = 400 in figure 11.3.a.

For voltages above the crossing e.g. Vb = 10.9 the energy is immediately time periodic

without going through the constant phase and, as we see from figure 11.3.d, the interface

has the same wavenumber as the corrugation and travels with its peaks sliding over the

sinusoidal boundaries. In between those two voltages there is a competition between the

two behaviours: for Vb = 8.7 the interface takes the wavenumber of the boundary and

oscillates initially and later transitions into the “walking” behaviour as in the case of

Vb = 8. For Vb = 10.7 the interface has again the same wavenumber as the boundaries

initially and it attempts to go into the “sliding” behaviour such as the one for Vb = 10.9

but gets “stuck”. It later starts travelling with a combination of the “sliding” and the

“walking” behaviours.

We have thus identified two distinct behaviours of the interface: for voltages 2.6 ≤ Vb ≤ 8

the interface has a similar behaviour to the “walking” motion analysed in the case of one

corrugated electrode; for voltages 10.9 ≤ Vb the interface “slides” over the boundary and

takes the wavenumber of the corrugation; for voltages 8 ≤ Vb ≤ 10.9 we have competition

between the two behaviours. We conclude that including a top electrode corrugation of

the same shape as the bottom electrode and offset by φ = π does not affect the value

of the critical voltage necessary to drive the system out of equilibrium and for a range

of voltages we have the “walking” behaviour seen previously. For high enough voltages

the inclusion of the top boundary causes the interface to take the wavenumber of the

boundaries as it slides over them, a behaviour we had not see in the previous setup.

11.2. Symmetrical boundaries

We move on to examining the behaviour of the system in the case of two symmetrical

boundaries with shapes y = −0.9 + 0.2 cos(4x) and β(x) = 0.9 − 0.2 cos(4x) and as

before, we start by plotting the real parts of the eigenvalues λ against the voltages Vb

(figure 11.4.a). The first crossing of the x-axis is at Vb = 2.6 which is the same value

of the voltage for which we have a first crossing in the case of just one wavy boundary

and in the case of two offset boundaries. We encounter problems when numerically

calculating the steady states at Vb = 5.75: for higher voltages we increase the value of Vb
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Figure 11.4. (a) Real part of the growth rate λ vs applied voltage Vb. (b) energies
of the steady states at different voltages Vb. The squares highlight the
eigenvalues and the energies at two voltages Vb = 5.4 and Vb = 6. Bottom
panels show the steady state profiles of the interface for (c) Vb = 5.4 and
(d) Vb = 6. Top and bottom symmetrical.
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Figure 11.5. Top panels are plots of the energy E(t) against time for (a) Vb = 5.4 and
(b) Vb = 6. Bottom panels show the profile of the interface calculated
using the full time dependant numerical simulation at t = 100 for (c)
Vb = 5.4 and (d) Vb = 6. Top and bottom symmetrical.
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by very small increments and use a continuation technique to find the steady solutions.

When we plot the energy of the steady states (figure 11.4.b) and the real parts of

the eigenvalues (figure 11.4.a) against the voltage Vb we notice an abrupt change in

behaviour at Vb = 5.85. The bottom panels of figure 11.4 are the steady state profiles

for two voltages, one below Vb = 5.85 and one above: the steady profile for the higher

voltage appears to touch the top boundary which might explain the change in behaviour

in the branch of eigenvalues. We perform full time dependant numerical simulations to

find that for voltages below Vb = 5.85 the interface travels in a way that is reminiscent

of the “walking” behaviour found in previous sections. However for voltages above that

value the interface approaches the top boundary closely and slowly drains. Figure 11.5

gives the plots of the energies for the two voltages against time and the profiles of the

interface found from time dependant simulations for time t = 100. For Vb = 5.4 the

energy is initially constant and after a certain time it is time periodic; the full numerical

solution is similar to the “walking” solutions found in previous sections. For Vb = 6 the

energy increases very fast initially and then is nearly constant with a very slow increase

which corresponds to the interface reaching the boundary and slowly draining.

We have thus found a critical voltage Vbc = 5.85: for voltages below that value, the

interface travels and its movement may be exploited for mixing; for higher voltages the

interface creates columnar structures that mimic the boundary similar to the ones found

in the case of two flat boundaries (Craster & Matar, 2005) which could be useful for

patterning. We conclude that the inclusion of a symmetrical boundary does not affect

the value of the voltage necessary to drive the system out of equilibrium; however it

limits the range of voltages which permit the “walking” behaviour. In addition, for

voltages above Vb = 5.85 the interface mimics the shape of the boundaries and nearly

touches the top electrode slowly draining, thus creating a fixed pattern.

11.3. Analytical Solution

We found that adding a corrugation to the top boundary does not affect the value of the

critical voltage above which the system is driven out of equilibrium. Below this value

Vb = 2.6 we expect the interface to reach a steady state. We extend the analysis in §10.6

and seek an analytical solution of the system when both wall corrugations are shallow.

Let us assume that the depth of the boundaries is small so that we can write the shape

of the boundary as z(x) = Zc + εZ(x) and β(x) = Bc + εb(x) the interface height as

h(x) = εH0(x) + O(ε2) where ε is small. These are substituted into eq.(10.5) and at

leading order we get:
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Figure 11.6. Numerical steady state solution compared to the analytical solution of
eq.(11.3) for kb1 = 2, kb2 = 4, φ =

√
2.

AH0 +BH0x + CH0xxx = −DZ − EZx − Fb−Gbx (11.3)

where A, B, C, D, E, F and G are constants that depend on the physical parameters

in the problem and are found using Maple.

Let us consider the case when z(x) = Zc − db cos(kb1x), β(x) = Bc − db cos(kb2x+ φ) so

that we have Z(x) = − cos(kb1x), b(x) = − cos(kb2x + φ) and ε = db. Then the general

solution of eq.(11.3) is given by:

H0(x) =C1 exp(λ1x) + C2 exp(λ2x) + C3 exp(λ3x) + C4 (11.4)

+Re(p) cos(kkb1x)− Im(p) sin(kkb1x) +Re(q) cos(kkb2x)− Im(q) sin(kkb2x)

(11.5)

where Ci, i = 1, 2, 3, 4 are constants, λi, i = 1, 2, 3 are the roots of A+Bλ+Cλ3 = 0.

p and q are given by the following expressions:

p =
D + ikkbE

A+ ikkbB − i(kkb)3C
,

q =
FM − kGL+ iFL+ ikMG

A+ ikkbB − i(kkb)3C
,

where L = sin(φ) and M = cos(φ). The constants Ci, i = 1, 2, 3, 4 are found applying

periodic boundary conditions at x = ±π/k and an integral constraint on H0:
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∫ π/k

−π/k
H0(x)dx = 0 (11.6)

In the special case when kb, k ∈ Z with kb 6= λi for i = 1, 2, 3, it can be shown that

the roots of A + Bλ + Cλ3 = 0 are such that Re(λ) 6= 0 and hence the expression for

the interface simplifies to:

H0(x) = Re(p) cos(kkb1x)− Im(p) sin(kkb1x) +Re(q) cos(kkb2x)− Im(q) sin(kkb2x)

(11.7)

Figure 11.6 gives a comparison between the steady state solution calculated numeri-

cally and the analytical solution given by eq.(11.5) for a case when the top and bottom

sinusoidal corrugations have different wavenumbers and the top is offset by φ =
√

2 and

we find excellent agreement.

11.4. Summary of research

We have examined the behaviour of an interface between two perfect dielectric fluids

sandwiched between two sinusoidal electrodes. We consider two cases: one when the top

boundary is offset from the bottom and the other when the top and bottom electrodes

are symmetrical. We make use of the Floquet analysis presented in the previous chapter

to analyse the stability of the system for changing applied voltage. For all three cases

(flat top, offset top and symmetrical top) the critical voltage required to drive the system

out of equilibrium is the same. For slightly higher voltages the system reaches an initial

steady state and then transitions into the “walking” behaviour described in the previous

chapter. For the case of an offset top, we have identified a range of voltages for which

the interface takes the wavenumber of the corrugations and “slides” past them. There

is also a range of voltages for which we have competition between the “sliding” and

“walking” regimes with highly oscillatory initial behaviour. For the case of symmetrical

corrugations we found a critical voltage above which the interface gets “stuck” i.e. it

takes the wavenumber of the electrode shape, nearly touches the top wall and slowly

drains thus creating a pattern. Finally, we found an analytical solution valid for shallow

wall corrugations for the range of voltages when the system is stable. This solution is

valid for any wavenumbers and any value of the parameter φ which determines how far

offset the top and the bottom corrugations are.

130



12. Two layer flow of thin perfect

dielectric films over steps

In this chapter we examine the behaviour of the system presented in §10 but instead of

having a sinusoidal lower boundary we consider flow over a step. This is to investigate

the effect of a sudden sharp change in the boundary. The lubrication approximation

used throughout this part of the thesis assumes small free surface slopes which means

that our equations could potentially fail for a sharp step topography. However several

numerical studies (Gaskell et al., 2004; Mazouchi & Homsy, 2001) show that results

from the lubrication equations are accurate for such flows which justifies our use of this

approximation. The evolution equation for the interface is exactly the same as in §10

with the bottom electrode having the following shape:

z(x) = Zc +
db
π

(
arctan

(
x− xl
dc

)
− arctan

(
x− xr
dc

))
(12.1)

where dc determines the steepness of the steps with smaller values of the parameter

corresponding to steeper steps; xr − xl gives the width of the step. Throughout this

chapter we shall consider a system with the following parameters: Zc = 0.2, db = 0.8,

dc = 10−2, xr − xl = π.

12.1. Flow over a step in the absence of electric fields

We begin our analysis by considering flow over a step in the absence of electric fields

in order to check if our model is consistent with previous studies, such as the work of

Tseluiko et al. (2013) and Lenz & Kumar (2007). Both consider steady states of flow

over a step with Tseluiko et al. (2013) analysing gravity-driven flow of one layer of fluid

and Lenz & Kumar (2007) investigating the behaviour of the interface between two fluids

flowing over a step without an incline. We consider steady state solutions of the system

which are found with the help of our steady state numerical solver outlined in chapter

10.
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Figure 12.1. Steady state profiles of the interfacial height hs(x) with no applied electric
field for varying flux Q = 1 (dotted line), Q = 10 (dashed line), Q = 100
(solid line). Viscosity ratio is (a) m1 = 0.01 and (b) m1 = 1.

Figures 12.1 give the interfacial height profiles for three different values of the flux Q.

Figure 12.1.a shows steady state solutions for the case when the top fluid has a much

lower viscosity then the bottom one and this is a reasonable approximation for the one

fluid flow examined by Tseluiko et al. (2013). Figure 12.1.b gives steady state solutions

for the case when both the top and the lower fluid have the same viscosity and this

is similar to the setup considered by Lenz & Kumar (2007). In both cases smaller

fluxes lead to smoother solutions and changes in the viscosity ratio have relatively small

effects, with capillary ridges decreasing in height as the viscosity ratio increases which

is in agreement with previous findings (Lenz & Kumar, 2007). The profiles in figure

12.1.a are qualitatively similar to the ones found by Tseluiko et al. (2013) and the ones

in 12.1.b are in agreement with those described by Lenz & Kumar (2007). This reassures

us of the validity of our model and we proceed to investigate the system in the presence

of electric fields.

12.2. Floquet analysis for varying voltage

In this section we consider flow over a step under the effect of electric fields. We inves-

tigate the stability of the system as we vary the voltage with the help of the Floquet

analysis outlined in §10.8. Throughout this chapter we vary the voltage Vb and fix all

the other parameters: Q̃ = 0.0345, ε1 = 1, ε2 = 2, m1,2 = 1, β = 1.

Figure 12.2 gives the plots of the real and imaginary parts of the eigenvalues λ as we
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Figure 12.2. (a) Real and (b) imaginary parts of the growth rate λ vs applied voltage
Vb. Bottom has step.

vary the applied voltage Vb. The first crossing of eigenvalues in figure 12.2 occurs at

Vb = 3 so the system is stable below that value. The branch of real parts of eigenvalues

splits into two branches at Vb = 4.5 which suggests there might be a change from one

type of behaviour to another. As before we make use of the energy E(t) and examine the

plots of the L2-norm of h against time for two values of the voltage, one above Vb = 4.5

and one below. Figures 12.3.a,b are plots of E(t) of the system for Vb = 4 and Vb = 5

respectively and for the latter we observe that E(t) has more oscillations and a more

intricate structure. The differences in the dynamics can be further illustrated in the

phase planes of the energy for Vb = 4 and Vb = 5 in figures 12.3.c,d. The results suggest

that the two solutions are on different branches and the transition from one branch to

the other occurs at Vb = 4.5 where the real parts of eigenvalues appear to bifurcate.

We compare these findings with the full time dependant solutions for Vb = 4 (see figure

12.4) and Vb = 5 (see figure 12.5). In the first case we have a time modulated travelling

wave with peaks forming over the edges of the step. In the second case we have a peak

forming over the left step which oscillates but fails to travel. These findings are in agree-

ment with our Floquet analysis: in the first case we have a non-zero wave speed which

corresponds to the non-zero imaginary part of the eigenvalues λ when Vb = 4; in the

second case the wave does not travel and indeed the imaginary part of the eigenvalues

is zero for Vb = 5.

Through the use of Floquet theory we have identified three different regimes. The system

is fully stable below Vb = 3, when for 3 ≤ Vb ≤ 4.5 the solution is in the form of time

modulated travelling waves and for 4.5 ≤ Vb the interface oscillates without travelling.

133



Chapter 12. Two layer flow of thin perfect dielectric films over steps

0 200 400 600 800 1000 1200
0

1

2

3

4

t

E
(
t
)

V b = 4

(a)

0 200 400 600 800 1000 1200
0

1

2

3

4

t

E
(
t
)

V b = 5

(b)

0 1 2 3 4
−0.1

−0.05

0

0.05

0.1

E ( t)

Ė
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Figure 12.3. Top panels show E(t) plotted as time is varied for (a) Vb = 4 and (b)
Vb =. The bottom figures show the phase plane of the energy for (c)
Vb = 4 and (d) Vb = 5.
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12.3. Summary of research

We have examined the behaviour of an interface between two perfect dielectric fluids

that flow over a step. First we investigated the steady states of the system in absence

of electric fields and found that the interface tends to mimic the interface with lower

fluxes leading to smoother profiles. For higher fluxes we recovered the capillary ridges

and troughs that form preceding the step-down and the step-up respectively that were

analysed by Lenz & Kumar (2007). We then examined the stability of the system for

changing applied voltage with the help of a Floquet analysis. The plots of the eigenvalues

suggest three different regimes: the system is completely stable below a certain value

of the voltage, then we see time modulated travelling waves for a range of voltages and

finally for voltages above a certain value we have an oscillating solution that does not

travel. The points when the behaviour of the system appears to change found from the

stability analysis are in perfect agreement with the full time dependant simulations.
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Figure 12.4. Interface and streamlines for Vb = 4 at (a) t = 150, (b) t = 300, (c)
t = 450 and (d) t = 600.
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Figure 12.5. Interface and streamlines for Vb = 5 at (a) t = 150, (b) t = 300, (c)
t = 450 and (d) t = 600.
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We have presented a mathematical model for the behaviour of an interface between two

fluids that flow between two electrodes. The fluids can be either taken to be perfect

dielectrics, where no free charge is present, or leaky dielectrics, where the charge accu-

mulates at the interface. In the latter case a current conservation equation based on

Ohmic conductivity needs to be included. A long-wavelength approximation is made to

derive time dependant evolution equations for the interface and the charge which are

one dimensional in space. The system is parametrized by the dimensionless flow rate,

voltage and ratios of viscosities and permittivities. The evolution equations are solved

numerically using two FORTRAN codes which are both based on the method of lines

and Gear’s method for the time integration.

We begin by analysing the stability of an electrified fluid sheet under the effect of a tan-

gential electric field in the case when the ratio of fluid to electric time scales is taken to

be of O(1). We find that instability occurs if εpσR > 1, where εp is the ratio of dielectric

permittivities and σR is the ratio of electric conductivities. This result is in agreement

with previous work by Papageorgiou & Petropoulos (2004) and Ozen et al. (2006). Our

numerical solution suggests that rupture of the sheet can occur at finite times with the

horizontal fluid velocity and the surface charge becoming locally unbounded. A similar-

ity solution of the second kind is presented for the behaviour of the system near rupture.

We move on to exploring the behaviour of the interface between two leaky dielectric

fluids flowing with a constant flow rate between two flat electrodes held at constant

voltages. A linear stability analysis shows that there exists a band of unstable modes

and that electrical effects are destabilising while changes in the overall flow rate do not

affect the value of the critical wavenumber required for instability. Numerical results

show that initially small perturbations grown and develop into time modulated travel-

ling waves that move at constant speed. Increasing the overall flow rate leads to higher

wave speeds and smaller wave amplitudes which suggests that the electrically induced

patterns analysed by Craster & Matar (2005) can be “swept away” by higher fluxes.

In our next section we consider a similar setup but this time we assume that the fluids are

perfect dielectrics and we introduce a corrugation on the bottom electrode. We initially
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consider a sinusoidal lower boundary of relatively small amplitudes and find that the in-

terface either reaches a steady state which mimics the shape of the corrugation or forms

travelling structures that are reminiscent of the ones found in the case of flat boundaries

but which are now sliding over the patterned wall. For small amplitude corrugations

there is a correlation between the critical voltage for which the transition between the

two types of solution happens and the linear stability analysis for a flat lower boundary.

However, the information found from the latter is no longer sufficient to determine the

ranges of voltages for various types of solutions in the case of sinusoidal boundaries of

larger amplitude. In this case we make use of a Floquet stability analysis which is better

suited for problems with a non uniform base state. Our numerical solutions help us

identify a few different types of dynamics which occur at different values of the applied

voltage and our Floquet analysis gives the ranges of voltages for which these behaviours

are possible. Below a critical voltage the system reaches a steady state with the same

wavenumber as the lower boundary. For a range of voltages the interface appears to

“slide” over the corrugation and for higher voltages the interface has yet another be-

haviour which we call “walking” motion. The differences between the dynamics of the

two cases are clearly seen when comparing the L2-norms of h: in the second case we

have a more intricate structure. The transition from one type of behaviour to the other

occurs for a voltage at which the branches of the real parts of the eigenvalues found from

the Floquet analysis cross. We also analyse the behaviour of the solution for relatively

large fluxes and find that the frequency of oscillation of the interface is proportional to

the value of the overall flow rate.

Having established a robust linear stability analysis based on Floquet theory we seek

to apply it to different geometries. We include a corrugation to the top boundary and

analyse two cases: one where the top has the same shape as the lower boundary but is

offset by π and another one where the top and bottom corrugations are symmetrical.

A Floquet analysis shows that the critical voltage required for instability is not affected

by the addition of the waviness to the top boundary. In the case of the offset top we

find a range of voltages for which the interface has a “walking” motion and another

range for which the interface takes the wavenumber of the boundaries and “slides” over

them. The second type of behaviour was not found in the case of just one flat boundary.

In the case of two symmetrical boundaries there is a range of “walking” solutions but

above a critical voltage the interface approaches the upper wall very closely and fixes in

a pattern that slowly drains much like the patterns found by Craster & Matar (2005).

Finally, an analytical solution is found for shallow boundaries of any shape which is in

good agreement with our full numerical solution.
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In the final chapter we examine the case of flow over a step with a flat top electrode.

Through a comparison between full numerical solutions and the plots of the eigenval-

ues found from Floquet analysis we identify three different types of behaviour. For low

enough voltages the interface reaches a steady state. For a range of voltages it travels

in a time modulated fashion and at higher voltages it oscillates without travelling.

In all of the above cases we have also looked at the streamlines of the fluid in the lower

layer and found that for certain values of the voltage and the flow rate we have vortices

in the troughs which could be used for cell trapping in bioanalytical applications. The

intricate behaviour of the “walking” motion is particularly suited to enhance mixing

within one of the layers. We now have a useful tool based on Floquet theory which helps

us to determine the ranges of voltages for which each type of behaviour occurs. Often

it is enough to change the voltage to produce a completely different type of dynamics

which can be exploited in microfluidic devices.

The system has a rich variety of behaviours and we have chosen to analyse and present

a few of the most interesting cases. However we have developed a numerical scheme and

a routine for calculating the eigenvalues in the Floquet analysis which so far have given

results which are in excellent agreement with each other. It would be fairly straight-

forward to use our numerical setup to analyse systems with different geometries and

different values of the physical parameters to discover more interesting dynamics with

potential applications in microfluidic devices.

One possible way to expand this investigation would be to test the results presented

in chapter 10 in an experimental setup to see if changing the applied voltage in a mi-

crofluidic two phase flow can indeed produce an environment that is either favourable for

mixing or cell trapping. Moreover, the mixing behaviour could be investigated further by

conducting an analysis of the system with a passive tracer. Finally, the quasi periodicity

of the system described in chapter 10 can be explored by analysing the return maps of

the energy.
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A. Appendix

A.1. Voltage potential V far in the outer layer

To calculate V far it is necessary to introduce an outer variable:

y =
Y

δ

Then equation (7.15) becomes:

V far
xx + V far

Y Y = 0 (A.1)

Taking Fourier transforms of the above equation leads to the following expression for

to V̂ far:

V̂ far = δα0(k, t) exp(−|k|Y ) + δ2α1(k, t) exp(−|k|Y ) +O(δ3) (A.2)

Matching with V1 gives:

V̂ far = −δisgn(k)Ĥ0
σR − 1

2σR
exp(−|k|Y ) +O(δ2) (A.3)

We use the following manipulation to determine V far:

F−1
{

exp(−|k|Y )

|k|

}
= − 1

π
log r

F−1
{
−ik exp(−|k|Y )

|k|

}
= − x

πr2

V̂ far = δF
{
− x

πr2

}
F {H0}

σR − 1

2σR
+O(δ2)

V far = δ
σR − 1

2σR

(
− x

πr2

)
∗ (H0) +O(δ2)

It turns out that at the boundary y = H(x, t), Y → 0 and so V far → 0.
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Appendix A. Appendix

A.2. Constants in the steady states

P̄x = − 6

B

a1 =
m2a2
m1

a2 =
AP̄x

2
(A.4)

where

A =
m1 − β2m2

m2(m1 + βm2)

B =
2β3

m1
+

2

m2
+

3β2m2A

2m1
− 3A

2
; (A.5)

A.3. Functions in section §7.3.4

A.3.1. Horizontal velocity and voltage potential at O(1)

e1(x, t) =
p
(0)
x

2m1
D5, e2(x, t) =

p
(0)
x

2m2
D5,

p(0)x =
1−

∫ β
h ū1dy −

∫ h
−z ū2dy

D6

where

D1 = −(h− β)2

D2 = h+ 2β

D3 = (h+ z)2

D4 = h− 2z

D5 =
m1(z

2 − h2) +m2(h
2 − β2)

m1(h+ z) +m2(β − h)

D6 =
m2D1(2D2 + 3D5) +m1D3(2D4 + 3D5)

12m1m2
(A.6)
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∫ β

h
ū1dy = D1

[
P̄x

6m1
D2 +

a1
2

]
∫ h

−z
ū2dy = D3

[
P̄x

6m2
D4 +

a2
2

]
(A.7)

d1 =
ε2 + q(0)(h+ z)

ε2(h− β)− ε1(h+ z)
, d2 =

ε1 + q(0)(h− β)

ε2(h− β)− ε1(h+ z)
(A.8)

A.3.2. Horizontal velocity at O(δ)

u
(1)
1 =

p
(1)
1x

2m1
(y2 − β2) + f1(x, t)(y − β) (A.9)

u
(1)
2 =

p
(1)
2x

2m2
(y2 − z2) + f2(x, t)(y + z) (A.10)

From eq. (7.74):

p
(1)
2x = p

(1)
1x − hxxx − ε1d1xd1 + ε2d2xd2 (A.11)

From eq. (7.75):

m2f2 = m1f1 + h(p
(1)
1x − p

(1)
2x )− q(0)[d1(h− β)]x (A.12)

From eq. (7.76):

f1

[
(h− β)− m1

m2
(h+ z)

]
=− p(1)1x

[
h2 − β2

2m1
− h(h+ z)

m2

]
− p(1)2x

(h+ z)2

2m2

− q(0) (h+ z)

m2
[(d1 + c1)(h− β)]x (A.13)

From eq. (7.77):

−D1

[
p
(1)
1x

6m1
D2 +

f1
2

]
= D3

[
p
(1)
2x

6m2
D4 +

f2
2

]
(A.14)
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f1(x, t) =
E2p

(1)
1x + E3p

(1)
2x + E4q

(0)

E1

f2(x, t) =
1

m2

{[
h+

E2

E1
m1

]
p
(1)
1x +

[
E3

E1
m1 − h

]
p
(1)
2x +

[
E4

E1
m1 + E5

]
q(0)
}

p
(1)
2x =

−E6(hxxx + ε1d1xd1 − ε2d2xd2)− E8q
(0)

E6 + E7
(A.15)

E1 =(h− β)− m1

m2
(h+ z)

E2 =−
[
h2 − β2

2m1
− h(h+ z)

m2

]
E3 =− (h+ z)2

2m2

E4 =− (h+ z)

m2
[d1(h− β)]x

E5 =− [d1(h− β)]x

E6 =− D1D2

6m1
− E2D1

E1
− D3

2
[h+ (E2m1/E1)]

E7 =− D1E3

2E1
+
E3D4

3
− D3

2
[(E3m1/E1)− h]

E8 =− E4D1

2E1
− D3

2
[(E4m1/E1) + E5] (A.16)

u
(0)
1 |y=h = (h− β)

[
p
(0)
x

2m1
(h+ β) + e1

]
(A.17)

u
(1)
1 |y=h = (h− β)

[
p
(1)
1x

2m1
(h+ β) + f1

]
(A.18)

Evolution equations:
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ht +

{
D3

6m2

[
D4(P̄x + p(0)x + δp

(1)
2x ) + 3m2(a2 + e2 + δf2)

]}
x

= 0

q
(0)
t +

{
(h− β)

[
(P̄x + p(0)x )

(h+ β)

2m1
+ a1 + e1

]
q(0)
}
x

= S1d1 − S2d2 (A.19)

A.4. Pressures in section §7.3.5

p
(0)
1x = p

(0)
2x + hxxx + ε1d1xd1 − ε2d2xd2

p
(0)
2x =

−E6(hxxx + ε1d1xd1 − ε2d2xd2)− E8q
(0)

E6 + E7
−

1−
∫ β
h ū1dy −

∫ h
−z ū2dy

E6 + E7
(A.20)
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