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Abstract

In incomplete market theory, the utility-based price and the indifference pricing have especially
received much attention in pricing methods using utility function. This paper constructs the frame-
work to unite these two methods and analyzes the relationship between them, using the setting of
the exponential utility. Furthermore, we deduce the equilibrium price under the framework of the
utility-based price.

1 Introduction

When pricing a random endowment in the incomplete market, the framework based on the utility max-
imization principle has recently received much attention and intensively developed. Particularly, utility
indifference price and utility-based price are two major frameworks. Both of them are based on utility
optimization problem; however, the setting is different from each other. Utility indifference framework is
given as the problem, where the price of the random endowment is given by the threshold price for the
expected utility to be constant for a given quantity of the random endowment for selling (or, buying). On
the other hand, the utility-based price is given by the problem, where, for a fixed price, each investor max-
imizes his expected utility by optimizing the quantity of the random endowment. That is, this quantity
is the solution of the optimization problem. The utility-based price is given as the price consistent with
this optimized quantity. In this paper, we make the relation between these two frameworks clear. This
trial gives us a new insight to the framework based on the utility maximization; that is, we find that these
frameworks can be used for not only pricing the random endowment, but also capturing an effect of the
change of the price. Furthermore, similar to Davis and Yoshikawa(2010)[2] where the equilibrium price
is deduced under the utility indifference framework, the equilibrium price is deduced in the framework of
the utility-based price.

This paper breaks down into 2 parts. In the first part, we set up the model and set the tool for utility
indifference framework and utility-based price, using the exponential utility function. This tool enables
us to analyze the effect of the change of the price of the random endowment. In the second part, we
consider the relation between the utility indifference price and the utility-based price and deduce the
equilibrium under the framework of the utility-based price.

2 The Model

The mathematical framework is given by the filtered probability space (Q, F,F, P), where F := (F})o<t<T,
F := Fr, and Fy is trivial. Stochastic process X € R? is defined as semimartingale, and the expected
value of X is given by the probability measure P. Consider the Fp-measurable random variable B which
will generate some payoff at time 7. The random variable B is assumed unbounded from below (Delbaen
et al.(2002)[3]) and we assume that E[e(**9)P] < oo and E[e~“F] < oo for some fixed a,e € (0,00)
(Becherer(2003)[1]).

Utility indifference price is defined as the price of the random endowment B which equates the
maximized expected utility of a terminal wealth without the random endowment B and the maximized

*Imperial College London
fImperial College London

Electronic copy available at: http://ssrn.com/abstract=1653462



expected utility of a terminal wealth with the random endowment B. That is, if the price p is the utility
indifference price, then it satisfies,

sup E
0cO

T
U(x—qur/ 0] dX;+ Bq)| , (1)
0

fcoe

T
U(£E+/ H;FdXt)] =supE
0

where ¢ € R (hereafter, we call this quantity as ‘utility indifference quantity’). Let 6 := {6;; t € [0,T]} €
© be Ré-valued admissible trading strategy and © be the set of X-integrable and predictable processes.
The left hand side of the above equation is a maximized expected utility not including the random
endowment B and the right hand side is a maximized expected utility including B. When ¢ > 0, the
price p is called the utility indifference sell price. Otherwise, it is called the utility indifference buy price.
Hereafter, we specify the utility function U(-) as

where v € R is risk-aversion.
We construct a technique to graphically specify the relation between utility indifference prices and

utility indifference quantities. First, we define (6, ¢;v) := InE [efy(foT 0] dXi+Bq)

] . From this definition,
it is easily deduced that ugq > 0 which is second order differential on ¢. Using this function, the expected

utility of the right hand side of (1) is written as follows,

T
u(0,q;7) — v(r — pg) =In (—E Uz — pq+ / 0, dX; + Bq)
0

The utility indifference framework for ¢ € R is rewritten,

eirelguw,();v)—w = Girel({){uw,q;v)—v(x—pq)}
= jnof {u(6,¢;7)} — (@ —pa). (2)

This shows that the problem of an expected utility maximization is independent of the initial capital (in
the left hand side, the initial capital is x, and in the right hand side, it is © — pq). Let 8¢ be the solution
of infgco {u(f,q;v)}. Note that the solution 67 is unique by the convexity of the expected utility. From
(2), the utility indifference price pV!(B; q) is given such as,

U (B;g) = % (u(6°,0:) — u(67,¢: 7)) -

That is,
(8, q:v) = u(6°,057) — 4" (B; q)g- (3)
Furthermore, we define the function u(g;~) as follows,
u(g;7) = jnf {u(9,¢;7)} = u(6?,¢;7)-
We call this function as an indifference curve. Using the indifference curve, (3) is rewritten as,
u(g;7) = u(0,7) — 1" (B; q)q. (4)

The right hand side of the above equation is a linear function of ¢. We can specify a shape of the left
hand side of this equation by next three lemmas.

Lemma 2.1
An indifference curve u(q;~y) for ¢ € R is the envelope curve of w(6?,§;~y), where ¢ € R. That is, the
indifference curve is contact with u(09,G;v) at ¢ = ¢
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Proof From the definition of 67, w(09,q;v) < w(f,q;~y) for all € ©. For all € > 0, u(0?,q+ €;v) >
w01, g+ €;7v) = u(q + € ) and u(07,q — ;v) > w09, q — €;v) = u(q — € ). Equality in the former
case holds if and only if §9 = #97¢. In the latter case, equality holds if and only if 89 = #9=¢. It shows
that the indifference curve w(g;~y) contacts with the w(69,¢;v) at t = q.

Q.ED.

Lemma 2.2
The indifference curve is convex function.

Proof Forgq,¢ e Rand 0 <k <1,

ku(g;y) + (1= kuldsy) = ku(0,¢;7) + (1 - k)07, q';7)
= khE e_v(foT(eg)TdXt"qu)} +(1-KE [6v(foT<93’>det+Bq')}

= IhE _e_'y(foT(eg)TdX‘+Bq)}kE [ev(foTWf/)TdXtJqu')}

Y

InE e—k'y(ff(@?)TdXt—&-Bq)e—(l—k)')’(foT(eg,)TdXt-FBq/):|

E e—w(ff(kezm—k)ez'>det+B(kq+(1—k>q'))}

= w(kO+ (1 — k)07 kq+ (1 —k)q's7)
> (@R kg 1 (1 - k)gs7) = u(kq + (1 — k)ds 7).

We use Holder’s inequality on line 4.
Q.E.D.

We define M as a set of ©-martingale measures satisfying H(Q|P) < co. And H(Q|P) := [ % In %dP
is relative entropy of @ with respect to P, whcih is always non negative (c.f. Theorem 1.4.1 of Thara(1993)[5]).
Hereafter, we assume that

M £ 0.

We write the solution of infge s H[Q|P] as Q° € M which we call minimal entropy martingale measure
(hereafter, MEMM).

Lemma 2.3
0
The slope of a tangent line to an indifference curve u(q;y) at ¢ = 0 is given by —yE® [B].

Proof From Theorem 3.2, Lemma 3.3 of Davis and Yoshikawa(2010)[2] and the definition of w(6, ¢;),

1 9u(0°. - =(J5 O T dxe)
_10ul,¢) -k |B—& OTt — E"[B]. (5)
ol dq q=0 E [e— (/5 (69T dx,)

Q.E.D.

From these Lemmas, the shape of the indifference curve is specified. Figure 1 shows it. For simplicity,
let p* = E° [B]. The bold line in Figure 1 is indifference curve. The utility indifference quantity ¢'
corresponding to the utility indifference price p! is given by the intersection between the line u(0; ) —yp'q
and u(q;7). Likewise, the utility indifference quantity ¢? to p? is given by the intersection between
u(0;7) — vp%q and u(q; 7). Once the quantity of B is given, through the indifference curve, we can find
the corresponding indifference price. Conversely, if some price is given, then we can find the corresponding
utility indifference quantity which does not change the expected utility, i.e., when the price changes from
p! to p?, if the investor changes the strategy from ¢' to ¢ on the indifference curve, the expected utility
is invariant.



3 The relationship between indifference pricing and utility-based
price

The utility indifference framework requires that the quantity of the random endowment is given. Under
this constraint, the investor offers the rational price according to the utility maximization principle. This
price is utility indifference price. However, we can consider the situation in which the investor optimizes
the quantity of the random endowment under the constraint that the price is given. Under this situation,
the definition of the utility-based price is given. According to Hugonnier and Kramkov(2004)[4], “a
utility-based price for f (it is a N-dimensional random endowment with some payoff at ¢t = T) is defined
as a vector p(x,q) € RN such that the agent’s holdings q in the claims are optimal in the model where
the claims can be traded at time 0 at price p(x,q).” In this section, we consider the utility-based price in
the case of exponential utility. From the above definition, it is clear that the utility-based price is given
as the solution of the utility maximization problem about the quantity ¢; that is, for some given price p,
we have to consider the problem,

eeg}geR {u(0,q;7) —v(z —pq)}.

It is a natural expansion of the right hand side of (2). This problem is solved as follows,

yof_ fu0.67) (@ —pa)} = inf {elgfa tul@ g} + qu} -

= inf {u(0?,¢;7) +vpq} — vz
geR

= ;g]g {ulg;y) +vpa} — v (6)

For the quantity ¢ to be optimal, it has to satisfy

Ou(g;7)
94 P (7)
That is, the optimal ¢ is given by the quantity at which a slope of the tangent line to the indifference
curve u(gq; ) is given by —vyp. For given p, let ¢P be satisfying (7). Conversely, for a given quantity ¢, if
the price p satisfies (7), it is a wutility-based price. And, we write such a price as p’%(B;q).

Remark 3.1

Figure 2 shows this situation. Let p° be an initial market price of B. We assume that the investor
optimizes his expected utility; that is, he chooses the strategy to hold the quantity ¢° where the slope
of the tangent line to the indifference curve is —yp®. In this sense, the price p° is the utility-based price

p"E(B;¢%).

Proposition 3.2
For a given price p, if the investor’s strategy is optimal in the sense satisfying (7), the expected utility is
larger than the expected utility under the strategy of utility indifference framework.

Proof For a given price p, using ¢P satisfying (7),

inf 0.a: _ _ — p. P _
eeg}qeR{U(,q,v) y(x —pq)} u(q?;y) +ypg? — v

= w(0;7) — " (B;q")q” + vpg” — v
< w(0;y) — vz = inf u(8,0;7) - 2. (8)

From the convexity of indifference curve, if ¢ < 0, 0 > —pY/(B;q¢?) > —p. On the other hand, if
q” > 0, —p > —pY!(B;¢P). This is used to deduce the inequality of (8). The right hand side of (8) is
corresponding to the expected utility without B.



Q.E.D.

This proposition implies that introducing the random endowment B in the market gives positive effect
for every investor. The following theorem shows the relation between utility indifference price and the
utility-based price more clearly.

Theorem 3.3
For some q < 0, the utility-based price p? ¥ (B;q) is larger than the utility indifference price pV!(B; q),
and for ¢ > 0, the utility-based price p™ (B; q) is less than the utility indifference price pY!(B;q).

Proof It is clear from the convexity of the indifference curve.
Q.E.D.

From Theorem 3.3, p’%(B;q) = pY!(B;q) for all ¢ € R if and only if the indifference curve is
linear. However, for any indifference curve u(q;y), the slope of the tangent line at ¢ = 0 is —yE?°[B].
Therefore, in the case that an indifference curve is linear, the slope of this indifference curve has to be
—~EQ0[B]. It means that the utility indifference price is given by E@0[B] for all q. Since Proposition
3.2 of Becherer(2003)[1] shows that lim, 0 pY!(B;q) = E?’ [B], the risk-aversion of the investor whose
indifference curve is linear is zero.

We consider the generalization of the the utility indifference framework. That is, we generalize the
initial state of the utility indifference pricing from not holding the random endowment to holding the
random endowment with some initial price p (generalized version of the utility indifference framework).

Problem 3.4
Let p° be the initial price. Assume that the investor takes a policy holding a quantity q of the random
endowment. Consider the price pV!(B; q) satisfying as follows,

sup E

T
=supE [U(z —pUI(B;q)q+/ 0] dX,+ Bq)].
0€0,GeER 0

T
Uz —p°G+ / 0] dX, + Bg)
0 6ce

The left hand side of this problem includes the principle of utility-based price and the equality of this
problem implies the utility indifference framework. The solution is given as follows,

0

1 0 q*

1(Bsq) = — (ulg” s7) —u(@:7)) +p—
p(B;q) w((q ) (qv)) P

When qp0 = 0, this solution is consistent with the usual setting of the indifference pricing.

Using Figure 2, we consider this generalized version of the utility indifference framework. If the
investor wants to change his policy from ¢° to ', p' is the price that the investor should offer for letting
his expected utility be constant. It means that p' is the utility indifference price corresponding to the
utility indifference quantity §'; in fact, if the market price changes from p® to p!, the investor can make
his expected utility constant by choosing §! as the strategy!. Next, if the investor optimizes his expected
utility for the price p', he will choose the strategy ¢' where the line with slope —yp! contacts with the
indifference curve. The result of the convexity of indifference curve is |¢*| < |¢'|. In the context of
economics, the change of the demand (or supply) for the change of the price is divided into two parts;
that is, the total effect of the price change is divided into a substitution effect and an income effect. As we
have seen, the change from ¢° to ¢' is brought by Hicks substitution effect, because the expected utility
is constant by the change from p° to p'. The change from §' to ¢! is considered as the income effect. In
fact, the change of the price makes the initial asset change from x — p¢® to  — p'q' (we consider the

IConsider the line with slope —yp® through point (¢°,u(¢%;~)). The intersection with this line and the vertical axis is
given by u(qo;'y) + vp°qY. Note that the log of negative value of the expected utility to the strategy (po,qo) is given by
(g% ) — (o — p°°) (see (6)).

Next, considering the line with slope —yp! thorough point (G, u(g';7). The intersection with this line and the vertical
axis is given by u(§';v) +7p'd"). Note that the log of negative value of the expected utility to the strategy (p!,G') is given
by w(g';y) — v(z — p'q') (see (2)).

In Figure 2, the intersections with the vertical axis for these two lines coincide. It implies that, by regulating the strategy
from ¢° to G, the corresponding expected utility is constant through the change from p° to p!.



u(®,q;7), u(g;) u(®,q;7), u(g;7)

Figure 1: Utility indifference ptice, utility indiffer- Figure 2: Utility-based price and utility indifference
ence quantity and indifference curve price based on Problem 3.4

“income” as an initial asset). This change is positive, since (z — plq*) — (z — p¢®) > 0 by the convexity
of the indifference curve. A goods is called superior goods, if the income effect is positive; ‘positive’
means that the demand increases when the income increases. Likewise, a goods is called inferior goods,
if the income effect is negative. Therefore, if the investor chooses ¢! as the utility indifference quantity,
the random endowment is superior goods. However, the investor can choose ¢? as the utility indifference
quantity. In this case, the random endowment is inferior goods. That is, although the utility indifference
price is unique, the utility indifference quantity is not necessarily unique when the initial state is not
®°,¢°) = (»*,0).

Davis and Yoshikawa(2010)[2] deduces the equilibrium under the utility indifference framework. Using
the setting of the indifference curve, we can easily deduce the equilibrium even under the framework of
the utility-based price. Following Davis and Yoshikawa(2010)[2], we give the definition of the equilibrium.

Definition 3.5

Let an economy specify the investors’ preferences which is described by the utility function U :=
{U;(");Ui(z) == —e % i=1,---, I+ J}. An allocation ¢* := {q{,i=1,---,1}, ¢" == {qé?,j =1,---,J}
and a price p of the random endowment B constitutes a price equilibrium if there is an assignment such
that

1. Offer price condition: For any investor with utility function {U;, i = 1,---, 1}, when the investor
sells ¢f-units of the random endowment, (p,q;) is preferred to all other allocations (p, (¢;)’); that
is, an expected utility corresponding to the allocation (p, q) is larger than another expected utility
corresponding to the allocation (p, (¢)’).

2. Bid price condition: For any investor with utility function {Ury;, j = 1,---,J}, when the
investor buys q;?—units of the random endowment, (p, qé-’) is preferred to all other allocations (p, (q;? );
that is, an expected utility corresponding to the allocation (p, q;’) is larger than another expected
utility corresponding to the allocation (p, (q;?)’).

3. Market cleared condition Zle ¢ = Z'j]:l qé?.
From this definition, a theorem about equilibrium is deduced.

Proposition 3.6
If investors in the market of the random endowment B act according to the utility maximization, then
an equilibrium price is given by,
* 0
p* =E? [B].

Furthermore, the equilibrium is zero trade equilibrium.



Proof From (5) and (7), the optimal strategy of ¢ for the price p* = ERQ’ [B] is 0 for every investor.
Since the indifference curve is convex, the quantity ¢ optimal for p > p* is negative, vice versa. Since
it is common for all investors, if p > p*, selling (that is, ¢ < 0) is optimal for all investors, vice versa.
Therefore, equilibrium is zero trade and equilibrium price is given by MEMM Q°.

Q.ED.
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