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Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability
to reason about rounding is especially important if one wants to explore a range of potential representations,
for instance for FPGAs or custom hardware implementations. This problem becomes challenging when
the program does not employ solely linear operations as non-linearities are inherent to many interesting
computational problems in real-world applications.

Existing solutions to reasoning possibly lead to either inaccurate bounds or high analysis time in the
presence of nonlinear correlations between variables. Furthermore, while it is easy to implement a straight-
forward method such as interval arithmetic, sophisticated techniques are less straightforward to implement
in a formal setting. Thus there is a need for methods which output certificates that can be formally validated
inside a proof assistant.

We present a framework to provide upper bounds on absolute roundoff errors of floating-point nonlinear
programs. This framework is based on optimization techniques employing semidefinite programming and
sums of squares certificates, which can be checked inside the Coq theorem prover to provide formal roundoff
error bounds for polynomial programs. Our tool covers a wide range of nonlinear programs, including
polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency
and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our
tool produces more accurate error bounds for 23 % of all programs and yields better performance in 66 %
of all programs.
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1. INTRODUCTION
Constructing numerical programs which perform accurate computation turns out to be dif-
ficult, due to finite numerical precision of implementations such as floating-point or fixed-
point representations. Finite-precision numbers induce roundoff errors, and knowledge of
the range of these roundoff errors is required to fulfill safety criteria of critical programs, as
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typically arising in modern embedded systems such as aircraft controllers. Such a knowledge
can be used in general for developing accurate numerical software, but is also particularly
relevant when considering migration of algorithms onto hardware (e.g. FPGAs). The ad-
vantage of architectures based on FPGAs is that they allow more flexible choices, rather
than choosing either for IEEE standard single or double precision. Indeed, in this case, we
benefit from a more flexible number representation while still ensuring guaranteed bounds
on the program output.
To obtain lower bounds on roundoff errors, one can rely on testing approaches, such as

meta-heuristic search [Borges et al. 2012] or under-approximation tools (e.g. s3fp [Chi-
ang et al. 2014]). Here, we are interested in efficiently handling the complementary over-
approximation problem, namely to obtain precise upper bounds on the error. This problem
boils down to finding tight abstractions of linearities or non-linearities while being able
to bound the resulting approximations in an efficient way. For computer programs con-
sisting of linear operations, automatic error analysis can be obtained with well-studied
optimization techniques based on SAT/SMT solvers [Haller et al. 2012] and affine arith-
metic [Delmas et al. 2009]. However, non-linear operations are key to many interesting
computational problems arising in physics, biology, controller implementations and global
optimization. Recently, two promising frameworks have been designed to provide upper
bounds for roundoff errors of nonlinear programs. The corresponding algorithms rely on
Taylor-interval methods [Solovyev et al. 2015], implemented in the FPTaylor tool, and on
combining SMT with interval arithmetic [Darulova and Kuncak 2014], implemented in the
Rosa real compiler.
The complexity of the mathematics underlying techniques for nonlinear reasoning, and

the intricacies associated with constructing an efficient implementation, are such that a
means for independent formal validation of results is particularly desirable. The Rosa tool is
based on theoretical results that should provide sound over-approximations of error bounds.
While Rosa relies on an SMT solver capable of generating unsatisfiability proof witnesses
(thus allowing independent soundness checking), it does not verify formally these certificates
inside a proof assistant. To the best of our knowledge, the FPTaylor and Gappa software
are the only academic tool which can produce formal proof certificates. For FPTaylor,
this is based on the framework developed in [Solovyev and Hales 2013] to verify nonlinear
inequalities in Hol-light [Harrison 1996] using Taylor-interval methods. However, most of
computation performed in the informal optimization procedure ends up being redone inside
the Hol-light proof assistant, yielding a formal verification which may be computationally
demanding.
The aim of this work is to provide a formal framework to perform automated precision

analysis of computer programs that manipulate finite-precision data using nonlinear opera-
tors. For such programs, guarantees can be provided with certified programming techniques.
Semidefinite programming (SDP) is relevant to a wide range of mathematical fields, includ-
ing combinatorial optimization, control theory and matrix completion. In 2001, Lasserre
introduced a hierarchy of SDP relaxations [Lasserre 2001] for approximating polynomial in-
fima. Our method to bound the error is a decision procedure based on a specialized variant of
the Lasserre hierarchy [Lasserre 2006]. The procedure relies on SDP to provide sparse sum-
of-squares decompositions of nonnegative polynomials. Our framework handles polynomial
program analysis (involving the operations +,×,−) as well as extensions to the more general
class of semialgebraic and transcendental programs (involving √,/,min,max, arctan, exp),
following the approximation scheme described in [Magron et al. 2015a].
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1.1. Overview of our Method
We present an overview of our method and of the capabilities of related techniques, using
an example. Consider a program implementing the following polynomial expression f :

f(x) := x2 × x5 + x3 × x6 − x2 × x3 − x5 × x6

+x1 × (−x1 + x2 + x3 − x4 + x5 + x6) ,

where the six-variable vector x := (x1, x2, x3, x4, x5, x6) is the input of the program. For
this example, assume that the set X of possible input values is a product of closed intervals:
X = [4.00, 6.36]6. This function f together with the set X appear in many inequalities
arising from the the proof of the Kepler Conjecture [Hales 2006], yielding challenging global
optimization problems.
The polynomial expression f is obtained by performing 15 basic operations (1 negation,

3 subtractions, 6 additions and 5 multiplications). When executing this program with a set
of floating-point numbers x̂ := (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) ∈ X, one actually computes a floating-
point result f̂ , where all operations +,−,× are replaced by the respectively associated
floating-point operations ⊕,	,⊗. The results of these operations comply with IEEE 754
standard arithmetic [IEEE 2008] (see relevant background in Section 2.1). Here, for the sake
of clarity, we do not consider real input variables but we do it later on while performing
detailed comparison (see Section 4). For instance, (in the absence of underflow) one can
write x̂2⊗ x̂5 = (x2×x5)(1+e1), by introducing an error variable e1 such that −ε ≤ e1 ≤ ε,
where the bound ε is the machine precision (e.g. ε = 2−24 for single precision). One would
like to bound the absolute roundoff error |r(x, e)| := |f̂(x, e)− f(x)| over all possible input
variables x ∈ X and error variables e1, . . . , e15 ∈ [−ε, ε]. Let us define E := [−ε, ε]15 and
K := X×E. Then our bound problem can be cast as finding the maximum r? of | r | over
K, yielding the following nonlinear optimization problem:

r? := max
(x,e)∈K

|r(x, e)|

= max{− min
(x,e)∈K

r(x, e), max
(x,e)∈K

r(x, e)} ,
(1)

One can directly try to solve these two polynomial optimization problems using classical
SDP relaxations [Lasserre 2001]. As in [Solovyev et al. 2015], one can also decompose the
error term r as the sum of a term l(x, e), which is affine w.r.t. e, and a nonlinear term
h(x, e) := r(x, e)− l(x, e). Then the triangular inequality yields:

r? ≤ max
(x,e)∈K

|l(x, e)|+ max
(x,e)∈K

|h(x, e)| . (2)

It follows for this example that l(x, e) = x2x5e1 +x3x6e2 +(x2x5 +x3x6)e3 + · · ·+f(x)e15 =∑15
i=1 si(x)ei, with s1(x) := x2x5, s2(x) := x3x6, . . . , s15(x) := f(x). The Symbolic Taylor

expansions method [Solovyev et al. 2015] consists of using a simple branch and bound
algorithm based on interval arithmetic to compute a rigorous interval enclosure of each
polynomial si, i = 1, . . . , 15, over X and finally obtain an upper bound of |l|+ |h| over K.
In contrast, our method uses sparse semidefinite relaxations for polynomial optimization
(derived from [Lasserre 2006]) to bound l and basic interval arithmetic as in [Solovyev et al.
2015] to bound |h| (i.e. we use interval arithmetic to bound second-order error terms in the
multivariate Taylor expansion of r w.r.t. e).
The following comparison results have been obtained on an Intel Core i7-5600U CPU

(2.60GHz). All execution times have been computed by averaging over five runs.
— A direct attempt to solve the two polynomial problems occurring in Equation (1) fails

as the SDP solver (in our case Sdpa [Yamashita et al. 2010]) runs out of memory.
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— Using our method implemented in the Real2Float tool, one obtains an upper bound of
760ε for |l|+|h| over K in 0.15 seconds. This bound is provided together with a certificate
which can be formally checked inside the Coq proof assistant in 0.20 seconds.

— After normalizing the polynomial expression and using basic interval arithmetic, one
obtains 8 times more quickly a coarser bound of 922ε.

— Symbolic Taylor expansions implemented in FPTaylor [Solovyev et al. 2015] provide a
more precise bound of 721ε but 28 times slower than with our implementation. Formal
verification of this bound inside the Hol-light proof assistant takes 27.7 seconds and
is 139 times slower than proof checking with Real2Float inside Coq. One can obtain
an even more precise bound of 528ε (but 37 times slower than with our implementation)
by turning on the improved rounding model of FPTaylor and bound the number of
branch and bound iterations with 10000. The drawback of this bound is that it cannot
be formally verified.

— Finally, a sligthly coarser bound of 762ε is obtained with the Rosa real compiler [Darulova
and Kuncak 2014] but 19 times slower than with our implementation and we cannot get
formal verification of this bound.

1.2. Related Works
SMT solvers allow to analyze programs with various semantics or specifications but are
limited for the manipulation of problems involving nonlinear arithmetic. Several solvers,
including Z3 [De Moura and Bjørner 2008], provide partial support for the IEEE floating-
point standard [Rümmer and Wahl 2010]. They suffer from a lack of scalability when used
for roundoff error analysis in isolation (as emphasized in [Darulova and Kuncak 2014]),
but can be integrated into existing frameworks, e.g. FPhile [Paganelli and Ahrendt 2013].
The procedure in [Gao et al. 2013] can solve SMT problems over the real numbers, using
interval constraint propagation but has not yet been applied to quantification of roundoff
error. The Rosa tool [Darulova and Kuncak 2014] provides a way to compile functional
Scala programs involving semialgebraic functions and conditional statements. The tool
uses affine arithmetic to provide sound over-approximations of roundoff errors, allowing for
generation of finite precision implementations which fulfill the required precision given as
input by the user. This tool thus relies on abstract interpration but bounds of the affine
expressions are provided through an optimization procedure based on SMT. In our case,
we use the same rounding model but provide approximations which are affine w.r.t. the
additional error variables and nonlinear w.r.t. the input variables. Instead of using SMT,
we bound the resulting expressions with optimization techniques based on semidefinite
programming. Abstract interpretation [Cousot and Cousot 1977] has been extensively used
in the context of static analysis to provide sound over-approximations, called abstractions,
of the sets of values taken by program variables. The effects of variable assignments, guards
and conditional branching statements are handled with several domain specific operators
(e.g. inclusion, meet and join). Well studied abstract domains include intervals [Moore 1962]
as well as more complicated frameworks based on affine arithmetic [Stolfi and de Figueiredo
2003], octogons [Miné 2006], zonotopes [Ghorbal et al. 2010], polyhedra [Chen et al. 2008],
interval polyhedra [Chen et al. 2009], some of them being implemented inside a tool called
Apron [Jeannet and Miné 2009]. Abstract domains provide sound over-approximations of
program expressions, and allow upper bounds on roundoff error to be computed. The Gappa
tool [Daumas and Melquiond 2010] relies on interval abstract domains with an extension to
affine domains [Linderman et al. 2010], to reason about roundoff errors. As demonstrated
in [Solovyev et al. 2015], the bounds obtained inside Gappa are often coarser than other
methods. Formal guarantees can be provided as Gappa benefits from an interface with
Coq while making use of interval libraries [Melquiond 2012] relying on formalized floating-
points [Boldo and Melquiond 2011]. The static analysis commercial tool Fluctuat (with a
free academic version) relies on affine abstract domains [Blanchet et al. 2003] and techniques
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Table I. Comparison of roundoff error tools w.r.t. expressiveness.
Feature Real2Float Rosa FPTaylor Gappa Fluctuat
Basic FP operations/formats

√ √ √ √ √

Special values (±∞, NaN)
√

Improved rounding model
√ √ √

Input uncertainties
√ √ √ √ √

Transcendental functions
√ √

Discontinuity errors
√ √ √

Proof certificates
√ √ √

which are very similar to the ones in Rosa, including interval subdivision. This tool does
not perform optimization but uses forward computation to analyze floating-point programs
written in C. Furthermore, Fluctuat also has a procedure for discontinuity errors [Ghorbal
et al. 2010]. Gappa and Fluctuat tools use a different rounding model (also available as
an option inside FPTaylor) based on a piecewise constant absolute error bound. This is
more precise than the simple rounding model used in our framework but requires (possibly)
extensive use of a branch and bound algorithm as each interval has to be subdivided in
intervals [2n, 2n+1] for several values of the integer n. In [Solovyev et al. 2015], the authors
provide a table (Table 1) comparing relevant features of FPTaylor with three other tools
(Rosa, Gappa and Fluctuat) performing roundoff error estimation. In a similar fashion,
we summarize the main features related to our tool Real2Float and the same four above-
mentioned tools used for our further benchmark comparisons w.r.t. their expressiveness in
Table I.
Computing sound bounds of nonlinear expressions is mandatory to perform formal analy-

sis of finite precision implementations and can be performed with various optimization tools.
In the polynomial case, alternative approaches to semidefinite relaxations are based on de-
composition in the multivariate Bernstein basis. Formal verification of bounds obtained with
this decomposition has been investigated by Munõz and Narkawicz [Muñoz and Narkawicz
2013] in the PVS theorem prover. We are not aware of any work based on these techniques
which can quantify roundoff errors. Another decomposition of nonnegative polynomials into
SOS certificates consists in using the Krivine [Krivine 1964]-Handelman [Handelman 1988]
representation and boils down to solving linear programming (LP) relaxations. In our case,
we use a different representation, leading to solve SDP relaxations. The Krivine-Handelman
representation has been used in [Boland and Constantinides 2010] to compute roundoff er-
ror bounds. LP relaxations often provide coarser bounds than SDP relaxations and it has
been proven in [Lasserre 2009] that generically finite convergence does not occur for convex
problems, at the exception of the linear case. The work in [Roux 2015] focuses on formal-
ization of roundoff errors bounds related to positive definiteness verification. Branch and
bound methods with Taylor models [Berz and Makino 2009] are not restricted to polynomial
systems and have been formalized [Solovyev and Hales 2013] to solve nonlinear inequalities
occurring in the proof of Kepler Conjecture. Symbolic Taylor Expansions [Solovyev et al.
2015] have been implemented in the FPTaylor tool to compute formal bounds of roundoff
errors for programs involving both polynomial and transcendental functions.

1.3. Contributions
Our key contributions can be summarized as follows:
— We present an optimization algorithm providing sound over-approximations for roundoff

errors of floating-point nonlinear programs. This algorithm is based on sparse sums of
squares programming [Lasserre 2006]. In comparison with other methods, our algorithm
allows us to obtain tighter upper bounds, while overcoming scalability and numerical is-
sues inherent in SDP solvers [Todd 2001]. Our algorithm can currently handle programs
implementing polynomial functions, but also involving non-polynomial components, in-
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cluding either semialgebraic or transcendental operations (e.g. /,√, arctan, exp), as well
as conditional statements. Programs containing iterative or while loops are not currently
supported.

— Our framework is fully implemented in the Real2Float tool. Among several features, the
tool can optionally perform formal verification of roundoff error bounds for polynomial
programs, inside the Coq proof assistant [Coq 2016]. The most recent software release of
Real2Float provides OCaml [OCaml 2015] and Coq libraries and is freely available1.
Our implementation tool is built on top of the NLCertify verification system [Magron
2014]. Precision and efficiency of the tool are evaluated on several benchmarks coming
from the existing literature. Numerical experiments demonstrate that our method com-
petes well with recent approaches relying on Taylor-interval approximations [Solovyev
et al. 2015] or combining SMT solvers with affine arithmetic [Darulova and Kuncak
2014]. We also compared our tool with Gappa [Daumas and Melquiond 2010] and Fluc-
tuat [Delmas et al. 2009].

The paper is organized as follows. In Section 2, we present mandatory background on
roundoff errors due to finite precision arithmetic before describing our nonlinear program
semantics (Section 2.1). Then we recall how to perform certified polynomial optimization
based on semidefinite programming (Section 2.2) and how to obtain formal bounds while
checking the certificates inside the Coq proof assistant (Section 2.3). Section 3 contains
the main contribution of the paper, namely how to compute tight over-approximations for
roundoff errors of nonlinear programs with sparse semidefinite relaxations. Finally, Section 4
is devoted to the evaluation of our nonlinear verification tool Real2Float on benchmarks
arising from control systems, optimization, physics and biology, as well as comparisons with
the tools FPTaylor, Rosa, Gappa and Fluctuat.

2. PRELIMINARIES
2.1. Program Semantics and Floating-point Numbers
We support conditional code without procedure calls or loops. Despite these restrictions, we
can consider a wide range of nonlinear programs while assuming that important numerical
calculations can be expressed in a loop-free manner. Our programs are encoded in an ML-
like language:
let box_prog x1 . . . xn = [(a1, b1); . . . ; (an, bn)];;
let obj_prog x1 . . . xn = [(f(x), εReal2Float)];;
let cstr_prog x1 . . . xn = [g1(x); . . . ; gk(x)];;
let uncert_prog x1 . . . xn = [u1; . . . ;un];;

Here, the first line encodes interval floating-point bound constraints for input variables,
namely x := (x1, . . . , xn) ∈ [a1, b1] × · · · × [an, bn]. The second line provides the function
f(x) as well as the total roundoff error bound εReal2Float. Then, one encodes polynomial
nonnegativity constraints over the input variables, namely g1(x) ≥ 0, . . . , gk(x) ≥ 0. Fi-
nally, the last line allows the user to specify a numerical constant ui to associate a given
uncertainty to the variable xi, for each i = 1, . . . , n.
The type of numerical constants is denoted by C. In our current implementation, the

user can choose either 64 bit floating-point or arbitrary-size rational numbers. This type
C is used for the terms εReal2Float, u1, . . . , un, a1, . . . , an, b1, . . . , bn. The inductive type of
polynomial expressions with coefficients in C is pExprC defined as follows:
type pexprC = Pc of C | Px of positive
| Psub of pexprC * pexprC | Pneg of pexprC
| Padd of pexprC * pexprC

1forge.ocamlcore.org/frs/?group_id=351
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| Pmul of pexprC * pexprC

The constructor Px takes a positive integer as argument to represent either an input or local
variable. The inductive type nlexpr of nonlinear expressions (such as f(x)) is defined as
follows:

type nlexpr =
| Pol of pexprC | Neg of nlexpr
| Add of nlexpr * nlexpr
| Mul of nlexpr * nlexpr
| Sub of nlexpr * nlexpr
| Div of nlexpr * nlexpr | Sqrt of nlexpr
| Transc of transc * nlexpr
| IfThenElse of pexprC * nlexpr * nlexpr
| Let of positive * nlexpr * nlexpr

The type transc corresponds to the dictionary D of special functions. In our case D :=
{exp, log, cos, sin, tan, arccos, arcsin, arctan}. For instance, the term Transc (exp, f(x))
represents the program implementing exp(f(x)).
Given a polynomial expression p and two nonlinear expressions f and g, the term

IfThenElse(p(x), f(x), g(x)) represents the conditional program implementing2 if (
p(x) ≥ 0) f(x) else g(x). The constructor Let allows us to define local variables in an ML
fashion, e.g. let t1 = 331.4 + 0.6 ∗ T in −t1 ∗ v/((t1 + u) ∗ (t1 + u)) (part of the doppler1
program considered in Section 4).
Finally, one obtains rounded nonlinear expressions using a recursive procedure round,

defined according to Equation (3) and Equation (4). Rounded expressions are supported
inside conditions. When an uncertainty ui is specified for an input variable xi, the corre-
sponding rounded expression is given by xi (1 + e), with | e | ≤ ui, the uncertainty ui being
a relative error.
We adopt the standard practice [Higham 2002] to approximate a real number x with its

closest floating-point representation x̂ = x(1+e), with |e| is less than the machine precision
ε. In the sequel, we neglect both overflow and denormal range values. The operator ·̂ is called
the rounding operator and can be selected among rounding to nearest, rounding toward zero
(resp. ±∞). In the sequel, we assume rounding to nearest. The scientific notation of a binary
(resp. decimal) floating-point number x̂ is a triple (s, sig, exp) consisting of a sign bit s, a
significand sig ∈ [1, 2) (resp. [1, 10)) and an exponent exp, yielding numerical evaluation
(−1)s sig 2exp (resp. (−1)s sig 10exp).
The value of ε actually gives the upper bound on the relative floating-point error and is

equal to 2−prec, where prec is called the precision, referring to the number of significand bits
used. For single precision floating-point, one has prec = 24. For double (resp. quadruple)
precision, one has prec = 53 (resp. prec = 113). Let R denote the set of real numbers and F
the set of binary floating-point numbers. For each real-valued operation bopR ∈ {+,−,×, /
}, the result of the corresponding floating-point operation bopF ∈ {⊕,	,⊗,�} satisfies
the following when complying with IEEE 754 standard arithmetic [IEEE 2008] (without
overflow, underflow and denormal occurrences):

bopF (x̂, ŷ) = bopR (x̂, ŷ) (1 + e) , | e |≤ ε = 2−prec . (3)

Other operations include special functions taken from a dictionary D, containing the unary
functions tan, arctan, cos, arccos, sin, arcsin, exp, log, (·)r with r ∈ R \ {0}. For fR ∈ D,

2Our general framework could theoretically handle nested if statements. However, our current implementa-
tion is limited to programs involving single conditional statements at the code toplevel
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the corresponding floating-point evaluation satisfies

fF(x̂) = fR(x̂)(1 + e) , | e |≤ ε(fR) . (4)

The value of the relative error bound ε(fR) differs from the machine precision ε in Equa-
tion (3) and has to be properly adjusted on a per-operator basis. We refer the interested
reader to [Bingham and Leslie-Hurd 2014] for relative error bound verification of transcen-
dental functions (see also [Harrison 2000] for formalization in Hol-light).

2.2. SDP relaxations for polynomial optimization
The sums of squares method involves approximation of polynomial inequality constraints
by sums of squares (SOS) equality constraints. Here we recall mandatory background about
SOS. We apply this method in Section 3 to solve the problems of Equation (1) when the
nonlinear function r is a polynomial. In the sequel, let us denote by n the number of initial
variables of the polynomial optimization problem and by k the number of optimization
constraints.

2.2.1. Sums of squares certificates and SDP. First we recall basic facts about generation of
SOS certificates for polynomial optimization, using semidefinite programming, which can
be found in texts such as [Lasserre 2001]. Denote by R[x] the vector space of polynomials
and by R2d[x] the restriction of R[x] to polynomials of degree at most 2d. Let us define the
set of SOS polynomials:

Σ[x] :=
{∑

i

q2
i , with qi ∈ R[x]

}
, (5)

as well as its restriction Σ2d[x] := Σ[x]
⋂
R2d[x] to polynomials of degree at most 2d. For

instance, the following bivariate polynomial σ(x) := 1 + (x2
1 − x2

2)2 lies in Σ4[x] ⊆ R4[x].
Optimization methods based on SOS use the implication r ∈ Σ[x] =⇒ ∀x ∈ Rn, r(x) ≥

0, i.e. the inclusion of Σ[x] in the set of nonnegative polynomials.
The underlying reason for using SOS polynomials is that optimizing over positive polyno-
mials is NP Hard [Laurent 2009]. Thus, one would like to replace such positivity constraints
by more tractable ones, and in particular the SOS decompositions admitted by positive
polynomials provide a suitable alternative: when fixing the degree of such decompositions,
the resulting relaxed problem becomes more tractable.
Given r ∈ R[x], one considers the following polynomial minimization problem:

r∗ := inf
x∈Rn

{ r(x) : x ∈ K } , (6)

where the set of constraints K ⊆ Rn is defined by

K := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0} ,

for polynomial functions g1, . . . , gk. The set K is called a basic semialgebraic set. Member-
ship of semialgebraic sets is ensured by satisfying conjunctions of polynomial nonnegativity
constraints.

Remark 2.1. When the input variables satisfy interval constraints x ∈ [a1, b1] ×
· · · × [an, bn] then one can easily show that there exists some integer M > 0 such that
M −

∑n
i=1 x

2
i ≥ 0. In the sequel, we assume that this nonnegativity constraint appears

explicitly in the definition of K. Such an assumption is mandatory to prove the convergence
of semidefinite relaxations recalled in Theorem 2.3.

In general, the objective function r and the set of constraints K can be nonconvex, which
makes Problem (6) difficult to solve in practice. One can rewrite Problem (6) as the equiv-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:9

alent maximization problem:

r∗ := sup
µ∈R
{µ : r(x)− µ ≥ 0 , ∀x ∈ K } . (7)

Now we outline how to handle the nonnegativity constraint r−µ ≥ 0. Given a nonnegative
polynomial p ∈ R[x], the existence of an SOS decomposition p =

∑
i q

2
i valid over Rn, is

equivalent to the existence of a symmetric real matrix Q, a solution of the following linear
matrix feasibility problem:

r(x) = md(x)ᵀ Q md(x) , ∀x ∈ Rn, (8)

where md(x) := (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n) and the matrix Q has only nonnegative

eigenvalues. Such a matrix Q is called positive semidefinite. The vector md (resp. matrix
Q) has a size (resp. dimension) equal to sdn :=

(
n+d
d

)
. Problem (8) can be handled with

semidefinite programming (SDP) solvers, such as Mosek [Andersen and Andersen 2000] or
SDPA [Yamashita et al. 2010] (see [Vandenberghe and Boyd 1994] for specific background
about SDP). Then, one computes the “LDL” decomposition Q = LᵀDL (a variant of
the classical Cholesky decomposition), where L is a lower triangular matrix and D is a
diagonal matrix. Finally, one obtains r(x) = (L md(x))ᵀ D (L md(x)) =

∑sd
n
i=0 qi(x)2. Such

a decomposition is called a sums of squares (SOS) certificate.

Example 2.2. Let us define r(x) := 1
4 + x4

1 − 2x2
1x

2
2 + x4

2. With m2(x) =
(1, x1, x2, x

2
1, x1x2, x

2
2), one solves the linear matrix feasibility problem r(x) =

m2(x)ᵀ Q m2(x). One can show that the solution writes Q = LᵀDL for a 6 × 6 matrix
L and a diagonal matrix D with entries ( 1

2 , 0, 0, 1, 0, 0), yielding the SOS decomposition:
r(x) = ( 1

2 )2 + (x2
1 − x2

2)2. This is enough to prove that p is nonnegative.

2.2.2. Dense SDP relaxations for polynomial optimization. In order to solve our goal problem
(Problem (1)), we are trying to solve Problem (6), recast as Problem (7). We first explain
how to obtain tractable approximations of this difficult problem. Define g0 := 1. The hier-
archy of SDP relaxations developed by Lasserre [Lasserre 2001] provides lower bounds of
r∗, through solving the optimization problems (Pd):

(Pd) :



p?d := sup
σj ,µ

µ ,

s.t. r(x)− µ =
∑k
j=0 σj(x)gj(x) ,∀x ,

µ ∈ R , σj ∈ Σ[x] , j = 0, . . . , k ,

deg(σjgj) ≤ 2d, j = 0, . . . , k .

One can solve (Pd) with SDP optimization to find a tuple (µ, σ0, . . . , σk) which allows to
prove that g1(x) ≥ 0 ∧ · · · ∧ gk(x) ≥ 0 =⇒ r(x)− µ ≥ 0.
The next theorem is a consequence of the assumption mentioned in Remark 2.1.

Theorem 2.3 (Lasserre [Lasserre 2001]). Let p?d be the optimal value of the SDP
relaxation (Pd). Then, the sequence of optimal values (p?d)d∈N is nondecreasing and con-
verges to r?.

The number of SDP variables (i.e. the number of variables of the semidefinite relax-
ation (Pd)) grows polynomially with the integer d, called the relaxation order. Indeed,
at fixed number of variables n, the relaxation (Pd) involves O((2d)n) SDP variables and
(k + 1) linear matrix inequalities (LMIs) of size O(dn). When d increases, then more ac-
curate lower bounds of r? can be obtained, at an increasing computational cost. At fixed
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d, the relaxation (Pd) involves O(n2d) SDP variables and (d+ 1) linear matrix inequalities
(LMIs) of size O(nd).

Example 2.4. Consider the polynomial f mentioned in Section 1: f(x) := x2x5 +x3x6−
x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6) and the set K := [4, 6.36]6. The set K can
be equivalently rewritten as:

K := {x ∈ Rn : g1(x) ≥ 0, . . . , g7(x) ≥ 0 } ,

with gi(x) := (6.36− xi)(xi− 4) for each i = 1, . . . , 6 and g7(x) := 243−
∑6
i=0 x

2
i . Here the

constant M = 243 is chosen so that M ≥ 6 × 6.362 and the assumption in Remark 2.1 is
fulfilled. The number of initial variables of the optimization problem r∗ := infx∈Rn { f(x) :
x ∈ K } is n = 6 and the number of optimization constraints is k = 7. For d = 1, the
dense SDP relaxation (P1) involves

(
n+2d

2d
)

=
(6+2

2
)

= 28 variables and provides a lower
bound p?1 = 20.755 for r∗. The dense SDP relaxation (P2) involves

(6+4
4
)

= 210 variables
and provides a tighter lower bound of p?2 = 20.8608 for r∗.

2.2.3. Exploiting sparsity. Here we recall how to exploit the structured sparsity of the prob-
lem to replace one SDP problem (Pd) by an SDP problem (Sd) of size O(κ2d) where κ is
the average size of the maximal cliques of the correlation sparsity pattern (csp) of the poly-
nomial variables (see [Waki et al. 2006; Lasserre 2006] for more details). We now present
these notions as well as the formulation of sparse SDP relaxations (Sd).
We denote by Nn the set of n-tuple of nonnegative integers. The support of a polynomial

r(x) :=
∑

α∈Nn rαxα is defined as supp(r) := {α ∈ Nn : rα 6= 0 }. For instance the
support of r(x) := 1

4 + x4
1 − 2x2

1x
2
2 + x4

2 is supp(p) = { (0, 0), (4, 0), (2, 2), (0, 4) }.
Let Fj be the index set of variables which are involved in the polynomial gj , for each

j = 1, . . . , k. The correlative sparsity is represented by the n×n correlation sparsity pattern
matrix (csp matrix) R defined by:

R(i, j) :=


1 if i = j ,
1 if ∃α ∈ supp(f) such that αi, αj ≥ 1 ,
1 if ∃l ∈ {1, . . . , k} such that i, j ∈ Fl ,
0 otherwise .

We define the undirected csp graph G(N,E) with N = {1, . . . , n} and E = {{i, j} : i, j ∈
N, i < j,R(i, j) = 1}. Then, let C1, . . . , Cm ⊆ N denote the maximal cliques of G(N,E)
and define nj := #Cj , for each j = 1, . . . ,m.

Remark 2.5. Assuming that the set K is as in Remark 2.1, one replaces the constraint
M −

∑n
i=1 x

2
i ≥ 0 by the m redundant additional constraints:

gk+j := njM
2 −

∑
i∈Cj

x2
i ≥ 0 , j = 1, . . . ,m , (9)

set k′ = k +m, define the compact semialgebraic set:

K′ := {x ∈ Rn : g1(x) ≥ 0, . . . , gk′(x) ≥ 0 } ,

and modify Problem (6) into the following optimization problem:

r∗ := inf
x∈Rn

{ r(x) : x ∈ K′ } . (10)

For each j = 1, . . . ,m, we note R2d[x, Cj ] the set of polynomials of R2d[x] which involve the
variables (xi)i∈Cj

. We denote Σ[x, Cj ] := Σ[x]
⋂
R2d[x, Cj ]. Similarly, we define Σ[x, Fj ],

for each j = 1, . . . , k′. The following program is the sparse variant of the SDP program
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(Pd):

(Sd) :



r?d := sup
µ,σj

µ ,

s.t. r(x)− µ =
∑k′

j=0 σj(x)gj(x) , ∀x ,

µ ∈ R , σ0 ∈
∑m
j=1 Σ[x, Cj ] ,

σj ∈ Σ[x, Fj ] , j = 1, . . . , k′ ,

deg(σjgj) ≤ 2d , j = 0, . . . , k′ ,

where σ0 ∈
∑m
j=1 Σ[x, Cj ] if and only if there exist σ1 ∈ Σ[x, C1], . . . , σm ∈ Σ[x, Cm] such

that σ0(x) =
∑m
j=1 σ

j(x), for all x ∈ Rn.
The number of SDP variables of the relaxation (Sd) is

∑m
j=1

(
nj+2d

2d
)
. At fixed d, it yields

an SDP problem with O(κ2d) variables, where κ := 1
m

∑m
j=1 nj is the average size of the

cliques C1, . . . , Cm. Moreover, the cliques C1, . . . , Cm satisfy the running intersection prop-
erty:

Definition 2.6 (RIP). Let m ∈ N0 and I1, . . . , Im be subsets of {1, . . . , n}. We say that
I1, . . . , Im satisfy the running intersection property (RIP) when for all i = 1, . . . ,m, there
exists an integer l < i such that Ii ∩ (∪j<iIj) ⊆ Il.

This RIP property together with the assumption mentioned in Remark 2.5 allow us to state
the sparse variant of Theorem 2.3:

Theorem 2.7 (Lasserre [Lasserre 2006, Theorem 3.6]). Let r?d be the optimal
value of the sparse SDP relaxation (Sd). Then the sequence (r?d)d∈N is nondecreasing and
converges to r?.

The interested reader can find more details in [Waki et al. 2006] about additional ways
to exploit sparsity in order to derive analogous sparse SDP relaxations. We illustrate the
benefits of the SDP relaxations (Sd) with the following example:

Example 2.8. Consider the polynomial f mentioned in Section 1: f(x) := x2x5 +x3x6−
x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6). Here, n = 6, d = 2, N = {1, . . . , 6}. The
6× 6 correlative sparsity matrix R is:

R =


1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 0 0 1
1 0 0 1 0 0
1 1 0 0 1 1
1 0 1 0 1 1


The csp graph G associated to R is depicted in Figure 1. The maximal cliques of G are
C1 := {1, 4}, C2 := {1, 2, 3}, C3 := {1, 2, 5}, C4 := {1, 5, 6} and C5 := {1, 3, 6}. For d = 2,
the dense SDP relaxation (P2) involves

(6+4
4
)

= 210 variables against
(2+4

4
)

+ 4
(3+4

4
)

= 155
for the sparse variant (S2). The dense SDP relaxation (P3) involves 924 variables against
364 for the sparse variant (S3). This difference becomes significant while considering that the
time complexity of semidefinite programming is polynomial w.r.t. the number of variables
with an exponent greater than 3 (see [Ben-Tal and Nemirovski 2001, Chapter 4] for more
details).
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6

4

5

1

23

Fig. 1. Correlative sparsity pattern graph for the variables of f from Example 2.8.

2.3. Computer proofs for polynomial optimization
Here, we briefly recall some existing features of the Coq proof assistant to handle formal
polynomial optimization, when using SDP relaxations. The advantage of such relaxations
is that they provide SOS certificates, which can be formally checked aposteriori. For more
details on Coq, we recommend the documentation available in [Bertot and Castéran 2004].
Given a polynomial r and a set of constraints K, one can obtain a lower bound on r by
solving any instance of Problem (Pd). Then, one can verify formally the correctness of the
lower bound r?d, using the SOS certificate output σ0, . . . , σk. Indeed it is enough to prove
the polynomial equality r(x) − r?d =

∑k
j=0 σj(x)gj(x) inside Coq. Such equalities can be

efficiently proved using Coq’s ring tactic [Grégoire and Mahboubi 2005] via the mechanism
of computational reflection [Boutin 1997]. Any polynomial of type pexprC (see Section 2.1)
can be normalized to a unique polynomial of type polC (see [Grégoire and Mahboubi 2005]
for more details on the constructors of this type). For the sake of clarity, let us consider
the unconstrained case, i.e. K = Rn. One encodes an SOS certificate σ0(x) =

∑m
i=1 q

2
i with

the sequence of polynomials [q1; . . . ; qm], each qi being of type polC . To prove the equality
r = σ0, our version of the ring tactic normalizes both r and the sequence [q1; . . . ; qm] and
compares the two normalization results. This mechanism is illustrated in Figure 2 with the
polynomial r(x) := 1

4 + x4
1 − 2x2

1x
2
2 + x4

2 (see Example 2.2) being encoded by r and the
polynomials 1/2 and x2

1 − x2
2 being encoded respectively by q1 and q2.

1
4 + x4

1 − 2x2
1x

2
2 + x4

2 r

( 1
2 )2 + (x2

1 − x2
2)2 [q1; q2]

reflexive tactic

reification

interpretation

normalization

Fig. 2. An illustration of computational reflection.

In the general case, this computational step is done through a checker_sos procedure
which returns a Boolean value. If this value is true, one applies a correctness lemma, whose
conclusion yields the nonnegativity of r − r?d over K. In practice, the SDP solvers are
implemented in floating-point arithmetic, thus the above equality between r − r?d and the
SOS certificate does not hold. However, following Remark 2.1, each variable lies in a closed
interval, thus one can bound the remainder polynomial ε(x) := r(x)−r?d−

∑k
j=0 σj(x)gj(x)

using basic interval arithmetic, so that the lower bound ε? of ε yields the valid inequality:
∀x ∈ K, r(x) ≥ r?d + ε?. For more explanation, we refer the interested reader to the formal
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Input: input variables x, input constraints X, nonlinear expression f , rounded expression
f̂ , error variables e, error constraints E, relaxation order d

Output: interval enclosure Id of the error f̂ − f over K := X×E
1: Define the absolute error r(x, e) := f̂(x, e)− f(x)
2: Compute l(x, e) := r(x, 0) +

∑m
j=1

∂r(x,e)
∂ej

(x, 0) ej
3: Define h := r − l
4: Compute bounds for h: Ih := ia_bound(h,K)
5: Compute bounds for l: I ld := sdp_bound(l,K, d)
6: return Id := I ld + Ih

Fig. 3. bound: our algorithm to compute roundoff errors bounds of nonlinear programs.

framework [Magron et al. 2015b, Section 2.3]. Note that this formal verification remains
valid when considering the sparse variant (Sd).

3. GUARANTEED ROUNDOFF ERROR BOUNDS USING SDP RELAXATIONS
In this section, we present our new algorithm, relying on sparse SDP relaxations, to bound
roundoff errors of nonlinear programs. After stating our general algorithm (Section 3.1), we
detail how this procedure can handle polynomial programs (Section 3.2). Extensions to the
non-polynomial case are presented in Section 3.3.

3.1. The General Optimization Framework
Here we consider a given program that implements a nonlinear transcendental expression
f with input variables x satisfying a set of constraints X. We assume that X is included
in a box (i.e. a product of closed intervals) [a,b] := [a1, b1] × · · · × [an, bn] and that X is
encoded as follows:

X := {x ∈ Rn : g1(x) ≥ 0, . . . , gk(x) ≥ 0 } ,

for polynomial functions g1, . . . , gk. Then, we denote by f̂(x, e) the rounded expression of f
after applying the round procedure (see Section 2.1), introducing additional error variables
e.
The algorithm bound, depicted in Figure 3, takes as input x, X, f , f̂ , e as well as the

set E of bound constraints over e. Here we assume that our program implementing f does
not involve conditional statements (this case will be discussed later in Section 3.3). For a
given machine ε, one has E := [−ε, ε]m, with m being the number of error variables. This
algorithm actually relies on the sparse SDP optimization procedure (Sd) (see Section 2.2
for more details), thus bound also takes as input a relaxation order d ∈ N. The algorithm
provides as output an interval enclosure Id of the error f̂(x, e) − f(x) over K. From this
interval Id := [fd, fd], one can compute fd := max{−fd, fd}, which is a sound upper bound
of the maximal absolute error r? := max(x,e)∈K | f̂(x, e)− f(x) |.
After defining the absolute roundoff error r := f̂ − f (Line 1), one decomposes r as the

sum of an expression l which is affine w.r.t. the error variable e and a remainder h. One way
to obtain l is to compute the vector of partial derivatives of r w.r.t. e evaluated at (x, 0) and
finally to take the inner product of this vector and e (Line 2). Then, the idea is to compute
a precise bound of l and a coarse bound of h. The underlying reason is that h involves
error term products of degree greater than 2 (e.g. e1e2), yielding an interval enclosure Ih
of a priori much smaller width, compared to the interval enclosure I l of l. One obtains Ih
using the procedure ia_bound implementing basic interval arithmetic (Line 4) to bound
the remainder of the multivariate Taylor expansion of r w.r.t. e, expressed as a combination
of the second-error derivatives (similar as in [Solovyev et al. 2015]). The main algorithm
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presented in Figure 3 is very similar to the algorithm of FPTaylor [Solovyev et al. 2015],
except that SDP based techniques are used instead of the global optimization procedure
from [Solovyev et al. 2015]. Note that overflow and denormal are neglected here but one
could handle them, as in [Solovyev et al. 2015], while adding additional error variables and
discarding the related terms using naive interval arithmetic.

3.2. Polynomial Programs
We first describe our sdp_bound optimization algorithm when implementing polynomial
programs. In this case, sdp_bound calls an auxiliary procedure sdp_poly. The bound of l
is provided through solving two sparse SDP instances of Problem (Sd), at relaxation order
d. We now give more explanation about the sdp_poly procedure.

We can map each input variable xi to the integer i, for all i = 1, . . . , n, as well as each
error variable ej to n + j, for all j = 1, . . . ,m. Then, define the sets C1 := {1, . . . , n, n +
1}, . . . , Cm := {1, . . . , n, n+m}. Here, we take advantage of the correlation sparsity pattern
of l by using m distinct sets of cardinality n+1 rather than a single one of cardinality n+m,
i.e. the total number of variables. After writing l(x, e) = r(x, 0) +

∑m
j=1

∂r(x,e)
∂ej

(x, 0) ej and
noticing that r(x, 0) = f̂(x, 0) − f(x) = 0, one can scale the optimization problems by
writing

l(x, e) =
m∑
j=1

sj(x)ej = ε

m∑
j=1

sj(x)ej
ε
, (11)

with sj(x) := ∂r(x,e)
∂ej

(x, 0), for all j = 1, . . . ,m. Replacing e by e/ε leads to computing an
interval enclosure of l/ε over K′ := X× [−1, 1]m. Recall that from Remark 2.1, there exists
an integerM > 0 such thatM−

∑n
i=1 x

2
i ≥ 0, as the input variables satisfy box constraints.

Moreover, to fulfil the assumption of Remark 2.5, one encodes K′ as follows:
K′ := { (x, e) ∈ Rn+m : g1(x) ≥ 0, . . . , gk(x) ≥ 0 ,

gk+1(x, e1) ≥ 0, . . . , gk+m(x, em) ≥ 0 } ,

with gk+j(x, ej) := M + 1 −
∑n
i=1 x

2
i − e2

j , for all j = 1, . . . ,m. The index set of variables
involved in gj is Fj := N = {1, . . . , n} for all j = 1, . . . , k. The index set of variables involved
in gk+j is Fk+j := Cj for all j = 1, . . . ,m.
Then, one can compute a lower bound of the minimum of l′(x, e) := l(x, e)/ε =∑m
j=1 sj(x)ej over K′ by solving the following optimization problem:

l′d := sup
µ,σj

µ ,

s.t. l′ − µ = σ0 +
∑k+m
j=1 σjgj ,

µ ∈ R , σ0 ∈
∑m
j=1 Σ[(x, e), Cj ] ,

σj ∈ Σ[(x, e), Fj ] , j = 1, . . . , k +m,
deg(σjgj) ≤ 2d , j = 1, . . . , k +m.

(12)

A feasible solution of Problem (12) ensures the existence of σ1 ∈ Σ[(x, e1)], . . . , σm ∈
Σ[(x, em)] such that σ0 =

∑m
j=0 σ

j , allowing the following reformulation:

l′d := sup
µ,σj

µ ,

s.t. l′ − µ =
∑m
j=1 σ

j +
∑k+m
j=1 σjgj ,

µ ∈ R , σj ∈ Σ[x] , j = 1, . . . ,m ,
σj ∈ Σ[(x, ej)] ,deg(σj) ≤ 2d , j = 1, . . . ,m ,

deg(σjgj) ≤ 2d , j = 1, . . . , k +m.

(13)
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An upper bound l′d can be obtained by replacing sup with inf and l′ − µ by µ − l′ in
Problem (13). Our optimization procedure sdp_poly computes the lower bound l′d as well
as an upper bound l′d of l′ over K′ then returns the interval I ld := [ε l′d, ε l′d], which is a sound
enclosure of the values of l over K.
We emphasize two advantages of the decomposition r := l + h and more precisely of

the linear dependency of l w.r.t. e: scalability and robustness to SDP numerical issues.
First, no computation is required to determine the correlation sparsity pattern of l, by
comparison to the general case. Thus, it becomes much easier to handle the optimization
of l with the sparse SDP Problem (13) rather than with the corresponding instance of
the dense relaxation (Pd). While the latter involves

(
n+m+2d

2d
)
SDP variables, the former

involves only m
(
n+1+2d

2d
)
variables, ensuring the scalability of our framework. In addition,

the linear dependency of l w.r.t. e allows us to scale the error variables and optimize over
a set of variables lying in K′ := X × [−1, 1]m. It ensures that the range of input variables
does not significantly differ from the range of error variables. This condition is mandatory
while considering SDP relaxations because most SDP solvers (e.g. Mosek [Andersen and
Andersen 2000]) are implemented using double precision floating-point. It is impossible to
optimize l over K (rather than l′ over K′) when the maximal value ε of error variables is
less than 2−53, due to the fact that SDP solvers would treat each error variable term as 0,
and consequently l as the zero polynomial. Thus, this decomposition insures our framework
against numerical issues related to finite-precision implementation of SDP solvers.
Let us define the interval enclosure I l := [l, l], with l := inf(x,e)∈K l(x, e) and l :=

sup(x,e)∈K l(x, e). The next lemma states that one can approximate I l as closely as desired
using the sdp_poly procedure.

Lemma 3.1 (Convergence of the sdp_poly procedure). Let I ld be the interval
enclosure returned by the procedure sdp_poly(l,K, d). The sequence (I ld)d∈N converges to
I l.

Proof. It is sufficient to show the similar convergence result for l′ = l/ε, as it implies
the convergence for l by a scaling argument. The sets C1, . . . , Cm satisfy the RIP property
(see Definition 2.6). Moreover, the encoding of K′ satisfies the assumption mentioned in
Remark 2.5. Thus, Theorem 2.7 implies that the sequence of lower bounds (l′d)d∈N converges
to l′ := inf(x,e)∈K′ l′(x, e). Similarly, the sequence of upper bounds converge to l′, yielding
the desired result.

Lemma 3.1 guarantees asymptotic convergence to the exact enclosure of l when the re-
laxation order d tends to infinity. However, it is more reasonable in practice to keep
this order as small as possible to obtain tractable SDP relaxations. Hence, we generi-
cally solve each instance of Problem (13) at the minimal relaxation order, that is d0 :=
max{ddeg l/2e),max1≤j≤k+m{ddeg(gj)/2e)}}.

3.3. Non-polynomial and Conditional Programs
Other classes of programs do not only involve polynomials but also semialgebraic and tran-
scendental functions as well as conditional statements. Such programs are of particular
interest as they often occur in real-world applications such as biology modeling, space con-
trol or global optimization. We present how the general optimization procedure sdp_bound
can be extended to these nonlinear programs.

3.3.1. Semialgebraic programs. Here we assume that the function l is semialgebraic, that is it
involves non-polynomial components such as divisions or square roots. Following [Lasserre
and Putinar 2010], we explain how to transform the optimization problem inf(x,e)∈K l(x, e)
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Input: input variables y, input constraints K, semialgebraic expression f
Output: variables ypoly, constraints Kpoly, polynomial expression fpoly
1: I := ia_bound(f,K)
2: if f = Pol (p) then ypoly := y, Kpoly := K, fpoly := p
3: else if f = Div (g,h) then
4: yg,Kg, gpoly := lift(y,K, g)
5: yh,Kh, hpoly := lift(y,K, h)
6: ypoly := (yg,yh, x) fpoly := x
7: Kpoly := {ypoly ∈ Kg ×Kh × I : xhpoly = gpoly}
8: else if f = Sqrt (g) then
9: yg,Kg, gpoly := lift(y,K, g)
10: ypoly := (yg, x) fpoly := x
11: Kpoly := {ypoly ∈ Kg × I : x2 = gpoly}
12: ...
13: end
14: return ypoly,Kpoly, fpoly

Fig. 4. lift: a recursive procedure to reduce semialgebraic problems to polynomial problems.

into a polynomial optimization problem, then use the sparse SDP program (13). One way
to perform this reformulation consists of introducing lifting variables to represent non-
polynomial operations. We first illustrate the extension to semialgebraic programs with an
example.

Example 3.2. Let us consider the program implementing the rational function f : [0, 1]→
R defined by f(x1) := x1

1+x1
. Applying the rounding procedure (with machine ε) yields

f̂(x1, e) := x1(1+e2)
(1+x1)(1+e1) and the decomposition r(x1, e) := f̂(x1, e) − f(x1) = l(x1, e) +

h(x1, e) = s1(x1)e1 + s2(x1)e2 + h(x1, e). One has s1(x1) = ∂r(x1,e)
∂e1

(x1, 0) = − x1
1+x1

and
s2(x1) = −s1(x1).
Let K := [0, 1] × [−ε, ε]2. One introduces a lifting variable x2 := x1

1+x1
to handle the

division operator and encode the equality constraint p(x) := x2(1 + x1)− x1 = 0 with the
two inequality constraints p(x) ≥ 0 and −p(x) ≥ 0. To ensure the compactness assumption,
one bounds x2 within I := [0, 1/2], using basic interval arithmetic.
Let Kpoly := {(x, e) ∈ [0, 1] × I × [ε, ε]2 : p(x) ≥ 0 , −p(x) ≥ 0}. Then the rational

optimization problem involving l is equivalent to inf(x,e)∈Kpoly x2(−e1 + e2), a polynomial
optimization problem that we can handle with the sdp_poly procedure, described in Sec-
tion 3.2.

In the semialgebraic case, sdp_bound calls an auxiliary procedure sdp_sa. Given input
variables y := (x, e), input constraints K := X×E and a semialgebraic function l, sdp_sa
first applies a recursive procedure lift which returns variables ypoly, constraints Kpoly and
a polynomial fpoly such that the interval enclosure I l of l(y) over K is equal to the interval
enclosure of the polynomial lpoly(ypoly) over Kpoly. Calling sdp_sa yields the interval en-
closure I ld := sdp_poly(lpoly,Kpoly, d). We detail the lifting procedure lift in Figure 4 for
the constructors Pol(Line (2)), Div (Line (3)) and Sqrt (Line (8)). The interval I obtained
through the ia_bound procedure (Line (1)) allows us to constrain the additional variable x
to ensure the assumption of Remark 2.5. For the sake of consistency, we omit the other cases
(Neg, Add, Mul and Sub) where the procedure is straightforward. For a similar procedure in
the context of global optimization, we refer the interested reader to [Magron 2013, Chapter
2]. The set of variables ypoly can be decomposed as (xpoly, e), where xpoly gathers input
variables with lifting variables and has a cardinality equal to npoly. Then, one easily shows
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that the sets {1, . . . , npoly, e1},. . . ,{1, . . . , npoly, em} satisfy the RIP, thus ensuring to solve
efficiently the corresponding instances of Problem (13).

3.3.2. Transcendental programs. The above lifting procedure allows to represent exactly the
graph of a semialgebraic function with polynomials involving additional (lifting) variables.
Here, we consider a procedure to approximate transcendental functions with semialgebraic
functions. Here we assume that the function l is transcendental, i.e. involves univariate
non-semialgebraic components such as exp or sin. We use the method presented in [Magron
et al. 2015a], based on maxplus approximation of semiconvex transcendental functions by
quadratic functions. This idea comes from optimal control [McEneaney 2006] and was de-
veloped further to represent the value function by a “maxplus linear combination”, which
is a supremum of quadratic polynomials at given points xi. Given a set of points (xi), we
approximate from above and from below every transcendental function fR by infima and
suprema of finitely many quadratic polynomials (f−xi

) and (f+
xi

). Hence, we reduce the prob-
lem to semialgebraic optimization problems. We can interpret this method in a geometrical
way by thinking of it in terms of “quadratic cuts”, since quadratic inequalities are added to
approximate the graph of a transcendental function.
For each univariate transcendental function fR in our dictionary set D, one assumes that

fR is twice differentiable, so that the univariate function g := fR + γ
2 | · |

2 is convex on I for
large enough γ > 0 (for more details, see the reference [McEneaney 2006]). It follows that
there exists a constant γ ≤ supx∈I −f ′′R(x) such that for all xi ∈ I:

∀x ∈ I, fR(x) ≥ f−xi
(x) ,

with f−xi
:= −γ2 (x− xi)2 + f ′R(xi)(x− xi) + fR(xi) ,

(14)

implying that for all x ∈ I, fR(x) ≥ maxxi∈I f
−
xi

(x). Similarly, one obtains an upper-
approximation minxi∈I f

+
xi

(x). Figure 5 provides such approximations for the function
fR(x) := log(1 + exp(x)) on the interval I := [−8, 8].

x1
x1 7→ log(1 + exp(x1))

f−
0

f−
8

f+
0

f+
8

−8 8

Fig. 5. Semialgebraic Approximations for x 7→ log(1 + exp(x)): max{f−
0 (x), f−

8 (x)} ≤ log(1 + exp(x)) ≤
min{f+

0 (x), f+
8 (x)}.

For transcendental programs, our procedure sdp_bound calls the auxiliary procedure
sdp_transc. Given input variables (x, e), constraints K and a transcendental function l,
sdp_transc first computes a semialgebraic lower (resp. upper) approximation l− (resp. l+)
of l over K. For more details in the context of global optimization, we refer the reader
to [Magron et al. 2015a]. Then, calling the procedure sdp_sa allows us to get interval
enclosures of l− as well as l+. We illustrate the procedure to handle transcendental programs
with an example.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18

Input: input variables x, input constraints X, nonlinear expression f , rounded expression
f̂ , error variables e, error constraints E, relaxation order d

Output: interval enclosure Id of the error f̂ − f over K := X×E
1: if f = IfThenElse (p, g, h) then
2: Ipd := bound(x,X, p, p̂, e,E, d) = [pd, pd]
3: X1 := {x ∈ X : 0 ≤ p(x) ≤ −pd}
4: X2 := {x ∈ X : −pd ≤ p(x) ≤ 0}
5: X3 := {x ∈ X : 0 ≤ p(x)}
6: X4 := {x ∈ X : p(x) ≤ 0}
7: I1

d := bound_nlprog(x,X1, g, ĥ, e,E, d)
8: I2

d := bound_nlprog(x,X2, h, ĝ, e,E, d)
9: I3

d := bound_nlprog(x,X3, g, ĝ, e,E, d)
10: I4

d := bound_nlprog(x,X4, h, ĥ, e,E, d)
11: return Id := I1

d ∪ I2
d ∪ I3

d ∪ I4
d

12: else return Id := bound(x,X, f, f̂ , e,E, d)
13: end
Fig. 6. bound_nlprog: our algorithm to compute roundoff error bounds of programs with conditional state-
ments.

Example 3.3. Let us consider the program implementing the transcendental function
f : [−8, 8] → R defined by f(x1) := log(1 + exp(x1)). Applying the rounding procedure
yields f̂(x1, e) := log[(1 + exp(x1)(1 + e1)) (1 + e2)](1 + e3). Here, |e2| is bounded by the
machine ε while |e1| (resp. |e3|) is bounded with an adjusted absolute error ε1 := ε(exp)
(resp. ε3 := ε(log)). Let K := [−8, 8]× [−ε1, ε1]× [−ε, ε]× [−ε3, ε3].
One obtains the decomposition r(x1, e) := f̂(x1, e) − f(x1) = l(x1, e) + h(x1, e) =

s1(x1)e1 + s2(x1)e2 + s3(x1)e3 + h(x1, e), with s1(x1) = exp(x1)
1+exp(x1) , s2(x1) = 1 and

s3(x1) = log(1 + exp(x1)) = f(x1). Figure 5 provides a lower approximation s−3 :=
max{f−0 , f

−
8 } of s3 as well as an upper approximation s+

3 := min{f+
0 , f

+
8 }. One can get

similar approximations s−1 and s+
1 for s1. One first obtains (coarse) interval enclosures

I2 = ia_bound(s1,K) and I3 = ia_bound(s3,K) and one introduces extra variables
x2 ∈ I2 and x3 ∈ I3 to represent s1 and s3 respectively. Then, the interval enclosure of
l over K is equal to the interval enclosure of lsa(x, e) := x2e1 + e2 + x3e3 over the set
Ksa := {(x1, e) ∈ K , (x2, x3) ∈ I2 × I3 , s

−
1 (x1) ≤ x2 ≤ s+

1 (x1) , s−3 (x1) ≤ x3 ≤ s+
3 (x1)}.

3.3.3. Programs with conditionals. Finally, we explain how to extend our bounding proce-
dure to nonlinear programs involving conditionals through the recursive algorithm given
in Figure 6. The overall procedure is very similar to the one implemented within the Rosa
tool [Darulova and Kuncak 2014, Section 7, Figure 6]. The bound_nlprog algorithm relies
on the bound procedure (see Figure 3 in Section 3.1) to compute roundoff error bounds of
programs implementing transcendental functions (Line 12). From Line 1 to Line 11, the
algorithm handles the case when the program implements a function f defined as follows:

f(x) :=
{
g(x) if p(x) ≥ 0,
h(x) otherwise.

The first branch output is g while the second one is h. More sophisticated conditionals, such
as “p1(x) ≥ 0 or/and p2(x) ≥ 0”, are not handled at the moment but one could easily extend
the current framework to do so. A preliminary step consists of computing the roundoff error
enclosure Ipd := [pd, pd] (Line 2) for the program implementing the polynomial p. Then the
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procedure computes bounds related to the branches discontinuity error, that is the maximal
value between the four following errors:
— (Line 7) the error obtained while computing the rounded result ĥ of the second

branch instead of computing the exact result g of the first one, occurring for the set
of variables (x, e) such that p̂(x, e) ≤ 0 ≤ p(x). For scalability and numerical is-
sues, we consider an over-approximation X1 (Line 3) of this set, where the variables
x satisfy the relaxed constraints 0 ≤ p(x) ≤ −pd. Note that in this case, one has
l(x, e) = r(x, 0) +

∑m
j=1

∂r(x,e)
∂ej

(x, 0) ej , with r(x, 0) = h(x) − g(x) 6= 0. In general,
we expect the magnitude of the partial derivative sum to be very small compared to the
one of r(x, 0).

— (Line 8) the error obtained while computing the rounded result ĝ of the first branch
instead of computing the exact result h of the second one, occurring for the set of
variables (x, e) such that p(x) ≤ 0 ≤ p̂(x, e). We also consider an over-approximation
X2 (Line 4), where the variables x satisfy the relaxed constraints −pd ≤ p(x) ≤ 0.

— (Line 9) the roundoff error corresponding to the program implementation of g.
— (Line 10) the roundoff error corresponding to the program implementation of h.

3.3.4. Simplification of error terms. In addition, our algorithm bound_nlprog integrates sev-
eral features to reduce the number of error variables. First, it memorizes all sub-expressions
of the nonlinear expression tree to perform common sub-expressions elimination. We can
also simplify error term products, thanks to the following lemma.

Lemma 3.4 (Higham [Higham 2002, Lemma 3.3]). Let ε be the machine precision
and assume that for a given integer k, one has ε < 1

k and γk := kε
1−kε . Then, for all

e1, . . . , ek ∈ [−ε, ε], there exists θk such that
∏k
i=1(1 + ei) = 1 + θk and | θk |≤ γk.

Lemma 3.4 implies that for any k such that ε < 1
k , one has θk ≤ (k+1)ε. Our algorithm has

an option to automatically derive safe over-approximations of the absolute roundoff error
while introducing only one variable e1 (bounded by (k + 1)ε) instead of k error variables
e1, . . . , ek (bounded by ε). The cost of solving the corresponding optimization problem can
be significantly reduced but it yields coarser error bounds.

4. EXPERIMENTAL EVALUATION
Now, we present experimental results obtained by applying our general bound_nlprog
algorithm (see Section 3, Figure 6) to various examples coming from physics, biology, space
control and optimization. The bound_nlprog algorithm is implemented in an open-source
tool called Real2Float, built in top of the NLCertify nonlinear verification package, relying
on OCaml (Version 4.02.1), Coq (Version 8.4pl5) and interfaced with the SDP solver Sdpa
(Version 7.3.9). The SDP solver output numerical SOS certificates, which are converted
into rational SOS using the Zarith OCaml library (Version 1.2), implementing arithmetic
operations over arbitrary-precision integers. For more details about the installation and
usage of Real2Float, we refer to the dedicated web-page3 and the setup instructions4. All
examples are displayed in Appendix A as the corresponding Real2Float input text files and
satisfy our nonlinear program semantics (see Section 2.1). All results have been obtained
on an Intel Core i7-5600U CPU (2.60GHz). Execution timings have been computed by
averaging over five runs.

3http://nl-certify.forge.ocamlcore.org/real2float.html
4see the README.md file in the top level directory
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4.1. Benchmark Presentation
For each example, we compared the quality of the roundoff error bounds (Table II) and cor-
responding execution times (Table III) while running our tool Real2Float, FPTaylor (ver-
sion from May 2016 [Solovyev et al. 2015]), Rosa (version from May 2014 used in [Darulova
and Kuncak 2014]), Gappa (version 1.2.0 [Daumas and Melquiond 2010]) and Fluctuat
(version 3.1370 [Delmas et al. 2009]).
To ensure fair comparison, our initial choice was to focus on tools providing certificates

and using the same rounding model (FPTaylor or Rosa which relies on an SMT solver
theoretically able to output satisfiability certificates). However, for the sake of complete-
ness, we have also compared Real2Float with Gappa [Daumas and Melquiond 2010] and
Fluctuat [Delmas et al. 2009]. For all tools, we use default parameters, we use the default
number of subdivisions in Fluctuat and for Gappa, we provide the simplest user-provided
hints we could think of.
A head-to-head comparison is not straightforward here due to differences in the ap-

proaches: Gappa uses an improved rounding model based on a piecewise constant absolute
error bound (see Section 1.2 for more details), and Fluctuat does not produce output cer-
tificates. We also performed further experiments while turning on the improved rounding
model of FPTaylor (which is the same as in Gappa and Fluctuat).

A given program implements a nonlinear function f(x), involving variables x lying in a
set X contained in a box [a,b]. Applying our rounding model on f yields the nonlinear
expression f̂(x, e), involving additional error variables e lying in a set E.

At a given semidefinite relaxation order d, our tool computes the upper bound fd of
the absolute roundoff error | f − f̂ | over K := X × E and verifies that it is less than a
requested number ε+Real2Float. As we keep the relaxation order d as low as possible to ensure
tractable SDP programs, it can happen that fd > ε+Real2Float. The Real2Float tool has
the default option to perform box subdivisions when the number of initial variables and
maximal polynomial degree are both small. When the option is disabled, the solver does
not perform subdivisions and output the error bound fd. When enabled, we subdivide a
randomly chosen interval of the box [a,b] in two halves to obtain two sub-sets X1 and X2,
fulfilling X := X1 ∪ X2, and apply the bound_nlprog algorithm on both sub-sets either
until we succeed to certify that ε+Real2Float is a sound upper bound of the roundoff error or
until the maximal number of branch and bound iterations is reached. For each benchmark,
an error bound εReal2Float is automatically computed while setting ε+Real2Float = 0.

The number εReal2Float is compared with the upper bounds computed by two other tools
implementing simple rounding models: FPTaylor, which relies on Taylor Symbolic expan-
sions [Solovyev et al. 2015], Rosa, which relies on SMT and affine arithmetic [Darulova and
Kuncak 2014].
For comparison purpose, we also executed each program using random inputs, following

the approach used in the Rosa paper [Darulova and Kuncak 2014]. Specifically, we executed
each program on 107 random inputs satisfying the input restrictions. The results from these
random samples provide lower bounds on the absolute error. For consistency of compar-
ison, the error bounds computed with FPTaylor correspond to the procedure FPT. (a)
(see [Solovyev et al. 2015]) using the same simplified rounding model as the one described
in Equation 3, also used in Rosa [Darulova and Kuncak 2014]. For the sake of further pre-
sentation, we identify with a letter (from a to z and from α to γ) each of the 30 nonlinear
programs. The programs a-b and f-s are taken from the Rosa paper [Darulova and Kuncak
2014] and were used in the FPTaylor paper [Solovyev et al. 2015] as well:

— The first 9 programs implement polynomial functions: a-b come from physics, c-e are
derived from expressions involved in the proof of Kepler Conjecture [Hales 2006] and
f-h implement polynomial approximations of the sine and square root functions. The
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Table II. Comparison results of upper and lower bounds for absolute roundoff errors among tools implementing either simple
or advanced rounding model. For each model, the winner results are emphasized using bold fonts.

Simple rounding Improved rounding
Benchmark id Real2Float Rosa FPTaylor FPTaylor Gappa Fluctuat lower bound
Programs involving polynomial functions
rigidBody1 a 5.33e–13 5.08e–13 3.87e–13 2.95e–13 2.95e–13 3.22e–13 2.28e–13
rigidBody2 b 6.48e–11 6.48e–11 5.24e–11 3.61e–11 3.61e–11 3.65e–11 2.19e–11
kepler0 c 1.18e–13 1.16e–13 1.05e–13 7.47e–14 1.12e–13 1.26e–13 2.23e–14
kepler1 d 4.47e–13 6.49e–13 4.49e–13 2.87e–13 4.89e–13 5.57e–13 7.58e–14
kepler2 e 2.09e–12 2.89e–12 2.10e–12 1.58e–12 2.45e–12 2.90e–12 3.03e–13
sineTaylor f 6.03e–16 9.56e–16 6.75e–16 4.44e–16 8.33e–02 6.86e–16 2.85e–16
sineOrder3 g 1.19e–15 1.11e–15 9.97e–16 7.95e–16 7.62e–16 1.03e–15 3.34e–16
sqroot h 1.29e–15 8.41e–16 7.13e–16 5.02e–16 5.37e–16 3.21e–13 4.45e–16
himmilbeau i 1.43e–12 1.43e–12 1.32e–12 1.01e–12 1.01e–12 1.01e–12 1.47e–13
Programs involving semialgebraic functions
doppler1 j 7.65e–12 4.92e–13 1.59e–13 1.29e–13 1.82e–13 1.34e–13 7.11e–14
doppler2 k 1.57e–11 1.29e–12 2.90e–13 2.39e–13 3.23e–13 2.53e–13 1.14e–13
doppler3 l 8.55e–12 2.03e–13 8.22e–14 6.96e–14 9.29e–14 7.36e–14 4.27e–14
verhulst m 4.67e–16 6.82e–16 3.53e–16 2.50e–16 3.18e–16 4.84e–16 2.23e–16
carbonGas n 2.21e–08 4.64e–08 1.23e–08 7.77e–09 8.85e–09 1.86e–08 4.11e–09
predPrey o 2.52e–16 2.94e–16 1.89e–16 1.60e–16 1.95e–16 2.45e–16 1.47e–16
turbine1 p 2.45e–11 1.25e–13 2.33e–14 1.67e–14 3.88e–14 6.09e–14 1.07e–14
turbine2 q 2.08e–12 1.76e–13 3.14e–14 2.01e–14 3.97e–14 8.96e–14 1.43e–14
turbine3 r 1.71e–11 8.50e–14 1.70e–14 9.58e–15 9.96e+00 4.90e–14 5.33e–15
jetEngine s OoM 1.62e–08 1.50e–11 1.03e–11 1.32e+05 1.82e–11 5.46e–12
Programs implementing polynomial functions with polynomial preconditions
floudas2_6 t 5.15e–13 5.87e–13 7.88e–13 5.94e–13 5.98e–13 7.45e–13 4.56e–14
floudas3_3 u 5.81e–13 4.05e–13 5.76e–13 4.29e–13 2.65e–13 4.32e–13 1.48e–13
floudas3_4 v 2.78e–15 2.56e–15 2.23e–15 1.78e–15 1.23e–15 2.23e–15 3.80e–16
floudas4_6 w 1.82e–15 1.33e–15 1.23e–15 8.89e–16 8.89e–16 1.12e–15 2.35e–16
floudas4_7 x 1.06e–14 1.31e–14 1.80e–14 1.32e–14 7.44e–15 1.71e–14 7.31e–15
Programs involving conditional statements
cav10 y 2.91e+00 2.91e+00 − − − 1.02e+02 2.90e+00
perin z 2.01e+00 2.01e+00 − − − 4.91e+01 2.00e+00
Programs implementing transcendental functions
logexp α 2.52e–15 − 2.07e–15 1.99e–15 − − 1.19e–15
sphere β 1.53e–14 − 1.29e–14 8.21e–15 − − 5.05e–15
hartman3 γ 2.99e–13 − 1.34e–14 4.97e–15 − − 1.10e–15
hartman6 δ 5.09e–13 − 2.55e–14 8.19e–15 − − 2.20e–15

program i is issued from the global optimization literature and implements the problem
Himmilbeau in [Ali et al. 2005].

— The 10 programs implement semialgebraic functions: j-l and p-s come from physics, m
and o from biology, n from control. All these programs are used to compare FPTaylor
and Rosa in [Solovyev et al. 2015].

— The five programs t-x come from the global optimization literature and correspond
respectively to Problem 2.6, 3.3, 3.4, 4.6 and 4.7 in [Floudas and Pardalos 1990]. We
selected them as they typically involve nontrivial polynomial preconditions (i.e. X is
not a simple box but rather a set defined with conjunction of nonlinear polynomial
inequalities).

— The two programs y-z involve conditional statements and come from the static analysis
literature. They correspond to the two respective running examples of [Ghorbal et al.
2010] (Fluctuat’s divergence error computation) and [Alexandre Maréchal 2014]. The
first program y is used in the Rosa paper [Darulova and Kuncak 2014] for the analysis
of branches discontinuity error.

— The last four programs α-γ involve transcendental functions. The two programs α and β
are used in the FPTaylor paper [Solovyev et al. 2015] and correspond respectively to the
program logexp (see Example 3.3) and the program sphere taken from NASA World
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Wind Java SDK [Nasa 2011]. The 2 programs γ and δ respectively implement the func-
tions coming from the optimization problems Hartman 3 and Hartman 6 in [Ali et al.
2005], involving both sums of exponential functions composed with quadratic polynomi-
als.

Tool comparison settings. The five tools Real2Float, Rosa, FPTaylor, Gappa and Fluc-
tuat can handle programs with input variable uncertainties as well as any floating-point
precision, but for the sake of conciseness, we only considered to compare their performance
on programs implemented in double (ε = 2−53) precision floating-point. By contrast with
preliminary experiments presented in Section 1.1 where we considered floating-point input
variables, we run each tool by considering all input variables as real variables, thus we apply
the rounding operation to all of them. For the programs involving transcendental functions,
we followed the same procedure as in FPTaylor while adjusting the precision ε (fR) = 1.5ε
for each special function fR ∈ {sin, cos, log, exp}. Each univariate transcendental function
is approximated from below (resp. from above) using suprema (resp. infima) of linear or
quadratic polynomials (see Example 3.3 for the case of program logexp).

4.2. Comparison Results
Comparison results for error bound computation are presented in Table II. Among the tools
using simple rounding model (Real2Float, Rosa and FPTaylor), our Real2Float tool com-
putes the tightest upper bounds for 7 (resp. 4) out of 30 benchmarks when comparing with
Rosa and FPTaylor (resp. all tools). For all programs j-s involving semialgebraic func-
tions and the four programs α-δ involving transcendental functions, FPTaylor computes
the tightest bounds, when comparing with Real2Float and Rosa5. One current limitation
of Real2Float is its ability to manipulate symbolic expressions, e.g. computing rational
function derivatives or yielding reduction to the same denominator. In particular, the anal-
ysis of program s aborted after running out of memory (meaning of the symbol OoM). The
FPTaylor tool is better suited to handle programs that exhibit such rational functions and
also includes an interface with the Maxima computer algebra system [Maxima 2013] to
perform symbolic simplifications.
We mention that the interested reader can find more detailed experimental comparisons

between the three tools implementing improved rounding models (FPTaylor, Fluctuat
and Gappa) in [Solovyev et al. 2015, Section 5.2]. Note that FPTaylor provides the tightest
bounds for 24 out of 30 benchmarks. The Gappa software provides the tightest bounds for
8 out of 30 benchmarks while being almost always faster than other tools. As emphasized
in [Solovyev et al. 2015], Gappa can sometimes compute more precise bounds with more
advanced user-provided hints. Note that Fluctuat provides sometimes tighter bounds
than Gappa for most rational functions while being always slower. It would be worth
implementing the same improved rounding model in Real2Float to perform numerical
comparisons.
To the best of our knowledge, Real2Float is the only academic tool which is able to

handle the general class of programs involving either transcendental functions or condi-
tional statements. The FPTaylor (resp. Rosa) tool does not currently handle conditionals
(resp. transcendental functions), as meant by the symbol − in the corresponding column
entries. However, an interface bridging the FPTaylor and Rosa tools would provide each
other with the relevant missing features. These error bound comparison results together
with their corresponding execution timings (given in Table III) are used to plot the data
points shown in Figure 7. For each benchmark identified by id, let tReal2Float (in 3rd column
of Table III) refer to the execution time of Real2Float to obtain the corresponding upper
bound εReal2Float (in 3rd column of Table II).

5The running execution times of Rosa may change with more recent versions
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Table III. Comparison of execution times (in seconds) for absolute roundoff error bounds among tools im-
plementing either simple or advanced rounding model. For each model, the winner results are emphasized
using bold fonts.

Simple rounding Improved rounding
Benchmark id Real2Float Rosa FPTaylor FPTaylor Gappa Fluctuat
rigidBody1 a 0.58 0.13 1.84 0.41 0.10 0.29
rigidBody2 b 0.26 2.17 3.01 0.46 0.15 0.52
kepler0 c 0.22 3.78 4.93 6.96 0.44 0.70
kepler1 d 17.6 63.1 9.33 4.90 0.72 0.37
kepler2 e 16.5 106 19.1 13.8 1.58 2.04
sineTaylor f 1.05 3.50 2.91 0.11 0.16 0.55
sineOrder3 g 0.40 0.48 1.90 0.40 0.06 0.22
sqroot h 0.14 0.77 2.70 0.44 0.19 0.40
himmilbeau i 0.20 2.51 3.28 0.49 0.09 1.00
doppler1 j 6.80 6.35 6.13 1.34 0.08 0.77
doppler2 k 6.96 6.54 6.88 1.57 0.08 0.79
doppler3 l 6.84 6.37 9.13 1.50 0.07 0.78
verhulst m 0.51 1.36 1.37 0.40 0.05 0.25
carbonGas n 0.83 6.59 3.73 0.52 0.15 2.03
predPrey o 0.87 4.12 1.78 0.48 0.04 5.14
turbine1 p 72.2 3.09 4.38 0.53 0.21 5.79
turbine2 q 4.72 7.75 3.25 0.60 0.12 4.76
turbine3 r 74.5 4.57 3.46 0.61 0.20 5.84
jetEngine s OoM 125 9.79 3.06 0.31 31.2
floudas2_6 t 2.49 159 15.9 14.3 2.35 26.8
floudas3_3 u 0.45 13.9 5.64 13.9 0.76 6.41
floudas3_4 v 0.09 0.49 1.47 1.27 0.07 1.01
floudas4_6 w 0.07 1.20 0.91 0.37 0.05 1.69
floudas4_7 x 0.13 21.8 1.64 0.39 0.07 0.53
cav10 y 0.23 0.59 − − − 1.26
perin z 0.49 2.74 − − − 1.19
logexp α 1.05 − 1.10 0.39 − −
sphere β 0.05 − 2.04 3.69 − −
hartman3 γ 2.02 − 32.5 27.8 − −
hartman6 δ 119 − 364 259 − −

Now, let us define the execution times tRosa, tFPTaylor and the corresponding error bounds
εRosa, εFPTaylor. Then the x-axis coordinate of the point id (resp. id) displayed in Figure 7(a)
(resp. 7(b)) corresponds to the logarithm of the ratio between the execution time of Rosa
(resp. FPTaylor) and Real2Float, i.e. log tRosa

tReal2Float
(resp. log tFPTaylor

tReal2Float
). Similarly, the y-axis

coordinate of the point id (resp. id) is log εRosa
εReal2Float

(resp. log εFPTaylor
εReal2Float

).
The axes of the coordinate system within Figure 7 divide the plane into four quad-

rants: the nonnegative quadrant (+,+) contains data points referring to programs for which
Real2Float computes the tighter bounds in less time, the second one (+,−) contains points
referring to programs for which Real2Float is faster but less accurate, the non-positive
quadrant (−,−) for which Real2Float is slower and computes coarser bounds and the last
one (−,+) for which Real2Float is slower but more accurate.
On the quadrant (+,−) of Figure 7(b), one can see that Real2Float computes bound

which are less accurate than FPTaylor on semialgebraic and transcendental programs, but
faster for most of them. The quadrant (−,−) indicates that Rosa and FPTaylor are more
precise and efficient than Real2Float on the three programs p-r. The presence of 18 plots on
the nonnegative quadrant (+,+) of Figure 7(a) and Figure 7(b) confirms that Real2Float
does not compromise efficiency at the expense of accuracy, in particular for programs im-
plementing polynomials with nontrivial polynomial preconditions.
For each program implementing polynomials, our tool has an option to provide for-

mal guarantees for the corresponding roundoff error bound εReal2Float. Using the formal
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Fig. 7. Comparisons of execution times and upper bounds of roundoff errors obtained with Rosa and
FPTaylor, relatively to Real2Float.
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mechanism described in Section 2.3, Real2Float formally checks inside Coq the SOS cer-
tificates generated by the SDP solver for interval enclosures of linear error terms l. The
FPTaylor (resp. Gappa) software has a similar option to provide formal scripts which can
be checked inside the Hol-light (resp. Coq) proof assistant, for programs involving poly-
nomial and transcendental functions. For formal verification, our tool is limited compared
with FPTaylor and Gappa as it cannot handle non-polynomial programs.

Table IV. Comparisons of informal and formal execution times to certify roundoff error bounds obtained
with Real2Float, FPTaylor and Gappa.

Informal execution time Formal execution time
Benchmark id Real2Float FPTaylor Gappa Real2Float FPTaylor Gappa
rigidBody1 a 0.58 1.84 0.10 0.36 10.2 2.58
rigidBody2 b 0.26 3.01 0.15 4.81 32.3 4.90
kepler0 c 0.22 4.93 0.44 0.29 45.5 13.0
kepler1 d 17.6 9.33 0.72 449 90.5 28.9
kepler2 e 16.5 19.1 1.58 297 274 59.3
sineTaylor f 1.05 2.91 0.16 7.54 42.1 13.6
sineOrder3 g 0.40 1.90 0.06 0.34 10.4 6.74
sqroot h 0.14 2.70 0.19 0.80 16.8 12.9
himmilbeau i 0.20 3.28 0.09 0.89 32.2 3.73

Next, we describe the formal proof results obtained while verifying the bounds for the nine
polynomial programs a-i. Table IV allows us to compare the execution times of Real2Float,
FPTaylor and Gappa required to analyze the nine programs in both informal (i.e. without
verification inside Coq or Hol-light) and formal settings. Comparing Real2Float with
FPTaylor, the latter performs better than the former to analyze formally the two programs
d-e but yields coarser bounds. Our formal procedure is less computationally efficient when
the degree (resp. number of variables) of the SOS polynomials grows, as for these two
programs. The informal speedup ratio is greater than 3 for the five programs a, c and g-i.
The table shows that the speedup ratio in the formal setting is higher than in the informal
setting for these five programs. The explanation could be that Coq is inherently faster than
Hol-light at checking computations while delegating expensive ones to a virtual machine
(being part of Coq’s trusted base). Either SOS or Taylor methods could work with the two
proof assistants Hol-light and Coq (with natural changes in execution time) and it would
be meaningful to compare similar methods in a given proof assistant (SOS techniques in
Hol-light or Taylor methods in Coq) but both are not yet fully available. The Gappa
tool performs better to analyze the two programs d-e but is less accurate. This is in contrast
with all other programs where the formal verification with Real2Float is faster than with
Gappa while providing coarser bounds (except program f where Gappa yields pessimistic
results) Our formal verification framework is a work in progress as it only allows to check
correctness of SOS certificates for polynomial programs. The step from formal verification
of the step translating the inequality to a statement of explicit syntactic form “Forall x,
|rounded(f(x)) - f(x)| <= e" is missing and requires more software engineering. Thus, the
timings presented in Table IV for Real2Float do not include formal computation of the
symbolic second-order derivatives of r w.r.t. e as well as the cost of bounding them using
formal interval arithmetic.
At the moment (and in contrast to our method) the Rosa tool does not formally verify the

output bound provided by the SMT solver, but such a feature could be embedded through
an interface with the smtcoq framework [Armand et al. 2011]. This latter tool allows the
proof witness generated by an SMT solver to be formally (and independently) re-checked
inside Coq. The smtcoq framework uses tactics based on computational reflection to enable
this re-checking to be performed efficiently.
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5. CONCLUSION AND PERSPECTIVES
Our verification framework allows us to over-approximate roundoff errors occurring while
executing nonlinear programs implemented with finite precision. The framework relies
on semidefinite optimization, ensuring certified approximations. Our approach extends to
medium-size nonlinear problems, due to automatic detection of the correlation sparsity pat-
tern of input variables and roundoff error variables. Experimental results indicate that the
optimization algorithm implemented in our Real2Float software package can often pro-
duce bounds of quality similar to the ones provided by the competitive solvers Rosa and
FPTaylor, while saving a significant amount of CPU time. In addition, Real2Float pro-
duces sums of squares certificates which guarantee the correctness of these upper bounds
and can can be efficiently verified inside the Coq proof assistant.
This work yields several directions for further research investigation. First, we intend to

increase the size of graspable instances by exploiting the SDP relaxations specifically tuned
to the case when a program implements the sum of many rational functions [Bugarin et al.
2015]. Symmetry patterns of certain program sub-classes could be tackled with the SDP
hierarchies from [Riener et al. 2013]. We could also provide roundoff error bounds for more
general programs, involving either finite or infinite conditional loops and additional compar-
isons with the results described in [Darulova and Kuncak 2016]. A preliminary mandatory
step is to be able to generate inductive invariants with SDP relaxations. Another inter-
esting direction would be to apply the method used in [Lasserre 2011] to derive sequences
of lower roundoff error bounds together with SDP-based certificates. On the formal proof
side, we could benefit from floating-point/interval arithmetic libraries available inside Coq,
first to improve the efficiency of the formal polynomial checker, currently relying on exact
arithmetic, then to extend the formal verification to non-polynomial programs. The method
implemented in FPTaylor happens to be efficient and precise to analyze various programs
and it would be interesting to design a procedure combining FPTaylor with our tool on
specific subsets of input constraints. Long-term research perspectives include theoretical
study of why/when SOS performs better as well as satisfactory complexity results about
SOS certificates (w.r.t. size of polynomials). Finally, we plan to combine this optimization
framework with the procedure in [Gao and Constantinides 2015] to improve the automatic
reordering of arithmetic expressions, allowing more efficient optimization of FPGA imple-
mentations.

NONLINEAR PROGRAM BENCHMARKS

let box_rigidbody1 x1 x2 x3 = [(−15, 15); (−15, 15); (−15, 15)]; ;
let obj_rigidbody1 x1 x2 x3 = [(−x1 ∗ x2 − 2 ∗ x2 ∗ x3 − x1 − x3, 0)]; ;

let box_rigidbody2 x1 x2 x3 = [(−15, 15); (−15, 15); (−15, 15)]; ;
let obj_rigidbody2 x1 x2 x3 =
[(2 ∗ x1 ∗ x2 ∗ x3 + 3 ∗ x3 ∗ x3 − x2 ∗ x1 ∗ x2 ∗ x3 + 3 ∗ x3 ∗ x3 − x2, 0)]; ;

let box_kepler0 x1 x2 x3 x4 x5 x6 = [(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler0 x1 x2 x3 x4 x5 x6 =
[(x2 ∗ x5 + x3 ∗ x6 − x2 ∗ x3 − x5 ∗ x6 + x1 ∗ (−x1 + x2 + x3 − x4 + x5 + x6), 0)]; ;

let box_kepler1 x1 x2 x3 x4 = [(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler1 x1 x2 x3 x4 = [(x1 ∗ x4 ∗ (−x1 + x2 + x3 − x4)
+x2 ∗ (x1 − x2 + x3 + x4) + x3 ∗ (x1 + x2 − x3 + x4)
−x2 ∗ x3 ∗ x4 − x1 ∗ x3 − x1 ∗ x2 − x4, 0)]; ;

let box_kepler2 x1 x2 x3 x4 x5 x6 = [(4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36); (4, 6.36)]; ;
let obj_kepler2 x1 x2 x3 x4 x5 x6 = [(x1 ∗ x4 ∗ (−x1 + x2 + x3
−x4 + x5 + x6) + x2 ∗ x5 ∗ (x1 − x2 + x3 + x4 − x5 + x6)
+x3 ∗ x6 ∗ (x1 + x2 − x3 + x4 + x5 − x6)− x2 ∗ x3 ∗ x4
−x1 ∗ x3 ∗ x5 − x1 ∗ x2 ∗ x6 − x4 ∗ x5 ∗ x6, 0)]; ;

let box_sineTaylor x = [(−1.57079632679, 1.57079632679)]; ;
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let obj_sineTaylor x = [(x− (x ∗ x ∗ x)/6.0
+(x ∗ x ∗ x ∗ x ∗ x)/120.0
−(x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x)/5040.0, 0)]; ;

let box_sineOrder3 z = [(−2, 2)]; ;
let obj_sineOrder3 z = [(0.954929658551372 ∗ z − 0.12900613773279798 ∗ (z ∗ z ∗ z), 0)]; ;

let box_sqroot y = [(0, 1)]; ;
let obj_sqroot y = [(1.0 + 0.5 ∗ y − 0.125 ∗ y ∗ y + 0.0625 ∗ y ∗ y ∗ y − 0.0390625 ∗ y ∗ y ∗ y ∗ y, 0)]; ;

let box_himmilbeau x1 x2 = [(−5, 5); (−5, 5)]; ;
let obj_himmilbeau x1 x2 = [(
(x1 ∗ x1 + x2 − 11) ∗ (x1 ∗ x1 + x2 − 11) + (x1 + x2 ∗ x2 − 7) ∗ (x1 + x2 ∗ x2 − 7), 0)]; ;

let box_doppler1 u v T = [(−100, 100); (20, 20e3); (−30, 50)]; ;
let obj_doppler1 u v T = [(let t1 = 331.4 + 0.6 ∗ T in −t1 ∗ v/((t1 + u) ∗ (t1 + u)), 0)]; ;

let box_doppler2 u v T = [(−125, 125); (15, 25e3); (−40, 60)]; ;
let obj_doppler2 u v T = [(let t1 = 331.4 + 0.6 ∗ T in −t1 ∗ v/((t1 + u) ∗ (t1 + u)), 0)]; ;

let box_doppler3 u v T = [(−30, 120); (320, 20300); (−50, 30)]; ;
let obj_doppler3 u v T = [(let t1 = 331.4 + 0.6 ∗ T in −t1 ∗ v/((t1 + u) ∗ (t1 + u)), 0)]; ;

let box_verhulst x = [(0.1, 0.3)]; ;
let obj_verhulst x = [(4 ∗ x/(1 + (x/1.11)), 0)]; ;

let box_carbonGas v = [(0.1, 0.5)]; ;
let obj_carbonGas v = [(let p = 3.5e7 in let a = 0.401 in
let b = 42.7e–6 in let t = 300 in let n = 1000 in
(p + a ∗ (n/v) ∗ ∗2) ∗ (v − n ∗ b)− 1.3806503e–23 ∗ n ∗ t, 0)]; ;

let box_predPrey x = [(0.1, 0.3)]; ;
let obj_predPrey x = [(4 ∗ x ∗ x/(1 + (x/1.11) ∗ ∗2), 0)]; ;

let box_turbine1 v w r = [(−4.5,−0.3); (0.4, 0.9); (3.8, 7.8)]; ;
let obj_turbine1 v w r = [(3 + 2/(r ∗ r)− 0.125 ∗ (3− 2 ∗ v) ∗ (w ∗ w ∗ r ∗ r)/(1− v)− 4.5, 0)]; ;

let box_turbine2 v w r = [(−4.5,−0.3); (0.4, 0.9); (3.8, 7.8)]; ;
let obj_turbine2 v w r = [(6 ∗ v − 0.5 ∗ v ∗ (w ∗ w ∗ r ∗ r)/(1− v)− 2.5, 0)]; ;

let box_turbine3 v w r = [(−4.5,−0.3); (0.4, 0.9); (3.8, 7.8)]; ;
let obj_turbine3 v w r = [(3− 2/(r ∗ r)− 0.125 ∗ (1 + 2 ∗ v) ∗ (w ∗ w ∗ r ∗ r)/(1− v)− 0.5, 0)]; ;

let box_jet x1 x2 = [(−5, 5); (−20, 5)]; ;
let obj_jet x1 x2 = [(
x1 + ((2 ∗ x1 ∗ ((3 ∗ x1 ∗ x1 + 2 ∗ x2 − x1)/(x1 ∗ x1 + 1))
∗((3 ∗ x1 ∗ x1 + 2 ∗ x2 − x1)/(x1 ∗ x1 + 1)− 3)
+x1 ∗ x1 ∗ (4 ∗ ((3 ∗ x1 ∗ x1 + 2 ∗ x2 − x1)/(x1 ∗ x1 + 1))− 6))
∗(x1 ∗ x1 + 1) + 3 ∗ x1 ∗ x1 ∗ ((3 ∗ x1 ∗ x1 + 2 ∗ x2 − x1)/(x1 ∗ x1 + 1))
+x1 ∗ x1 ∗ x1 + x1 + 3 ∗ ((3 ∗ x1 ∗ x1 + 2 ∗ x2 − x1)/(x1 ∗ x1 + 1))), 0)]; ;

let box_floudas2_6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 =
[(0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1)]; ;
let cstr_floudas2_6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 = [
−4 + 2 ∗ x1 + 6 ∗ x2 + 1 ∗ x3 + 0 ∗ x4 + 3 ∗ x5 + 3 ∗ x6 + 2 ∗ x7 + 6 ∗ x8 + 2 ∗ x9 + 2 ∗ x10;
22− (6 ∗ x1 − 5 ∗ x2 + 8 ∗ x3 − 3 ∗ x4 + 0 ∗ x5 + 1 ∗ x6 + 3 ∗ x7 + 8 ∗ x8 + 9 ∗ x9− 3 ∗ x10);
−6− (5 ∗ x1 + 6 ∗ x2 + 5 ∗ x3 + 3 ∗ x4 + 8 ∗ x5 − 8 ∗ x6 + 9 ∗ x7 + 2 ∗ x8 + 0 ∗ x9− 9 ∗ x10);
−23− (9 ∗ x1 + 5 ∗ x2 + 0 ∗ x3 − 9 ∗ x4 + 1 ∗ x5 − 8 ∗ x6 + 3 ∗ x7 − 9 ∗ x8 − 9 ∗ x9− 3 ∗ x10);
−12− (−8 ∗ x1 + 7 ∗ x2 − 4 ∗ x3 − 5 ∗ x4 − 9 ∗ x5 + 1 ∗ x6 − 7 ∗ x7 − 1 ∗ x8 + 3 ∗ x9− 2 ∗ x10)]; ;
let obj_floudas2_6 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 = [(
48 ∗ x1 + 42 ∗ x2 + 48 ∗ x3 + 45 ∗ x4 + 44 ∗ x5 + 41 ∗ x6 + 47 ∗ x7
+42 ∗ x8 + 45 ∗ x9 + 46 ∗ x10
−50 ∗ (x1 ∗ x1 + x2 ∗ x2 + x3 ∗ x3 + x4 ∗ x4 + x5 ∗ x5
+x6 ∗ x6 + x7 ∗ x7 + x8 ∗ x8 + x9 ∗ x9 + x10 ∗ x10), 0)]; ;

let box_floudas3_3 x1 x2 x3 x4 x5 x6 = [(0, 6); (0, 6); (1, 5); (0, 6); (1, 5); (0, 10)]; ;
−(x2 − 2) ∗ ∗2− (x3 − 1) ∗ ∗2− (x4 − 4) ∗ ∗2− (x5 − 1) ∗ ∗2− (x6 − 4) ∗ ∗2, 0)]; ;
let cstr_floudas3_3 x1 x2 x3 x4 x5 x6 =
[(x3 − 3) ∗ ∗2 + x4 − 4; (x5 − 3) ∗ ∗2 + x6 − 4;
2− x1 + 3 ∗ x2; 2 + x1 − x2; 6− x1 − x2; x1 + x2 − 2]; ;
let obj_floudas3_3 x1 x2 x3 x4 x5 x6 = [(−25 ∗ (x1 − 2) ∗ ∗2
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−(x2 − 2) ∗ ∗2− (x3 − 1) ∗ ∗2− (x4 − 4) ∗ ∗2
−(x5 − 1) ∗ ∗2− (x6 − 4) ∗ ∗2, 0)]; ;

let box_floudas3_4 x1 x2 x3 = [(0, 2); (0, 2); (0, 3)]; ;
let cstr_floudas3_4 x1 x2 x3 = [
4− x1 − x2 − x3; 6− 3 ∗ x2 − x3;
−0.75 + 2 ∗ x1 − 2 ∗ x3 + 4 ∗ x1 ∗ x1 − 4 ∗ x1 ∗ x2
+4 ∗ x1 ∗ x3 + 2 ∗ x2 ∗ x2 − 2 ∗ x2 ∗ x3 + 2 ∗ x3 ∗ x3]; ;
let obj_floudas3_4 x1 x2 x3 = [(−2 ∗ x1 + x2 − x3, 0)]; ;

let box_floudas4_6 x1 x2 = [(0, 3); (0, 4)]; ;
let cstr_floudas4_6 x1 x2 = [
2 ∗ x1 ∗ ∗4− 8 ∗ x1 ∗ ∗3 + 8 ∗ x1 ∗ x1 − x2;
4 ∗ x1 ∗ ∗4− 32 ∗ x1 ∗ ∗3 + 88 ∗ x1 ∗ x1 − 96 ∗ x1 + 36− x2]; ;
let obj_floudas4_6 x1 x2 = [(−x1 − x2, 0)]; ;

let box_floudas4_7 x1 x2 = [(0, 2); (0, 3)]; ;
let cstr_floudas4_7 x1 x2 = [−2 ∗ x1 ∗ ∗4 + 2− x2]; ;
let obj_floudas4_7 x1 x2 = [(−12 ∗ x1 − 7 ∗ x2 + x2 ∗ x2, 0)]; ;

let box_cav10 x = [(0, 10)]; ;
let obj_cav10 x = [( if (x ∗ x− x > 0) then x ∗ 0.1 else x ∗ x + 2, 0)]; ;

let box_perin x y = [(1, 7); (−2, 7)]; ;
let cstr_perin x y = [x− 1; y + 2; x− y; 5− y − x]; ;
let obj_perin x y = [( if (x ∗ x + y ∗ y ≤ 4) then y ∗ x else 0, 0)]; ;

let box_logexp x = [(−8, 8)]; ;
let obj_logexp x = [(log(1 + exp(x)), 0)]; ;

let box_sphere x r y z = [(−10, 10); (0, 10); (−1.570796, 1.570796); (−3.14159265, 3.14159265)]; ;
let obj_sphere x r y z = [(x + r ∗ sin(y) ∗ cos(z), 0)]; ;

let box_hartman3 x1 x2 x3 = [(0, 1); (0, 1); (0, 1)]; ;
let obj_hartman3 x1 x2 x3 = [(
let e1 = 3.0 ∗ (x1 − 0.3689) ∗ ∗2 + 10.0 ∗ (x2 − 0.117) ∗ ∗2 + 30.0 ∗ (x3 − 0.2673) ∗ ∗2 in
let e2 = 0.1 ∗ (x1 − 0.4699) ∗ ∗2 + 10.0 ∗ (x2 − 0.4387) ∗ ∗2 + 35.0 ∗ (x3 − 0.747) ∗ ∗2 in
let e3 = 3.0 ∗ (x1 − 0.1091) ∗ ∗2 + 10.0 ∗ (x2 − 0.8732) ∗ ∗2 + 30.0 ∗ (x3 − 0.5547) ∗ ∗2 in
let e4 = 0.1 ∗ (x1 − 0.03815) ∗ ∗2 + 10.0 ∗ (x2 − 0.5743) ∗ ∗2 + 35.0 ∗ (x3 − 0.8828) ∗ ∗2 in
−(1.0 ∗ exp(−e1) + 1.2 ∗ exp(−e2) + 3.0 ∗ exp(−e3) + 3.2 ∗ exp(−e4)), 0)]; ;

let box_hartman6 x1 x2 x3 x4 x5 x6 = [(0, 1); (0, 1); (0, 1); (0, 1); (0, 1); (0, 1)]; ;
let obj_hartman6 x1 x2 x3 x4 x5 x6 = [(
let e1 = 10.0 ∗ (x1 − 0.1312) ∗ ∗2 + 3.0 ∗ (x2 − 0.1696) ∗ ∗2 + 17. ∗ (x3 − 0.5569) ∗ ∗2 + 3.5 ∗ (x4 − 0.0124) ∗ ∗2
+1.7 ∗ (x5 − 0.8283) ∗ ∗2 + 8.0 ∗ (x6 − 0.5886) ∗ ∗2 in
let e2 = 0.05 ∗ (x1 − 0.2329) ∗ ∗2 + 10 ∗ (x2 − 0.4135) ∗ ∗2 + 17.0 ∗ (x3 − 0.8307) ∗ ∗2 + 0.1 ∗ (x4 − 0.3736) ∗ ∗2
+8.0 ∗ (x5 − 0.1004) ∗ ∗2 + 14.0 ∗ (x6 − 0.9991) ∗ ∗2 in
let e3 = 3.0 ∗ (x1 − 0.2348) ∗ ∗2 + 3.5 ∗ (x2 − 0.1451) ∗ ∗2 + 1.7 ∗ (x3 − 0.3522) ∗ ∗2 + 10.0 ∗ (x4 − 0.2883) ∗ ∗2
+17.0 ∗ (x5 − 0.3047) ∗ ∗2 + 8.0 ∗ (x6 − 0.665) ∗ ∗2 in
let e4 = 17.0 ∗ (x1 − 0.4047) ∗ ∗2 + 8 ∗ (x2 − 0.8828) ∗ ∗2 + 0.05 ∗ (x3 − 0.8732) ∗ ∗2 + 10.0 ∗ (x4 − 0.5743) ∗ ∗2
+0.1 ∗ (x5 − 0.1091) ∗ ∗2 + 14.0 ∗ (x6 − 0.0381) ∗ ∗2 in
−(1.0 ∗ exp(−e1) + 1.2 ∗ exp(−e2) + 3.0 ∗ exp(−e3) + 3.2 ∗ exp(−e4)), 0)]; ;
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