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ABSTRACT
Limit of detection (LoD) is a common problem in the analysis of data
generated by instruments that cannot detect very small concentra-
tions or other quantities, resulting in left-censored measurements.
Methods intended for data that are not subject to this problem are
often difficult to modify for censoring. We adapt the simulation-
extrapolation method, devised originally for fitting models with
measurement error, to dealing with LoD in conjunction with a mix-
ture analysis. The application relates the levels of thyroglobulin in
individuals with cancer of the thyroid before and after treatment
with radioactive iodine I–131. We conclude that the fitted mixture
components correspond to levels of effectiveness of the treatment.
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1. Introduction

Cancer of the thyroid gland is a rare type of cancer and the differentiated carcinoma is
a common form of malignancy associated with the endocrine system [12,30]. Cancer of
the thyroid affects more frequently women than men and between 85% and 90% of the
malignancies correspond to differentiated thyroid carcinoma [9].

Outright removal of the gland, thyroidectomy, is a radical treatment for thyroid cancer.
It is followed by an ablation therapy with iodine I–131 and suppression of the thyrotropin
hormone.High levels of thyroglobulin (Tg) are a reliable proxy for the recurrence of cancer.
Its concentration is established by analyses of the patient’s blood sample prior to ablation
therapy (Tg-pre) and one year later (Tg-post). The units of measurement are nanograms
permilliliter of blood (ng/mL). The threshold of 2.0 ng/mLwas recently proposed byMejía
et al. [20]. Values above this threshold after the therapy, Tg-post > 2.0, indicate the pres-
ence of cancerous cells, to be interpreted as a recurrence or a case of persisting cancer. The
laboratory analysis follows a standard procedure using instruments that can detect only
concentrations greater than a known lower limit, referred to as the limit of detection (LoD).
Similar limits are commonly encountered in medical research and practice. We analyse a
data set of 91 pairs of such measurements made before and after iodine therapy. Sex and
age of the patients are also recorded; there are 74 women and 17 men, with ages ranging
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from 12 to 86 years, with mean 47.6 and median 50. Men are younger on average (mean
42.2 and median 39). The values of Tg-pre and Tg-post are extremely skewed, with a few
very large values. Most values of Tg-post are lower than Tg-pre andmany of them (46, that
is, 50%) are below LoD.

Prior to therapy, the smallest recorded value is 0.1, in four instances. At the other
extreme, the largest three values of Tg-pre are 672, 2474 and 3000, and 142, 220 and 586 for
Tg-post. The values of Tg-pre and Tg-post were obtained in different laboratories, by per-
sonnel who used different conventions for rounding and recording values below LoD. The
smallest values are rounded to one or two decimal places and greater values are rounded to
one decimal place or to integers. Values below LoD were recorded as zero in 34 instances
and as 0.1, the LoD, in 12 instances.

Figure 1 presents the data. Both axes are on the multiplicative scale, plotting the val-
ues x = log(1 + Tg-pre) and y = log(1 + Tg-post), although the axes are labelled on the
original scale. A similar plot on the original scale would have very poor resolution. All
values subject to LoD are recoded to 0.1. A small amount of random noise is added to
the data points in both horizontal and vertical directions to better indicate observations
with similar values. Grey colour is used for men and the age is indicated by the size of the
symbol (greater symbol for older patients, but with different scales in the two panels). The
points for the youngest and oldest patients, one man and seven women, are marked by
white centers.

With a few exceptions, the concentrations after the therapy are lower than before, in
many cases well below the conventionally adopted value of 2.0 ng/mL for the threshold
between recurrent and non-recurrent subjects (horizontal dots in the diagram). Some
patients had values below this threshold even before the I–131 therapy.

Figure 1 suggests that there are two kinds of patients. For some, the concentrations have
been reduced by the treatment to very low levels, in many cases below LoD. For others, the
levels have been reduced to values related to the original concentrations. This motivates

Figure 1. Concentration of thyroglobulin before and one year after therapy (Tg-pre and Tg-post).
Patients aged 50 years and below are classified as younger, and above 50 years as older. The patients
whose discs are marked by small white centres are the youngest (aged 12, 18 and 21 years) and the old-
est (aged 71, 72, 75, 81 and 86 years). The horizontal dots mark the value of 2.0 ng/mL, adopted as the
threshold between recurrent and non-recurrent cases.
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the analysis described in the next section, where we combine a mixture regression model
with the simulation-extrapolation method (SimEx), Carroll et al. [4], adapted to dealing
with values below LoD. In the original version of SimEx, data are simulated according to
the assumedmeasurement errormodel, butwith inflated error varianceσ 2 + ", for several
levels of inflation" > 0. Estimates that refer to the absence of measurement error are then
obtained by extrapolation of the"-specific results to" = −σ 2. We replace the simulation
step by forming the data set that would be obtained if the LoD threshold were increased.
This step entails no uncertainty, and so it requires no simulations.

For background to the treatment of thyroid cancer, we refer to Asare and Wang [1]
and references therein. Patient outcomes several years after ablation are studied by Ballal
et al. [2]. Quality of life of patients after thyroidectomy is assessed by Rubic et al. [26].
Dysfunction of the salivary gland, a side effect of the I–131 treatment, is studied by Lee
et al. [14]. Aspects of radiation safety and performance of the Greek hospitals in which
I–131 treatment is provided are addressed by Vogiatzi et al. [31].

1.1. Limit of detection andmixturemodels

The role of LoD in the diagnosis of thyroid cancer is illustrated by Hänscheid et al. [10].
See also Wartofsky and Van Nostrand [32] for background to the use of iodine–131 in the
diagnosis and treatment of thyroid cancer. The relevance of LoD and of related concepts
to the management of cancer (diagnosis, treatment and post-treatment assessment of suc-
cess) is discussed by Stamey [29] on the example of prostate-specific antigen. Methods for
determining the value of LoD in molecular detection assays are described in Browne and
Whitcomb [3], Rajakovic et al. [24] and Milbury et al. [22].

Methods for analysis of data with LoD and some generalisations of LoD are discussed
by Lambert et al. [13]. They point out the errors and pitfalls of some common ways of
treating values that are subject to LoD, and relate the problem to left-censoring. Biomedical
applications (to biomarkers and longitudinal analysis, respectively) of data subject to LoD
are presented by Vexler et al. [33,34]. Themethods they and others use are constructed for
specific applications and are difficult to adapt for other settings. We propose an approach
that is generic, easy to apply in all settings andproblems thatwould have a tractable solution
if there were no LoD.

Mixturemodels are a prominent example inDempster et al. [7], the seminal paper on the
expectation–maximisation (EM) algorithm. The application is elaborated and its numer-
ous extensions developed by McLachlan and Peel [19] and others. A set of applications
in medical sciences is presented by Schlattmann [28]. For applications to large-scale sur-
veys of household income, see Longford and Pittau [18]. The issue of model selection (how
manymixture components to declare) is addressed by Hennig and Liao [11]. Some aspects
of fitting the Bayesian versions of these models by Markov chain Monte Carlo methods
are discussed by Richardson and Green [25]. A wealth of material relevant to mixtures,
including many applications, are collected in Mengersen et al. [27].

2. Methods

In this section, we apply mixture modelling to data introduced in Figure 1, which is sub-
ject to LoD.We consider a mixture model with two components. One component involves
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ordinary regression of Tg-post on the three recorded background variables, Tg-pre, sex and
age, and the other is a normally distributed random sample, involving no covariates. We
cannot take for granted that the two fitted components will have the anticipated interpreta-
tion as qualified successes (regression) and total successes (random sample); see Longford
[17] for a related discussion. However, a single regression would seem not to be suffi-
cient and the data set is not extensive enough for a mixture model with more than two
components.

Denote the value of LoD by L′. We want to estimate a parameter or, more generally, a
target θ . If all the values were recorded precisely, not subject to LoD, we would evaluate an
estimator θ̂ of θ . In our case, the smallest possible concentration is zero, so the absence of
LoD is equivalent to LoD set to zero.

We address the problem of concentrations below LoD by the method developed by
Longford [16]. It is based on the following idea. We can easily generate the hypothetical
data set that would be recorded if LoD were equal to any value L > L′. We specify how
to substitute values for the entries that are subject to LoD. Examples of such substitution
processes are the (constant) zero, L, 12L, and a random draw from the uniform distribution
on (0, L). For the actual limit L′, we define θ̂L′ as the estimator θ̂ evaluated on the data set
generated by applying a substitution process. This estimator depends on both L′ and the
substitution process.

We can evaluate θ̂L, the version of θ̂L′ with L′ replaced by L, for any value L > L′ , because
we can easily construct the data set that would have been obtained if LoDwere higher than
L′. Of course, we cannot do this for any L < L′. We refer to θ̂L, treated as a function of L,
as the estimation function for θ̂ . The analysis concludes by extrapolating the realised values
of this function to L=0.

This extrapolation step is difficult when θ̂L is not a smooth function or has substantial
curvature. In our example, as well as in Longford [16], θ̂L is much smoother when L is sub-
stituted for all the values that are below LoD L. The main device to relieve the problem of
extrapolation when θ̂L is distinctly nonlinear is to transform the scale of L toM = g−1(L),
where g is an increasing function such that θ̂g(M), a function of M, would have very little
curvature. This can be done by trial and error, although [16]makes somemore clinical sug-
gestions. Setting the values of Lmight appear as another issue, but it presents no problems
when the original analysis is relatively simple. That is the case with our data, even though
the analysis involves iterations.

We thus proceed by the following steps. For a selected set of values of L greater than L′,
we fit the mixture model with the two components described earlier (an ordinary regres-
sion and a random sample). In the analysis with a particular value of L, we reset to L all
the values of the outcome (Tg-post) and of the principal covariate (Tg-pre) that would
be below this LoD. The two variables are transformed as log(x + 1 − L), so that the val-
ues recorded as below LoD are transformed to zero and ordinary regression (including
homoscedasticity) is palatable. Then for each target θ (e.g. a regression parameter) we
plot the estimation function θ̂L and extrapolate it to L=0. If this task is non-trivial, we
experiment with transformations of L that convert the problem closer to one of linear
extrapolation.

The values of age (in years) are truncated (left-censored) at 40, because age is meant
to represent a handicap (the ‘age’ factor) in the surgery, applicable only to older patients.
This truncation affects 23 patients (25%). Details of fitting the mixture model with two
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components by the EMalgorithmare given in theAppendix. The algorithm is implemented
as a user-defined function in R [23]. We assume that the variances of the two components
are identical. This constraint is implemented by pooling the variance estimates in the M-
step of each iteration. The weights in the pooling are set to the current estimates of the
marginal probabilities of the components. Without this constraint, the estimates of the
mean and variance of the random sample converge to zero.

As an aside, we note that LoD can be regarded as a problem of missing data, and
addressed also by the EM algorithm. In the terminology established by Dempster et al. [7],
the recorded values form the incomplete data set. The complete data set coincides with it for
values above LoD, and is known only to be in the interval (0, L′) for the rest of the values.
The E-step of the EM algorithm entails estimation of the summaries of the complete data
that appear linearly in the complete-data loglikelihood. The M-step applies the complete-
datamethod, that is, evaluation of θ̂ , using the summaries obtained in the preceding E-step.
The E- and M-steps are iterated till convergence. Combining two kinds of EM algorithm,
one for fitting a mixture and the other for LoD, raises some computational difficulties,
including slow convergence. That is why we prefer to deal with LoD by extrapolation.

3. Results

For orientation, we first give details of the model fit for L=0.5, selected arbitrarily. This
limit applies to 13 values before and 63 values (69%) after the therapy. These values are
reset to 0.5, and the transformation log(1 − L + x) moves them to zero. The other trans-
formed values, those with x>L, are positive. The iterations of the EM algorithm require
an initial solution. We use the ordinary regression fit to all the values above the limit L for
component 1 and 0.0 for the expectation in component 2. The marginal probability p̂ is set
initially to 0.5 for both components. The iterations are stopped when the precision to eight
decimal places is reached. This takes 36 iterations. However, the estimates and the value of
the deviance (−2 loglikelihood) do not change in the first five decimal places in the last 12
iterations. With other choices of initial values, for p̂ in particular, we obtain the same solu-
tion after a similar number of iterations. Setting the convergence criterion to eight decimal
places may appear excessive, but it is useful for checking that the algorithm is numerically
stable and the convergence is genuine. The additional computing is of no consequence.
We have checked on several examples that the same result is obtained with a wide range of
initial solutions. As anticipated by Dempster et al. [7], the first few iterations move the esti-
matesmost of the way toward the solution, and then the convergence slows down.Methods
for accelerating the convergence, such as [21], are not necessary in our case.

The estimates and the fitted deviance are displayed in Table 1. The first row gives
the initial solution (for completeness), and the second row the fit obtained at the con-
vergence of the EM algorithm. In component 1, the regression on Tg-pre is important.

Table 1. Fit of the two-component mixture with L= 0.5.

Component 1 Component 2

Iteration Intercept Tg-pre Age Sex Res. var. p Mean Deviance

0 −1.455 0.632 0.016 0.170 1.078 0.500 0.000 265.06
36 −1.431 0.659 0.024 −0.215 0.197 0.318 0.084 167.23
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For example, the predicted difference between two subjects who differ only in the values of
Tg-pre by 2.0 points on the log scale (e.g. one value e2.0 = 7.4 times greater than the other)
is 1.32 on the log scale, which corresponds to e1.32 = 3.74 times greater value. A more
appropriate comparison is exp(1.32 + 0.197/2) = 4.12, using the identity E{exp(X)} =
exp{E(X) + 1

2 var(X)} for a normally distributed random variable X. Further adjustment
should be made for the uncertainty about the moments of X, see Longford [15]. This is
not necessary for an informal comparison of the importance of the regression parameter
estimates. Since we ignore the shift in the log-transformation, by 1−L, these statements
hold only approximately, for values much greater than L.

Two subjects who differ in their backgrounds only in age, by 30 years (e.g. one 40 years
or younger and the other 70 years old), differ in their predicted outcomes on the log scale
by 30 × 0.024 = 0.71, that is, one expected outcome is about twice as large as the other.
The difference between the two sexes (estimate −0.215) is much smaller, corresponding
to about nine years of difference in age. These statements ignore the sampling variation
of the estimators. The comparison of the deviances suggests that the mixture model fits
much better than the regression on its own, which we used as the initial solution. We note,
however, that the distribution of the related likelihood ratio test statistic is not χ2

2 because
the related null-hypothesis is at the boundary of the parameter space.

Figure 2 presents the fit of the mixture model graphically. The subjects are represented
in the diagram by points with colour indicating sex (grey for men) and size linearly related
to the conditional probability of belonging to the first component (regression). These prob-
abilities are evaluated in each E-step of the EM algorithm; see the Appendix for details. We
use the probabilities obtained in the concluding iteration. The assignment to the compo-
nents is as anticipated. The subjects with outcomes below LoD are assigned to the second
(random-sample) component with high probabilities. The parallel straight lines in the dia-
gram are for predicting log(1 + Tg-post) for 50- and 60-year-old patients. The lines are
−1.431 + 0.659x + 0.024a − 0.215 s, where x = log(1 + Tg-pre), a is the age in years (set
to 50 or 60), and s=1 for women and s=2 for men. The fitted lines for 60-year-old men
and 50-year-old women nearly coincide.

Figure 2. Mixture model fit with L= 0.5. The size of the symbols is linearly related to the conditional
probability of belonging to component 1.
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The mixture model parameter estimates with LoD (re-)set to values of L=0.1, 0.2, . . . ,
0.9 are plotted in Figure 3. There is no point in evaluating them on a finer grid because
most values of Tg-post are rounded and would not be altered by a small change of L.
The extrapolation task is simple for the intercept (−1.57), the slope on Tg-pre (0.69), the
residual variance (0.22) and the marginal probability of component 1 (0.36). The results of
extrapolation are given in parentheses.

Extrapolation for age entails some uncertainty that is difficult to resolve because the
apparent curvature is the result of a single evaluation, at L′ = 0.1. Without it, the extrapo-
lation task would be simple and would yield the estimate 0.0242. If we ignore the estimates
for L>0.2, we would obtain the estimate 0.0235 at L=0. The range of uncertainty, 0.0007,
corresponds to the difference of 0.021 on the log scale for two subjects who differ by 30
years of age. That corresponds to about 2.1% greater or smaller contrast of predictions for
two such subjects on the original scale. This we regard as insubstantial, especially in view
of the sampling variation of the slope on age, which we study in the next section.

Figure 3. Extrapolation of the mixture-model parameter estimates from L ≥ L′ = 0.1 to L= 0.
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Estimation of the sex difference entails a similar problem, although less acute, because
the curvature of the function of estimates is only mild, and the estimation function is very
close to linearity for L ∈ (0.1, 0.3). The extrapolation, using no sophisticated device, yields
a value between −0.25 and −0.23. The range of uncertainty, 0.02, is similar to the uncer-
tainty about predictions for two subjects 30 years apart in age. This uncertainty is much
smaller than the sampling variation of the estimator of the sex difference estimated in the
next section. (Recall that there are only 17 men in the sample.)

We illustrate linearisation of the extrapolation task on estimation of the mean of com-
ponent 2, denoted by µ. The left-hand panel of Figure 4 reproduces the function µ̂L from
Figure 3. Powers, or the Box–Cox family of transformations, are always the first candi-
dates for transforming L, but in this instance they are not useful. We therefore resort to
other well-known families of functions. We consider transformations λ = log(CL + 1),
where C>0 is a parameter to be set. For small values of C, µ̂L is a convex function of λ,
but its curvature diminishes with increasing C, and for C .= 20 it deviates from linearity
only slightly. The transformation g(L) = log(20L + 1) is applied in the right-hand panel
of Figure 4. Two alternative linear extrapolations are indicated by dashes. They result in
0.200 and 0.205. We regard the associated uncertainty, additional to sampling variation, as
acceptable.

The assignment of the subjects to the two components may be of interest. Estimation
of the 91 conditional probabilities requires extrapolation of their values from L ≥ 0.1 to
L=0. The task is illustrated in Figure 5, where these conditional probabilities are plot-
ted as functions of L. For most subjects, the estimated conditional probability depends on
L very weakly and extrapolation is very simple. In a few cases, the estimation function
changes its direction abruptly, and the extrapolation to L=0 is subject to considerable
uncertainty. However, the assignment is uncertain whenever the probability of assignment
(to component 1), denoted by r̂, is distant from both zero and unity. Thus, some subjects
almost certainly belong to component 2: 12 have conditional probabilities r̂ smaller than
0.01 for all values of L and further 8 have r̂ smaller than 0.05. Fourteen subjects almost
certainly belong to component 1, since their values of r̂ are greater than 0.99 for all L>0.1;
their estimation functions are overprinted in the diagram.One further subject has r̂ > 0.95
throughout.

Figure 4. Linearising the extrapolation task for themean of component 2, using transformation g(L) =
log(20L + 1).
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Figure 5. Estimation functions for the conditional probabilities of assignment to component 1.

The four subjects with probabilities r̂ in the range (0.5, 0.8) for L=0.1 have moderate
values of Tg-pre, in the range (2.7, 24.0), and values of the outcome Tg-post in the range
(1.4, 2.2), close to the standard of 2.0, so it is indeed difficult to judge whether they are
qualified or unqualified successes. The cluster of subjects with values of r̂ around 0.35,
close to the fitted marginal probability p̂ = 0.36, have very low values of both Tg-pre and
Tg-post. They are at the intersection of the regression fitted for component 1 and themean
fitted for component 2.

3.1. Sampling variation

The (estimated) standard errors of the parameter estimates cannot be obtained from the
EMalgorithmdirectly. The standard errors that theM-step analysis yields at the concluding
iteration underestimate the relevant targets because they ignore the uncertainty about the
components to which the observations belong. The LoD presents additional uncertainty
that compounds the problem of estimating the standard errors.

We estimate the standard errors by bootstrap, Davison and Hinkley [6] and Efron and
Tibshirani [8]. We replicate the analysis 200 times on samples of units drawn from the
realised data set at random and with replacement. Each sample has size 91, the same as the
realised data set. Figure 6 illustrates the extrapolation task for the 200 bootstrap replicate
model fits. It shows that the task is simple for all but a few replicates for each parameter, but
the replicate extrapolations to L=0 have substantial sampling variation. It confirms that
the uncertainty about the extrapolation is small in relation to sampling variation.

The correct application of bootstrap entails extrapolation for each replication and
parameter, that is, 200 × 7 extrapolation tasks, several of them requiring some improvi-
sation because the estimation functions are neither smooth nor linear. We avoid this by
extrapolating the averages over the bootstrap replicates (solid grey line in each panel).
Confidence intervals for the parameters can be established similarly, by extrapolating the
2.5th and 97.5th percentiles of the bootstrap replicates at the values of L. As an alterna-
tive, the (symmetric) confidence intervals can be based on the standard errors estimated
by bootstrap. In the diagram they are drawn by grey dashes.
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Figure 6. Bootstrap replicate analyses with increased LoD. The averages of the replicate estimates are
drawn by thick grey lines and the 95% pointwise bootstrap confidence limits by grey dashes.

The estimates and estimated standard errors obtained by extrapolation of the bootstrap
means and standard deviations are displayed in Table 2. They reflect the substantial sam-
pling variation observed in Figure 6 and confirm that the uncertainty stemming from LoD
is a small part of the overall uncertainty about the estimated parameters. Note that the
sampling distribution of the mean of component 2 is skewed to the right. The cause of this
is the lower bound of zero for the outcomes on the log scale.

In the bootstrap procedure, we drew samples with no stratification. If we stratified on
sex, so that every sample would have exactly 17 men, the standard error for sex would
be smaller, and other standard errors would probably also be reduced. This conclusion
is based on the assumption that the sampling variance of an estimator has the form ν =
Dσ 2(1/nM + 1/nF), where nF and nM are the numbers of women and men in the sample
and D is a positive scalar. The smaller of the sample sizes, nM, has a stronger influence
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Table 2. Estimates and estimated standard errors of the mixture model parameters.

Component 1 Component 2

Intercept Tg-pre Age Sex Res. var. p Mean (C2)

Estimate −1.57 0.70 0.024 −0.23 0.22 0.20 0.36
Bootstrap

Mean −1.38 0.64 0.025 −0.12 0.18 0.20 0.33
St. dev. 1.20 0.16 0.021 0.82 0.07 0.05 0.11

on ν. With stratification, 1/nM is constant across replications; without it, it varies, and its
expectation is smaller than the realised value 1/nM, because 1/x is a concave function. Of
course, the scalarDmay also vary across replications; that is why our conclusion is tenuous.
However, we believe that the original sample was not stratified, and therefore bootstrap
with stratification would represent the sampling variation with a bias.

4. Conclusion

The analysis presented in this paper illustrates a modular approach in which methods for
important features of the data (LoD and mixture) are seamlessly combined. The combi-
nation is computationally much more demanding than each method in isolation, but the
programming effort additional to the two methods is only modest.

This approach is applicable generally to analysing data that has a nuisance feature char-
acterised by a parameter with a known value, in our case LoD with L=0.1 and, in the
original application, Cook and Stefanski [5], measurement error with a known or esti-
mated variance. Inference is sought for the setting in which the feature is absent (L=0).
The method devised for this setting is applied to the data set with the feature inflated (LoD
increased) to a range of levels (L>0.1), and the results are extrapolated to L=0. This is
not a mechanical fail-safe process, but when it works we need no methodological devel-
opment that is specific to a narrow class of problems. The only diagnostics additional to
that required for the original method is to assess the quality of the extrapolation, and that
is straightforward when the extrapolation is linear.

The results of the analysis support the original conjecture that the mixture components
represent two groups of patients: those for whom the surgery and the subsequent therapy
were an unqualified success, and those left with some residue of thyroid cancer. This is a
step toward the goal of setting the dosage of I–131 to near the patient-specificminimum for
which a low value of Tg-post is obtained after the treatment. This has to be achieved with-
out any experimentation. The optimal dosage is likely to depend on several factors related
to the stage of the disease and the initial compromise of the patient’s immune system,which
would have to be recorded.

The code developed specifically for this application can be obtained from the first author
(NTL) on request.
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Appendix. EM algorithm for mixtures
We assume that one component of the mixture follows an ordinary regression, with its vector of
observations y1 = Xβ + ε, where ε ∼ N (0n1 , σ 2In1), and the other is a normal random sample,
y2 ∼ N (0n2 , σ 2In2); n1 and n2 are the (unknown) sample sizes of the components; 0 and I are
the vector of zeros and the identity matrix, with its sizes given in the subscripts. The first itera-
tion of the EM algorithm requires an initial solution. Its setting is not critical. The obvious choice
is the ordinary regression fit to all the values above LoD for component 1, and zero mean for
component 2.

An iteration of the EM algorithm comprises an E- and an M-step. In the E-step, the conditional
probability of belonging to each component is estimated for every observation. For component 1,
this is equal to

r̂i1 = p̂1f1(yi)
p̂1f1(yi) + (1 − p̂1)f2(yi)

,

where f1(yi) = φ(yi; xiβ̂ , σ̂ ) is the density of component 1 and f2(yi) = φ(yi, µ̂, τ̂ ) the density of
component 2 defined for observation i; φ denotes the standard normal density. The densities are
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evaluated at the current (provisional) fit (β̂ , σ̂ ). For component 2, r̂i2 = 1 − r̂i1. Note that f1, f2, p̂1
and r̂ are iteration specific, but we do not indicate this by an (additional) index t, to have a less
cluttered notation.

In the M-step, the models for the two components are fitted separately, using the conditional
probabilities r̂kh as weights. The regression parameter vector is updated in iteration t as

β̂t = (X⊤R̂tX)−1X⊤R̂ty,

where R̂t is the diagonal matrix of the probabilities r̂ = (r̂11, r̂21, . . . , r̂n1)⊤, n= 91. The mean of
component 2 is estimated by µ̂t = y⊤(1 − r̂)/(n − 1⊤r̂); 1 is the vector of ones. The residual
variance is estimated by pooling the estimates

1
r̂+

(y⊤R̂ty − β̂
⊤
X⊤R̂tXβ̂),

where r̂+ = r̂⊤1 and (y − µ̂)⊤(y − µ̂)/(n − r̂+), with weights r̂+ and n − r̂+.
The iterations are stopped when the values of the parameter estimates (and of the fitted

incomplete-data loglikelihood) are changed by less than a prescribed value, such as 10−8. We evalu-
ate the negative log-normQt = − log10(∥ξ t − ξ t−1∥) for the vector of all estimates ξ (supplemented
by other quantities, such as the loglikelihood), and the iterations are stopped when Qt > 8; Qt can
be loosely interpreted as the number of decimals in the achieved precision.


