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Non-equilibrium scaling laws in
axisymmetric turbulent wakes
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We present a combined Direct Numerical Simulation and Hot Wire Anemometry study
of an axisymmetric turbulent wake. The data lead to a revised theory of axisymmetric
turbulent wakes which relies on the mean streamwise momentum and turbulent kinetic
energy equations, self-similarity of the mean flow, turbulent kinetic energy, Reynolds
shear stress and turbulent dissipation profiles, non-equilibrium dissipation scalings and
an assumption of constant anisotropy. This theory is supported by the present data up
to a distance of 100 times the wake generator’s size which is as far as these data extend.
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1. Introduction

Over the last 60 years, the axisymmetric turbulent wake has been extensively studied
experimentally and numerically (see for example Brown & Roshko 2012; Johansson et al.

2003, for a historical review). A basic problem of particular interest is the scaling with
streamwise distance x of the wake width δ and the centreline velocity deficit u0 (Ten-
nekes & Lumley 1972; Bevilaqua & Lykoudis 1978; Townsend 1976; George 1989). As
stated in Johansson et al. (2003), this problem “has puzzled researchers for more than a
half-century since measured results have been either inconclusive or contradictive”. The
equilibrium similarity analysis of George (1989) has shown that two scalings are possible
for the streamwise evolutions of the wake width and the velocity deficit. The classi-
cal equilibrium high Reynolds number scaling is obtained by assuming, as in Townsend
(1976) and George (1989), that the turbulence dissipation rate ε scales as ε = CεK

3/2/δ
where Cε = const and K is the turbulent kinetic energy. This leads to the high Reynolds
number scalings

u0(x)

U∞

∼
(

x− x0

θ

)

−2/3

(1.1)

δ(x)

θ
∼

(

x− x0

θ

)1/3

(1.2)

where U∞ is the freestream velocity, θ is the momentum thickness and x0 is a virtual
origin which comes out naturally from the analysis. George (1989) (see also Johansson
et al. 2003) has shown that another, different, scaling is present when the viscous term in
the mean momentum equation is not negligible. This is a low Reynolds number regime
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for which ε ∼ νK/δ2, where ν is the kinematic viscosity of the fluid. These low Reynolds
number scalings are
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∼ ReG
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θ
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−1

(θ/Lb) (1.3)
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(Lb/θ)
1/2

(1.4)

where ReG is a global Reynolds number determined by the inlet conditions and Lb is
a reference length scale characterising the wake generator. The low Reynolds number
regime has only been observed at very large distances from the wake generator by Jo-
hansson et al. (2003) who found it in the temporally evolving wake simulation data of
Gourlay et al. (2001). However, no transition to this regime has been observed in the
recent work of Redford et al. (2012) where the classical high Reynolds number scalings
were recovered for very long times in their temporally evolving simulations (equivalent to
very long streamwise distances). Note, however, that one of the simulations of Redford
et al. (2012) did return the scalings u0(x)/U∞ ∼ x−1 and δ(x)/θ ∼ x1/2, but at higher
local Reynolds numbers and earlier times than those where the classical predictions (1.1)
and (1.2) appear.

Recently, Nedić et al. (2013b,a) used non-axisymmetric plates with irregular edges
(see figure 1) and showed that the turbulent wakes they generate when placed normal to
a freestream is at least as axisymmetric as turbulent wakes generated by axisymmetric
disks. These multiscale wake generators combine wake-like with jet-like behaviours and
their turbulent wakes obey wake laws which are different from the usual axisymmetric
turbulent wake laws. Nedić et al. (2013b) have argued that these new scaling laws for
the wake width and centreline velocity deficit can be explained in terms of the similarity
analysis for axisymmetric wakes of George (1989) and are as follows:

u0(x)

U∞

∼
(

x− x0

θ

)

−[2/(3−n)]]

Re
2(n−m)/(3−n)
G (Lb/θ)

−[2n/(3−n)]
(1.5)
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θ
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−[n/(3−n)]
(1.6)

where the presence of the exponents m and n is caused by the assumption made on the
turbulence dissipation scaling. Indeed, these new wake laws are direct consequences of
the assumed non-equilibrium dissipation law (see Vassilicos 2015)

ε = Cε
K3/2

δ
with Cε ∼ RemG/Renl (1.7)

where Rel is a local Reynolds number based on local velocity and length scales. As
reported in Vassilicos (2015), the values of m and n in the non-equilibrium high Reynolds
number region of grid-generated turbulence are m ≈ 1 ≈ n.

Adopting n = m = 1 for axisymmetric turbulent wakes, the scaling laws (1.5) and
(1.6) become
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)
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(1.9)

The hot wire anemometry measurements performed by Nedić et al. (2013b) have shown
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that the streamwise distance power laws in (1.8) and (1.9) hold over a very substantial
streamwise region of turbulent wakes generated by their multiscale plates. In a recent
numerical study, de Stadler et al. (2014) also reported the non-equilibrium scaling laws
(1.8) and (1.9) in the wake generated by a sphere. However, because neither Nedić et al.

(2013b) nor de Stadler et al. (2014) provided information on the turbulence dissipation,
the presence of the new dissipation law (1.7) in their turbulent axisymmetric wakes could
not be directly confirmed.

The main purpose of this paper is to use Direct Numerical Simulation (DNS) and
Hot Wire Anemometry (HWA) measurements of axisymmetric turbulent wakes of a
fractal/multiscale-edge plate placed normal to the incoming flow to carefully establish
each one of the assumptions leading to the predictions such as (1.5) and (1.6) and in par-
ticular the existence of the new non-equilibrium dissipation law (1.7). The very signifi-
cant advantage of fractal/multiscale-edge plates for wind tunnel experiments of turbulent
wakes is that they produce much higher local Reynolds numbers than regular-edge plates
with the same surface area. This way the plate’s surface can be chosen small enough for
the streamwise extent over which the wake is measured to be as long as possible without
the velocity deficit dropping to values so low that HWA measurements become too chal-
lenging. A low surface area plate also imposes a low blockage in the wind tunnel which
is also an advantage.

We start with a detailed DNS assessment of the boundary layer approximation of the
mean momentum equation. The axisymmetry and self-similarity/self-preservation prop-
erties of the flow are then examined both experimentally and computationally. Finally,
the streamwise evolution and scalings of the turbulence dissipation rate are studied both
with DNS and HWA leading to a study of the consistency between the velocity deficit
and wake width scalings and the non-equilibrium dissipation law.
The flow configuration is described in section 2. The numerical methods are described

in section 3 and the experimental setup in section 4. The leading and the negligible
terms in the Reynolds-averaged momentum balance are established in section 5 and the
axisymmetry of the flow is established in section 6. The self-similarity properties of mean
profiles are analysed in section 7 and the new dissipation law (1.7) is discussed in section
8. In section 9 we develop a revised approach to the prediction of the wake width and
velocity deficit which we compare with our numerical and experimental data. Finally,
the main results are summarised in section 10.

2. Flow configuration

In the present study, turbulent wakes are generated by a bluff plate of surface area A
with irregular edge periphery (allowing the formation of jet-wake flows) placed normal to
the laminar free stream (see figure 1 right). This irregular plate is the same as one of those
used in Nedić et al. (2013b). The perimeter shape of this plate results from a geometric
self-similar process leading, if continued ad infinitum, to a plate with fractal perimeter of
infinite length and fractal dimension Df = 1.5 but the same surface area A. A schematic
view of the generic flow configuration considered in both the experiments and the DNS is
presented in figure 1 (left). In the Cartesian coordinate system (O;x, y, z), the domain is
Ω = [−xp, Lx − xp]× [−Ly/2, Ly/2]× [−Lz/2, Lz/2] where xp is the longitudinal location
of the plate and the origin O is located at the center of the plate. The reference length
Lb of the flow is defined by Lb =

√
A. For the sake of simplicity the radial distance

r =
√

y2 + z2 and the polar angle ϕ = arctan (y/z) are also introduced hereinafter. The
lateral dimensions of the domain Ly and Lz are the same for the wind tunnel experiments
and the DNS with Ly = Lz = 15Lb. However, the streamwise dimension considered for
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Lx

Ly = 15Lb

Lz = 15Lb

xp = 10Lb

Df1.5(2)

Figure 1. Schematic view of the flow configuration (left) and drawing of the irregular plate
used to generate a turbulent wake (right).

the DNS is twice the length of the wind tunnel’s test section with LDNS
x = 2LHWA

x =
120Lb. Because the plate is located at xp = 10Lb in both cases, the measurements are
taken up to x = 50Lb for the experiments and x = 110Lb for the DNS. In the DNS
case, results are reported in the range x ∈ [5Lb; 100Lb] to avoid spurious effects due to
the outflow boundary conditions. The boundaries of the domain are: (i) the flow inlet at
x = −xp = −10Lb ; (ii) the lateral boundaries at y = ±Ly/2 and z = ±Lz/2; (iii) the
outlet at x = Lx − xp.

In the DNS case, mean quantities 〈f〉ϕ,t (x, r) of a field f(x, r, ϕ, t) are estimated
by averaging over time and over the homogeneous polar direction ϕ in the cylindrical
coordinate system (x, r, ϕ). In the case of the HWA measurements, the mean quantity
〈f〉t (x, r) is estimated by averaging over time only. For simplicity, both notations are
replaced by 〈f〉 (x, r) in this paper, the context making the detailed meaning of the
notation clear. The mean streamwise velocity component 〈ux〉 (x, r) is denoted U . A
schematic view of the axisymmetric wake is presented in figure 2 with some definitions.
The momentum thickness is defined by

θ2 =
1

U2
∞

∫

∞

0

U∞ (U∞ − U) rdr = const. (2.1)

and the wake’s width is here characterised by the integral wake’s width

δ2(x) =
1

u0

∫

∞

0

(U∞ − U) rdr (2.2)

where u0(x) = U∞−U(x, r/Lb = 0) is the centreline velocity deficit. To be unambiguous,
these definitions rely on axisymmetry in the HWA case. To avoid negative values of the
velocity deficit U∞ − U due to the finite size of the domain, a local freestream velocity
U∞ = U(x,R) is used in these definitions where R = 5Lb is the maximum radial location
considered for the DNS. For the experiments, U∞ is taken to be the maximum value of
the mean velocity profile at each streamwise location, i.e. U∞ = maxr(U).

The global Reynolds number ReG of the flow is based on the reference length Lb =
√
A

and the freestream velocity U∞;

ReG =
U∞Lb

ν
(2.3)

where ν is the (constant) kinematic viscosity. The local Reynolds number Rel is defined
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Figure 2. Axisymmetric wake coordinates and definitions.

Cases Working length ReG

HWA 50Lb 40000
DNS 110Lb 5000

Table 1. Summary of the two different cases considered in this study.

Figure 3. Instantaneous visualisation of an isosurface of vorticity magnitude ||ω|| = 2 for the
DNS simulation. The streamwise range plotted here is from x = 5Lb to x = 45Lb corresponding
approximately to the experimental work section.

by

Re l =

√
K0δ

ν
(2.4)

where K0 is the turbulent kinetic energy at a centreline location.

Two cases, summarized in table 1, are considered in the present study. The HWA case
refers to experiments carried out at ReG = 40000 and the DNS case to a numerical
simulation performed in a similar flow configuration but at ReG = 5000 because of the
highly demanding computations of the present DNS.

To conclude this section and for illustrative purposes only, an instantaneous visualisa-
tion of the turbulent wake generated by the DNS is plotted in figure 3 for a streamwise
range corresponding approximately to the length of the experimental test section.
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Figure 4. Streamwise evolution of the ratio ∆x/η.

3. Numerical methods

The finite difference code “Incompact3d” (Laizet & Lamballais 2009; Laizet et al. 2010)
is used to solve the incompressible Navier-Stokes equations

∂u

∂t
+

1

2
(∇ · (u⊗ u) + (u · ∇)u) = −1

ρ
∇p+ ν∆u+ f (3.1)

∇ · u = 0 (3.2)

where u = (ux, uy, uz)
T
is the velocity, p the pressure and ρ (constant) the density of the

fluid. The convective terms are written in the skew-symmetric form to enable reduction in
aliasing errors and improvement of kinetic energy conservation for the spatial discretiza-
tion used in the code (Kravchenko & Moin 1997). The modelling of the plate is performed
by an Immersed Boundary Method, following a procedure proposed by Parnaudeau et al.

(2008). The present method is a direct forcing approach that ensures the zero-velocity
boundary condition at the plate walls. It mimics the effects of a solid surface on the
fluid via the additional forcing term f in the Navier-Stokes equations. Inflow/outflow
boundary conditions are assumed in the streamwise direction with a uniform fluid veloc-
ity U∞ without turbulence as inflow condition and a 1D convection equation as outflow
condition. The boundary conditions in the two spanwise directions are periodic. The
computational domain Lx×Ly ×Lz = 120Lb×15Lb×15Lb is discretized on a Cartesian
grid of nx × ny × nz = 3841× 480× 480 points. In terms of Kolmogorov microscale η, as
illustrated in figure 4, the spatial resolution is at worst ∆x = ∆y = ∆z ≈ 6η (where the
turbulence is at its most intense) and at best ∆x = ∆y = ∆z ≈ 0.8η (at the end of the
computational domain where the turbulence has decayed). In the range 10 6 x/Lb 6 100,
which is the range of interest of our study, the spatial resolution is always below 4η. In
a recent resolution study, Laizet et al. (2015) have shown that a spatial resolution of 7η
or 5η is sufficient to reproduce experimental results on one-point first and second order
statitistics with an error margin of about 10% or 5% respectively. They also showed
that quantities such as the turbulence dissipation rate require a resolution of at least
4η to be well captured. For the spatial derivatives, sixth-order centred compact schemes
(Lele 1992) are used. To control the residual aliasing errors, a small amount of numerical
dissipation is introduced only at scales very close to the grid cutoff. This very targeted
regularization is ensured by the differentiation of the viscous term that is sixth-order
accurate (Lamballais et al. 2011). The time integration is performed using an explicit
third-order Adams-Bashforth scheme with a time step ∆t = 5×10−3Lb/U∞. Full details
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Figure 5. Streamwise evolution of the wake width δ/Lb (left) and of Lb
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(right).

about the code “Incompact3d” can be found in Laizet & Lamballais (2009), Laizet et al.
(2010) and also in Laizet & Li (2011) concerning its massively parallel version available in
code Licence GNU GPL v3 (see the link http://code.google.com/p/incompact3d/).

The collection of data for the turbulent statistics is done over a time of T =
3850Lb/U∞, corresponding to approximately 25 seconds in the experiments and to 423
cycles based on the Strouhal number St = fvsLb/U∞ = 0.11 associated with the vortex
shedding frequency fvs (see Nedić et al. (2013b)).

To quantify the domain’s lateral dimensions in multiples of δ(x), the streamwise evo-
lution of δ is plotted in figure 5. At x = 100Lb (the most distant streamwise location
that we are considering in the present paper), δ ≈ 1.92Lb. This means that the domain
half-width is Ly/2 = Lz/2 = 7.5Lb ≈ 3.9δ at x = 100Lb. According to Redford et al.

(2012) (p.8), the critical value needed to ensure that the lateral boundary conditions do
not affect the wake development is Lz/2 = Ly/2 ≈ 2.95δ. The lateral dimensions of our
domain therefore appear sufficiently large to avoid any significant contamination from
the lateral boundaries even at x = 100Lb.

To further interogate possible effects of wake confinement, the streamwise evolution of
d<ux>t

dx (x, Ly, Lz/2) (i.e. the x-derivative of the local streamwise velocity at the domain
edge) is plotted in figure 5 (right). It can be seen that the value of the x-derivative is very
small and negative at all streamwise locations considered in our study (≈ −10−5U∞/Lb).
Secondly, close to the plate, the x-derivative is bigger because the velocity deficit is higher
in agreement with mass conservation. At x > 40Lb, the value of the x-derivative is below
≈ −10−5U∞/Lb and slowly tending to 0 as expected in the absence of confinement
problems.

To assess the statistical convergence of the DNS data, statistics have been computed for
three different averaging periods, T = 850Lb/U∞, T = 2400Lb/U∞ and T = 3850Lb/U∞.
The streamwise evolutions of the centreline velocity deficit and the wake width are plotted
in figure 6 for the three cases. These mean quantities appear converged over the entire
streamwise extent considered even for T = 850Lb/U∞. The same conclusion can be
reached for the convergence of the centreline turbulent kinetic energy and dissipation.
It must however be pointed out that T = 850Lb/U∞ and even T = 2400Lb/U∞ are not
sufficient to converge the dissipation profiles at x = 90Lb and x = 100Lb even though
T = 850Lb/U∞ is sufficient at smaller values of x/Lb.
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Figure 6. Streamwise evolution of the centreline velocity deficit u0 (left) and wake width δ
(right) for three different averaging periods.

4. Experimental setup

The experiments have been run in a low turbulence wind tunnel with a measurement
test section of 3× 3 ft2 (∼ 91× 91 cm2) and length 4.25 m. The experimental setup is
based on the one used in Nedić et al. (2013b). The plate has a reference length Lb = 64
mm with thickness 1.25 mm. The irregular plate is suspended in the center of the wind
tunnel normal to the laminar free stream using four 1 mm diameter piano wires. Free-
stream velocity was kept fixed at U∞ = 10 m/s. For that value, the velocity fluctuations
around the mean are below 0.1 % when the test section is empty.
Hot wire anemometry measurements were taken downstream of the wake generator

using a Dantec Dynamics 55P01 hot-wire probe, driven by a Dantec StreamLine CTA
system. The Pt-W wires were 5µm in diameter, 3 mm long with a sensing length of 1.25
mm. The centerline of the wake was found by searching the maximum of the velocity
deficit u0 by successive iterations and with cross-wire checks described two paragraphs
below. To obtain mean turbulent wake profiles, the probe was traversed at each one of the
streamwise locations x/Lb = 10, 15, 20, 25, 30, 35, 40, 45, 50 in 10 mm vertical intervals
normal to the streamwise x axis between y = −250 mm and y = 250 mm. For each
probe location, the acquisition time was 60 s with a sampling rate of 20 kHz. Therefore
each profile acquisition took about 1 hour of measurements. Two calibrations (one at
the beginning and one at the end) were made for each profile, while temperature was
monitored to not exceed a variation of 0.2◦C. The results reported here correspond to
the lower half of the profiles measured, while the whole profile was used to check the
positioning of the centre of the wake.

The axisymmetry of the flow was studied by taking radial-polar profiles at x/Lb = 10
and 30. Measurements for these profiles were taken at 8 different radial positions (5, 10,
20, 35, 50, 75, 100 and 150cm) and 25 polar angles equispaced between −π and π with
the same wire. Taking into account the centreline position, this gives 193 points at each
streamwise position. Each point measurement has been acquired for 30 sec at 20 kHz
and a new calibration has been taken each 30 min with the same procedure as the one
described in the previous paragraph for temperature variations.
Finally, a 55P51 x-wire probe (with same wires as that of our single wire probe)

was used for centreline measurements. At each centreline position, 30 min of data were
acquired at 20 kHz. A new calibration was performed at every centreline position and
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Figure 7. Centreline evolution of the full and isotropic dissipation (left) and of the ratio
εiso/εfull (right). DNS data.

temperature variations were monitored as explained above. The x-wire measurements
were used to calculate the centreline kinetic energy by assuming axisymmetry as K0 =

0.5
(

< u
′2

x > +2 < u
′2

r >
)1/2

where u
′

x and u
′

r are, respectively, the streamwise and the

radial fluctuating velocities.
The turbulent energy dissipation was only estimated on the centreline from single

wire measurements acquired over 30 min with 20 kHz sampling rate. It was calculated
as εiso =

∫

15νk21E11dk1 where E11(k1) is the the 1D power spectrum and k1 = 2πf/U
where f is a Fourier frequency in Hz. We therefore assume local isotropy at the centreline
and we use the Taylor hypothesis (the turbulence intensity based on the local mean
flow velocity is always below, and in most cases much smaller than 12%). The validity
of the local isotropy assumption was checked with our DNS data and in figure 7 we

compare εiso = 15ν
〈

(∂u′

x/∂x)
2
〉

with the actual dissipation rate εfull = 2ν 〈sijsij〉
where sij = (1/2)

(

∂u′

i/∂xj + ∂u′

j/∂xi

)

. It is clear from figure 7 (right) that εiso/εfull
lies between 0.94 and 1 in the range 10 6 x/Lb 6 50 and that it quickly tends to 1 as
x/Lb increases.

The acquisition time of the centreline single wire measurements being 30 min, an
order of 100,000 integral time scales at each streamwise position were recorded thereby
allowing good large-scale resolution. The Kolmogorov frequency was always smaller than
half our sampling frequency (which is 20kHz) except at the position closest to the plate
(x/Lb = 10) where it was 12kHz. At this position where our Kolmogorov microscale η is
at its smallest, η = 140 µm, but it grows with streamwise distance to reach η ≈ 0.4mm
at x/Lb = 50. We checked that the main contribution to the integral

∫

15νk21E11dk1
comes in all our cases from wavenumbers k1η 6 0.5 and that variations to the dissipation
spectrum at wavenumbers higher than k1η = 0.5 modeled by various exponential shapes
imply variations in our estimates of εiso of less than 6%.

5. Reynolds-averaged momentum equation balance

The analysis which leads to the streamwise scalings of the velocity deficit and width
of turbulent wakes is usually carried out on the boundary layer approximation of the
Reynolds-averaged momentum balance (see Townsend 1976; Pope 2000). In this section
we use our DNS to check and confirm the leading and neglected terms in this balance
equation.
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Figure 8. Centreline evolution of each term involved in the full Reynolds-averaged
momentum equation (5.1) (left) and of the ratio L.H.S/R.H.S (right). DNS data.

In Cartesian coordinates, the full Reynolds-averaged streamwise momentum equation
is given by

∂U

∂t
+ U

∂U

∂x
+ 〈uy〉

∂U

∂y
+ 〈uz〉

∂U

∂z
= −1

ρ

∂ 〈p〉
∂x

− ∂ 〈u′

xu
′

x〉
∂x

−
∂
〈

u′

xu
′

y

〉

∂y
− ∂ 〈u′

xu
′

z〉
∂z

+ν

(

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2

)

(5.1)

where u′

x, u
′

y and u′

z are the fluctuating velocity components in the x, y and z directions
respectively.

For sufficiently converged statistics, the first term on the left hand side vanishes, i.e.
∂U/∂t ≈ 0. The centreline evolution of all the other terms is plotted in figure 8 (left)
and the ratio between the left hand side (L.H.S) and the right hand side (R.H.S) of
equation (5.1) is plotted in figure 8 (right). It can be seen in figure 8 (right) that the
full momentum balance (5.1) is represented accurately enough by our calculations on the
centreline (the error made in the mean momentum equation budget is almost everywhere
below 6%, except at the very end of the domain where it is 10%). It can also be seen in
figure 8 (left) that the three terms U∂U/∂x, −∂

〈

u′

xu
′

y

〉

/∂y and −∂ 〈u′

xu
′

z〉 /∂z are the
main contributors to this momentum balance. We have checked that all the others terms
are at least two orders of magnitude smaller than these three terms so that we can use
the following simplified equation

U
∂U

∂x
= −

∂
〈

u′

xu
′

y

〉

∂y
− ∂ 〈u′

xu
′

z〉
∂z

(5.2)

This is indeed the simplified form of the mean momentum equation which is typically
used to study turbulent wakes. The centreline evolutions of the L.H.S and R.H.S of the
simplified balance (5.2) are plotted in figure 9 (left) and their ratio is plotted in figure 9
(right). This figures confirms that the simplified Reynolds-averaged momentum equation
(5.2) is valid in our turbulent wake where L.H.S ≈ R.H.S for all streamwise locations
within 8%. The viscous term, in particular, is always at least two orders of magnitude
smaller than these three main terms. We stress this point because it means that the low
Reynolds number scalings (1.3) and (1.4) (see Johansson et al. 2003, for details) cannot
be expected in our data.

To derive scalings for the axisymmetric wake, it is also usual to consider the first order
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approximation of equation (5.2) which is

U∞

∂

∂x
(U∞ − U) =

∂
〈

u′

xu
′

y

〉

∂y
+

∂ 〈u′

xu
′

z〉
∂z

(5.3)

in terms of the mean velocity deficit U∞ − U . The centreline evolution of the full L.H.S
of equation (5.2) is plotted together with its first order counterpart of equation (5.3) in
figure 10. A good agreement is found between both relations with an error that is quickly
decreasing and that is always below 10% for x > 20Lb.

6. Axisymmetry of wake statistics

The second step of this analysis is to ascertain the statistical axisymmetry of the wakes
generated by our irregular plate. Our DNS provides 3D fields in the entire computational
domain, and we use them to check polar variations of the mean velocity U , the Reynolds
shear stress Rxr ≡< u′

xu
′

r >, the turbulent kinetic energy K and the dissipation rate
ε. Our HWA measurements provide us with streamwise mean velocities and streamwise
Reynolds stressesRxx ≡< u′

xu
′

x > in cross sections of the wake at x = 10Lb and x = 30Lb.
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Figure 11. Normalised velocity deficit (top left), Reynolds shear stress (top right), turbulent
kinetic energy (bottom left) and dissipation rate of turbulent kinetic energy (bottom right)
profiles from the DNS case at the downstream location x/Lb = 10 for four different polar angles
ϕ.

We use our HWA data in conjunction with our DNS data to both check axisymmetry
and agreement between data.

In figure 11 we plot streamwise mean velocity, Reynolds stress, turbulent kinetic energy
and dissipation radial profiles at four different polar angles ϕ, all obtained from our DNS
at x/Lb = 10. These wake statistics are already quite axisymmetric at this near-field
location x = 10Lb. As shown in figure 12(left), this observation is confirmed for the mean
flow statistics and Rxx by our HWA measurements at the same location. This figure also
shows satisfactory agreement between the numerical simulation and the experiments.

A more quantitative evaluation of the flow’s statistical axisymmetry can be obtained
by computing the mean values of the coefficient of variance

cv(x, r) ≡ 100

√

(1/Nϕ)
∑

ϕ (S(x, r, ϕ)− 〈S〉 (x, r))2

〈S〉 (x, r) (6.1)

where Nϕ is the number of polar angles and S stands for mean flow, kinetic energy or
dissipation rate of turbulent kinetic energy. The streamwise variations of the radially
averaged coefficient of variance cv(x) ≡ (1/Nr)

∑

r cv(x, r) are plotted in figure 13 for
the DNS and HWA cases (only at x = 10Lb and x = 30Lb). It must be mentioned here
that the coefficient of variance has not been computed for the Reynolds shear stress
component Rxr because of the small values it takes close to the centreline leading to
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Figure 12. Maps of the mean streamwise velocity U/U∞ for the HWA case (top left) and for
the DNS case (top right) with the same colour coding and of the mean streamwise Reynolds
stress Rxx/U

2

∞ for the HWA (bottom left) and the DNS (bottom right), again with the same
colour coding. All these maps are taken at x = 10Lb.
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Figure 13. Streamwise evolution of the radially averaged coefficient of variance cv for the mean
velocity, turbulent kinetic energy and the dissipation profiles of the DNS case and for the mean
velocity and streamwise Reynolds stress of the HWA case at x = 10Lb and x = 30Lb.

artificially high values of cv. Because the same problem can appear at large radii where
K and ε tend to zero, the radially averaged coefficients of variance are computed for
r ∈ [0;Lb]. Figure 13 shows that, at x = 10Lb, there is already less than 4% variation in
all statistics. Hence, both our DNS calculations and our HWAmeasurements demonstrate
the good axisymmetry of the flow at x > 10Lb.
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7. Similarity of the axisymmetric turbulent wake

The axisymmetry of the wake having now been demonstrated for both the DNS and
the HWA cases, the next step is to investigate the similarity properties of the mean
flow statistics. The study of the dissipation law and its consequences on the velocity
deficit and wake width scalings follows naturally in the next section. In this section we
use our DNS and HWA to analyse the streamwise self-similarity of the mean velocity,
Reynolds stress, turbulent kinetic energy and dissipation profiles. Comparisons between
our DNS and our HWA data are made for the mean velocity and streamwise Reynolds
stress profiles.

The following self-similar forms are considered for the mean velocity, Reynolds stresses,
turbulent kinetic energy and dissipation profiles

U∞ − U(x, r) = u0(x)f(η) (7.1)

Rxx(x, r) = G01(x)g11(η) (7.2)

Rrr(x, r) = G02(x)g22(η) (7.3)

Rϕϕ(x, r) = G03(x)g33(η) (7.4)

Rxr(x, r) = R0(x)g12(η) (7.5)

K(x, r) = K0(x)h(η) (7.6)

ε(x, r) = D0(x)e(η) (7.7)

where η = r/δ and f(0) = 1.
We first investigate whether the profiles (7.1) to (7.7) are self-similar as this is a

basic property which must be addressed before embarking on the second question which
concerns the actual scalings of the x-dependent prefactors u0(x), G0i(x) (i = 1, 2, 3),
R0(x), K0(x), D0(x). If a profile is self-similar then it must be self-similar with the x-
dependent prefactor being the profile’s maximum value along r. We can therefore test
for self-similarity just by taking G0i(x) = maxr(Rii), R0(x) = maxr(Rxr), K0(x) =
maxr(K) andD0(x) = maxr(ǫ). The prefactor u0(x) is a special case as it is the maximum
value of U∞ − U(x, r) anyway, given that f(η) 6 f(0) = 1.

Streamwise mean velocity profiles are plotted in figure 14 for different streamwise
distances using the similarity scaling defined in (7.1). These profiles are clearly self-
similar for x > 10Lb, with very good agreement between the DNS and the HWA results.
The DNS data show that the self-similarity of the mean profiles is maintained in the range
x ∈ [50Lb; 100Lb] where HWA measurements are missing given that the wind tunnel test
section is half as long as the DNS domain.

The streamwise, radial and polar Reynolds stress profiles Rxx(x, r), Rrr(x, r) and
Rϕϕ(x, r) are plotted in figures 15, 16 and 17. These are normal Reynolds stresses which
do not feature in the similarity theory of George (1989) even though the first two do
feature in the similarity theory of Townsend (1976). Note the satisfactory agreement be-
tween our HWA and our DNS streamwise Reynolds stress profiles (figure 15). Differences
between HWA and DNS data can however be noted for x/Lb < 40 and η < 1. These
differences could be due to different Reynolds number values in the experiment and the
simulation. Our data do not suggest that these Reynolds stresses are self-similar except
for the polar one, Rϕϕ(x, r), which does appear self-similar for x/Lb > 20. (The stream-
wise Reynolds stress profiles obtained in the wind tunnel may, arguably, be self-similar
for, approximately, x > 30Lb while the equivalent DNS profiles may perhaps be close to
self-similar at x > 50Lb.)

The similarity theories of Townsend (1976) and George (1989) are both based on
the average momentum and turbulent kinetic energy equations. George (1989) used the
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similarity scaling with G01 = maxr(Rxx) for both the DNS and the HWA cases.
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Figure 16. Radial Reynolds stress profiles at different streamwise distances plotted using
similarity scaling with G02 = maxr Rrr for the DNS case.

momentum balance (5.3) which, in cylindrical coordinates (x, r, ϕ) becomes

U∞

∂

∂x
(U∞ − U) =

1

r

∂r 〈u′

xu
′

r〉
∂r

. (7.8)
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Figure 17. Polar Reynolds stress profiles at different streamwise distances plotted using
similarity scaling with G03 = maxr(Rϕϕ) for the DNS case.

and the turbulent kinetic energy evolution equation

U∞

∂

∂x
K = −〈u′

xu
′

r〉
∂U

∂r
+ T − ǫ (7.9)

where T and ǫ are, respectively, the transport term and the turbulence dissipation rate,
and where the production term is approximated by −〈u′

xu
′

r〉 ∂U
∂r . His theory therefore

relies on this production term approximation and on the self-similarity of the U∞ − U ,
〈u′

xu
′

r〉, K, ǫ and transport term profiles. Our DNS provides access to all these quantities
except the transport term T ≡ ∂

∂xj

(

< u′

jp
′/ρ > + 1

2 < u′2
i u

′

j > −2ν < u′

isij >
)

which

involves spatial derivatives of third order fluctuating velocity statistics and is therefore
very expensive to compute because of the large computational time required to obtain
converged statistics. (The average momentum and turbulent kinetic energy equations
used by Townsend (1976) have a couple more terms which involve the streamwise and
radial Reynolds stresses; Townsend (1976) assumed these stresses to be self-similar too.)
The self-similarity of the mean flow profile has already been established. We therefore

now consider the self-similarity of the Reynolds shear stress 〈u′

xu
′

r〉, the turbulent kinetic
energy K and the dissipation rate ǫ. We plot these profiles in figures 18a, 19a and 20a
with R0, K0 and D0 set to be the maximum values along r of 〈u′

xu
′

r〉 (x, r), K(x, r)
and ǫ(x, r), i.e. R0(x) = maxr(Rxr), K0(x) = maxr(K) and D0(x) = maxr(ǫ). These
figures rather strongly suggest that these three profiles are all self-similar, in the region
x/Lb > 10 for 〈u′

xu
′

r〉 (x, r) and ǫ(x, r) and in the region x/Lb > 20 for K(x, r).
The self-similarity of U∞−U and 〈u′

xu
′

r〉 in the region x/Lb > 10 and the validity of the
mean momentum equation in the simplified approximate form (7.8) directly imply, as is
well known (see George (1989)), that u0δ

2 = U∞θ2 and R0 = U∞u0
d
dxδ. Figure 18c shows

that our DNS supports the prediction R0 = U∞u0
d
dxδ, at least in the region x/Lb > 20.

Incidentally, Figure 18b shows that the assumption R0 ∼ u2
0 made by Tennekes & Lumley

(1972) to avoid using the energy equation (7.9) is not supported by our DNS.
The energy equation (7.9) and the self-similarities of K, U∞ − U , 〈u′

xu
′

r〉 and ǫ in
the region x/Lb > 20 imply, as is also well known (see George (1989)), that K0 ∼ u2

0

(Townsend (1976) analysis also led to this relation but with more constraining, albeit
similar, assumptions). However our DNS does not endorse this scaling, as can be seen in
figure 19b. In fact figure 19 shows that K0 scales in the same way as R0 in the region
x/Lb > 20, i.e.

K0 ∼ U∞u0
d

dx
δ. (7.10)
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Figure 18. Reynolds shear stress profiles at different streamwise distances plotted using sim-
ilarity scalings with R0 = maxr Rxr (top left), R0 ∼ u2

0 (top right) and R0 ∼ u0U∞ (dδ/dx)
(bottom) for the DNS case.

This is a relation which our higher Reynolds number HWA measurements strongly en-
dorse in the region 10 6 x/Lb 6 50 where HWA measurements were taken, see figure 21
where centreline HWA and DNS data are plotted together. The scaling (7.10) was also
observed in the HWA measurements of Nedic (2013).

The failure of K0 ∼ u2
0 points to a failure of equation (7.9) because the approximation

−〈u′

xu
′

r〉 ∂U
∂r for the production term is essential in obtaining K0 ∼ u2

0. In fact one cannot

expect the production term to equal −〈u′

xu
′

r〉 ∂U
∂r on the centreline where −〈u′

xu
′

r〉 = 0.
Indeed, as shown in figure 22, our DNS shows that the production term P is dominated
by normal stress terms on the centreline and that these normal stress terms are not
negligible at r/Lb = 0.5 either, in particular 〈u′

xu
′

x〉 ∂U
∂x which is comparable in magnitude

to −〈u′

xu
′

r〉 ∂U
∂r . We must therefore replace (7.9) by

U∞

∂

∂x
K = P + T − ǫ (7.11)

and we must not use a self-similarity ansatz for P since, as we have seen, the normal
Reynolds stresses Rxx, Rrr and Rθθ are not quite self-similar. Nevertheless the self-
similarities of K and ǫ imply that P + T must be self-similar.

Injection of the self-similar forms K(x, r) = K0h(η) and ǫ(x, r) = D0e(η) in (7.11)
yields

U∞

dK0

dx
∼ U∞K0

δ

dδ

dx
∼ D0. (7.12)



18 T. Dairay, M. Obligado and J.C. Vassilicos

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100

K
/
m
a
x
r
(K

)

η = r/δ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100K
/
u
2 0

η = r/δ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100K
/
R

0

η = r/δ

Figure 19. Turbulent kinetic energy profiles at different streamwise distances plotted using sim-
ilarity scaling with K0 = maxr(K) (top left), K0 ∼ u2

0 (top right) and K0 ∼ R0 ∼ u0U∞ (dδ/dx)
(bottom) for the DNS case.

Following Nedić et al. (2013b) we use

D0 ∼ (U∞Lb/ν)
m
(

√

K0δ/ν
)

−m

K
3/2
0 /δ (7.13)

corresponding to the non-equilibrium dissipation law (1.7)-(2.3)-(2.4) with n = m. We
limit ourselves to n = m as this is enough for the purposes of this present paper, but it
is straightforward to also consider the more general case where the exponents n and m
are not necessarily equal.

In the case where m = 1, which is also the case reported in the literature at
high enough Reynolds numbers (see Vassilicos 2015; Goto & Vassilicos 2015), D0 ∼
(U∞Lb/ν)

(√
K0δ/ν

)

−1
K

3/2
0 /δ (equation (7.13) with m = 1) and U∞K0

δ
dδ
dx ∼ D0 (equa-

tion (7.12)) lead immediately to (1.9) which, in turn, leads to (1.8) if use is made of
u0δ

2 = U∞θ2. These high Reynolds number scalings of δ(x) and u0(x) have already been
observed in the turbulent wake experiments of Nedić et al. (2013b).

However, the centreline dissipation rate D0 does not scale as DNEQ1
0 =

(U∞Lb/ν)
(√

K0δ/ν
)

−1
K

3/2
0 /δ in the range 10 6 x/Lb 6 100 but it does not scale

as DEQ
0 = K

3/2
0 /δ either in that range (see figure 20). These DNS results suggest that

when considering the full streamwise range x ∈ [10Lb; 100Lb], neither the equilibrium
dissipation law nor the non-equilibrium dissipation law (at least with n = m = 1) are
recovered in the axisymmetric turbulent wake generated by our irregular plate. To un-



Non-equilibrium scaling laws in axisymmetric turbulent wakes 19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100

ε/
m
a
x
r
(ε
)

η = r/δ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100ε/
D

E
Q

0

η = r/δ

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.5  1  1.5  2  2.5  3  3.5  4

x/Lb=10
x/Lb=20
x/Lb=30
x/Lb=40
x/Lb=50
x/Lb=60
x/Lb=70
x/Lb=80
x/Lb=90

x/Lb=100ε/
D

N
E
Q

0

η = r/δ

Figure 20. Dissipation profiles at different streamwise distances plotted using similar-

ity scaling with D0 = maxr(ε) (top left), D0 = DEQ
0

= K
3/2
0

/δ (top right) and

D0 = DNEQ1

0
= (U∞l/ν) (u0δ/ν)

−1 K
3/2
0

/δ (bottom) for the DNS case.

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 10  15  20  25  30  35  40  45  50

DNS
HWA

x/Lb

K
0
/
R

0

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  15  20  25  30  35  40  45  50

DNS
HWA

x/Lb

K
0
/
u
2 0

Figure 21. Centreline evolution of the ratio K0/R0 (left) and K0/u
2

0 (right) for both the DNS
and the HWA cases.

dersand better how the dissipation is evolving in our turbulent axisymmetric wakes, the
streamwise evolution of the dissipation is analysed in more detail in the next section.
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Figure 22. Streamwise evolution of each contribution to the turbulent kinetic energy
production term for the DNS data on the centerline (left) and at y/Lb = 0.5 and z/Lb = 0

(right).

8. Streamwise evolution of the centreline dissipation

Defining Cǫ by

ε = CεK
3/2/δ (8.1)

and evaluating it on the centreline r = 0 as a function of streamwise distance x generates
figure 23 where we plot data obtained by HWA and DNS. The first obvious qualitative
observation is that the centreline Cǫ grows with streamwise distance x even though the
local Reynolds number decreases with x (see figure 24), in clear disagreement with the
equilibrium law Cǫ = const. Both the DNS and the HWA data exhibit this behaviour.
In fact off-centreline DNS data also plotted in figure 23 show that this behaviour is not
specific to the centreline. It is also observed along streamwise r = Lb/2 and r = Lb lines.
To check if this growth with x can be represented by the non-equilibrium dissipation law
(1.7) one needs to check if it is matched by the growth of (RemG/Renl ) in the x-direction.
We therefore add a plot of (Renl /Re

m
G ) × Cε for n = m = 1 in figure 23. The HWA

data show good agreement with Cε ∼ (ReG/Re l) in the range 15 6 x/Lb 6 50 and the
DNS data are clearly closer to Cε ∼ (ReG/Re l) than to Cǫ = const in that range. The
better defined Cε ∼ (ReG/Rel) scaling in the higher Reynolds number HWA data than
in the lower Reynolds number DNS data agrees with the obervations of Goto & Vassilicos
(2015) who found that the local Taylor length-scale-based Reynolds number Reλ needs to
be higher than 100 for (Re l/ReG)×Cε to be a sufficiently well-defined constant. Indeed,
Reλ is below 100 in the DNS region 15 6 x/Lb 6 50, and again in agreement with Goto
& Vassilicos (2015), (Re l/ReG)×Cε is larger for our DNS than for our HWA data which
are characterised by Reλ values between 200 and 300.

A close look at the DNS data in figure 23 may suggest a slope change at x/Lb ≈ 55.
Downstream of x ≈ 55Lb (where Reλ is below 60), the product (Rel/ReG)×Cε appears
to be quite clearly slightly decreasing, palpably more than in the region 15 6 x/Lb 6 50
where it might be closer to a constant. While our DNS and HWA observations support
the non-equilibrium dissipation law (1.7) with n = m ≈ 1 in the region x ∈ [15Lb; 50Lb],
the DNS data suggest a change in the exponents m and n further downstream. We
elaborate on this point in the next section.

9. Wake width and velocity deficit scalings

The theoretical arguments developed at the end of section 7 for the prediction of
the wake width and the centreline velocity deficit rely on the axisymmetry and self-
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similarity of U∞−U , 〈u′

xu
′

r〉, K and ǫ and the use of the streamwise average momentum
and turbulent kinetic energy equations (7.8) and (7.11). All these have been reasonably
well verified by our DNS and our HWA measurements in the region between about
10Lb and 100Lb. However, our prediction method also relies on the dissipation scaling
and the previous section suggests two different scalings in two different regions, one for
x ∈ [15Lb; 50Lb] and one for x ∈]55Lb; 100Lb] (only accessible with our DNS). Since
our prediction method has been developed only for the dissipation scaling (7.13) with
m = 1, i.e. Cε ∼ (ReG/Re l), we now need to extend it to any value of m, i.e. to the
non-equilibrium dissipation law (1.7)-(2.3)-(2.4) for any value of n = m. Generalisation
to n 6= m is straightforward but not necessary in this work.

As already explained in section 7, our revised and modified George theory for m = 1
proceeds as follows. Self-similarity of (7.11) yields D0 ∼ U∞K0

δ
dδ
dx and use of equation

(7.13) can only provide a closed set of equations when m = 1, in which case it leads to
(1.9). In turn, the integral form u0δ

2 = U∞θ2 of (7.8) yields (1.8).
When m 6= 1 an additional relation is needed and we obtain it on the basis of an

assumption of constant anisotropy. According to this assumption, the correlation function
between the fluctuating velocity components u′

x and u′

r and the ratios of the r.m.s. values
of u′

x, u
′

r and u′

ϕ are constant on r = δ(x), the surface defining the locations of the
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maximum Reynolds shear stress, over the region considered, i.e. x ∈ [15Lb; 100Lb] in our
case. This assumption and the precise region where it holds will need to be investigated
and explained in future studies. Here we note that our DNS data support it (see figure 25)
and that it is capable to close our problem for any value of m and return predictions for
the wake width and the centreline velocity deficit which agree with numerical calculations
and experimental measurements.

The assumption of constant anisotropy implies that the turbulent kinetic energy is
proportional to the Reynolds shear stress on the surface r = δ(x), i.e. K0 ∼ R0. Given
that self-similarity of (7.9) implies R0 ∼ U∞u0

dδ
dx , it then follows that K0 ∼ U∞u0

d
dxδ,

i.e. equation (7.10) which is supported by both our DNS and our HWA measurements.
Combining (7.10) with D0 ∼ U∞K0

δ
dδ
dx (from the similarity of the turbulent kinetic energy

equation) and equation (7.13) leads to

δ(x)

θ
= B

(

x− x0

θ

)β

(9.1)

where β = (1+m)/(3+m) and B ∼ (Lb/θ)
2m

3+m . With u0δ
2 = U∞θ2 this relation implies

u0(x)

U∞

= A

(

x− x0

θ

)α

(9.2)

where α = −2β = −2(1 +m)/(3 +m) and A = B−2. Note that m = 0 yields the well-
known equilibrium scalings δ(x) ∼ (x − x0)

1/3 and u0 ∼ (x − x0)
−2/3 and that m = 1

leads to the non-equilibrium scalings δ(x) ∼ (x − x0)
1/2 and u0 ∼ (x − x0)

−1 observed
by Nedić et al. (2013b). The previous predictions (1.5) and (1.6) imply the exact same
scalings for n = m = 0 and n = m = 1.

The different dissipation scalings in the two different regions x ∈ [15Lb; 50Lb] and
x ∈]55Lb; 100Lb] suggest different wake width and velocity deficit scalings. In order to
investigate these different scalings, the growth of the wake width and the decay of the
velocity deficit are now analysed separately in these two different regions of the flow. The
following power laws are introduced for the velocity deficit and the wake width

u0(x)

U∞

= A1

(

x− x0A1

θ

)α1

(9.3)
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A1 α1 x0A1/θ B1 β1 x0B1/θ

DNS 5.76 −0.94 −2.03 0.42 0.47 −2.03
HWA 7.13 −1.03 −5.10 0.37 0.52 −5.35

Table 2. Best fits to u0/U∞ and δ/θ obtained using the power laws (9.3) and (9.4) for
x ∈ [10Lb; 50Lb] for both the DNS and HWA cases.

δ(x)

θ
= B1

(

x− x0B1

θ

)β1

(9.4)

in the range x ∈ [10Lb; 50Lb] and,

u0(x)

U∞

= A2

(

x− x0A2

θ

)α2

(9.5)

δ(x)

θ
= B2

(

x− x0B2

θ

)β2

(9.6)

in the range x ∈]55Lb; 100Lb]. The exponents α1, β1 and α2, β2 are a priori different, A1,
B1, A2, B2 are dimensionless constants and x0A1, x0B1, x0A2 and x0B2 are virtual origins.
It must be pointed out that our revised George theory also enforces x0A1 = x0B1 and
x0A2 = x0B2 as in the previous theories of Tennekes & Lumley (1972), Townsend (1976)
and George (1989). The DNS and HWA data are fitted with the relations (9.3) and (9.4)
in the region x ∈ [10Lb; 50Lb] and the DNS data are also fitted with the relations (9.5)
and (9.6) in the further downstream region x ∈]55Lb; 100Lb]. Our fitting method is an
improvement on the one used by Nedić et al. (2013b) and returns approximately equal
values of the two virtual origins, i.e. x0A ≈ x0B , as should indeed be the case. The fitting

method starts with linear fits of (u0/U∞)
1/α

and (δ/θ)
1/β

versus x for several values of
α and β respectively. The values of α and β giving the best linear regression coefficients
(closest to 1) are retained and used to calculate A, B and the two virtual origins.

The best fit values for the range x = 10Lb to x = 50Lb are reported in table 2 for both
the DNS and HWA cases. The exponents are very close to the non-equilibrium scaling
values α = −1 and β = 1/2 predicted by our theory for m = 1. The virtual origins turn
out to be identical, i.e. x0A1 = x0B1, in the DNS case and very close to each other in the
HWA case. Interestingly, the DNS and the HWA measurements return comparable values
of the non-dimensional constants A1 and B1 even though the global Reynolds number
is 8 times larger in the wind tunnel experiment than in the DNS. Moreover, both the
experimental and the numerical data return values of A1 and B1 which obey A1 ≈ B−2

1

in agreement with the theory.

In figures 26 and 27 we plot (u0/U∞)
1/α1 and (δ/θ)

1/β1 versus x/θ using the exponents
given in table 2 on the left plots and the equilibrium exponents α1 = −2/3 and β1 = 1/3
on the right plots. It is clear from these plots that α1 and β1 take values which are very
close to the non-equilibrium exponents −1 and 1/2 respectively. These non-equilibrium
exponents are predicted by our revised George theory for m = 1. They are therefore
consistent with, and presumably a consequence of, the non-equilibrium dissipation law
(1.7)-(2.3)-(2.4)-m = 1 which seems to fit the dissipation data in figure 23 (right) in the
region x ∈ [15Lb; 50Lb].
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DNS and HWA cases.

We now focus on the region x ∈]55Lb; 100Lb] where the dissipation scaling is neither
the classical equilibrium one nor (1.7)-(2.3)-(2.4) with m = 1. This far downstream range
is accessible with our DNS but not in our wind tunnel experiments and we use 689 DNS
data points along the streamwise direction to fit the x-dependence of the velocity deficit
and the wake width in the range x = 57Lb to x = 100Lb. The position x = 57Lb is
the closest to x = 55Lb for which the virtual origins x0A2 and x0B2 obtained by our
fitting procedure are the same. The best fit values are reported in table 3. In agreement
with the observation that the new dissipation law (1.7) taken with m = 1 does not hold
downstream of x = 55Lb (see figure 23 right), the values of the exponents α2 and β2 are
respectively higher and lower than the values predicted when setting m = 1 in (9.2) and
(9.1). Note that the values of the constants A2 and B2 are in very good agreement with
the theory as B−2

2 = 2.87 in perfect agreement with A2 ≈ B−2
2 .

The fairly abrupt changes in power laws are manifest in figure 28 where (u0/U∞)
1/α1

and (δ/θ)
1/β1 are plotted versus x/θ in the entire range x ∈ [10Lb; 100Lb]. The well-

defined linear relationships already seen in figures 26 and 27 are of course found again
between x = 10Lb to x = 55Lb but a clearly different evolution is observed for x > 55Lb.

The question arises whether the exponents α2 and β2 can be explained by our new
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A2 α2 x0A2/θ B2 β2 x0B2/θ

2.87 −0.81 4.11 0.59 0.41 4.11

Table 3. Best fits to u0/U∞ and δ/θ obtained using the power laws (9.5) and (9.6) for
x ∈ [57Lb; 100Lb] for the DNS case.
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Figure 28. (u0/U∞)1/α1 (left) and (δ/θ)1/β1 (right) versus x/θ for x ∈ [10Lb; 100Lb] for the
DNS case. The black vertical line corresponds to x = 55Lb. The experimental data are reminded
for illustation purpose for x ∈ [10Lb; 50Lb].

predictions (9.2) and (9.1) where α = −2β = −2(1 +m)/(3 +m). In other words, could
the wake laws observed in the range x ∈]57Lb; 100Lb] be accountable to a dissipation
law Cǫ ∼ (RemG/Reml )? The value of m which corresponds to our observed α2 = −0.81
is m = 0.36, but very small uncertainties in α give rise to high uncertainties in m at
such values of m. For example, a 40% variation in m above m = 0.36 causes a jump
of only 5% in α. The quantity (Reml /RemG ) × Cε exhibits a clear plateau in the range
x ∈]55Lb; 100Lb] for m = 0.5 (see figure 29 and compare it with the right plot in figure
23) but not for m = 0.36. However, for m = 0.5, −2(1 +m)/(3 +m) = −0.86 which is
quite close to our observed α2 = −0.81 and we can therefore assume that the dissipation

scaling in the range x ∈]55Lb; 100Lb] is in fact Cǫ ∼
(

Re
1/2
G /Re

1/2
l

)

. This result suggests

that the new dissipation law (1.7) still holds in the region x ∈]55Lb; 100Lb] but with
m ≈ 0.5 instead of m ≈ 1. This is confirmed by the good collapse of the dissipation

profiles in this region when D0 is taken to be DNEQ2
0 ∼ (U∞l/ν)

1/2
(u0δ/ν)

−1/2
K

3/2
0 /δ

(see right plot in figure 30).

In the region x ∈ [10Lb; 50Lb], where the velocity deficit and wake width scalings might
suggest m = 1, our DNS does not return a clear collapse of the dissipation profiles when

D0 is taken to be DNEQ1
0 ∼ (U∞l/ν)

1.0
(u0δ/ν)

−1.0
K

3/2
0 /δ (i.e. m = 1). However, the

DNS value of α1 is not −1 but −0.94 in this region (see table 2) which corresponds

to m = 0.77 by virtue of α = −2(1 + m)/(3 + m). If D0 is taken to be DNEQ1
0 ∼

(U∞l/ν)
0.77

(u0δ/ν)
−0.77

K
3/2
0 /δ (i.e. m = 0.77) then a good collapse of the dissipation

profiles is obtained in the range x ∈ [30Lb; 50Lb] (see left plot in figure 30).
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DNS data.

10. Summary of results

DNS and HWA measurements of a turbulent wake generated by an irregular plate
have been carried out in a flow configuration comparable to the experiments of Nedić
et al. (2013b). The study focused on the assessment of the theoretical assumptions and
predictions for the scaling laws of the wake’s width and the centreline velocity deficit along
the streamwise direction of the flow. A central goal has been to check the consistency of
the turbulence dissipation law in the wake with the wake scalings.
Our DNS shows that the isotropic surrogate ǫiso of the turbulent dissipation is a good

approximation of the turbulent dissipation in the region x > 10Lb. It also shows that the
approximate streamwise mean momentum equation (5.3) is a good approximation of the
mean momentum balance.

The mean velocity, Reynolds shear stress, turbulent kinetic energy and dissipation
profiles have been found to become axisymmetric for x > 10Lb. The mean velocity and
the turbulence dissipation profiles are self-similar in the region x > 10Lb whereas the
Reynolds shear stresses and turbulent kinetic energy profiles are self-similar in the region
x > 20Lb. At least two of the three normal Reynols stress profiles are not self-similar
in the streamwise region covered by our study, implying that the turbulence production
term is not self-similar either.
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Our DNS and HWA data show that the turbulent kinetic energy and the Reynolds
shear stress scale together and do not scale as u2

0. This observation has led us to introduce
the assumption of constant anisotropy which implies that K0 ∼ R0. This assumption and
the non-equilibrium dissipation law need to be invoked to predict wake width and ve-
locity deficit scalings except when m = 1 in which case the non-equilibrium dissipation
law is enough. This approach leads to a revised George (1989) theory which yields pre-
dictions for the wake width and velocity deficit scalings in agreement with our DNS and
HWA data. In particular, in the DNS region x ∈ [10Lb; 50Lb], m ≈ 0.77 and α ≈ 0.94
in agreement with our formula α = −2(1 +m)/(3 +m) which relates the exponents in
equations (9.2) and Cǫ ∼ RemG/Reml . And in the DNS region x ∈]55Lb; 100Lb], m ≈ 0.5
and α ≈ 0.86 again in agreement with α = −2(1 +m)/(3 +m). As the local Reynolds
number drops with downstream distance, one expects non-equilibrium dissipation scal-
ings to eventually transition to the classical dissipation scaling (see Vassilicos 2015; Goto
& Vassilicos 2015) at much further downstream distances.
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Lamballais, E., Fortuné, V. & Laizet, S. 2011 Straightforward high-order numerical dis-
sipation via the viscous term for direct and large eddy simulation. J. Comp. Phys. 230,
3270–3275.

Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comp.
Phys. 103, 16–42.

Nedic, J. 2013 Fractal-generated wakes. PhD thesis, Imperial College London.
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