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Abstract

The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-

rate tensor, ei, with the vorticity vector, ω, is examined in the self-preserving region of a planar

turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales

and the probability density functions (pdfs) of the magnitude of the alignment cosines between the

two unit vectors, |ei · ω̂| are examined. It is observed that the alignment tendencies are insensitive

to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of

the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local)

vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-

rate eigenvector, e1, in contrast to the global tendency for ω to be aligned in parallel with the

intermediate strain-rate eigenvector (Hamlington et al., Phys. Fluids 20, 2008, p.111703). When

only data from regions of the flow that exhibit strong swirling are included, the so-called high

enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture.

These findings support the notion that the production of enstrophy, responsible for a net cascade

of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due

to the preferential parallel alignment between ω and non-local e1, and that the strongly swirling

worms are kinematically significant to this process.
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I. INTRODUCTION

In the Richardson–Kolmogorov picture of a turbulent flow, the turbulent kinetic energy

contained at large scales “cascades”, via inertial processes, to increasingly small spatial scales

until this energy may ultimately be dissipated into internal energy by viscous processes [1] [2].

Note that this cascade is a mean picture and “back scatter”, in which energy is transferred

from small to large scales, is almost as likely as forward scatter [3]. The separation (in

spatial wavenumber space) between these large scales and the smallest, dissipative scales

is determined by the Reynolds number, Re with an increasing separation as Re increases.

The Kolmogorov theories [2, 4], which are formulated for high Reynolds number flows and

thus a large spectral separation between the large and small scales, assume that the smallest

scales are statistically isotropic. For turbulent shear flows, the large scales are anisotropic

[5] and thus “directionality” is assumed to be lost through the cascade of turbulent kinetic

energy (TKE). However, Batchelor and Townsend [6] postulated that TKE may in fact be

transferred directly to the small scales without the involvement of the intermediate, inertial

range of scales. More recently, Yeung et al. [7] showed that this transfer of TKE from large

to small scales can indeed be a single step process. Evidence in support of this argument was

provided by Shen and Warhaft [8], who showed that even at very large Reynolds numbers

the small scale structure is anisotropic, with the largest order moments increasing with the

Reynolds number. According to this observation, the explanation of “directionality” as a

consequence of the moderate Reynolds number of the flow, in which the separation in the

wavenumber space between the large and small scales is not sufficiently large, tends to lose

credit.

The prospect of a single step transfer of TKE opens the possibility that the anisotropy of

the large scales may not be completely lost leading to an interaction between the large and

small scales present in the flow. The work of Bandyopadhyay and Hussain [9] was among

the first studies to show the interaction between large and small scales in turbulent flows,

both wall-bounded and boundary-free shear flows. By examining the short time correlations

between the low-pass filtered velocity fluctuations (from hot-wire experiments) and the en-

velope of the high-pass filtered (small-scale) signal the authors were able to demonstrate a

significant degree of coupling for all shear flows. Since this pioneering work, a significant
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amount of research has focused on the interaction between the large, “outer” scales and

the small, near-wall scales of wall-bounded turbulent flows. Nevertheless, some significant

progress has been made examining these scale interactions in free shear flows by drawing

an analogy between subgrid-scale (SGS) models from large eddy simulations, which account

for the flux of energy from the large, resolved scales to the small scales in such simulations.

Meneveau [10], for example, computed the joint moments between experimentally measured

SGS stresses and the corresponding large-scale (filtered) velocity fluctuations in grid turbu-

lence. Similar measurements were performed by Buxton and Ganapathisubramani [11] in

which planar velocity fields were simultaneously measured at two separate spatial resolutions

such that statistical moments of the SGS stresses could be conditioned on the concurrent

large-scale velocity fluctuations in a turbulent mixing layer. It was shown that close to the

geometric centre-line, but slightly to the high speed side of the mixing layer, negative large-

scale velocity fluctuations were situated concurrently to enhanced small-scale activity. Later,

Buxton [12] observed for the correlation between the SGS stresses and the concurrent large-

scale velocity fluctuation in the low-speed side of the mixing layer an opposite behaviour

compared to that in the high-speed side, i.e. enhanced small-scale activity concurrent to

positive large-scale velocity fluctuations. Further, in agreement with O’Neil and Meneveau

[13], it was shown that the large-scale velocity fluctuations impact the statistical distribution

of the small-scale velocity gradient phenomena.

Buxton [12] showed that positive large-scale velocity fluctuations (in the low-speed side

of a mixing layer) are collocated with increased small-scale dissipation, ε and enstrophy, ω2

(ω = ∇× u is the vorticity vector). This behaviour was confirmed by Fiscaletti et al. [14].

However, Fiscaletti et al. [14] further showed that the correlation between the large-scale

velocity fluctuations and the small-scale enstrophy is well approximated by a product of two

correlation functions, RuA ≈ RugRgA. In this relationship, Rug is the correlation coefficient

between the large-scale velocity fluctuation and the authors’ metric for the magnitude of the

large-scale velocity gradients and RgA is the correlation coefficient between the large-scale

velocity gradients and the small-scale enstrophy. It was observed that Rug exhibited the same

crosswise (y) dependence as RuA, with a negative correlation in the high-speed side of the

mixing layer and a positive correlation in the low-speed side of the mixing layer, whereas RgA

exhibited a near constant value, close to unity, throughout the mixing layer. The authors thus
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argued that this scale interaction was primarily driven by the large-scale velocity-gradient

fluctuations, as opposed to the large-scale velocity fluctuations.

Whether by a single step process, as observed by Yeung et al. [7], or through an “accel-

erated” cascade due to the minimal size of the inertial range of scales in moderate Reynolds

number turbulence, the only known way in which energy is inertially transferred from large

to small scales is through vorticity stretching. The vorticity stretching term, ωisijωj, may

be either positive or negative but Taylor [15] was the first to observe that the ensemble av-

erage, 〈ωisijωj〉 > 0, i.e. vorticity stretching is favoured over vorticity compression, which

fits with the Richardson–Kolmogorov picture of the turbulent cascade. Betchov [16] showed

that this term may be written as ωisijωj = ω2si(ei · ω̂)2 in which summation over index i is

implicit and si are the eigenvalues of the strain-rate tensor sij = (∂u′i/∂xj +∂u′j/∂xi)/2 with

corresponding unit eigenvectors, ei, and ω̂ is the unit vector indicating the direction of the

vorticity vector. The vorticity stretching term may thus be observed as the manifestation of

the interaction between strain-rate and rotation and is also susceptible to scale interactions

within a turbulent flow ([17],[18]).

Consideration of the form of ωisijωj proposed by Betchov [16] suggests that such scale

interactions may be due to either an amplification/attenuation of the small-scale enstrophy

– strain-rate eigenvalue products, a modification of the vector alignment tendencies between

the small-scale vorticity vector and eigenframe of sij or the correlation between the two. The

amplification/attenuation of ω2 and sijsij by concurrent large-scale velocity fluctuations has

already been shown by Buxton [12], and by Fiscaletti et al. [14]. In addition, Fiscaletti et al.

[14] found that the large-scale velocity gradients amplify ω2 almost linearly. The motivation

for the current work is thus to assess the scale dependence of the alignment tendencies be-

tween ω and ei. The eigenvalues, si may be ordered such that s1 ≥ s2 ≥ s3 with s1 ≥ 0

(extensive strain-rate), s3 ≤ 0 (compressive strain-rate) and continuity for an incompressible

flow demanding that
∑3

i=1 si = 0. There is overwhelming evidence in the literature that the

vorticity vector preferentially aligns parallel to the intermediate eigenvector (e2) and per-

pendicularly to the compressive eigenvector with no preferential alignment tendency to the

extensive eigenvector [20, 21, 22, 23]. The probability density functions (pdfs) for the mag-

nitude of these alignments are presented in Figure 1 from the mixing layer flow at Reλ = 250

that is the object of the analysis of this article (more detail on the flow is given in Section
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FIG. 1: pdfs of the magnitude of the alignment between the strain-rate eigenvectors and the

vorticity vector in the fully-developed region of a turbulent mixing layer, at a Reynolds number

based on the Taylor microscale of Reλ = 250. The dataset used to produce this Figure is obtained

from Attili and Bisetti [19], and it is the object of the analysis reported in the present article (a

description is given in Section II).

II). However, Buxton and Ganapathisubramani [24] observed that the alignment preference

between ω and e1 determines the sign of ωisijωj, with parallel alignment favoured for con-

current ωisijωj > 0 and perpendicular alignment favoured for ωisijωj < 0. Subsequently, the

commonly reported tendency for |e2 ·ω̂| ≈ 1 has been explained by the preferential alignment

between the vorticity vector and the local intermediate strain-rate eigenvector, particularly

in regions of high enstrophy [25], whilst ω preferentially aligns with the extensive eigenvector

of the background strain field [26]. The preferential alignment of the vorticity vector, filtered

at a length scale of 5 Kolmogorov length scales (5η) which is the characteristic diameter of

the high enstrophy worms considered to be a universal feature of turbulence [27, 28, 29],

with the large-scale extensive strain-rate eigenvector has been confirmed by Leung et al. [30].

These findings go some way to linking the rotation – strain-rate alignment tendencies to

the mean cascade of TKE from large-scales (responsible for inducing the background strain

field) to small scales. In this manuscript we will examine these alignments conditioned on

the concurrent large-scale velocity and velocity-gradient fluctuations, with varying definitions
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for “large” scales. The analysis is conducted in the developed region of a planar turbulent

mixing layer.

II. NUMERICAL METHODS AND CONFIGURATION

The mixing layer simulation described in the present work was performed using the par-

allel flow solver “NGA” [31, 19, 32]. A detailed description of the configuration and flow

parameters are provided in a number of previous works [19, 33, 34, 14], and only a brief

summary is presented here.

The code solves the unsteady, incompressible Navier-Stokes equations on a spatially and

temporally staggered grid with the semi-implicit fractional-step method of Kim and Moin [35].

Velocity spatial derivatives are discretized with a second-order finite differences centered

scheme.

The flow at the inlet (x = 0) is a hyperbolic tangent profile for the streamwise velocity U

with prescribed vorticity thickness δω,0: U(x = 0, y, z) = Uc + 1/2∆U tanh (2y/δω,0), where

Uc = (U1 + U2)/2 is the convective velocity, U1 and U2 are the high- and low-speed stream

velocities and ∆U = U1 − U2 is the velocity difference across the layer. The ratio of the

two velocities is U1/U2 = 3. Low amplitude white noise is superimposed on the hyperbolic

tangent profile, resulting in the onset of the Kelvin-Helmholtz instability at a short distance

downstream of the inlet (x ≈ 50δω,0). The crosswise and spanwise velocity components

are perturbed in the same manner. The boundary conditions are periodic in the spanwise

direction z and free-slip in the crosswise direction y. Free convective outflow [36] is specified

at x = Lx.

The computational domain extends over Lx = 473δω,0, Ly = 290δω,0, Lz = 157.5δω,0 in

the streamwise (x), crosswise (y) and spanwise (z) directions, respectively. The domain is

discretized with 3072 × 940 × 1024 ≈ 3 × 109 grid points (Nx × Ny × Nz). In the region

centered around y = 0 (|y| ≤ 45δω,0), the grid is homogeneous in the three directions:

∆x = ∆y = ∆z = 0.15δω,0. Outside the core region for |y| > 45δω,0, the grid is stretched

linearly until ∆y = 0.6δω,0 at |y| = 55δω,0 and then is constant again up to the boundary.

Overall, the spatial resolution is such that ∆x = ∆y = ∆z ≤ 2.5η everywhere, where

η = ν3/4ε−1/4 is the Kolmogorov scale and ε the average turbulent kinetic energy dissipation.
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The time step size is calculated in order to have a unity Courant-Friedrichs-Lewy (CFL)

number.

Figure 3 shows an overview of the spatially developing mixing layer. The present anal-

ysis is performed in the fully developed region, where the flow achieves a Reynolds number

based on the Taylor microscale Reλ = 250. Twenty-one three-dimensional subdomains of size

16.7λ× 13.3λ× 68.3λ (λ ≈ 30η is the Taylor microscale), collected at different time instants,

were considered in the analysis. The centre of these subdomains is located at a streamwise

position x = 375δω,0 and at y = 0. The convective distance between two consecutive sub-

domains, computed after applying the Taylor’s hypotheses, is 167δω,0, corresponding to 68

Taylor microscales and 2000 Kolmogorov scales approximately; therefore, the subdomains are

statistically independent. The subdomains span the entire length of the simulation domain

in the spanwise direction z.

As shown in Figure 3, a coordinate system, x̃ ỹ z̃, centred at x = 375δω,0, y = 0, and z = 0

and non-dimensionalized by the Taylor length scale λ is introduced. The coordinate system

is oriented so that positive values of ỹ are on the high velocity side of the mixing layer. In

Figure 2 shows the velocity power spectrum obtained from a time series converted into a

space series with the Taylor’s hypothesis [37], at x̃ = 0, ỹ = −2.06, and z̃ = 0. The inertial

subrange, characterized by the typical −5/3 slope and highlighted in figure, spans over more

than one and a half decades. This is evidence for the turbulent nature of the flow, and shows

that there is a clear separation between the large and the small scales of turbulence.

III. SEPARATION OF SCALES AND FILTERING PROCEDURES

The primary goal of the paper is to study the alignment between the vorticity vector and

the eigenvectors of the strain-rate-tensor at different scales. The different scales of turbulence

were obtained by directly filtering the data in physical space. This means that we did not

apply the Taylor hypothesis of frozen turbulence, which is normally used to convert time

series into spatial signals. This Section illustrates the filtering procedure to calculate the

large-scale quantities which are used in Section IV.

Moving average filters with a cube side of one Taylor length scale (Λ = λ), two Taylor

length scales (Λ = 2λ), and three Taylor length scales (Λ = 3λ) were applied to the twenty-
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FIG. 2: Velocity power spectrum from a time series obtained from the DNS mixing layer object of

the present analysis, at the cross-wise position ỹ = −2.06, and x̃ = z̃ = 0.

one 3D velocity vector fields, with Λ denoting the filter size throughout the article. From

this procedure, the 3D filtered velocity fields UL, VL, WL were obtained. The spectral leakage

associated to the moving average filtering was assessed by comparison with a Gaussian filter

(characterized by the same cube size, and by a standard deviation of 0.65 the cube size), and

it was found to be negligible for the aim of the present analysis. The 3D filtered velocity

fields permitted the calculation of s̃ij and ω̃, which denote the filtered strain-rate tensor and

the filtered vorticity vector, respectively.

As a secondary aim of the study, the alignment between the vorticity vector and the

eigenvectors of the strain-rate-tensor was conditioned on large-scale velocity and velocity-

gradient fluctuations. The local strength of these large-scale signals was calculated as follows.

At a given crosswise position ỹ, a number of different signals representative of the large scales

were created, considering both large-scale velocity fluctuations (uL(x̃, ỹ, z̃, t)), and large-scale

velocity gradients (gL(x̃, ỹ, z̃, t)). The large-scale velocity signal is simply uL(x̃, ỹ, z̃, t) =

UL(x̃, ỹ, z̃, t) − Um(ỹ), where UL is the filtered velocity field with Λ = λ, and Um(ỹ) is the
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FIG. 3: Two-dimensional cut of the non-dimensional vorticity magnitude field in the turbulent

mixing layer. The colorscale is different in the four subfigures to take into account that vorticity

decreases in the streamwise direction. The black box in the right-hand subfigure identifies the region

analysed in the present study. A coordinate system x̃ ỹ z̃ centered in x = 375δω,0, y = 0, z = 0 is

introduced here, which represents the frame of reference related to the region under analysis.

ensemble average streamwise velocity at ỹ. The large-scale velocity fluctuations were non-

dimensionalized by the velocity difference over the mixing layer ∆U , therefore u∗L(x̃, ỹ, z̃, t) =

uL(x̃, ỹ, z̃, t)/∆U . The local large-scale gradient signal gL(x̃, ỹ, z̃, t), computed in a (λ)3 sized

cube centered on (x̃, ỹ, z̃), at time t, was calculated using the following relationship, which

includes only the derivatives associated with shear:

gL(x̃, ỹ, z̃, t) =
1

N

N∑
i=1

√(
dUL

dỹ

∣∣∣∣2
i

+
dUL

dz̃

∣∣∣∣2
i

+
dVL

dx̃

∣∣∣∣2
i

+
dVL

dz̃

∣∣∣∣2
i

+
dWL

dx̃

∣∣∣∣2
i

+
dWL

dỹ

∣∣∣∣2
i

)
(1)

The derivatives were computed with a central difference scheme from the discrete dataset in

each point of the cube, and averaged over the number of mesh points inside each cube N .

Only the shear components of the gradients have been included in gL(x̃, ỹ, z̃, t) (Equation 1),

since in the work by Fiscaletti et al. [14] the acceleration terms were found not important in

the interaction between large and small scales. The large-scale velocity gradients gL(x̃, ỹ, z̃, t)

at the crosswise position ỹ are non-dimensionalized by the average of the large-scale gradients

at ỹ, gL(ỹ), thus obtaining g∗L = gL/gL. More details over this procedure of analysis can be

found in Fiscaletti et al. [14]. In the construction of the large-scale signals, the appropriate

length scale for large-scale filtering was considered to be the Taylor microscale (and larger

length scales). This is justified by the fact that the dissipation spectrum has a peak at a

length scale close to the Taylor length scale, meaning that the length scales larger than the

Taylor length scale contribute progressively less to dissipation and can be considered large
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scales. In Section IV, the alignment between the vorticity and the eigenvectors of the strain-

rate-tensor is conditioned on both the large-scale velocity fluctuations u∗L(x̃, ỹ, z̃, t) and the

large-scale gradients g∗L(x̃, ỹ, z̃, t).

IV. RESULTS AND DISCUSSION

The picture of the cascade of TKE described in Leung et al. [30] is based upon the vortic-

ity stretching term being largely “fed” by the alignment of the small-scale (local) vorticity

vector with the extensive strain-rate of the large-scale (or background in the terminology

of Hamlington et al. [26]) strain field. Regions for which this alignment is |e1 · ω̂| & 0.8

provide the majority of the overall positive contribution to ωisijωj and are thus responsible

for the transfer of turbulent kinetic energy from large scales to smaller ones [30]. However,

it has been shown that regions of intense enstrophy production are often collocated with the

regions of strong swirling [24]. Zhou et al. [38] noted that the solution to the characteristic

equation to calculate the eigenvalues of the velocity gradient tensor itself, dij = ∂u′i/∂xj,

may admit only three real eigenvalues or one real eigenvalue and a complex conjugate pair,

λcr ± iλci. In the latter case the real eigenvector defines an axis of swirling, with the relative

strength of the local swirling quantified by λci. Regions of intense swirling within a turbulent

flow have been shown to be structured in worms [39, 40, 27] with a typical diameter on the

order of 5–10η and possibly an axial length of up to several Taylor microscales in length [41].

These observations over the scaling of the diameter of the coherent structures of vorticity

were confirmed at much larger Reynolds numbers in a recent experimental study [42], and in

DNS simulations of homogeneous isotropic turbulence [29].

The scale-dependence of the alignment between ω and the eigenvectors of sij and the im-

portance of strong local swirling are explored in Figure 4. The Figure illustrates probability

density functions (pdfs) of the magnitude of the alignment cosine between “local” ω, com-

puted from the unfiltered velocity, and the eigenvectors of s̃ij, computed from filtered fields.

The top row of figures are computed from s̃ij in which the filter width, Λ = λ and the bottom

row are computed from s̃ij for which Λ = 3λ. The data used to produce the left hand column

of figures is unconditioned whereas only regions of extremely strong swirling, λci ≥ 3.5〈λci〉

where 〈λci〉 is the root-mean-square swirling strength defined over locally swirling regions
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FIG. 4: pdfs of the alignment between the unfiltered vorticity vector and the eigenframe of the

filtered strain-rate tensor. The strain-rate tensor is computed from the filtered velocity field with

filter length-scale Λ = λ (a) and (b) and Λ = 3λ (c) and (d). Data is included from the entire field

for (a) and (c) and only from regions of intense swirling, λci > 3.5〈λci〉 (b) and (d).

(λci > 0), are used to produce the pdfs of the right hand column. Figures 4(b) and (d) are

thus produced from data within the worms of high local swirling.

The pdfs confirm the results of Hamlington et al. [26] and Leung et al. [30] that the

“local” (unfiltered/small-scale) vorticity preferentially aligns with the most extensive large-

scale strain-rate eigenvector, in contrast to the “global” picture of Figure 1 in which it is
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preferentially aligned with the small-scale intermediate eigenvector. However, the above pdfs

show that this alignment tendency falls as Λ is increased from λ to 3λ. We may quantify the

probability of parallel alignment between e1 computed from s̃ij defined by filter length Λ as

P//(Λ) =

∫ 1

thr.

pdf(|e1 · ω̂|,Λ)d|e1 · ω̂|

where thr. is some arbitrarily chosen threshold. We shall take thr. = 0.965, which corresponds

to |θ| = 15◦, where θ is the angle between e1 and ω̂, and compute the ratio P//(λ)/P//(3λ) =

1.36, with P//(λ) = 0.069. The current simulation has a spatial resolution of 2.5η and ratio

λ/η ≈ 30 and thus the ratio of strain-rate length-scale to vorticity length-scale, which we

shall denote as RΛ, is approximately 12 and 36 for Λ = λ and Λ = 3λ, respectively. Although

the definition that we take for parallel alignment, namely the value of thr., differs from that

of Leung et al. [30], as does the turbulent Reynolds number Reλ and filter definitions, their

ratio P//(RΛ = 10)/P//(RΛ = 30) ≈ 2 is of the same order of magnitude, but greater than the

value that we compute, above. The data of Leung et al. [30] is from decaying homogeneous

isotropic turbulence, which is a significantly different flow with respect to the mixing layer

analysed in the present work.

The figure further shows that the alignment tendencies of ω with e1 computed from s̃ij

(large-scale strain field) are enhanced when only the intensely swirling regions are concerned.

For example P//(λ) = 0.13 when only the strongly swirling regions are concerned, which is

almost double that for the global data set. This increased tendency for parallel alignment

between the two vectors in the strongly swirling regions perhaps may explain the collocation

of regions of high ωisijωj and strong swirling [24].

Of further interest it can be seen that, regardless of the definition of Λ or whether only the

strongly swirling regions of the flow are considered or not, the pdf for |e2 · ω̂| is nearly flat,

indicating an arbitrary alignment between the two vectors. Additionally, the pdf of |e3 · ω̂| is

also only weakly dependent on Λ and λci and displays the same quantitative trend as that in

Figure 1, in which perpendicular alignment between the two vectors is preferred. We may thus

conclude that the interaction between strain-rate and rotation is dictated by the extensional

and intermediate strain-rates only. The preferentially perpendicular alignment between the

compressive strain-rate and the vorticity vector appears to be universal regardless of whether

the strain-rate is local or non-local and whether we consider regions of intense swirling or the
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FIG. 5: pdfs of the alignment between the filtered vorticity vector and the eigenframe of the

filtered strain-rate tensor. Both the vorticity vector and strain-rate tensor are computed from the

filtered velocity field with filter length-scale Λ = λ (a) and (b), Λ = 2λ (c) and (d) and Λ = 3λ (e)

and (f). Data is included from only regions with a non-zero swirling strength, λci (a), (c) and (e)

and only from regions of intense swirling, λci > 3.5〈λci〉 (b), (d) and (f).
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background “sea” within a turbulent flow.

Figure 5 shows the pdfs of the magnitude of the alignment cosines between the filtered

vorticity vector ω̃ and the eigenvectors of the filtered strain-rate tensor s̃ij. Both vectors are

thus computed from the identically filtered velocity field. The left hand column, Figures 5(a),

(c) and (e) are computed from all regions for which the local swirling strength is defined, i.e.

λci > 0, and the right hand column, Figures 5(b), (d) and (f) are computed from only the

intensely swirling regions, in which λci > 3.5〈λci〉 from the unfiltered velocity vector fields.

Λ is increased from the top row (Λ = λ) to the middle row (Λ = 2λ) to the bottom row

(Λ = 3λ).

The pdfs of the left hand column all show the same qualitative behaviour as Figure 1, with

a preferential parallel alignment between ω and e2, perpendicular alignment between ω and

e3, arbitrary alignment between ω and e1 (with the exception of Figure 5(a)). This suggests a

scale independence of the qualitative behaviour, at least, of the global alignment preferences

between rotation and strain-rate, making the enforcement of such alignment tendencies a

potentially attractive SGS model for large eddy simulations. These tendencies become more

pronounced as we increase the size of Λ up to 3λ. It is thus apparent that tendency for the

vorticity vector to align in parallel with its local, induced strain-field increases as we consider

ever larger scales (filter lengths). We again observe that the qualitative and quantitative

behaviour of the pdf of |e3 · ω̂| is remarkably similar, regardless of our definition of Λ or

whether we consider only the intense swirling regions or not (right hand column of figures).

The behaviour of the alignment tendencies when only the intensely swirling regions are

considered is presented in Figures 5(b), (d) and (f). The scale independence of the |e3 ·ω̂| pdf

is again evident, with virtually identical quantitative behaviour for all three figures. However,

there is a significant scale dependence on both the |e2 · ω̂| alignment, and to a lesser extent

the |e1 · ω̂| alignment. The peak at |e2 · ω̂| ≈ 1 increases in magnitude as Λ is increased

from λ to 3λ. There is a slight, but consistent, trend for the pdf of |e1 · ω̂| to flatten as Λ is

increased from λ to 3λ. The qualitative trends for all the alignment pdfs only computed from

within the high enstrophy worms are thus exaggerated in comparison to the pdfs computed

from all swirling data.

Figure 6 shows pdfs of the magnitudes of the alignment cosines between ω and the eigen-

vectors of sij, both computed from the unfiltered velocity field, and conditioned on concurrent,
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FIG. 6: pdfs of the magnitude of the alignment cosines between the unfiltered strain-rate

eigenvectors and vorticity vector conditioned on (a) u∗L < 0.1, (b) u∗L > 0.1, (c) g∗L < 1 and (d)

g∗L > 1.5.

high magnitude large-scale fluctuations. Figures 6(a) and (b) show these pdfs conditioned on

the sign of the large-scale velocity fluctuations, u∗L < 0.1 and u∗L > 0.1 respectively. Figures

6(c) and (d) are the pdfs conditioned on the magnitude of the large-scale velocity gradients,

g∗L < 1 and g∗L > 1.5, respectively, where g∗L has been defined in Section III.

It can be seen that there are no large qualitative differences between the pdfs in the four

figures, with the general picture being the same as that in Figure 1, the unconditioned case.
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In particular it can again be seen that the pdf of |e3 ·ω̂| remains virtually constant despite the

condition of the large-scale fluctuation, whether that be u∗L or g∗L. The primary quantitative

difference is that between Figure 6(c) and (d), the pdfs of |e1 · ω̂| and |e2 · ω̂| conditioned on

g∗L < 1 and g∗L > 1.5, respectively. If we now consider the probability of parallel alignment

between e2 and ω in a similar fashion to before,

P//(g
∗
L) =

∫ 1

thr.

pdf(|e2 · ω̂|, g∗L)d|e2 · ω̂|

again using thr. = 0.965, we obtain P//(g
∗
L < 1) = 0.088 and P//(g

∗
L > 1.5) = 0.103. This effect

is important, and it lends credence to the argument of Fiscaletti et al. [14] that concurrent

fluctuations in the large-scale velocity gradient drive the scale interactions with the small-

scale velocity gradient phenomena. It is thus clear that the scale interaction by which the

concurrent large-scale velocity fluctuation affects the small-scale ωisijωj reported in Buxton

[12] is likely not driven by an alteration in the alignment tendencies between ω and ei and

is instead more likely due to a modulation of the magnitudes of ω2 and si (the strain-rate

eigenvalues) or their correlations with |ei · ω̂|. In particular the relation between ω2 and the

large-scale velocity fluctuations simply denotes a spatial inhomogeneous distribution of the

regions characterized by large ω2 across the mixing layer, as shown by Fiscaletti et al. [14].

Instead, an active small-scale modulation is exerted by s̃ij, or, similarly, by the large-scale

gradients g∗L. Evidence for this is given by the correlation coefficient between the large-scale

gradients and the small-scale enstrophy being close to unity throughout the mixing layer [14].

Figure 7 shows the pdfs of the magnitude of the alignment cosines between ω and the

eigenvectors of s̃ij, with a filter length-scale Λ = λ, conditioned on the concurrent large-scale

velocity gradients. It is again evident that the quantitative behaviour of the pdfs of |e3 ·ω̂| are

virtually identical, regardless of the nature of the concurrent large-scale velocity gradients,

with a similar behaviour to the unconditioned pdf of Figure 1. We again observe the behaviour

reported in Hamlington et al. [26] and Leung et al. [30] that the vorticity vector preferentially

aligns in parallel with the filtered (background) extensive strain-rate eigenvector. However,

we observe a slight decrease in the peak value of the pdf for |e1 · ω̂| ≈ 1 and a corresponding

increase in the tendency for ω to be aligned in parallel with e2 when the magnitude of the

concurrent large-scale velocity gradient is large. This indicates a tendency for the vorticity

vector to be better “self-aligned”, i.e. aligned to the strain field that is produced locally, in
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FIG. 7: pdfs of the alignment between the filtered eigenframe of the strain-rate tensor (Λ = λ)

and the unfiltered vorticity vector conditioned on (a) g∗L < 1 and (b) g∗L > 1.5.

regions of the flow for which the large-scale velocity gradient is large. According to Fiscaletti

et al. [14], the correlation coefficients between the large-scale velocity gradients and the rms

vorticity is close to unity throughout the mixing layer. This implies that large values of the

large-scale velocity gradients induce locally a larger rms vorticity, therefore a larger ω2. The

shear induced by the local amplification of ω2 affects the filtered strain field, especially for a

filter size of Λ = λ. As a consequence, the vorticity vector tends to be more aligned with the

intermediate eigenvector of the strain-rate tensor.

V. CONCLUSIONS

The scale dependence of the alignment between the vorticity vector and the eigenvectors of

the strain-rate tensor was examined in the self-preserving region of a turbulent shear flow. It

was observed that these alignment tendencies were largely unaltered when conditioned on the

sign of the concurrent large-scale velocity fluctuations, but were affected when conditioned on

the magnitude of the concurrent large-scale velocity-gradient fluctuations. This observation

adds weight to the argument of Fiscaletti et al. [14], who suggested that the concurrent

large-scale velocity-gradients play the largest role in affecting the energy content of the small

scales.
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The results of Hamlington et al. [26] and Leung et al. [30] for homogeneous isotropic

turbulence were confirmed in the present free-shear flow, namely that the “local” (small-

scale) vorticity vector preferentially aligns in parallel with the non-local (large-scale) extensive

strain-rate eigenvector. By virtue of the fact that the corresponding extensive strain-rate

eigenvalue is the largest in magnitude, positive strain-rate makes this alignment the most

significant contribution to 〈ωisijωj〉 [30]; the positivity of which is responsible for the net

cascade of energy from large scales to small scales. The probability of parallel alignment,

arbitrarily defined in this manuscript by |θ| < 15◦, is significantly enhanced when only data

from the strongly swirling worms are considered. This finding provides further evidence for

the collocation of regions of intense enstrophy amplification (ωisijωj � 0) with these intensely

swirling worms [24]. The tendency for parallel alignment was also observed to decrease as

the definition of the non-local strain-rate field was narrowed to include increasingly large

scales only. This is in agreement with Leung et al. [30], however the ratio of this decline was

significantly different, which can be explained by a flow and Reynolds number dependence

on this tendency.

When both the vorticity vector and the strain-rate tensor are obtained from a filtered

velocity field it is observed that the alignment statistics between ω and the eigenvectors of

s̃ij do not vary in response to changing the length-scale of the filter (or in the absence of

filtering). This scale independent behaviour thus makes the enforcement of this canonical

alignment behaviour an interesting proposition for the development of SGS models for large

eddy simulations. The most scale independent of the alignment tendencies is that between ω

and e3, the compressive strain-rate eigenvector. Regardless of the filter size and whether only

swirling regions are considered or not, the qualitative behaviour of the |e3 · ω̂| pdf remains

similar, with only marginal quantitative differences. Further investigations on different flows

at different Reynolds numbers are required in order to consider these observations a universal

feature of turbulent flows.
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