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Abstract—The standard Gaussian Process regression (GP) is usually formulated under stationary hypotheses: The noise power

is considered constant throughout the input space and the covariance of the prior distribution is typically modeled as depending

only on the difference between input samples. These assumptions can be too restrictive and unrealistic for many real-world

problems. Although nonstationarity can be achieved using specific covariance functions, they require a prior knowledge of the

kind of nonstationarity, not available for most applications. In this paper we propose to use the Laplace approximation to make

inference in a divisive GP model to perform nonstationary regression, including heteroscedastic noise cases. The log-concavity

of the likelihood ensures a unimodal posterior and makes that the Laplace approximation converges to a unique maximum.

The characteristics of the likelihood also allow to obtain accurate posterior approximations when compared to the Expectation

Propagation (EP) approximations and the asymptotically exact posterior provided by a Markov Chain Monte Carlo implementation

with Elliptical Slice Sampling (ESS), but at a reduced computational load with respect to both, EP and ESS.

Index Terms—Gaussian Processes, Nonstationary Regression, Laplace approximation, Heteroscedastic Regression
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1 INTRODUCTION

GAUSSIAN Processes (GPs) [1] are a powerful
nonparametric Bayesian tool for nonlinear re-

gression. GPs model the observations as the sum of
an unknown latent function plus a Gaussian noise.
Unlike other regression methods, GPs proceed in a
Bayesian fashion to infer the posterior distribution of
the unknown function through the likelihood and a
prior distribution placed over the unknown function.
So, they produce probabilistic predictions in a natu-
ral way. GPs usually employ a reduced number of
hyperparameters which can be tuned with a simple
continuous optimization of the evidence: This make
them resilient to overfitting.

All these advantages come to a price: The O(N3)
time scalability with the number of training samples.
However, it is possible to achieve a better scalability
using approximate inference with sparse GPs [2]–[4],
making inference affordable for large-scale data sets.
For a more exhaustive review on GPs see [5].

Stationarity is a frequent assumption in the stan-
dard GP regression. The noise is assumed ho-
moscedastic, i.e., with constant power throughout
the input space. Stationary covariance functions are
typically employed, since nonstationary covariance
functions require previous knowledge of the type of
nonstationarity.

• The authors are with the Department of Signal Theory and Commu-
nications, Universidad Carlos III de Madrid, Spain.
E-mail: {lmunoz, miguel, arfv}@tsc.uc3m.es.
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Heteroscedastic GP models have been also pro-
posed in the literature. Most of them are based on
[6], where two GPs are used to model the mean and
the log-noise power, respectively. As the posterior,
the evidence, and the predictive distribution of this
heteroscedastic model are not analytically tractable,
Markov Chain Monte Carlo (MCMC) methods or
approximate inference algorithms are needed to make
inference on the model. Gibbs sampling is proposed
in [6], point estimation of the log-noise is proposed in
[7] and improved in [8], an iterative EP posterior ap-
proximation is described in [9], and a variational ap-
proximation is proposed in [10]. The main drawback
of this heteroscedastic model is that the likelihood
is not log-concave, which limits the application of
approximate inference techniques. In contrast, using
natural parameters to reformulate the model in [6],
as proposed in [11], leads to a log-concave likelihood
and, then, to a unimodal posterior.

A GP Product Model (GPPM) is introduced in [12],
where amplitude nonstationarities are modeled with
the pointwise product of two latent functions. GPPM
cannot be solved analytically, so that an EP posterior
approximation is proposed. Since the likelihood is not
log-concave, damping and skipping techniques are
applied to alleviate EP convergence problems. Due to
the Gauss-Hermite approximations that are needed to
approximate the calculations of the moments in the
EP algorithm, it is not possible to use a Maximum
Likelihood of level II (ML-II) implementation to tune
the hyperparameters. On the other hand, the GPPM
model does not consider input-dependent noise.

The Divisive GP (DGP) model introduced in [13]
achieves amplitude nonstationarity, including het-
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eroscedastic noise cases, combining two GPs. The ex-
perimental results of the proposed EP method showed
the high quality of the posterior approximations com-
pared to an MCMC implementation using Elliptical
Slice Sampling (ESS) [14]. The regression performance
on different data sets is better than the standard GP
and other heteroscedastic GP methods such as the
Variational Heteroscedastic GP Regresion (VHGPR)
described in [10]. Although the likelihood of the DGP
model in [13] is log-concave, which favors the conver-
gence of EP [15], it has not be proven to be a sufficient
condition for convergence. Another drawback of the
proposed EP method is the high computational cost.

In this paper we propose to use the Laplace ap-
proximation to make inference on the DGP model and
overcome the limitations of the EP method. The likeli-
hood log-concavity leads to a unimodal posterior that
guarantees the convergence of the Laplace method.
Besides, the characteristics of the likelihood allows
high-quality Gaussian posterior approximations, sim-
ilar to those produced by EP, but at a reduced com-
putational burden, as shown in the experiments, al-
lowing to apply the DGP model in larger data sets.

The rest of the paper is organized as follows: In Sec-
tion 2 we review the DGP. In Section 3 inference with
the Laplace method on the DGP model is described.
Experimental results on synthetic and real data sets
are shown in Section 4. Finally, in Section 5 we present
the main conclusions and further research lines.

2 DIVISIVE GPR MODEL

Given a set of input-output pairs, {xn, yn}Nn=1, where
xn ∈ RD and yn ∈ R, the DGP model describes the
observations as a possibly noisy stationary latent func-
tion divided by another stationary latent function that
models possible amplitude nonstationarities affecting
to both the latent function and the noise associated to
it. So, the observations can be expressed as

y(xn) =
f(xn)

g+(xn)
+ εn (1)

where f(x) is the noisy stationary latent function,
g+(x) is the modulating function, defined as the pos-
itive part of some noise-free latent function g(x), i.e.,
g+(x) = max(g(x), 0), and εn is an input-dependent
Gaussian noise term that can be modeled as ε ∼
N (0, c/(g+(x))2), where c is a noise power constant
scale factor.

The likelihood of the DGP model given an obser-
vation yn = y(xn) is:

p(yn|fn, gn) = N (yn|fn/g
+
n , c/(g

+
n )

2) (2)

where fn = f(xn) and g+n = g+(xn). It can be
appreciated that the DGP model also includes the
standard GPR if the latent function g is considered
constant.

We place GP priors on f and g, so that

f(x) ∼ GP(0, kf(x,x
′; θf ) + σ2

f δxx′)

g(x) ∼ GP(µ0, kg(x,x
′; θg))

(3)

where kf (x,x
′; θf ), kg(x,x

′; θg), are any valid covari-
ance functions, σ2

f is a homoscedastic noise hyperpa-
rameter multiplied by the Kronecker delta, and µ0

is the mean of the latent function g that, together
with the constant c, modulates the mean power of the
heteroscedastic noise. The model is fully specified by
the covariance functions, their hyperparameters (θf ,
σ2
f , θg), µ0, and the noise constant c. A more detailed

description of the DGP model can be found in [13].
With the likelihood in (2) and the GP priors in (3),

the posterior on the latent functions f and g at the
training points is given by1

p(f ,g|y) =
p(y|f ,g)p(f)p(g)

p(y)
(4)

where p(y) is the evidence or marginal likelihood.
As the posterior and the evidence cannot be com-

puted analytically, we need to apply approximate
inference techniques or MCMC methods to make
inference on the DGP model. Although EP reduces
the computational burden w.r.t. MCMC methods, as
shown in [13], the time required to train EP-DGP is
higher compared to the standard GP or other het-
eroscedastic GP methods such as VHGPR.

Here, we propose to use the Laplace approximation
to make inference on the DGP model. As the posterior
is unimodal [13], the Laplace method converges to a
unique maximum and the simplicity of the algorithm
makes it computationally appealing. The character-
istics of the likelihood in the DGP model lead to a
posterior with quite a Gaussian shape, which makes
the Laplace approximation a convenient alternative to
produce as good posterior approximations as EP-DGP,
but at a reduced computational cost.

3 LAPLACE APPROXIMATION FOR DGP

The Laplace method aims to approximate the pos-
terior p(f ,g|y) with a Gaussian distribution q(f ,g|y)
doing a second order Taylor expansion of log p(f ,g|y)
around the maximum of the posterior

q(φ|y) = N (φ|φ̂, A−1) (5)

where φ = [f, g], φ̂ = argmaxφ p(φ|y), and
A = −∇∇ log p(φ|y)|φ=φ̂ is the Hessian of the log-

posterior at φ̂ = [̂f , ĝ].
For the sake of simplicity we have considered an

equivalent model to that described in previous section

1. We use vectorized forms to refer to the observations and the
latent functions evaluated at the training points, so that y ≡
{yn}Nn=1

, f ≡ {fn}Nn=1
, and g ≡ {gn}Nn=1

. For the sake of
simplicity we omit the conditioning on the training inputs X and
the set of hyperparameters θ = [θf , σ

2

f
,θg, µ0]T .
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placing the offset µ0 of the latent function g in the
likelihood, so that the prior on g has zero mean.

The expression needed to maximize the log-
posterior w.r.t. the latent functions at the training
points removing the elements that do not depend on
f and g reduces to

Ψ(φ) = log p(y|φ)−
1

2
φTK−1φ (6)

where K is the 2N -square block diagonal matrix

K =

[

Kf 0N
0N Kg

]

(7)

Kf and Kg being the covariance matrices of the GP
priors on f and g, respectively, and 0N being a N-
square matrix with all its elements equal to zero.

Differentiating the functional Ψ(φ) w.r.t. φ

∇Ψ(φ) = ∇ log p(y|φ)−K−1φ (8)

where ∇ log p(y|φ) is a vector of length 2N with

[∇ log p(y|φ)]n =
∂ log p(yn|fn, gn)

∂fn

=
g′+n yn − fn

c

(9)

for 1 ≤ n ≤ N , with g′n = gn + µ0, and

[∇ log p(y|φ)]n =
∂ log p(yn′ |fn′ , gn′)

∂gn′

=







1

g′n′

−
y2n′g′n′ − yn′fn′

c
, g′n′ > 0

0, g′n′ ≤ 0

(10)

for N < n ≤ 2N , with n′ = n−N .
Then, making ∇Ψ(φ) = 0 we obtain the following

self-consistent equation at the maximum of ∇Ψ(φ)

φ̂ = K(∇ log p(y|φ̂)) (11)

Applying Newton search, we have

φnew = (K−1 +W )−1(Wφ+∇ log p(y|φ)) (12)

where W = −∇∇ log p(y|φ) is the negative Hessian of
the likelihood which yields the block diagonal matrix

W =

[

Wf Wfg

Wfg Wg

]

(13)

The n-th diagonal elements of each of the three diag-
onal matrices Wf , Wg , and Wfg are given by

[Wf ]nn = −
∂2 log p(yn|fn, gn)

∂f2
n

=
1

c
(14)

[Wg]nn = −
∂2 log p(yn|fn, gn)

∂g2n
=







1

g′2n
+

y2n
c
, g′n > 0

0, g′n ≤ 0
(15)

[Wfg]nn = −
∂2 log p(yn|fn, gn)

∂fn∂gn
=

{

−
yn
c
, g′n > 0

0, g′n ≤ 0
(16)

As the likelihood is (jointly) log-concave on f and g
[13], the Hessian results in a negative definite matrix.
This leads Ψ(φ) to be concave. Therefore, the Laplace
method converges to a unique maximum.

3.1 Approximate Marginal Likelihood

The approximate marginal likelihood needed to find
the set of hyperparameters using an ML-II implemen-
tation can be written as

log q(y) = −
1

2
φ̂

T
K−1φ̂+ log p(y|φ̂)−

1

2
log |B| (17)

where |B| = |K| · |K−1 +W |.
To calculate the derivatives of (17) w.r.t. the hyper-

parameters we follow a treatment similar to [5] for
the case of GP Classification with the Laplace method.
The details of these calculations are described in the
Appendix.

3.2 Predictive distribution

To calculate the approximate predictive distribution
for a test sample x∗, q(y∗|x∗), we need to calculate
the approximate predictive distributions for the latent
functions f and g. The approximate predictive distri-
bution q(f∗) is

q(f∗) =

∫

p(f∗|x∗, f)q(f ,g|y)dfdg =

= N (f∗|µf∗ , σ
2
f∗
)

(18)

where

µf∗ = kT
∗f (∇ log p(y|φ̂)|f )

σ2
f∗

= kf∗∗ − kT
∗f (Kf +W−1

f )−1k∗f

(19)

with [k∗f ]j = kf (x∗,xj), kf∗∗ = kf (x∗,x∗), and
∇ log p(y|φ̂)|f are the first N elements of vec-
tor ∇ log p(y|φ̂) (those corresponding to the partial
derivatives w.r.t. f evaluated at f̂ ).

Following a similar treatment, the approximate pre-
dictive distribution for g is also Gaussian, q(g∗) =
N (g∗|µg∗ , σ

2
g∗
), with

µg∗ = kT
∗g(∇ log p(y|φ̂)|g)

σ2
g∗

= kg∗∗ − kT
∗g(Kg +W−1

g )−1k∗g

(20)

and ∇ log p(y|φ̂)|g is a vector containing the last N
elements of ∇ log p(y|φ̂).

We have neglected the covariance term σf∗g∗ , as
the correlation between latent functions is expected
to be an artifact. Then, the approximate predictive
distribution for y∗ can be calculated as

q(y∗) =

∫

p(y∗|f∗, g∗)q(f∗)q(g∗)df∗dg∗ =

= Z∗(y∗) µ̃g∗t
Φ

(

−
µ̃g∗

σ̃g∗

) (21)
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where

Z∗(y∗) = N (µf∗ |µg∗y∗, c+ σ2
f∗

+ σ2
g∗
y2∗) (22)

and µ̃g∗t
is the mean of the Gaussian N (g∗|µ̃g∗ , σ̃

2
g∗
)

truncated to the positive values of g∗ with

σ̃2
g∗

=

(

σ−2
g∗

+
y2∗

c+ σ2
f∗

)−1

µ̃g∗ = σ̃2
g∗

(

µg∗

σ2
g∗

+
y∗µf∗

c+ σ2
f∗

) (23)

Although q(y∗) can be calculated analytically, there
is no analytical solution for the mean of q(y∗). In
general, the mean may not exist, as in the case of
Cauchy distributions. However, we can sidestep this
problem using the median as an estimator for the
targets. To do that, we can calculate the expression
of the cumulative distribution Fy∗

(α) following a
similar treatment than in the case of the ratio of two
correlated normal random variables [16], so that:

Fy∗
(α) = L

(

µg∗α− µf∗

a(α)
,
µg∗

σg∗

;
σg∗α

a(α)

)

+Φ

(

µg∗

σg∗

)

(24)

with
a(α) =

√

σ2
g∗
α2 + c+ σ2

f∗
(25)

where L(h, k, γ) is the standard bivariate normal inte-
gral

L(h, k, γ) =
1

2π
√

1− γ2
×

×

∫ ∞

h

∫ ∞

k

exp

(

−
x2 − 2γxy + y2

2(1− γ2)

)

dx dy

(26)

If µg∗/σg∗ → ∞, the cumulative distribution Fy∗
(α)

can be approximated by

Fy∗
(α) → Φ

(

µg∗α− µf∗

a(α)

)

(27)

To obtain the predictive median my∗
we need the

inverse cumulative distribution, i.e., my∗
= F−1

y∗
(1/2).

Although calculation of F−1
y∗

(α) is not analytically
tractable, we can approximate the solution using nu-
merical root-finding methods as the bisection or the
secant algorithms, for example. The same serves for
quantile estimation.

4 EXPERIMENTS

We present experimental results to evaluate the per-
formance of L-DGP compared with EP-DGP and
MCMC-DGP. We also include standard GPR, VHGPR,
and SVR as comparison benchmarks2. First, we assess
the quality of the Laplace approximation compared
with the other DGP methods on a synthetic data set.
Secondly, we consider several small and medium size
data sets, including a computational cost experiment
for one of the proposed problems.

2. The Matlab implementation of the DGP algorithms used
for the experiments is avaliable at http://github.com/lmunoz-
gonzalez/Divisive-Gaussian-Processes

4.1 Synthetic experiment

We have worked with the synthetic heteroscedastic
problem described in [17]. According to the proposed
mean and noise power distributions, we have gen-
erated 200 samples to train the three DGP methods
and the standard GP. For the standard GP, we have
used an Squared Exponential (SE) covariance func-
tion, given by kSE(x,x

′) = σ2
0exp(−‖x − x′‖2/2ℓ2).

For DGP methods, we have used an SE covariance
function for g(x) and an SE plus noise covariance
function for f(x). Assuming that f(x) is noisy, it
is possible to establish a tradeoff between the het-
eroscedastic noise component modeled by c/(g+(x))2

and the homoscedastic noise in f(x).
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Fig. 1. Experiment using the synthetic data set pro-

posed in [17] with 200 training samples. The estimated
mean and twice the standard deviation are given for

the standard GP prediction (dotted line). Median esti-
mation is provided for EP-DGP (dashed-dotted line), L-

DGP (dashed line), and MCMC-DGP (continuous line),

along with the quantiles 0.023 and 0.977.

To initialize the EP-DGP and L-DGP hyperparam-
eters we have applied the same procedure described
in [13]. For MCMC-DPG, we have not implemented
any search procedure to tune the hyperparameters.
To evaluate the quality of the L-DGP approximation,
we set MCMC-DGP hyperparameters equal to those
obtained from the trained L-DGP.

The results are shown in Figure 1. For the DGP
methods, we show the estimation of quantiles 0.023
and 0.977, that are equivalent to twice the standard
deviation in the case of the standard GPR. We can ob-
serve that the solutions provided by all DGP methods
are very similar, both in the median and the quantiles
estimation. Note that the results of L-DGP and the
exact solution provided by MCMC-DGP (using the
same set of hyperparameters than L-DGP) almost
match, showing the good quality of the proposed
Laplace approximation.
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4.2 Regression performance

We present performance results of L-DGP on several
real data sets, comparing them with EP-DGP, MCMC-
DGP, the standard GP, VHGPR, and the standard
Support Vector Regression (SVR) [18].

As performance measures we have used the Nor-
malized Mean Squared Error (NMSE)

NMSE =

∑n∗

j=1 (y∗j − ŷ∗j)
2

∑n∗

j=1 (y∗j − ȳ)2
(28)

the Normalized Mean Absolute Error (NMAE)

NMAE =

∑n∗

j=1 |y∗j − ŷ∗j |
∑n∗

j=1 |y∗j − ȳ|
(29)

and the Negative Log-Predictive Density (NLPD),
which is given by

NLPD = −
1

n∗

n∗
∑

j=1

log p(y∗j |x∗j) (30)

where n∗ is the number of test samples, y∗j is the j-
th test observation, ŷ∗j is the predictive mean of the
posterior of that observation, and ȳ is the mean of the
training observations.

To train EP-DGP and L-DGP methods we have
initialized the hyperparameters using the same pro-
cedure applied for the synthetic experiment. For
MCMC-DGP, we use the set of hyperparameters
found by L-DGP. For VHGPR, we have used an SE
covariance function for the mean latent function and
an SE covariance function plus noise for the log-noise
latent function, initializing the hyperparameters as in
[10].

TABLE 1
Characteristics of the data sets used for the

experiments.

Data set Dim # Tr samples # Test samples

Ozo 3 89 22
Bod 13 202 50
Ser 4 134 33
Aut 7 314 78
Hou 13 253 253
Con 8 515 515
Win 11 1700 3198
Par 21 1000 4875

For the SVR, we have used a Radial Basis Function
(RBF) kernel. The kernel width σ and the cost param-
eter C have been set to the values that minimize the
averaged test NMSE over all the splits created for each
data set. Notice that this induces a clear advantage for
the SVR designs w.r.t. the other methods. For a fair
comparison, other methodology should be applied,
as for example cross validation procedures. However,
due to the high number of splits used for most of
the experiments, the computational burden of this
approach would be very high. The values of C have

been explored in the range [2 · 10−5, 2 · 1010] with
values of the form 2 · 10p, with −5 ≤ p ≤ 10. For
σ, we have also explored values of that form in the
range [2 · 10−5, 2 · 105]. To calculate the NLPD for the
SVR we have assumed a Gaussian distribution for the
predictions with a constant noise power, which has
been estimated as the mean squared error of the train
predictions.

The characteristics of the data sets used for the
experiments are shown in Table 1. For the first 6
problems appearing in Table 1 (Ozo [19], Bod, Ser,
Aut, Hou, and Con [20]) we have made 300 random
splits to obtain a more complete evaluation of the
compared algorithms. For the bigger data sets (Win,
Par [20]), we have made a single split due to the high
computational costs to train the GP methods.

For Ozo, Bod, Ser, and Aut we have made 300
random splits with 80% training samples and 20% test
samples. For Hou and Con we have made the splits
with 50% training and test samples.

The results of the experiments for the small and
medium-size data sets are presented in Table 2. We
do not present results for MCMC-DGP on Con because
the computational burden is very high. We have per-
formed a Wilcoxon Rank-Sum test to assess statistical
significance at the 5% level.

From Table 2, it can be said that the SVR performs
worse than the GP based methods with statistical
significant differences in 5 of the 6 problems in terms
of NMSE, NMAE, and NLPD. It can also be noticed
that the three DGP methods never perform worse
than the standard GP in any of the three performance
measures. Even when the problem is homoscedastic,
as it seems to be the case for Bod, the performances of
the DGP methods are the same than the performance
of the standard GP.

In terms of NMSE, we can say the following:

• L-DGP, MCMC-DGP, and EP-DGP performances
are similar. However there are statistical signif-
icant improvements of L-DGP w.r.t. EP-DGP in
Con and w.r.t. MCMC-DGP and EP-DGP in Hou.

• DGP methods also outperform VHGPR with sig-
nificant differences in 4 of the 6 data sets.

• L-DGP improves the standard GP results in Ozo,
Ser, and Con, whereas MCMC-DGP and EP-DGP
outperform the standard GP in Ozo and Con.

The results in terms of NMAE show that:

• L-DGP, MCMC-DGP, and EP-DGP perform sim-
ilarly, except for Hou, where L-DGP outperforms
MCMC-DGP and EP-DGP, and Con, where L-
DGP improves EP-DGP performance.

• DGP methods improve with statistical signifi-
cance GP and VHGPR in Ozo, Ser, Hou, and Con.

• In none of the data sets DGP algorithms perform
worse than the other GP methods.

Finally, in terms of NLPD it can be observed that:

• VHGPR and the DGP algorithms outperform the
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TABLE 2
Experimental test results on small and medium size multidimensional data sets, providing the average NMSE,

NMAE, and NLPD plus/minus one standard deviation. Statistically significant improvements are marked as •
w.r.t. standard GP, ◦ w.r.t. VHGPR, ⋆ w.r.t. EP-DGP, ⋄ w.r.t. L-DGP, ⊲ w.r.t. MCMC-DGP, and † w.r.t. the SVR.

Statistical significance is measured according to a Wilcoxon Rank-Sum test at the 5% level.

Average NMSE Average NMAE Average NLPD

Ozo: Std. GP 0.281 ± 0.091 † 0.484 ± 0.085 4.323 ± 0.271 †
VHGPR 0.282 ± 0.083 † 0.477 ± 0.079 4.156 ± 0.209 • †
EP-DGP 0.258 ± 0.079 • ◦† 0.462 ± 0.079 • ◦† 4.071 ± 0.151 • ◦†
L-DGP 0.256 ± 0.079 • ◦† 0.460 ± 0.079 • ◦† 4.072 ± 0.137 • ◦†
MCMC-DGP 0.257 ± 0.080 • ◦† 0.461 ± 0.079 • ◦† 4.073 ± 0.143 • ◦†
SVR (C = 200;σ = 0.2) 0.300 ± 0.094 0.486 ± 0.085 4.443 ± 0.530

Bod: Std. GP 0.290 ± 0.061 0.525 ± 0.058 −0.989 ± 0.096 †
VHGPR 0.290 ± 0.061 0.525 ± 0.058 −0.989 ± 0.097 †
EP-DGP 0.291 ± 0.061 0.526 ± 0.058 −0.988 ± 0.098

L-DGP 0.290 ± 0.061 0.525 ± 0.058 −0.989 ± 0.096 †
MCMC-DGP 0.291 ± 0.061 0.526 ± 0.058 −0.988 ± 0.098

SVR (C = 20;σ = 0.002) 0.294 ± 0.055 0.533 ± 0.057 −0.970 ± 0.116

Ser: Std. GP 0.166 ± 0.090 † 0.302 ± 0.062 † −0.871 ± 0.676 †
VHGPR 0.182 ± 0.124 † 0.267 ± 0.076 • † −1.972 ± 0.412 • ⋆ ⋄ ⊲†
EP-DGP 0.151 ± 0.109 ◦ † 0.245 ± 0.065 • ◦† −1.892 ± 0.173 • †
L-DGP 0.143 ± 0.104 • ◦† 0.227 ± 0.062 • ◦ ⋆ ⊲† −1.940 ± 0.138 • ⋆ ⊲ †
MCMC-DGP 0.151 ± 0.109 ◦ † 0.245 ± 0.065 • ◦† −1.892 ± 0.173 • †
SVR (C = 200;σ = 0.02) 0.224 ± 0.094 0.443 ± 0.070 −0.688 ± 0.650

Aut: Std. GP 0.116 ± 0.030 † 0.289 ± 0.031 † −1.234 ± 0.137 †
VHGPR 0.117 ± 0.029 † 0.288 ± 0.031 † −1.361 ± 0.117 • †
EP-DGP 0.119 ± 0.031 † 0.287 ± 0.033 † −1.354 ± 0.103 • †
L-DGP 0.116 ± 0.030 † 0.284 ± 0.032 † −1.359 ± 0.093 • †
MCMC-DGP 0.119 ± 0.031 † 0.287 ± 0.033 † −1.354 ± 0.103 • †
SVR (C = 2;σ = 0.02) 0.134 ± 0.028 0.321 ± 0.035 −1.143 ± 0.137

Hou: Std. GP 0.152 ± 0.035 ◦ ⋄ ⊲ † 0.352 ± 0.022 † 2.624 ± 0.122 †
VHGPR 0.166 ± 0.034 † 0.352 ± 0.022 † 2.564 ± 0.150 • †
EP-DGP 0.159 ± 0.037 ◦ † 0.345 ± 0.023 • ◦† 2.445 ± 0.075 • ◦†
L-DGP 0.152 ± 0.036 ◦ ⋆ ⊲ † 0.336 ± 0.023 • ◦ ⋆ ⊲† 2.413 ± 0.057 • ◦ ⋆ ⊲†
MCMC-DGP 0.159 ± 0.037 ◦ † 0.345 ± 0.023 • ◦† 2.445 ± 0.075 • ◦†
SVR (C = 200;σ = 0.02) 0.177 ± 0.042 0.356 ± 0.024 3.126 ± 0.500

Con: Std. GP 0.132 ± 0.014 † 0.326 ± 0.014 † 3.162 ± 0.041 †
VHGPR 0.134 ± 0.013 † 0.327 ± 0.014 † 3.088 ± 0.042 • †
EP-DGP 0.123 ± 0.015 • ◦† 0.310 ± 0.014 • ◦† 3.049 ± 0.041 • ◦ ⋄ †
L-DGP 0.120 ± 0.014 • ◦ ⋆ † 0.304 ± 0.014 • ◦ ⋆ † 3.060 ± 0.036 • ◦ †
SVR (C = 2000;σ = 0.02) 0.158 ± 0.017 0.353 ± 0.016 3.391 ± 0.106

standard GP in 5 of the 6 proposed data sets with
statistical significance, and are not worse for Bod.

• Comparing the differences between the DGP
methods and VHGPR, it can be appreciated that
DGP methods outperform VHGPR in 3 data sets,
whereas VHGPR only outperforms DGP methods
in Ser.

• The performance of L-DGP, MCMC-DGP, and EP-
DGP is similar, although L-DGP improves NLPD
performance in Ser and Hou, whereas EP-DGP
outperforms EP-DGP in Con.

The experimental results for the biggest data sets
(Win and Par) are shown in Table 3. For data set Win
we observe that:

• The performance in terms of NMSE and NMAE
is similar for all the GP methods.

• EP-DGP and L-DGP have better results in terms
of NLPD w.r.t. the standard GP and VHGPR.

• SVR outperforms GP methods in terms of NMAE.
However, NMSE and NLPD are worse.

For data set Par we note that:

• EP-DGP outperforms the other GP methods and
the SVR in terms of NMSE and NMAE.

• NLPD performance is similar for EP-DGP and

VHGPR, with a slight advantage w.r.t. L-DGP.
• SVR also performs clearly worse than the other

GP methods in terms of NLPD.

The results of these experiments support the high
quality of the Laplace approximation compared to
MCMC-DGP using the same set of hyperparameters.
Moreover, the performance of L-DGP is similar to
the performance of EP-DGP, which suggests that both
approximations are similar.

TABLE 3

Experimental test results on data sets Win and Par.
NMSE, NMAE, and NLPD are provided for the

standard GP, VHGPR, EP-DGP, L-DGP, and SVR.

NMSE NMAE NLPD

Win: Std. GP 0.653 0.838 1.059

VHGPR 0.657 0.842 1.057

EP-DGP 0.652 0.839 1.014

L-DGP 0.649 0.837 1.018

SVR (C = 2;σ = 0.2) 0.667 0.818 1.267

Par: Std. GP 0.216 0.396 −1.983

VHGPR 0.222 0.395 −2.060

EP-DGP 0.170 0.370 −2.063

L-DGP 0.219 0.394 −2.049

SVR (C = 200; σ = 2 · 10−4) 0.231 0.487 −1.700
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Fig. 2. Results of the time experiment using Hou

data set with different training sizes. Error bars are

shown to represent the training time for the standard
GP (continuous line and narrower error bars), L-DGP

(dashed line and wider error bars), VHGPR (dashed-

dotted line), and EP-DGP (dotted line).

4.3 Computational cost experiments

The complexity of all the GP methods used in the
experiments scales in the form O(N3). However, the
training times of these methods can be quite differ-
ent. To illustrate this point we have performed an
experiment with data set Hou to measure the training
time for the standard GP, VHGPR, EP-DGP, and L-
DGP for different number of training samples. We
have measured the training time avoiding the hyper-
parameters learning, varying the number of training
samples from 50 to 500. For a given number of train-
ing samples, we have generated 20 random training
sets. To set the hyperparameters, we have first trained
all the GP methods using all the available samples as
training samples.

The average training time3 along with the corre-
sponding error bars are shown in Figure 2. First of all,
it can be appreciated that all the GP methods scale
similarly with the number of samples, with is con-
sistent with the theoretic O(N3) time scalability. De-
spite the standard GP is the fastest method, the time
required to train L-DGP is lower than VHGPR and
EP-DGP training times. The training time reduction
of L-DGP w.r.t. EP-DGP is remarkable. For example,
for 500 training points, EP-DGP takes around 2000
seconds to train the model, whereas L-DGP takes only
200 seconds (10 times faster).

5 CONCLUSIONS

The high computational burden and the lack of a for-
mal proof of convergence (even when the likelihood

3. The experiments have been conducted in a 4 GB computer with
an Intel core i5 processor at 3.33 GHz using Matlab implementations
for all the algorithms.

is log-concave) of the EP approximation proposed to
perform inference on the DGP model introduced in
[13] motivates the use of the Laplace approximation
for the same model. The likelihood log-concavity en-
sures a unimodal posterior which allows the Laplace
approximation to converge to a unique maximum.

The experimental comparisons of the Laplace ap-
proximation with the asymptotically unbiased pos-
terior estimates using MCMC-DGP show the high
quality of the Laplace posterior approximation. The
experimental results obtained for different real data
sets show a similar performance of L-DGP compared
to EP-DGP, but at a reduced computational cost.

Further research avenues include the extension of
the DGP model for classification and multi-output re-
gression tasks, the development of sparse GP methods
using the DGP model, and the analysis of new GP
models to achieve lengthscale nonstationarity.

APPENDIX

DERIVATIVES OF THE APPROXIMATE LOG-
EVIDENCE WITH RESPECT TO THE HYPERPA-
RAMETERS

We detail here the calculations of the partial deriva-
tives of the approximate log-evidence (17) w.r.t. the
hyperparameters of the covariance functions, θf and
θg , and the noise offset µ0.

To calculate the derivatives we have to take into
account not only the explicit terms, i.e. those referred
to K in the case of θf and θg or to the likelihood in
the case of µ0, but also the implicit derivatives, since
when the hyperparameters change, the optimum of
the posterior φ̂ also changes.

With this consideration, the derivative of the ap-
proximate log-evidence w.r.t. each hyperparameter in
θf can be expressed as

∂ log q(y)

∂θfj
=

∂ log q(y)

∂θfj

∣

∣

∣

∣

expl

+

N
∑

n=0

∂ log q(y)

∂f̂n

∂f̂n
θfj

+

N
∑

n=0

∂ log q(y)

∂ĝn

∂ĝn
θfj

(31)

Then, the explicit derivative is given by

∂ log q(y)

∂θfj

∣

∣

∣

∣

expl

=
1

2
φ̂

T
K−1 ∂K

∂θfj
K−1φ̂

−
1

2
tr

[

(W−1 +K)−1 ∂K

∂θfj

]
(32)

where tr[M ] is the trace of the square matrix M .
To calculate the implicit derivatives we have

∂ log q(y)

∂f̂n
= −

1

2

[

(K−1 +W )−1
]

nn

∂3 log p(yn|φ̂n)

∂f3
n

(33)
which is equal to zero as the third derivative of
the local likelihood w.r.t. to fn is zero. For gn the
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expression is the same than (33), but deriving on gn.
In this case, the third derivative of the local likelihood
w.r.t. gn is given by

∂3 log p(yn|φ̂n)

∂g3n
=







2

g′3n
, if g′n > 0

0, if g′n ≤ 0
(34)

with g′n = gn + µ0. Therefore, in contrast to the case
of fn, the implicit derivatives w.r.t. gn do not vanish
for positive g′n. To compute ∂f̂n/θfj , we first calculate

∂φ̂/∂θfj and then select the corresponding terms to
each gn

∂φ̂

∂θfj
= (I2N +KW )−1 ∂K

∂θfj
∇ log p(y|φ̂) (35)

The calculations of the derivatives w.r.t. each hy-
perparameter in θg are analogous to those for θf

hyperparameters.
The derivative w.r.t. the mean offset µ0 for latent

function g can be expressed

∂ log q(y)

∂µ0

=
∂ log q(y)

∂µ0

∣

∣

∣

∣

expl

+

N
∑

n=0

∂ log q(y)

∂ĝn

∂ĝn
∂µ0

(36)

where the explicit derivative is calculated as

∂ log q(y)

∂µ0

∣

∣

∣

∣

expl

=
N
∑

n=0

∂ log p(yn|φ̂n)

∂µ0

−
1

2

∂ log |B|

∂µ0

(37)

with

∂ log p(yn|φ̂n)

∂µ0

=







1

g′n
−

y2ng
′
n − ynfn
c

, g′n > 0

0, g′n ≤ 0

(38)

and

−
1

2

∂ log |B|

∂µ0

= −
1

2
tr

(

B−1K
∂W

∂µ0

)

(39)

where ∂W/∂µ0 is a 2N diagonal matrix with 0 in the
first N elements of the diagonal and

[

∂W

∂µ0

]

nn

=







2

g′3n′

, if g′n′ > 0

0, if g′n′ ≤ 0
(40)

for N < n ≤ 2N with n′ = n−N .
Finally, to calculate the implicit derivative, along

with the expression for ∂ log q(y)/∂ĝn calculated in
(33) and (34), we have

∂ĝn
∂µ0

= (I2N +KW )−1K
∂∇ log p(y|φ̂)

∂µ0

(41)

where ∂∇ log p(y|φ̂)/∂µ0 = −diag(W ).
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