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Abstract

The normal stiffness of a fracture is a key parameter that controls, for example,

rock mass deformability, the change in hydraulic transmissivity due to stress

changes, and the speed and attenuation of seismic waves that travel across

the fracture. Non-linearity of normal stiffness as a function of stress is often

attributed to plastic yield at discrete contacts. Similar surface-altering mech-

anisms occur due to pressure solution and precipitation over larger timescales.

These processes partition the fracture surfaces into a flattened contact region,

and a rough free surface that bounds the void space. Under low loads, contact

occurs exclusively over the flattened part, leading to rapid, exponential stiffen-

ing. At higher loads, contact occurs over the rough surface fraction, leading to

the conventional linear increase of stiffness with stress. It follows that a rela-

tionship exists between the history of in situ temperature and stress state of a

rock fracture, and its subsequent deformation behavior.

Keywords: Rock fracture; Stiffness; Compliance; Diagenetic processes;

Pressure solution; Precipitation

1. Introduction

Fractures are widespread in the Earth’s crust and often control the overall

behavior of rock masses at large scales. Heat and mass transport, fluid flow, and
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the velocity and attenuation of seismic waves are all generally stress-dependent

in fractured rock. Normal stiffness is a key parameter that relates relevant

fracture properties to the magnitude of the normal stress. As such, it represents

the stiffness contribution attributable to the closure of the void space between

the rock walls, and the excess compression of contacting asperities therein with

respect to the intact rock (Cook, 1992). The fracture normal stiffness is the main

factor that controls the P-wave transmission and reflection coefficients (Pyrak-

Nolte et al., 1990), and is closely correlated to the hydraulic transmissivity

(Pyrak-Nolte and Morris, 2000).

The numerical value of the normal stiffness will strongly depend on the

morphological properties of the fracture, such as roughness and the correlation

between the surfaces in contact, and the elastic moduli of the rock (Zimmerman

et al., 1990; Hopkins et al., 1990; Pyrak-Nolte and Morris, 2000). Chemically-

mediated processes may significantly alter fracture morphology, thereby chang-

ing the hydro-mechanical properties of a rock fracture after formation (Chester

and Logan, 1986; Moore et al., 1994; Polak et al., 2003; Laubach et al., 2004;

Yasuhara et al., 2006). These processes occur either as diagenetic mechanisms

over geologic timescales at in situ conditions, or during engineering procedures,

where injected fluids and induced temperature changes can accelerate these

processes significantly. In open fractures, where opposing surfaces are not in

nominal contact, the process of precipitation dominates, to structurally seal

the discontinuity over time (Laubach, 2003). The formation of bridging struc-

tures precedes this sealing (Lander and Laubach, 2015), and these structures

control the deformation behavior of the fractures (Sayers et al., 2009). Large

fractures that form highly connected networks are expected to be under com-

pression at appreciable depth (Barton et al., 1995; Zoback, 2007). The relative

displacement between the opposing rough rock surfaces, and the resulting par-

tial contact, give rise to their effect on fluid flow, transport and displacement

(Zimmerman et al., 1990, 1992; Borri-Brunetto et al., 1999). For these fractures,

the coupled processes of pressure solution and free-face precipitation constitute

significant diagenetic mechanisms (Gamond, 1987; Gratier and Gamond, 1990;
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Peacock and Sanderson, 1995). Their combined effect leads to a redistribution

of material, driven by spatial gradients in chemical potential, from the mechan-

ically stressed grain contacts to the mechanically open pore space (Weyl, 1959;

Rutter, 1976; Gratz, 1991; Lehner and Leroy, 2004). Although the hydraulic

response to such compaction processes on fractures have been extensively stud-

ied (Moore et al., 1994; Durham et al., 2001; Morrow et al., 2001; Polak et al.,

2003; Yasuhara et al., 2006), quantitative studies of the mechanical effects are

sparse, and they remain experimentally challenging.

Building on previous work (Lang et al., 2015), the present study presents cou-

pled hydro-mechanical-chemical simulations at the pore scale to assess changes

in fracture normal stiffness under the effects of pressure solution and precipi-

tation, for a water-quartz system. Specifically, instantaneous fracture closure

curves are generated, for specific points in time during the dissolution and pre-

cipitation process, and related to changes in the rock surface morphology (Figure

1). For a fracture undergoing pressure dissolution, the area of discrete contact

between the two rough surfaces increases, the number of contact patches that

make up this discrete contact area increases, and the dominating contact regime

changes from dissolved, smoothened contacts to unchanged, rough contacts. The

ensuing changes in fracture closure behavior are in qualitative and quantitative

agreement with experimentally obtained curves for multiple compression cycles

on unmated fractures, where plastic damage leads to similar alterations of the

rock surface morphology.

2. Methodology

The normal stiffness of a fracture is largely attributable to the frictionless

contact between two rough surfaces. This contact problem is equivalent to the

contact between a flat, elastic body with composite moduli, and a rigid body

with a composite profile (Brown and Scholz, 1985). The profile of the composite

surface is obtained as the sum of the opposing surface heights, and thus rep-

resents the aperture profile at unstressed conditions, i.e., when the two rough
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Figure 1: A 0.5×0.5 m periodic fracture composite surface in its initial state (left) and after

pressure solution and free-face precipitation acted for 300 ka at 10 MPa effective confining

pressure and 150 ◦C (right).

surfaces touch at a single point. A fracturing process produces two surfaces

of isotropic, self-affine nature of approximately Gaussian height distribution

(Brown and Scholz, 1985; Poon et al., 1992; Schmittbuhl et al., 1995). The

roughness power spectrum C(q) sufficiently characterizes both the root-mean-

squared roughness, and the height correlation of such surfaces as (Nayak, 1971):

C(q) =
1

(2π)2

∫
〈h(x)h(o)〉e−iq·xd2x (1)

where q is the roughness wave vector, and q = |q| is its magnitude, the wavenum-

ber, or spatial frequency. For measured data of h(x), which are usually shifted to

obtain 〈h〉 = 0, Equation 1 can be evaluated using a Discrete Fourier Transform

and radial averaging. A numerical algorithm based on a mathematical recipe

in Persson et al. (2005), pp.76-79, has been implemented for this purpose. An

ideal spectrum C(q) for surfaces of this kind is given by (e.g. Pastewka et al.,
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2013)

C(q) ∝


1 qL < q < q0

q−2(H+1) q0 ≤ q ≤ q1

0 q1 < q < q`

(2)

In Equation 2, qL = 2π/L is the smallest roughness frequency that can possibly

occur in the surface, limited by the sample length L. This wavenumber qL

corresponds to the largest possible roughness wavelength λL = L/2π occurring

in the surface. At the other end of the spectrum, the largest possible roughness

frequency, q`, or smallest roughness wavelength, is limited by the lattice size

`. Note that qL, or λL, is a consequence of the physical size of the surface of

interest, and q` is a consequence of discretization. The discretization limit may

result from a numerical lattice or grid size, or may result from limitations in

measurement resolution. For example, a surface of length L has a cell size of

` = L/L, where L is the number of equally sized square lattices. Surfaces in

nature have no notion of a discretization-induced limit λ`, but are rough down to

the molecular scale (Yang et al., 2006; Luan and Robbins, 2005). A surface with

roughness wavelengths bounded by its size and discretization limit is shown in

Figure 2a, and the associated power spectrum in Figure 2a. Surfaces of this kind

are good models of naturally induced tensile fracture surfaces (Persson, 2014),

apart from having a lower limit, q`, that is an unavoidable numerical artifact.

In between the limits (qL, q`), two more characteristic wavelengths may exist.

If the smallest roughness wavelength present on a surface is larger than

the discretization limit λ`, a so-called cut-off wavelength λ1 > λ` exists, and

a corresponding cut-off wavenumber q1 < q`; see Figures 2c and 2d. As a

consequence, surfaces with a cut-off lack smaller roughness features; compare

Figures 2a where q1 = q` and 2c where q1 < q`. In this case, only larger

roughness features are represented, i.e., the surface appears smoother for the

lack of small-scale roughness. This is equivalent to a low-pass filter, in terms

of roughness frequency. Although real surfaces don’t feature such a cut-off,

it has been shown that ignoring theses small roughness features has negligible
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effects when numerically computing normal stiffness (Campañá et al., 2011) or

transmissivity (Zimmerman and Bodvarsson, 1996; Vallet et al., 2009; Neuville

et al., 2011). In other words, many phenomena in fractures depend mostly on the

largest roughness wavelengths of the contacting surfaces. Introducing a cut-off

wavelength is (1) unavoidable when representing a surface discretely, because at

the most the discretization bound represents the artificial limit q1 = q`, and (2)

a convenient means of obtaining first-order solutions with limited computational

effort.

If the largest roughness wavelength present on a surface is less than the

physical limit λL, a so-called roll-off wavelength λ0 < λL exists, along with a

corresponding roll-off wavenumber q0 > qL. This is equivalent to a high-pass

filter in terms of roughness spatial frequencies. An example of such a surface is

shown in Figure 2e, and its spectrum in Figure 2f. Compared to Figure 2a, no

roughness wavelength that spans the entire surface can be identified. Surfaces

of this kind may represent manufactured, flat surfaces, which are only rough

below a certain length-scale. A classic example is sandpaper, where the roll-off

is proportional to the grind number. Such surfaces may be indicative of the

aperture field formed by two correlated surfaces. A surface with both a cut-off

and a roll-off in roughness is illustrated in Figure 2g, and its spectrum is shown

in Figure 2h.

A universal scaling exponent of H ≈ 0.8 has been found to apply for

surfaces of tensile fractures across a range of different rock types and grain

size distributions (e.g. Poon et al., 1992). The root-mean-square roughness of

the surface controls the amplitude of the power spectrum, hrms = 〈h2〉1/2 =(
2π
∫
qC(q)dq

)1/2
; its length-scaling is less clear (Schmittbuhl et al., 1995;

Fardin et al., 2001, 2004; Tatone and Grasselli, 2013), mostly due to the un-

availability of large, undamaged tensile fracture surfaces. Surfaces formed by

fracture propagation are in general expected to be fractal-like across all length

scales (e.g. Persson et al., 2005), i.e., q0 = qL and L/λ0 = 1. In fact, no ev-

idence of a roll-off wavelength has been found for measurements over multiple

length scales (Power et al., 1987; Candela et al., 2012), suggesting the exis-
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tence of roughness across all relevant length-scales in rock fractures, and, as a

consequence, no obvious characteristic or homogenization length scale. Given

a roughness spectrum C(q), self-affine surfaces can be generated numerically

through a Fourier series (Persson et al., 2005) fully periodic (Figure 1) or with

periodic boundary conditions (Figure 2). The numerical accuracy of the inde-

pendent algorithms for surface characterization and generation is illustrated by

means of the reference and measured power spectra in Figure 2 for surfaces of

L × L = 1024×1024.

The observation that natural surfaces are characterized by roughness across

all length scales, and that they are geometrically similar for different materi-

als (see also Persson, 2014), has led the modeling of normal contact between

two rough surfaces away from the notion of asperities, or grains (Greenwood

and Williamson, 1966; Swan, 1983; Brown and Scholz, 1985; Hopkins et al.,

1990), towards a self-affine roughness representation (Mourzenko et al., 1997;

Persson, 2001; Hyun et al., 2004; Akarapu et al., 2011; Pastewka et al., 2013).

The choice of rock-forming asperities as a characteristic length scale is arbi-

trary, because grain surfaces themselves are rough down to a molecular scale,

and contact between two such grains can only be partial as well; a character-

istic which is at the core of fractal-like surfaces. The fact that a lattice size `

on the order of the average grain diameter is sufficient for normal contact and

fluid flow modeling reflects the fact that these processes depend dominantly on

large-scale roughness (Zimmerman and Bodvarsson, 1996; Vallet et al., 2009;

Neuville et al., 2011). Moreover, asperities located at the surface do not de-

form individually upon contact, but as a continuum (Persson, 2007), due to the

cohesion between them that characterizes consolidated rock. The rigid compos-

ite surface, or aperture field, that controls the elastic, frictionless contact is a

function of physical processes. First, the relative shear displacement between

the two initially strongly correlated surfaces controls the interfacial deformation

(Borri-Brunetto et al., 1999). Secondly, surface alterations due to shear related

abrasion and chemically-mediated processes may have severe effects.

If the opposing surfaces are uncorrelated, the resulting composite surface
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Figure 2: Illustration of cut-off q1, roll-off q0 and Hurst exponent H for isotropic rough

surfaces, their traces and the corresponding PSDs. (a-b) A surface with fractal roughness

across all wavenumbers. (c-d) A surface with a roughness cut-off. (e-f) A surface with a

roll-off. (g-h) A surface with both roll-off and cut-off.
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Figure 3: Radially averaged surface roughness spectra for the numerical composite surfaces

generated to fit initial closure curves of Gale (1982), Bandis (1980) and Raven and Gale (1985).

has the same scaling exponent H as the individual surfaces, with a reduced

roughness amplitude hrms (Hyun et al., 2004). For opposing surfaces with shear

displacement smaller than the largest roughness wavelength, the composite sur-

face will in general be anisotropic, exhibit a roughness wavelength roll-off below

the sample length, and show reduced Hurst exponents, which reflects a reduced

correlation length (Brown et al., 1986; Matsuki et al., 2006).

A square composite surface can be discretized into L × L regular grid cells

to obtain a numerical solution for contact with a planar elastic body. The

method employed here is based on the solution of the displacement-pressure

integrals in Fourier space embedded in a conjugate gradient algorithm (Stanley

and Kato, 1997). Therein, the contact pressure is transformed to the frequency

domain by a Fast Fourier Transform (FFT) algorithm, multiplied by stiffness

coefficients from the Westergaard (1939) solution for contact pressure due to

a sinusoidal height profile, and the resulting displacement solution is brought

back to the space domain by an inverse FFT. The inherent non-linearity of the

elastic contact problem that arises from the mutual dependence of contact area,

contact pressure and deformation is addressed by a conjugate gradient solver.

This form of algorithm (e.g. Sainsot and Lubrecht, 2011) has been used in
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numerous studies to solve the frictionless contact between rough surfaces (e.g.

Almqvist et al., 2007; Sainsot and Lubrecht, 2011; Jackson and Green, 2011;

Yastrebov et al., 2015).

In response to an external effective confining pressure, p, the obtained solu-

tion yields the contact stress, σ(x) (Figure 4a), and the normal displacement

(Figure 4e), over the fracture plane, x = (x, y) (Figure 1). A mechanical aper-

ture field, am(x), is defined as the cell-wise separation between the rigid and

the elastic surface (Figure 4e), with zero-apertures at points of contact. The

tangent normal stiffness can be evaluated for increasing compression as

κ (p) =
dp

d〈am〉
(3)

where the brackets denote a spatial average. The incremental reduction in the

average separation, d〈am〉, is a direct measure of the additional deformation due

to the presence of the fracture (Cook, 1992). The difference between the average

aperture of the unstressed fracture, 〈am〉p=0, and the average aperture under

compression,〈am〉p, increases with p, and is commonly represented by means

of closure curves (Figure 5). Numerically, Equation 3 is evaluated for discrete

increments of p, using a second-order finite difference approximation.

The pressure dissolution model is based on a closed-form approximation to a

reaction-diffusion equation in a water-quartz environment for spherical contacts

(Lehner and Leroy, 2004; Bernabé and Evans, 2007), extended to arbitrarily

shaped contacts (Lang et al., 2015):

dh

dt
(x) =

2 Ωs

kBT
σ(x)

2
kd

+ ρs
ρf

rd(x)2

4ceqwD∗

(4)

In Equation 4, T = 150 K is the ambient temperature, and rd(x) (m) is the

diffusion distance for each point at the interface, i.e., the distance to the nearest

free pore space part of the fracture. Furthermore, ρs = 2650 kg m−3 is the solid

density, ρf = 1000 kg m−3 is the fluid density, kd = 2.27 E-(3.826 + 0.002028T

+ 4158/T ) m s−1 is a temperature-dependent dissolution rate constant, Ωs

(m3) is the molecular volume, kB (J K−1) is the Boltzmann constant, and ceq

= 0.055E-(0.254 + 1107.12/T ) is the equilibrium concentration in the free pore
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Figure 4: Qualitative and quantitative evolution of the generic fracture model at 10 MPa and

150 ◦C. (a) The initial profile of discrete contacts over the fracture plane, with an in situ

contact ratio of Rc = 0.01. (b) The transient change in contact ratio and average aperture

over time for the ‘open’ system, where only pressure solution takes place, and the ‘closed’

system, where dissolved mass is re-precipitated. (c) The discrete contact after 220 ka for the

‘open’ system, in situ Rc = 0.21. (d) The discrete contact after 220 ka for the ‘closed’ system,

in situ Rc = 0.22. The arrow indicates an estimated void segment radius r. (e) A cut-plane

a-b through the elastic-rigid surfaces of the ‘open’ system for increasing steps in time, as the

in situ contact increases. (f) A cut-plane a-b through the elastic-rigid surfaces of the ‘closed’

system for increasing steps in time, as the in situ contact area increases.
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Figure 5: A comparison between multiple cycles of compression from fracture closure experi-

ments, and the numerically obtained instantaneous fracture closure for progressing stages of

pressure solution in ‘open’ systems. The first closure curve has been fitted to obtain surface

parameters and elastic moduli for the initial numerical models. (a) Gale (1982) sample 42, (b)

Gale (1982) sample 40, (c) Bandis (1980) sample sdst-2, (d) Raven and Gale (1985) sample 3.
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Figure 6: Surface height change dh for the generic fracture model under ‘closed’ conditions

over a period of 100 years due to pressure solution and free-face precipitation.

space, expressed as mass fraction. The width of the contact-boundary diffusion

zone is w = 1.0E-8 m, and the reduced diffusion constant in this zone is D∗ =

0.1×9.0E-7 exp(15000/RT ) m2s−1, where R is the gas constant. Note that the

dissolution rate constant kd in its convergence rate form (m s−1) is obtained by

multiplying dissolution rate constants (mol m−2 s−1) as reported in Rimstidt

and Barnes (1980) by the molar volume (m3 mol−1) of Quartz.

To model precipitation of dissolved mass, the assumed scenario is that pres-

sure solution constitutes the rate-limiting process (Weyl, 1959; Rutter, 1983),

and that the pore fluid remains at its equilibrium concentration. The redis-

tribution of dissolved silica follows a volume-conservative approximation to the

diffusion-reaction problem, proportional to the inverse of the distance from the

surface contacts (Figure 6). Two end-members with respect to dissolution-

precipitation have been studied. (1) ‘Open’ systems model pressure-solution

only, and any dissolved mass is assumed to be subject to advective transport

that prevents re-precipitation. (2) ‘Closed’ systems assume that any dissolved

mass is locally conserved and precipitates near the fracture contacts in a solid

volume conservative manner.

In situ conditions in terms of temperature and effective confining pressure are
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chosen as T = 423 K and p = 10 MPa, respectively, and are time invariable. The

absolute pressure and temperature conditions are, to first order, only significant

for the rate of fracture compaction, not the qualitative evolution of the pore

space (Lang et al., 2015). Simulations are run until a contact ratio of Rc ≥ 0.55

is reached. This represents the approximate upper limit where contacting zones

percolate to hydraulically seal the fracture, thus violating the ‘open’ system

assumption.

2.1. Surface Properties and Elastic Moduli

Isotropic, periodic self-affine composite surfaces have been generated (Peit-

gen et al., 1988) for this study, discretized using 512×512 grid cells. Two dif-

ferent surface parameter sets have been used. The first approach studies the

behavior of a generic fracture of 0.5×0.5 m (Figure 1), where H = 0.8, λ0 =

L/2, hrms = 500 µm, with 60 GPa and 0.15 for Young’s modulus and Poisson’s

ratio, respectively. Second, based on least-squares fitting, four models have been

created with surface properties and elastic moduli chosen to reproduce initial

closure curves of fracture deformation experiments. These experiments have

been chosen based on the classification of the fractures as being non-mated, the

availability of closure data for multiple, successive loading cycles, and based on

the fact that visible plastic damage has been reported over the rock surfaces as

a result of the mechanical loading (Bandis, 1980; Gale, 1982; Raven and Gale,

1985). The edge length, L, of the created models equals the maximum dimen-

sion of the samples. The Poisson’s ratio for all cases has been assumed to be

0.15, as this parameter has a minor effect on closure curves. The fitting parame-

ters allowed for variations in the Young’s modulus, E, the roughness amplitude,

hrms, the roughness wavelength-amplitude scaling exponent, H, and the roll-off

wavelength, λ0.

Numerical values that resulted from the fit are listed in Table 1, and radially

averaged roughness power spectra (Persson et al., 2005) are shown in Figure 3.

A comparison between numerical and experimental initial closure curves (Fig-

ure 5) shows good agreement for sample 42 (Gale, 1982) and sample 3 (Raven
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Table 1: Result of least-squares fit of numerical models to experimentally observed initial

closure curves. The fitting variables increments are 5 µm for hrms, 0.1 for H, power of two

fractions of L for λ0, and 5 GPa for E.

Author Sample L× L [m] hrms [µm] H [-] L/λ0 [-] E [GPa]

Bandis (1980) sdst-2 0.09×0.09 85 0.3 4 20

Gale (1982) 40 0.15×0.15 70 0.4 1 60

42 0.15×0.15 60 0.4 4 60

Raven and Gale (1985) 3 0.193×0.193 90 0.8 1 65

and Gale, 1985). Poorer fits have been obtained for sample 40 (Gale, 1982)

and sample sdst-2 (Bandis, 1980), probably as a result of stronger correlation

between the surfaces in contact, as indicated by the fast asymptotic approach

towards a residual aperture with increasing load. Composite surfaces that re-

produce this behavior require a more log-normal distributed surface height and

anisotropic scaling exponents (e.g. Matsuki et al., 2006), but are here approxi-

mated as Gaussian and isotropic. Discrepancies can further be explained by the

contributing closure mechanisms during the first cycle of compression. While

the numerical model accounts for frictionless elastic contact only, the initial clo-

sure behavior in experiments is likely to also reflect gradual plastic deformation

and friction-related rearrangement between the surfaces.

3. Evolution of the Fracture Space

After the fracturing process and subsequent shear displacement, opposing

surfaces are mismatched and touch at a minuscule fraction of their nominal

area, resulting in large stress concentrations at the contacts (Figure 4a). In an

attempt to reach a more equilibrated state, pressure solution acts to smooth

the elevated, contacting fractions of the surface. As a consequence, the initial

Gaussian distribution of surface height is truncated, and small-scale roughness

features in contact zones are dissolved to yield more rounded structures (Fig-

ure 1). Most notably, this effort results in (1) a more uniform distribution of
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contact pressure, (2) less pronounced stress concentrations, (3) an increase in

contact area, and (4) newly formed contact regions as a result of the conver-

gence, or approach, of the two surfaces (Figures 4c to 4f). In ‘closed’ systems,

precipitation facilitates the growth of existing contact regions without signifi-

cant convergence of the surfaces. Large aperture channels are thus preserved,

while they tend to close for ‘open’ systems where no precipitation takes place

(Figures 4e and 4f). It follows that the loss of pore-volume occurs faster in

‘open’ systems than in ‘closed’ systems (Figure 4b). At the same time, the con-

tacting fraction of the surface is made up of a larger number of contact spots for

the ‘open’ no-precipitation system, and of larger individual, but fewer in num-

ber contact spots for ‘closed’ systems with precipitation (Figures 4c and 4d).

The driving force of pressure solution-driven compaction is the contact stress,

which, to first order, is a function of the contact ratio, and to second order is a

function of the size and roughness or curvature over the discrete contacts. Thus,

the increase in contact ratio evolves in a similar manner for both systems, with

precipitation acting to accelerate its increase (Figures 4b).

These changes in rock surface morphology have a profound effect on fracture

stiffness, analogous to the increase in host rock bulk stiffness due to diageneti-

cally driven cementation of the pore space (Laubach et al., 2009). Within the

larger setting of a fractured rock mass and far-field stress conditions, shear frac-

tures that experience pressure solution will be found at a high angle to filled

veins, indicative of their formation at high angles with respect to the orientation

of the maximum principal stress (Peacock and Sanderson, 1995). Precipitation

in such shear fractures will often occur in void spaces that result from large

scale pull-apart structures (Gamond, 1983). Besides their oblique orientation

to the direction of shear, pull-apart connecting surfaces that experienced pres-

sure solution are dark and braided in nature (Peacock and Sanderson, 1995).
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4. Changes in Normal Stiffness

The stiffness of the generic fracture in its initial state is a linear function

of the applied load (Figure 7a), in agreement with empirical, numerical and

theoretical models of elastic contact between randomly rough surfaces (Bandis

et al., 1983; Swan, 1983; Hopkins et al., 1990; Berthoud and Baumberger, 1998;

Akarapu et al., 2011). This reflects the fact that, with increasing p, existing

contact areas grow and new contact areas form in such a way that the distri-

butions of stress and contact spot size remain constant if normalized to the

area of discrete contact (Sun et al., 1985; Persson, 2006). It follows that the

contact ratio Rc varies linearly with p (Figure 8), and that the distributions of

contact stress and contact patch size scale linearly with p when normalized to

the nominal area (Campañá et al., 2011).

The diagenetic processes studied here act to partition the nature of surface

roughness over the fracture. While elevated regions are flattened, lower parts

that are not in contact at in situ conditions retain their initial roughness (Figure

7b). The instantaneous closure of such a fracture in its chemically altered state

gives rise to two contact regimes as a function of normal load. At loads roughly

equal to or below in situ conditions, stiffening of the fracture is controlled by

smooth, low curvature features that result from dissolution-precipitation at and

near contacts. Over these parts of the surface, a minimal increase in compres-

sion yields a disproportionately large increase in contact area. At higher loads,

incremental contact occurs over the unaltered, self-affine rough fraction of the

surfaces. Any incremental increase in contact area thus requires a much larger

load increment over this part of the surface. The closure of the fracture, and

the resulting stiffness curve, reflects these two regimes (Figure 7a). Stiffening

transitions from approximately exponential to approximately linear at a load

slightly larger than the 10 MPa effective confining pressure under which com-

paction is modeled. It follows that this in situ pressure roughly marks the

transition in contact from diagenetically rounded to initially rough surface frac-

tions. The notion that the free fracture surfaces tend to retain their self-affine
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roughness nature during chemical alterations has also been shown to extend to

poly- and mono-mineralic fractures for dissolution dominated processes (Gouze

et al., 2003; Noiriel et al., 2013).

The normal stiffness magnitude increases over the entire load spectrum as

a result of these mechanical-chemical processes. Primarily, this reflects the re-

duced amount of normal load required to generate additional contact area in the

low load stage, and the observed increase in contact ratio at all loads. Further-

more, reduced stress concentrations over smoothened contacts result in reduced

elastic compression of the contacts. Shortened free wall intervals that result

from growing and newly formed contact spots reduce the deflection of surfaces

into the fracture void space. Combined with the increased strain energy accom-

modated in larger contact structures, the elastic compression of the pore-space

is much reduced compared to the fresh fracture, thus increasing its stiffness. At

large loads, contact is made over fractions of the surface least affected from di-

agenetic processes, thus the difference in magnitude between initial and altered

fracture stiffness is lessened.

For both the ‘open’ system that models pressure solution only, and the

‘closed’ system that models re-precipitation of the dissolved mass, the obtained

instantaneous stiffness curves for points in time of equal in situ-contact ratios

have been found to evolve in a similar manner (Figure 8b). A higher stiffness

throughout the load spectrum is obtained for the ‘open’ system. This reflects

the increased convergence of the opposing surfaces, and the fact that the con-

tacting fraction of the surface is made up of a larger number of individual

contact patches, as opposed to fewer in number but individually larger patches

for the ‘closed’ system with precipitation. Also, ‘closed’ systems tend to retain

deep channels, which, along with the larger separation between contact points,

allow for larger elastic deformation into the void space. These observations

are in line with experimental (Kendall and Tabor, 1971) and numerical results

(Hopkins et al., 1987, 1990) that relate reduced distance between contacts to

higher interfacial stiffness. It can be concluded that the stiffness of the presented

models is mainly a function of the magnitude of the in situ contact ratio (e.g.
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b

Contact at low loads over dissolved, smooth regions

At higher loads
over unaltered,
rough regions

Stiffening in low load regime
controlled by dissolved contacts

Stiffening in high load regime
controlled by rough contacts

a

Stiffening over entire load regime
controlled by rough contacts

Figure 7: Quantitative and qualitative illustration of the observed change in normal stiffness

for the fracture model. (a) Instantaneous normal stiffness curves for the initial fracture, and

after 10 ka of pressure solution and free-face precipitation. Inset: Linear plot. (b) A cut-

plane through the surface of the fracture model after 10 ka for three steps of increasing load,

illustrating instantaneous closure behavior of the altered fracture.

19



Petrovitch et al., 2013, 2014), and to a slightly lesser degree a response to the

size and number of contact patches that result from whether or not dissolved

mass precipitates locally. From this perspective, the non-linearity of stiffness

follows the change in contact area-load relationship, from classic linear to an

exponential-linear function (Figure 8a).

5. Similarities to Closure Behavior due to Plastic Damage

With increasing normal loads, irreversible mechanisms contribute to the clo-

sure of a rock fracture, in particular if the surfaces in contact are non-mated

(Bandis, 1980). For one, contacting fractions subjected to large stress concentra-

tions will experience plastic yield. Furthermore, minor lateral shifts will occur

as local shear forces at inclined contacts exceed the frictional resistance. The

observed flattening of tips caused by plastic yield (Brown and Scholz, 1986),

however, should be expected to have similar effects on fracture closure as does

the process of pressure solution.

Qualitatively, the hysteresis observed during multiple closure cycles has two

main characteristics: (1) A reduction in residual aperture, and (2) this residual is

reached at lower loads than during the initial loading (Bandis, 1980; Gale, 1982;

Raven and Gale, 1985). Numerically-obtained closure curves of fractures with

increasing degree of pressure solution damage are consistent with this behavior

(Figure 5). Although there is a pronounced mismatch for sample 3 (Raven and

Gale, 1985), good agreement is observed between numerical and experimental

closure curves for the other comparisons. This suggests that closure of fractures

subjected to pressure solution and plastic damage is governed by the same first-

order mechanism, namely the partitioning of the fracture surface into a flattened,

elevated fraction, and a lower one that retains its initial roughness.

6. Fracture Closure and Stiffness-Compliance Relationships

Noise in experimentally measured closure data makes direct differentiation

with respect to pressure difficult, see Equation 3. Stiffness, therefore, is of-
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Figure 8: Instantaneous contact ratio and stiffness as a function of pressure for the generic

fracture model at its initial state and after progressing stages of pressure solution and precipi-

tation have altered the fracture. (a) The instantaneous contact ratio as a function of pressure

for the initial fracture and after pressure solution has acted for 1.2 Ma to increase the in-situ

fractional contact area Rc under 10 MPa to 16 and 35 percent. (b) The instantaneous normal

stiffness of the initial fracture and after pressure solution only (‘open’) and pressure solution

and precipitation (‘closed’) have led to an increase of the in-situ fractional contact area Rc

to 16 and 35 percent under 10 MPa.
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ten evaluated on smooth curve-fits (e.g. Zangerl et al., 2008). Least-squares

fits of the numerically-obtained closure data (Figure 9a) of the generic 0.5×0.5

m fracture have been generated for two functional models of fracture normal

deformation; a hyperbolic and a logarithmic relationship. The closure mod-

els proposed by Bandis (1980) and Goodman (1976) can be generalized to a

hyperbolic relationship of the form (Muralha, 1999)

δn =
σmn

a+ bσmn
(5)

where δn (m) is the fracture closure, i.e., δn = 〈am〉p=0 − 〈am〉p in this study,

σn (Pa) is the nominal normal stress acting on the fracture, i.e., the confining

pressure p, and a, b and m are fitting variables. The Bandis model is a special

case of Equation 5 when m = 1, and the Goodman model can be expressed

by Equation 5 beyond a shift due to the initial seating stress (Muralha, 1999).

Besides a hyperbolic relationship, closure models for mismatched joints have also

been expressed as logarithmic, or exponential relationships (Goodman, 1976;

Detournay, 1979; Bandis et al., 1983). A two-parameter form was proposed by

Detournay (1979)

δn = aln
(σn

b
+ 1
)

(6)

Both the hyperbolic and logarithmic model provide good fits to the closure

curve of the initial fracture model (Figure 9a), with correlation coefficients of R

= 0.996 and R = 0.998, respectively. The fit of both models to the instantaneous

closure of the fracture in its state after 10 ka of pressure solution is nearly

identical, with R = 0.989. This poorer fit is most pronounced over the low-load

regime between 5 and 10 MPa, where closure transitions from being governed

by the dissolved surface regions to being governed by the rough surface regions.

Similar discrepancies can be expected when fitting smooth curves to the closure

data of cycle 2 and 3, sample 42 (Figure 5a), and cycle 2, sample 40 (Figure

5b), of Gale (1982).

The misfit of smooth curves to the closure of the dissolved fracture in the low

load regime has a profound effect on the nature of the obtained stiffness curves

(Figure 9b). A smooth increase in stiffness entirely masks the transition from
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rapid stiffening over dissolved contacts, to a much reduced stiffening over the

rough surface fraction; for a comparison see Figure 9a for the stiffness derived

from the curve fit, and Figure 7a for stiffness derived directly from numerical

closure data. For the logarithmic closure model, Equation 6, normal stiffness

is a linear function of pressure. The hyperbolic model, Equation 5, results in

sublinear stiffness for the initial fracture, and superlinear stiffness of the fracture

after dissolution, thus bounding the stiffness values obtained from the logarith-

mic fit at larger loads. Stiffness values obtained from direct differentiation of

the numerical closure data (Figure 7a) are closer to the logarithmic fit in each

case.

Analytic models of closure often rely on the idealization of the fracture as a

simplified shape, and the stiffness results from elastic compression of the void

space. With the exception of Zimmerman (2008), these models do not account

for incremental increase in contact ratio with pressure, which constitutes an

intrinsic link to fracture normal stiffness (e.g. Petrovitch et al., 2014). For

isolated open penny-shaped cracks of radius r, normal stiffness can be expressed

as (Sayers and Kachanov, 1995)

κn =
1

BN
=

3πE

16r(1− ν2)
(7)

where BN (m Pa−1) is the normal compliance of the crack. When the fracture

is conceptualized as a collection of collinear elliptical cracks (Myer, 2000), its

normal stiffness can be approximated for large contact ratios as (Jaeger et al.,

2007, p. 371)

κn ≈
2G

πr(1− ν)(1− c)
=

E

πr(1− ν2)(1− c)
(8)

where r (m) is the half-length of the elliptical cracks, ν (-) and E (Pa) are,

respectively, the Poisson’s ration and Young’s modulus of the intact rock, and

c (-) is the contact ratio, i.e., c = Rc. The accuracy of the approximation in

Equation 7 should be expected to increase with progressing pressure solution

and precipitation, due to the increase in fractional contact area. This is accom-

panied by an increased separation between void space segments, which reduces

their mutual influence on deformation and thus renders them more and more
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mechanically independent. For the generic fracture model under ‘closed’ con-

ditions after 1.2 Ma, an in situ contact ratio of 0.35 (Figure 4b), an estimated

radius of void space segments of r = 0.05 m (Figure 4d), with E = 60 GPa,

Equation 8 yields κn = 6.01 1011 Pa m−1, comparable to the range of 6-7 1011

Pa m−1 obtained numerically for p > 10 MPa (Figure 8b). The good agreement

affirms that larger patches of void space deform increasingly independent of each

other as the fracture compacts due to pressure solution. The use of Equation 7

alone leads to a slight underestimation of the compliance of the fracture if r =

0.05 m of a single void segment is used, in which case κn = 7.2 1011 Pa m−1.

7. Conclusions

It has long been established that characteristics of the structural process

that result in the formation of fractures are directly linked to their stiffness.

Primarily, the size of the initial fracture, and its subsequent shear displacement,

govern the magnitude and evolution of fracture closure as a function of pressure.

The presented findings make a strong case that the history of in situ-conditions

has similarly profound implications, through diagenetic processes that change

the morphology of the surfaces in contact. For the modeled processes of pres-

sure solution and precipitation, the key mechanism causing the general increase

in stiffness is the growth and leveling of contact zones due to pressure solution,

which decreases free wall deflection and the extent to which contacting asper-

ities are compressed. Apart from an increase in magnitude, a distinct change

in the nature of the normal stiffness curve is observed. The in situ-confining

pressure of the fracture marks a transition from rapid, exponential-like, towards

approximately linear stiffening with increasing load. This reflects the diagenet-

ically induced surface roughness partitioning of the fracture surface. Elevated

regions in contact are smooth, well rounded to flat, as a result of dissolution and

precipitation. These regions control fracture closure at low loads. Regions of the

surfaces that are not in contact under in situ-conditions retain their self-affine

rough nature, and control the incremental increase in stiffness at high loads.
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Figure 9: Stiffness derived from closure curve-fits for the generic fracture model. (a) Instanta-

neous closure data and curve fit of the initial fracture and the fracture after 10 ka of pressure

solution and precipitation. (b) Stiffness derived from fitted closure curves for the hyperbolic

(H) and logarithmic (L) model. Inset: Linear plot.
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Similar to plastic yield at contacting asperities, a decrease in initial aperture re-

sults, and the residual aperture is reached at a much lower level of compression.

While the presented model accounts only for pressure solution and free-face pre-

cipitation, other diagenetic processes, such as stress corrosion (Atkinson, 1980)

or contact overgrowth (Beeler and Hickman, 2015), should be expected to affect

stiffness in a similar manner.
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