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Abstract

Symmetries are omnipresent in physics. From classical mechanics, via solid state physics
to particle physics, symmetries provide a means for classification and often lead to deep
physical insight. In this thesis, we study symmetries in plasmonics using Transformation
optics. We show how Transformation optics can be used to reveal, study and make us of
symmetries in practical calculations, by studying a range of plasmonic systems. First, we
show that an ellipse and spheroids possess a ‘hidden’ rotational symmetry that becomes
apparent when transforming them to a rotationally symmetric structure. Next, we
investigate plasmonic gratings and show that a whole class of plasmonic gratings (and
other periodic structures) can be related to a translationally invariant slab, thereby
inheriting all the slabs spectral properties. In studying the plasmonic grating, we extend
the Transformation optics approach to treat periodic systems with extent larger than
the wavelength in one direction. Finally, we use Transformation optics to study electron
energy loss spectroscopy and cathodoluminescence problems in plasmonics, by mapping
the plasmonic nanoparticles under investigation to more symmetric ones. Thus, again
using the symmetry of the transformed structures to derive analytical solutions to the
problem at hand.
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Chapter 1

Introduction

Symmetry is one of the most fundamental concepts in physics. Beautifully expressed
through Noether’s theorem, symmetries lead to conservation laws [1], on which so much
of classical and quantum physics relies. Homogeneity of time ensures energy conserva-
tion, invariance under space translations leads to momentum conservation and rotational
symmetry gives rise to conservation of angular momentum, to name a few [2]. These
examples alone show the great ability of symmetries to restrict and classify the potential
class of solutions to problems in physics. To give a more concrete example from solid
state physics, the periodicity of the crystal lattice restricts the class of allowed solutions
for the wave functions to periodic ones, via Bloch’s theorem [3]. One can thus learn a
great deal about the physical properties of the system from the symmetry of the problem
alone, without actually solving the underlying equations. This is one of the reasons that
makes the study of symmetries worthwhile, especially so in areas of physics where exact
solutions (analytical or not) are difficult to obtain.

Plasmonics is such an area, as the often non-regular shape of plasmonic nanoparticles
seldom permits fully analytical characterisations of their mode spectrum and optical
response. Yet, symmetries are rarely used as a tool to study plasmonic systems. One

Figure 1.1: Example of a mirror symmetric plasmonic nanoparticle.
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of the aims of this thesis is to show that the study of symmetries is worthwhile in
plasmonics. Take the particle in figure 1.1. One would be hard-pressed to analytically
calculate the plasmon modes of this system. Even in the electrostatic limit, where one
needs to solve Laplace’s equation ∇2φ = 0, this is a hard problem due to the irregular
shape of the nanoparticle. However, closer inspection of the geometry reveals that
the particle possesses two mirror planes. It immediately follows that the electrostatic
potential φ has these symmetries as well and they place restrictions on the possible
plasmon modes. Arguably, these two mirror symmetries are rather obvious and also only
of limited help when it comes to practical calculations of the plasmon modes. In this
thesis, we want to go further. We want to investigate if plasmonic nanoparticles possess
some additional ‘hidden’ symmetries that are not apparent at first sight. If so, can we
use them to classify and calculate the plasmon modes of the system? Our analytical
tool of choice is Transformation optics (TO), which, incidentally, owes its existence to
a symmetry in electromagnetism, namely the covariance of Maxwell’s equations under
coordinate transformations. We thus formulate the following research question addressed
in this thesis: Can TO be used to reveal, study and make use of symmetries in plasmonic
systems?

While the question above sets the theme for most of the thesis, there is however a
second, major and more technical point related to TO that we would like to address.
Previously, TO has been successfully applied to study plasmonic nanoparticles of sizes
far below the wavelength of visible light. In this case, a purely electrostatic treatment is
sufficient to describe the plasmon modes and optical response of the particles. Can we
relax this restriction and treat systems that have features larger than the wavelength?
In this case, currents can flow on a length scale larger than the wavelength of light and
thus lead to a magnetic response, rendering a purely electrostatic treatment unfeasible.
So the second question we want to address is the following: Can TO be used to study
plasmonic systems of extent greater than the wavelength of light, such that currents can
flow on a scale larger than the wavelength?

The thesis is structured as follows. In chapter 2, we introduce the basic concepts
needed to understand this thesis. That is, the basics of plasmonics, TO and how we can
use TO to analyse plasmonic systems.

Chapter 3 gives a first glance at revealing and using hidden symmetries with TO,
by studying two simple plasmonic systems: a two-dimensional ellipse and three dimen-
sional spheroids. Here, we transform an ellipse (spheroid) to a rotationally symmetric
annulus (spherical shell) and show that in addition to mirror symmetries, ellipse and
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spheroid posses a hidden rotational symmetry. The physical consequence of this sym-
metry is a naturally arising dipole selection rule. The plasmon spectra of the original
and transformed structure are identical and this reveals a subtle link between geomet-
rical symmetry breaking and plasmon hybridisation. For an ellipse, plasmon modes are
divided into two sets of modes, this division occurs because deforming a cylinder into
an ellipse lifts the degeneracy of the modes. In the rotationally symmetric annulus,
however, the splitting of modes occurs due to hybridisation of plasmons on its inner and
outer surface. The mathematical solutions in the original and transformed frames are
identical, yet their physical interpretations differ, thus linking two seemingly disparate
concepts, hybridisation and symmetry breaking. We show that analogous results hold
for the spheroid and spherical shell.

In chapter 4 we study the spectral properties of plasmonic gratings, as well as their
optical response. Here, both the question of symmetries and the question of treating
systems larger than the wavelength of visible light are addressed. We present a trans-
formation that can map a corrugated surface on a flat half-space, a particle chain on
a flat half-space, a chain of particles next to a flat half-space on a symmetric flat slab
and a thin modulated grating on a symmetric flat slab. Moreover, the transformation
presented contains two free parameters, such that, e.g. a whole class of gratings can be
transformed to a symmetric slab. Due to the conformality of the transformation, the
plasmon spectrum is conserved and we find that despite the periodicity of the grating,
its spectrum is given by that of a translationally invariant slab. This is surprising, since
a translationally invariant slab naturally has a gapless spectrum, whereas periodic grat-
ings usually feature band gaps. We thus find that a whole class of periodic gratings
features band crossings akin to Dirac points in graphene. For Dirac points in graphene,
the physical cause of these band crossings is a special symmetry of the graphene lattice,
for our gratings the interpretation is altogether different, as it is precisely the trans-
lational invariance (and hence lack of a lattice) of the underlying slab structure that
leads to the band crossings. We further calculate the optical response of the grating
under plane wave illumination and show the importance of including magnetic effects in
the theoretical treatment, as strong currents are present in the gratings that cannot be
ignored.

Finally, in chapter 5 we apply TO to a new class of problems in plasmonics. Namely,
electron energy loss spectroscopy and cathodoluminescence. This chapter is somewhat
less focussed on symmetries. They do, however, play a large role in the sense that they
enable us to analytically study these problems. The analytical solution facilitated via
TO leads to surprising physical insights. We find that contrary to common belief, an
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electron beam does not always couple to every dark mode of a plasmonic structure.
For a non-concentric annulus the electron-energy-loss spectrum crucially depends on the
velocity of the electron beam and we show that for some velocities specific modes remain
inactive despite being probed with an electron. This inactivity is explained through an
accidental degeneracy. At the resonance frequency of an inactive mode, the electric field
generated by the exciting electron does not contain any contribution that could couple
to this particular mode. We find that this phenomenon is very sensitive to the velocity
of the electron. This opens up possibilities to switch-on or -off a particular mode in
the spectrum. Additionally, we are able to calculate the time-response of the system
in a very efficient manner by ‘Fast-Fourier’ transforming our analytical solutions. This
allows us, for example, to get an insight into the time scales of the plasmon decay or to
find the time when the electric field enhancement is strongest. Through the generation
of simulation videos we also clearly ‘see’ how plasmonic nano-particles harvest light and
concentrate it near singularities.



Chapter 2

Background

2.1 Plasmonics

Plasmonics is, loosely speaking, the study of the interaction between electromagnetic
waves and plasmons. Plasmons are usually described as the quantization of a collective
oscillation of the conduction electrons of a metal [4]. They have first been introduced in
their quantum form by Bohm and Pines [5] in the early 1950s, but also naturally arise in
the context of classical electromagnetism and have thus been known since the early 20th
century [6, 7]. In many cases, it is completely adequate to ignore all quantum effects
and describe plasmons in the framework of classical electromagnetism, an approach that
we will follow here.

Plasmons can be broadly divided into two classes: Plasmons with propagating wave
character and plasmons which are localised in space. The former class is subdivided into
bulk or volume plasmons and surface plasmon polaritons [4]. We will briefly introduce
these different types of plasmons in the following.

Volume plasmons — To understand how each of these types of plasmons arise we
start by taking a look at the wave equation for the electric field, as derived from the
macroscopic Maxwell equations[4]:

∇ × ∇ × E = −µ0
∂2D
∂t2

. (2.1)

Here µ0 is the permeability of free space and D the electric displacement field defined
as,

D(r, t) = ϵ0

∫
dt′dr′ϵ(r − r′, t− t′)E(r′, t′), (2.2)

where ϵ0 and ϵ(r − r′, t− t′) are the permittivity of free space and the dielectric function
of the medium, respectively [4]. For linear, isotropic media without dispersion this
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simplifies to
D(r, t) = ϵ0ϵE(r, t). (2.3)

The wave equation in Eq.2.1 can be rewritten in Fourier space as [4],

k(k · E) − k2E = ϵ(k, ω)ω
2

c2 E, (2.4)

where k is the wave vector, c = 1√
µ0ϵ0

and a harmonic time-dependence has been assumed
[4]. This equation allows two types of wave solutions; transverse waves with k · E = 0
and a dispersion relation

k2 = ϵ(k, ω)ω
2

c2 (2.5)

and longitudinal waves with k||E, for which ϵ(k, ω) = 0 [4]. For metals, the dielectric
function can, for our purposes, be taken as a Drude model

ϵ(k, ω) = ϵ(ω) = 1 −
ω2

p

ω(ω + iγ) , (2.6)

where ωp is the plasma frequency of the metal and γ a damping term [4]. This dielectric
function arises from the plasma model for metals, in which a gas of free and non-
interacting electrons moves in the background of fixed ion cores, undergoing collisions
with the cores at a frequency γ [4].

In the small damping limit γ << ω the dielectric function is

ϵ(ω) = 1 −
ω2

p

ω2 , (2.7)

which has a zero at ω = ωp. Thus at frequency ωp the metal supports a longitudinal
wave, which corresponds to a collective oscillation of all the electrons in the free electron
gas. This oscillation is called a volume plasmon [4]. Since this is a longitudinal mode, it
cannot be excited by transverse electromagnetic waves, but can through, e.g., particle
impact [4]. In the long wavelength limit (k = 0) this is the only longitudinal mode,
other modes exist for finite k [4].

Substituting Eq.2.7 into Eq.2.5

k2c2 = ω2 − ω2
p, (2.8)

we can see that transverse travelling wave solutions can also exist if ω > ωp.
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Figure 2.1: The dispersion relation (Eq.2.9) with ϵd = 1 and ϵm as in Eq.2.7. The blue
solid and red dashed lines are the real and imaginary part of kx. For ω < ωsp, the wave
has the character of a SPP, but for ω > ωp the metal is transparent and the character
of the plasmon changes to a propagating transverse electromagnetic wave. In between
these regimes kx is purely imaginary and no propagation is possible (red dashed line).

Surface plasmon polaritons — Contrary to volume plasmons, surface plasmon polari-
tons (SPPs) do not exist in the bulk of the metal, but rather at the interface between
a dielectric and a metal. They are the result of the coupling between a photon and a
volume plasmon [4]. As a very simple example, consider a flat interface between metal
(z<0) and dielectric (z>0) half spaces with surface normal in the z-direction. The per-
mittivity (ϵm (metal) and ϵd (dielectric)) in each space is assumed to be homogeneous.
The wave equation Eq.2.1 permits two types of solutions; waves of transverse magnetic
(TM) and transverse electric (TE) polarisation, but in our case TE waves could only
satisfy the boundary conditions at the interface if they were exponentially growing in
one of the half spaces and must thus be dismissed [4]. The TM solutions are of the form

Hy, Ex, Ez ∝

e
ikxxe−kd,zz z > 0
eikxxekm,zz z < 0

and are thus confined to the interface in the z-direction [4]. Matching the solutions
in the two half spaces yields the dispersion relation for SPPs propagating along the
metal-dielectric interface [4]

kx = ω

c

√
ϵmϵd

ϵm + ϵd

. (2.9)
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The dispersion relation is shown in figure 2.1. It tells us that SPPs cannot be excited by
far-field electromagnetic radiation since their k-vector lies outside the light cone. One
has to resort to special techniques such as prism or grating coupling to excite them [4].

In the example above the SPP would (for ω < ωsp) propagate without attenuation
along the x-direction. This is, of course, not true for real metals where the damping term
γ leads to an exponentially decaying wave [4]. Nevertheless, the propagation length can
be several micrometers in the optical regime while the confinement in the z-direction
lies in the nanometer regime (often far below the wavelength of the incident light) [4].
In the limit of kx −→ ∞ the frequency approaches the surface plasma frequency ωsp

and the group velocity of the wave vanishes. This special case of a SPP is called surface
plasmon [4].

Localised surface plasmon — As aforementioned, localised surface plasmons (LSPs)
are non-propagating collective excitations of the electron gas in a metal, coupled to
photons [4]. Contrary to SPPs or longitudinal volume plasmons, LSPs can be excited
via far field radiation [4]. LSPs thus arise naturally in metal particles of finite size, in
which an incident electromagnetic wave can excite a collective electron oscillation; they
manifest themselves in the form of resonances in absorption and scattering spectra, and
strong local field enhancements near the metal particle [4]. For particles much smaller
than the wavelength of the incident light, the plasmon resonances can be calculated in
the quasi-static limit [4], which boils down to solving for the eigenmodes of Laplace’s
equation in a particular geometry. In the simple example of a small metal sphere in a
dielectric the eigenfunctions are given by (in spherical polar coordinates)

ψl,m = (Arl +Br−l−1)Y m
l (θ, φ), (2.10)

where Y m
l are the spherical harmonics [8]. The resonance condition (sometimes called

Fröhlich condition) to excite one of these LSPs is given by [8]

ϵm + l + 1
l
ϵd = 0, (2.11)

where ϵm,d are the dielectric functions of the metal sphere and dielectric, respectively.
For more complicated particle shapes or clusters of particles one often has to rely on
numerical simulations as in [9, 10]. However, a number of semi-analytical methods such
as the multiple scattering technique [8] or the plasmon hybridisation model [11–13] exist.
The hybridisation model especially provides much better physical insight than simple
numerical studies. The model explains the plasmonic spectra of more complicated par-
ticles by assuming they are made of simpler constituents. For example, a nanoshell can
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be thought to be made of a metal sphere and a dielectric void inside a metal [11–13].
One proceeds by calculating the plasmon resonance frequencies and modes of sphere and
void; the resonance frequencies and plasmon modes of the shell can then be explained in
analogy to molecular orbit theory as bonding and anti-bonding formations of the sphere
and void plasmons [11–13]. Another analytical method which has been recently applied
to plasmonic systems is TO , which will be discussed in the next two sections.

In plasmonics the SPPs and LSPs play a much more prominent role than the volume
plasmons and we will subsequently focus on applications realised by SPPs and LSPs.
One of the most interesting features of SPPs is their sub-wavelength field confinement
normal to the interface, while still allowing propagation lengths of several micrometers
along the interface in the optical regime [4]. This makes them the ideal candidate for
waveguiding and super-focusing of light.

Waveguiding has been demonstrated experimentally in several ways. For example,
with planar elements guiding can be achieved using surface modulations [4], e.g. Bragg
mirrors consisting of regular particle arrays have been demonstrated in [14]. Another
approach using closely spaced nanoparticles (spacing<<wavelength) has been demon-
strated with sub-wavelength energy confinement and propagation lengths of about 0.5µm
[15].

LSPs are also of great interest in applications. Two of their most useful features are
an extremely strong field localisation in general and in particular near sharp points (of
the order of 103 −105, [16]) of nanoparticles, and a resonance frequency which is strongly
influenced by the particles’ environment (as can be seen from Eq.2.11).

The strong field localisation, for example, leads to a heating of the nano-particle
which can be exploited in biomedical applications such as thermal tumor therapy [17].
In this application, nanoparticles are injected into the tumor cells and then externally
heated via near-infrared radiation, killing the tumor cells while leaving the surround-
ing tissue intact [17]. Another prominent application lies in surface enhanced Raman
scattering. Here the strong field localisation leads to an enhancement in the usually
very weak Raman scattering signal of single molecules [18]. In conjunction with this,
the sensitivity of the plasmon resonance on the local environment allows for biosensing
applications and molecule detection, possibly even in the single molecule limit [19].

These are just a select number of possible applications achievable with SPPs and
LSPs and it seems very likely that plasmonics will play a part in the technologies of the
future.
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Physical quantity Original frame Transformed frame
Charge density ρ ρ′ = ρ/ det(Λ)
Electric field

Magnetic field

 E
H

  E′

H′

 = Λ−1

 E
H


Magnetic flux density
Electric displacement

Current density


B
D
J




B′

D′

J′

 = det(Λ)−1Λ


B
D
J


Permittivity tensor
Permeability tensor

 ϵ

µ

  ϵ′

µ′

 = det(Λ)−1Λ

 ϵ

µ

ΛT

Table 2.1: Transformation rules of the various quantities in the Maxwell equations for a
general coordinate transformation. Λ is the Jacobian of the coordinate transformation.

Note that
(

E
H

)
is not to be understood as vector notation, but rather that E,H

transform in the same way [22].

2.2 Transformation optics

TO is a relatively new analytical tool used to design electromagnetic systems with re-
markable properties. Since, at the classical level, all electromagnetic interactions are
described by Maxwell’s equations, it is no surprise that TO draws its power from a
particular insight into these equations: explicitly, that the equations are covariant with
respect to a change of coordinate system, as long as all the quantities involved transform
according to certain rules. The way this is usually interpreted in the context of TO, is
that Maxwell’s equations in any coordinate system [20]

∇ · D = ρ ∇ × E = −∂B
∂t

(2.12)

∇ · B = 0 ∇ × H = ∂D
∂t

+ J (2.13)

with the constitutive relations

D = ϵ0ϵE and B = µ0µH, (2.14)

can always be written in Cartesian form, provided that all quantities are redefined
according to table 2.1 [21, 22].

This has been known for a long time [23], but little attention was paid to it until it
was rediscovered in 1996 to aid numerical simulations of Maxwell’s equations [24, 25].
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Interest in this rocketed after two seminal papers in 2006 on the design of invisibility
cloaks. The paper by Leonhardt took a slightly different approach based on Helmholtz’
wave equation which is restricted to the far field [26, 27], whereas the other paper by
Pendry et al. worked directly with Maxwell’s equations, making their method applicable
in both far and near field [27, 28]. Underlying Pendry’s approach is the realisation that
field lines are ‘glued’ to the coordinate grid, that is, they can be distorted at will by
coordinate transformations [28]. In the context of a cloak this means that by opening a
hole in the coordinate grid, one excludes all fields from that region. The key insight of
TO is that such a coordinate grid can be realised by tailoring the material properties of
the medium according to the formulas in table 2.1.

Invisibility cloaks have since been demonstrated experimentally in both microwave
[29] and optical [30] regimes. The electromagnetic cloaking concept has subsequently
been extended to the space-time regime, thus creating a temporal cloak for an event,
rather than a spatial cloak [31, 32]. It has also found applications outside optics; acoustic
cloaks have been theorised [33] and demonstrated experimentally both in water [34] and
in air [35]

Recently, the TO framework has also been applied to SPPs [36, 37]. This method
exploits the fact that most of the energy of the SPPs resides in the dielectric, thus rather
than carefully tailoring the permittivity and permeability of dielectric and metal, they
only need to modify the material parameters of the dielectric [36, 37]. Following this
approach, plasmonic Eaton and Luneburg lenses have been demonstrated experimentally
[38], which shows the potential for future applications in, e.g. plasmonic wave guiding.

2.2.1 Derivation of the transformation rules

Here we provide a non-rigorous derivation for some of the transformation rules in table
2.1. Suppose we are currently working in a non-Cartesian coordinate system (x1′

, x2′
, x3′)

that is related to a Cartesian coordinate system (x1, x2, x3) via the Jacobian [39, 40]

Λi′

i := ∂xi′

∂xi
. (2.15)

The coordinates then transform as xi′ = Λi′
i x

i and the components of the electric field
transform as [21]

Ei′ = Λi
i′Ei (2.16)

Ei = Λi′

i Ei′ (2.17)
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and equivalently for the H−field. Here and in the following we assume the Einstein
summation convention [39, 40].

The transformation rule for the charge density is easy to understand, too. Charge
is a conserved (scalar) quantity, but charge density has units of [charge per volume]. A
volume element transforms according to [39]

d3xi′ = det(Λ)d3xi, (2.18)

where det(Λ) is the determinant of the Jacobian in Eq.2.15. It thus follows that the
charge density should transform as [22]

ρ′ = ρ

det(Λ) . (2.19)

We can now derive the transformation rule for the permittivity tensor. We start
from Gauss’s law [20] in the non-Cartesian coordinate frame

∇ · (ϵ′E′) = ρ′, (2.20)

where ϵ′ is the permittivity tensor in that frame. Rewriting this in component form and
using the general expression for the divergence operator [40] yields

1√
g′∂i′(

√
g′ϵi′j′

Ej′) = ρ′, (2.21)

where ∂i′ = ∂
∂xi′ and g′ is the determinant of the metric of the non-Cartesian coordinate

system, in our case this is equal to (det(Λ))2 [40]. Thus

∂i′(det(Λ)ϵi′j′
Ej′) = ρ′ det(Λ), (2.22)

Substituting for Ej′
, ρ′ and using that ∂i′ = ∂iΛi

i′ gives

∂i(det(Λ)Λi
i′ϵi′j′Λj

j′Ej) = ρ. (2.23)

This is Gauss’s law in Cartesian coordinates, we can thus identify the transformation
rule for the permittivity tensor

ϵij = det(Λ)Λi
i′ϵi′j′Λj

j′ . (2.24)



2.2 Transformation optics 43

Using that Λk′
k Λk

j′ = δk′
j′ , this can be rewritten as

Λi′
i ϵ

ijΛj′

j

det(Λ) = ϵi′j′ (2.25)

ΛϵΛT

det(Λ) = ϵ′, (2.26)

which is given in table 2.1 and [21].
Transformation rules for other electromagnetic quantities can be obtained in a similar

manner. One of particular importance to this thesis is the electrostatic potential φ
defined via E = ∇φ [20]. Let us derive a transformation rule for the electrostatic
potential. In the non-Cartesian coordinate frame it has to satisfy

1
det(Λ)∂i′(det(Λ)ϵi′j′

∂j′φ′) = ρ′, (2.27)

whereas in Cartesian coordinates it must satisfy

∂iϵ
ij∂jφ = ρ. (2.28)

Substituting for ϵi′j′ from Eq.2.25 and for ρ′ gives

1
det(Λ)∂i′(Λi′

i ϵ
ijΛj′

j ∂j′φ′) = ρ

det(Λ) (2.29)

∂iϵ
ij∂jφ

′ = ρ, (2.30)

where we have used the transformation rule ∂i′Λi′
i = ∂i and Λj′

j ∂j′ = ∂j. Evidently, φ and
φ′ satisfy the same differential equation and we can thus conclude that the electrostatic
potential is invariant under coordinate transformations [22] if the permittivity in its
defining equation is redefined according to 2.1.

2.2.2 Conformal transformations

The remainder of this thesis will be mainly concerned with a special class of coor-
dinate transformations called conformal transformations. Conformal transformations
are restricted to the two-dimensional plane, i.e. we can think of them as transform-
ing (x, y) but leaving the z−coordinates unchanged. Conformal transformations are
analytic transformations that preserve the angle between coordinate lines and fulfill
the Cauchy-Riemann relations [41]. This implies that for a conformal transformation
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(x, y) −→ (x′, y′)

∂x′

∂x
= ∂y′

∂y
(2.31)

∂x′

∂y
= −∂y′

∂x
(2.32)

hold. This has profound consequences for the transformation of the permittivity. Start-
ing with an isotropic permittivity in the (x, y, z)−frame, we obtain the permittivity in
the (x′, y′, z′)−frame from Eq.2.25 as

ϵ′ = 1
det(Λ)


∂x′

∂x
∂x′

∂y
0

∂y′

∂x
∂y′

∂y
0

0 0 1



ϵ 0 0
0 ϵ 0
0 0 ϵ




∂x′

∂x
∂y′

∂x
0

∂x′

∂y
∂y′

∂y
0

0 0 1

 (2.33)

= ϵ

det(Λ)


(∂x′

∂x
)2 + (∂x′

∂y
)2 ∂x′

∂x
∂y′

∂x
+ ∂x′

∂y
∂y′

∂y
0

∂y′

∂x
∂x′

∂x
+ ∂y′

∂y
∂x′

∂y
(∂y′

∂y
)2 + (∂y′

∂x
)2 0

0 0 1

 , (2.34)

using the Cauchy-Riemann relations this can be rewritten as

ϵ′ = ϵ

det(Λ)


(∂x′

∂x
)2 + (∂x′

∂y
)2 0 0

0 (∂x′

∂x
)2 + (∂x′

∂y
)2 0

0 0 1

 (2.35)

=


ϵ 0 0
0 ϵ 0
0 0 ϵ

det(Λ)

 , (2.36)

where we used that det(Λ) = (∂x′

∂x
)2 + (∂x′

∂y
)2. This means that the in-plane components

of the permittivity tensor remain invariant under a conformal transformation [42]. What
does change is the out-of-plane component, but that is of no concern in two-dimensional
calculations.

Two other important properties of conformal maps are that the z−component of the
H−field and the two-dimensional electrostatic potential [41] are invariant as well. The
latter property will especially be used in this thesis. Both of them are easily proved
using the transformation formulas in table 2.1.
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2.3 Transformation optics in plasmonics

In the previous two sections, we introduced both Plasmonics and TO as two separate
concepts. Here we will link the two and provide the setting for the remainder of this
thesis.

Huidobro et al. and Liu et al. were among the first to apply TO techniques to
plasmonic systems [36, 37]. However, they still used it as a design tool, i.e. their
objective was to design the material parameters of a system such that it would fulfill a
specific function. Here, we will introduce an altogether different approach, in which TO
is used as an analytical tool to calculate properties of plasmonic systems. At the heart
of this new method lie conformal transformations (CTs), which have been applied across
different areas of physics to solve problems described by Laplace or Poisson equations
[43, 44].

To study the electromagnetic properties of plasmonic nanoparticles in the electro-
static limit and calculate their localised surface plasmon modes, one generally has to
solve Laplace’s equation [4]

∇2φ(x, y) = 0, (2.37)

for the system at hand. How difficult it is to solve this equation largely depends on
the shape of the nanoparticle; it is straightforward for highly symmetric nanoparticles
such as cylinders, planes, slabs, rings etc. [39]. However, it can become very difficult for
less simple structures such as two touching cylinders, overlapping cylinders, crescents,
gratings, etc. One way to determine the properties of a complex plasmonic system is
to apply a conformal coordinate transformation, which maps the complex system to a
simpler one. Since conformal transformations preserve the two-dimensional permittivity
and permeability, as well as the electrostatic potential, solving Laplace’s equation in
the simple geometry automatically yields the solution in the more complex one. To
the author’s best knowledge, the first to apply this approach to systems of interest in
plasmonics were McPhedran et al. [45]. They studied the transport properties of two
touching cylinders by transforming it to a slab via an inversion [46]. However, this
was before the term ‘Plasmonics’ was coined and the method has not received much
attention until very recently [16, 47]. Aubry et al. realised that just as important as the
transformation of the geometry of the nanoparticle is the transformation of the exciting
electric field. We briefly outline their approach for the study of a nano crescent below.
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Consider a metal slab at position x = a, thickness d and infinite extent in the y-
direction. The transformation

ζ ′ = g2

ζ
with g ∈ R, (2.38)

with ζ ′ = x′ + iy′ and ζ = x + iy, transforms the metal slab into a crescent of inner
diameter Din = g2/a and outer diameter Dout = g2/(a + d) [16]. Additionally, a dipole
at the origin in the slab frame with potential

φs(x, y) = − 1
2πϵ0

∆xx+ ∆yy

x2 + y2 = − 1
2πϵ0

Re(∆ζ

ζ
), (2.39)

with ∆ζ = ∆x + i∆y transforms to

φs(x′, y′) = − 1
2πϵ0g2 Re(∆ζζ

′), (2.40)

which is the potential of a constant electric field [16]. The problem of a crescent in a
constant electric field is thus equivalent to that of a slab in the vicinity of a dipole, which
is far easier to solve, as all calculations can be done in the much simpler slab geometry.
A summary of the transformation is shown in figure 2.2.

Aubry et al. used this approach to demonstrate that the crescent structure efficiently
‘harvests’ light across a broadband spectrum and concentrates it at its tip. Similar
works by the same group have applied this approach to treat the problem of two kissing
cylinders [16], two cylinders separated by a small gap [48] and also two overlapping
cylinders [49]. All studies showed a relatively broadband absorption spectrum and strong
field localisation at the singularities of the structures [50]. The effect of bluntness on

Figure 2.2: A dipole and a slab transform to a crescent in a uniform field, as demon-
strated in [16].
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the singular features of, e.g. the tip of the crescent, has also been successfully studied
using this approach [51]. Broadband absorption and strong field localisation have been
shown to be fairly robust to edge bluntness [51]. Radiative effects can also be included
by introducing an effective polarisability [52]; this extends the validity of this approach
beyond the quasi-static limit [53].

Related studies used the CT approach to calculate the electromagnetic contribution
to surface enhanced raman scattering on rough surfaces [54], or to demonstrate the
existence of multiple Fano resonances in a non-concentric metal annulus [55].

It can be seen that rather than using TO to design special materials, this approach
uses it as an analytical tool to study systems which are hard to tackle analytically
with conventional methods. Following the success of the two-dimensional CT approach,
Fernandez-Dominguez et al. applied conventional TO in three dimensions in an analo-
gous manner, to study the problem of two touching spheres in the quasi-static limit [56].
A subsequent study extended this method to two spheres separated by a small gap and
calculated the van der Walls forces between them [57].

The most recent application of TO as an analytical tool in plasmonics has been to
study non-local effects for nearly touching nanoparticles [58]. Luo et al. subsequently
refined this technique and introduced a new model to describe non-locality in [59]. Their
TO approach paired with the new model for non-locality does not only provide an el-
egant analytical description of the problem, but also vastly reduces computation times
compared to existing methods.

To conclude this section, TO optics is not only a powerful design tool for materials
with tailored functions, but is as powerful as an analytic tool in the study of interacting
and non-interacting plasmonic systems. In this field it provides one of the few analytic
approaches to solve problems, thus providing better physical insight into the physics at
hand than numerical schemes. Even if closed form solutions cannot be obtained, TO
can tremendously reduce computation times compared to purely numerical methods. It
is therefore expected that the use of TO to study plasmonic systems will increase in the
years to come.

References [60], [61] and [27] provide excellent reviews on this particular use of TO.
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Chapter 3

Hidden symmetries in plasmonic
systems I: Ellipses and spheroids

As mentioned in the introduction, symmetries play an important role in many branches
of physics and often lead to deep physical insight. Yet, the role of symmetry has seldom
been discussed in plasmonics. Here, we demonstrate how TO can be used to reveal
hidden symmetries in plasmonic systems. We give two examples: A two-dimensional
ellipse, which can be transformed to an annulus and a three-dimensional spheroid, which
can be transformed to a spherical shell. All the results presented in the following are
based on a paper by the author and colleagues and have been published in [62].

3.1 2-D elliptic cylinder

We are interested in the optical response of an infinitely long elliptic metal cylinder
immersed in a dielectric. If we assume the cylinder is directed along the z′-direction,
the translational invariance of the problem along z′ allows us to treat the problem in
two dimensions. We restrict ourselves to the quasi-static limit for now, but will relax
this condition later on. In the quasi-static limit we thus face a boundary value problem
for Laplace’s equation, which can and has been solved by means of elliptic coordinates
[63]. Yet, we suggest a different route based on TO that allows us to obtain deeper and
somewhat surprising physical insight [62].

49
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3.1.1 Transformation of the geometry and sources

Following the presentation in [62], we solve the problem in the complex plane ζ ′ = x′+iy′.
The equation of an ellipse reads

x′2

a′2 + y′2

b′2 = 1, (3.1)

with semi-major axis a′ = c′ cosh(u0) and semi-minor axis b′ = c′ sinh(u0). Here c′ is
an arbitrary scale parameter and u0 determines the eccentricity of the ellipse. Upon
application of a Joukowski transformation [43]

ζ ′ = c′

2 (ζ + 1
ζ

), (3.2)

Eq.3.1 transforms into the equation of an annulus with inner radius R0 = a′ − b′ = e−u′
0

and outer radius R1 = a′ + b′ = eu′
0 [62]. The real and imaginary parts of ζ ′, ζ transform

according to [43, 62]

x′ = c′

2 x(1 + 1
x2 + y2 ) (3.3)

y′ = c′

2 y(1 − 1
x2 + y2 ). (3.4)

The transition from a simply connected structure (ellipse) to a doubly connected one
(annulus) is due to the multi-valued nature of the inverse of Eq.3.2 [43]. The conformal-
ity of the Joukowski transformation above ensures that the in-plane permittivity of the
metal ellipse ϵm and the surrounding dielectric ϵd is preserved [43, 60]. It also means
that φ(x, y) = φ′(x′, y′), i.e. if φ is a solution to the Laplace equation in the annulus
geometry, φ′ is the corresponding solution in the elliptic geometry [43, 62], as has been
discussed in section 2.3. Hence, solutions to Laplace’s equation in the elliptic geometry
can be found by solving the corresponding problem in the annulus geometry. Due to the
rotational symmetry of the annulus, this is a straightforward task and can be done using
polar coordinates. TO can hence be used to reveal ‘hidden’ symmetries in plasmonics,
which do not only facilitate analytical treatments, but also give deeper insight into the
physics at work [62].

Once the eigenmodes and -values of a system have been calculated (i.e. Laplace’s
equation has been solved in a particular geometry), the optical response of the system
at hand can be calculated by expanding the source potentials in terms of the system’s
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eigenmodes and using the boundary conditions at the dielectric/metal interface. That
is, demanding continuity of the tangential component of the electric field E = ∇φ and
of the normal component of the electric displacement field D = ϵE [20]. To use the TO
approach, it is thus of paramount importance that the transformation of the sources is
also considered [16, 47], i.e. a constant electric field in the elliptic geometry does not
correspond to a constant electric field in the annulus geometry.

Here, we consider the transformation of a constant electric field, which is the quasi-
static equivalent of a plane wave illumination. The potential of a constant electric field
can be taken as

φ′
s = −Ex′x′ − Ey′y′, (3.5)

substituting from Eq.3.2 gives [62]

φs(x, y) = −c′

2 E′
0 · r + p · r

2πϵ0r2 , (3.6)

where

E′
0 =

 Ex′

Ey′

 , r =
 x

y

 , p = πϵ0c
′

 Ex′

−Ey′

 . (3.7)

A constant electric field in the elliptic geometry gives rise to a constant electric field
plus the field of a line dipole in the annulus geometry [62].

y

x

uniform
electric
field

dipole

ϵd

ϵm
ϵd

ζ ′ = c′

2 (ζ + 1/ζ)

y′

x′

uniform
electric
field

ϵd

ϵm a’
b’

ϵm

Rin

Rout

Figure 3.1: Schematic illustration of the transformation between an ellipse and an an-
nulus. The transformations of the source are also shown. A constant electric field (red)
transforms to a constant electric field (red) plus a dipole (red). Modified from [62].

The transformation of the geometry and the source is summarised in figure 3.1. In
the following, we will focus on the case of a constant electric field in the elliptic geometry.
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3.1.2 Plasmon mode structure: 2-D ellipse

As aforementioned the plasmon modes (more precisely LSP modes) of the ellipse can
be calculated by solving Laplace’s equation in the annulus geometry, since they are the
eigenmodes of this system. The resonance condition for one of the LSP modes is encoded
into the scattering coefficient of that mode and only depends on the permittivity of the
ellipse ϵm(ω) and the dielectric ϵd [4].

For the ellipse this condition is split into even (with respect to reflections about the
x′−axis)

tanh(mu0) = − ϵd

ϵm

(3.8)

and odd

tanh(mu0) = −ϵm

ϵd

(3.9)

modes, with a Drude model for the permittivity ϵm = 1 − ωp

ω(ω+iγ) [62], see appendix
A.1. Note that tanh(u0) = b′/a′ and that ϵm is a function of frequency. Thus the
resonance condition is crucially dependent on the eccentricity of the ellipse and frequency
dependence of its permittivity. The resonance frequency is shown in figure 3.2 for the
first five even and odd modes as a function of the ratio of semi-minor to semi-major axis
of the ellipse.

Which of these LSP modes can be excited ultimately depends on the type of source.
For example, a plane wave only couples to the lowest order (dipolar) modes, whereas a
dipole in the near field of the ellipse is able to excite all higher order modes as well [62].

The dependence of the resonance frequencies on the eccentricity of the ellipse can be
understood in several ways. In the simplest case b′/a′ = 1, the ellipse becomes a cylinder
and all the modes are degenerate at the surface plasma frequency [52]. However, when
the cylinder is deformed and the rotational symmetry broken, the modes split. That
they split precisely into even and odd modes is a consequence of the fact that even
though rotational symmetry has been lost, the ellipse still possesses two mirror planes
[62]. That the odd modes shift two higher and the even modes to lower frequencies is
easily understood from the potential distribution (figure 3.3). For decreasing b′/a′ −→ 0
(i.e. thin strip) the separation between the surface charges decreases, thus the energy of
the even modes (same charges at top and bottom) decreases while it increases for odd
modes (opposite charges at top and bottom), since Re(ϵm) < 0 has to be fulfilled [4, 62].

Another way to understand the mode splitting, thereby gaining additional physical
insight, is in terms of the potential distribution in the transformed frame (figure 3.3).
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Figure 3.2: Resonance frequencies versus the ratio of semi-minor to semi-major axis.
Shown are in descending order the first five odd modes (solid lines) and in ascending
order the first five even modes (dashed lines). ωp = 8eV and γ = 0.032eV . Modified
from [62].

Since the two geometries are related by a conformal transformation, the potential is the
same for each mode in the two geometries. The modes for m = 1, 3 are shown in figure
3.3. In the annulus geometry, LSPs are excited on both the outer and inner surface of
the annulus. The inner and outer LSPs do, of course, interact and hybridise, which leads
to the splitting into odd and even modes. This can be very well understood in terms of
the plasmon hybridisation model introduced in section 2.1 [11, 12].

We can conclude that there is a link between symmetry breaking in the elliptic geom-
etry and plasmon hybridisation in the annulus geometry [62]. More such transformation
pairs are certain to exist and the connection between symmetry breaking and plasmon
hybridisation is likely to be found in transformations with multi-valued inverses.

3.1.3 Absorption and scattering: 2-D ellipse

To determine which modes can be excited by a particular source one can calculate the
absorption and scattering spectra of the ellipse. We already mentioned that a plane
wave illumination, i.e. a constant electric field will only couple to the two dipolar modes
of the ellipse; here we show why. The scattering and absorption cross section of the
ellipse can be calculated from its polarisability, the polarisability is itself related to the
scattered potential in the far field [64]. Solving the annulus problem and rewriting
the scattered potential outside the ellipse in elliptic coordinates x′ = c′ cosh(u′) cos(v′),
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Figure 3.3: Imaginary part of the electrostatic potential for m=1 and m=3. Shown are
the distributions in the annulus geometry and the elliptic geometry, both for the even
(top) and odd (bottom) mode. We assumed a Drude type permittivity (Eq.2.6) ϵm with
ωp = 8eV and γ = 0.032eV . Reprinted with permission from [62]. Copyright 2014 by
the American Physical Society.

y′ = c′ sinh(u′) sin(v′) one obtains (in the elliptic geometry)

φ′
sca = −c′

2Ex′γx
2de

−u′ cos(v′) − c′

2Ey′γy
2de

−u′ sin(v′). (3.10)

In the far field this can be recast as

φ′
sca,2d = −1

2(Ex′
x′

x′2 + y′2γ
x
2d + Ey′

y′

x′2 + y′2γ
y
2d) (3.11)

= 1
2πϵ0

p′
2d · r′

r′2 , (3.12)

with

p′
2d = −πϵ0

 γx′
2d 0
0 γy′

2d

 Ex′

Ey′


as dipole moment of the ellipse [62]. This leads to a polarisability

α′
2d = −πϵ0

 γx′
2d 0
0 γy′

2d

 =
 αx′

2d 0
0 αy′

2d

 , (3.13)
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with

γx
2d = (ϵ′

d − ϵ′
m)eu0 cosh(u0) sinh(u0)

ϵ′
m sinh(u0) + ϵ′

d cosh(u0)
(3.14)

γy
2d = (ϵ′

d − ϵ′
m)eu0 cosh(u0) sinh(u0)

ϵ′
m cosh(u0) + ϵ′

d sinh(u0)
. (3.15)

From this it is clear that a plane wave only couples to dipolar modes, since accord-
ing to Eq.3.8 and Eq.3.9 higher order modes would require the presence of cosh(mu0),
sinh(mu0) and emu0 in the polarisability [62]. As we write in [62]:

‘This is a surprising result as at first sight the ellipse does not have
enough symmetry to select only these two modes for excitation. The hidden
symmetry of the system reveals its hand at this point. Externally incident
radiation can couple to the higher order modes but only if the ellipse is large
enough to invalidate the quasi-static approximation and so to see the higher
multipole terms in the field.’

The treatment thus far has been strictly limited to the quasi-static limit, however, we can
extend the range of validity of this approach by taking radiation damping into account.
This can be done by defining an effective polarisability as in [52, 53] such that

α
eff,x′/y′

2d = α
x′/y′

2d

1 − ik2

8 α
x′/y′

2d

. (3.16)

Such a treatment extends the validity of our approach from a particle size of a few
nanometers to a few tens of nanometers and sometimes more [53]. However, it does not
invalidate the selection rule because it only takes into account the radiative reaction of
the ellipse, but not higher order terms in the incident radiation.

The extinction and scattering cross-sections are related to the polarisability via
σ

x′/y′

ext = kIm(αeff,x′/y′

2d ) and σx′/y′
sca = k3

8 |αeff,x′/y′

2d |2 [53, 64]. The absorption cross-section
is simply the difference between the two σ

x′/y′

abs = σ
x′/y′

ext − σx′/y′
sca [64]. The total cross-

sections are then the sum of the cross-sections for x′ and y′ as long as the incident field
satisfies E ′

x = E ′
y [62].

Figure 3.4 shows the scattering and absorption cross-section for a metal ellipse in vac-
uum under plane wave illumination. We used permittivity data for silver from Johnson
and Christy [65]. The cross-sections have been normalised by the physical cross-section
a′. We compare our analytical solutions to COMSOL simulations. For semi-major a′

equal to five or ten nanometers, the agreement is excellent and the two peaks in the
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Figure 3.4: Absorption (left) and scattering (right) cross-section normalised by the phys-
ical cross-section a′. Our analytical model (solid lines) is compared to COMSOL sim-
ulations (markers) for different values of the semi-major axis a′. The ratio between
semi-major to semi-minor axis has been kept constant at b′ = 0.2a′. We used experi-
mental permittivity data for Silver from Johnson and Christy [65] for ϵm and set ϵd = 1.
This data has also been published in [62].

absorption and scattering cross-section correspond to the two dipolar modes. This con-
firms the selection rule predicted above. For a′ = 30nm the agreement is still good, but
there is another peak arising in the absorption spectrum at ≈ 3.4eV , which corresponds
to a quadrupole mode. This is the result of the breakdown of the quasi-static approxi-
mation for the incoming plane wave, as the ellipse is now big enough to ‘see’ the higher
order modes of the incoming radiation, which then couple to the ellipse’s quadrupole
mode. The scattering cross-section is still dominated by the two dipole modes, though.
Additionally, the simulations for both, absorption and scattering cross-section, show a
slight red-shift compared to the analytical result, indicating the onset of retardation
effects [64].

3.2 3-D spheroid

In this section, we present an extension of the two-dimensional case into three dimen-
sions. That is we study oblate and prolate spheroids by transforming them to spherical
shells. The analytical calculations are as presented in [66] and have been done by Prof.
Yu Luo, but we include them here for completeness and to demonstrate that the ‘hid-
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den’ symmetries can carry over to three dimensions, too. The numerical simulations
have been done by the author.

3.2.1 Transformation of the geometry and sources

A straightforward extension of the transformation in Eq.3.2 to three dimensions allows us
to transform a spheroid into a spherical shell. The transformation ρ′ = 1

2(r − 1
r
) sin(θ),

z′ = 1
2(r + 1

r
) cos(θ) and ϕ′ = ϕ, where r, θ and φ are spherical polar coordinates,

takes a prolate spheroid to a spherical shell [66]. For an oblate spheroid one must use
ρ′ = 1

2(r + 1
r
) sin(θ), z′ = 1

2(r − 1
r
) cos(θ) and ϕ′ = ϕ [62]. Contrary to the 2-D case, the

permittivity and permeability are not preserved by this transformation, but transform
as described in table 2.1. Since we work in the quasi-static limit, we will focus on the
transformation of the permittivity, which is given in component form by

ϵp
r,d/m = ϵp

θ,d/m = 1 − r2

2r2 ϵ′
d/m, (3.17)

ϵp
ϕ,d/m = 1 + r4 − 2r2 cos(2θ)

2r2(1 − r2) ϵ′
d/m, (3.18)

for the prolate transformation and by

ϵo
r,d/m = ϵo

θ,d/m = −1 + r2

2r2 ϵ′
d/m, (3.19)

ϵo
ϕ,d/m = −1 + r4 + 2r2 cos(2θ)

2r2(1 + r2) ϵ′
d/m, (3.20)

in the oblate case. The source potential transforms in the same way as in the two-
dimensional case under these two transformations. To find the eigenmodes of the
spheroids in the quasi-static limit one then has to solve [20]

∇ · (ϵp/o · ∇Φ) = 0, (3.21)

with the only non-zero components of the permittivity tensor ϵp/o given in Eqs.3.17-3.20.
The space dependence of the permittivity makes the spherical shell an inhomogeneous
system, which makes it harder to solve than a simple spherical shell with a constant
permittivity. Fortunately, the special form of the permittivity tensor in Eq.3.17-3.20 still
allows for a solution in terms of spherical harmonics. Below, we provide a derivation
of the electrostatic potential satisfying Eq.3.21 for the oblate spheroid. We follow the
derivation in [62] exactly.
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Expanding and rearranging Eq.3.21 leads to

1
r2

∂

∂r

(
1 − r2

) ∂

∂r
Φ + 1 − r2

r4 sin θ
∂

∂θ
(sin θ) ∂

∂θ
Φ +

[
1 − r2

r4 sin2 θ
+ 4
r2 (1 − r2)

]
∂2

∂ϕ2 Φ = 0.

An ansatz of the form Φ = Z(r)Ξ (θ)φ (ϕ) will, after using some trigonometric identities
and rearranging give three separated equations

r2

1 − r2
d

dr

(
1 − r2

) dZ
dr

−
[
l (l + 1) + 4m2r2

(1 − r2)2

]
Z = 0

1
sin θ

d

dθ
sin θdΞ

dθ
+
[
l (l + 1) − m2

sin2 θ

]
Ξ = 0

d2Φ
dϕ2 = −m2φ.

The radial equation can, after a change of variable ψ = 1
2(r + 1/r) be recast into the

form of the associated Legendre differential equation [20]. The general solution can thus
be written down as

Z (r) = A1P
m
l

[1
2

(
r + 1

r

)]
+ A2Q

m
l

[1
2

(
r + 1

r

)]
, (3.22)

where Pm
l and Qm

l are the associated Legendre polynomials of the first and second
kind, respectively [20]. The angular differential equations above are simply the defining
equations of the spherical harmonics Y m

l [20]. Hence, the eigenmodes of the system are
products of the form

Φm
l =

(
A1P

m
l

[1
2

(
r + 1

r

)]
+ A2Q

m
l

[1
2

(
r + 1

r

)])
Y m

l (θ, φ). (3.23)

This is quite a surprising result. It means that the angular dependence of the eigenmodes
of the spheroid is still given in terms of spherical harmonics and unique angular momen-
tum numbers m, l. Thus, in contrast to a previous study [57], good angular momentum
numbers in the spherical shell frame carry over as good angular momentum numbers in
the spheroidal frame, i.e. there is no mixing of modes under the transformation. Again,
this is a consequence of the spheroidal system’s hidden symmetry, which has been re-
vealed by our transformation [62]. As an aside, the space dependence of the permittivity
only manifests itself in the radial part of the solution in Eq.3.23 which depends on both
angular momentum numbers m, l (for a spherical shell it only depends on l) [62].
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The most general solution for the potential in the prolate spheroidal geometry is a
superposition of all the fundamental modes. Yet, along the axis of the spheroid (ρ′ =
0 −→ r = 1) the potential must remain finite, since the associated Legendre polynomials
of the second kind diverge at these points, the potential inside the spheroid must thus
be of the form

Φin =
∞∑

l=1

l∑
m=−l

ain
l,mP

m
l

[1
2

(
r + 1

r

)]
Y m

l (θ, ϕ).

Outside the spheroid the scattered part of the potential can be obtained as

Φsca =
∞∑

l=1

l∑
m=−l

asca
l,m

{
i
π

2P
m
l

[1
2

(
r + 1

r

)]
+Qm

l

[1
2

(
r + 1

r

)]}
Y m

l (θ, ϕ),

since the electric field must vanish at infinity. The remaining unknown coefficients are
then determined by demanding continuity of the tangential component of the electric
field and the normal component of the electric displacement field at the spheroid/dielectric
interface [20]. This leads to the expansion coefficients

asca
l,m = (ε− 1)Pm

l (τ)Pm′
l (τ)

Pm
l (τ)Gm′

l (τ) − εGm
l (τ)Pm′

l (τ)a
S
l,m

ain
l,m = Pm

l (τ)Gm′
l (τ) −Gm

l (τ)Pm′
l (τ)

Pm
l (τ)Gm′

l (τ) − εGm
l (τ)Pm′

l (τ)a
S
l,m

with τ = (Rout + 1/Rout) /2 and Gm
l (·) = iπPm

l (·) /2+Qm
l (·) [62]. aS

l,mare the expansion
coefficients for the source potential and are thus obtained once a source is specified.
Irrespective of the source coefficients, the resonance condition for the excitation of LSP
modes is set by the zeros of the denominator of the expansion coefficients ain

l,m and asca
l,m.

It can be easily obtained for any order mode, which has not been possible previously [62],
due to high computational demands of other methods [67–69]. An analogous calculation
can be carried out for oblate spheroids.

Figure 3.5 shows the shift of the LSP resonance versus the ratio of semi-minor to semi-
major axis b′/a′. To understand their behaviour we start with the simplest case again.
If b′/a′ = 1 the spheroids turn into spheres such that modes with the same quantum
number l but different m are degenerate, which is expected [20]. For oblate spheroids
the behaviour of the modes is determined by the distribution of the surface charges in
a similar way to the two-dimensional case. When l − m is an even number charges on
the ‘top’ and ‘bottom’ of the oblate spheroid have the same sign, thus decreasing the
distance between them (i.e. decreasing b′/a′) reduces the energy of the configuration
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Figure 3.5: Shift of the LSP resonances for oblate (top) and prolate (bottom) spheroids.
Shown are the modes for l = 1 and l = 4. The insets show the potential distribution
for their respective modes. Reprinted with permission from [62]. Copyright 2014 by the
American Physical Society.

and the modes shift to zero frequency (ϵ −→ −∞) [62]. The opposite is true for modes
with l −m being odd and the modes shift to the plasma frequency ωp (ϵ = 0) [62].

This behaviour cannot be observed for the prolate spheroid, where only modes with
m = 0 shift to zero frequency, whereas all the other modes shift to the surface plasma
frequency (ϵ = −1). This is because, for m ̸= 0, the prolate spheroid effectively turns
into an infinitely long cylinder when b′/a′ −→ 0, for which all modes are degenerate at
the surface plasma frequency [52, 62].

Degeneracy of LSP modes usually has some underlying symmetry at its roots. When
this symmetry is broken the degeneracy is lifted and the modes split. This has been
observed both for a two-dimensional ellipse and now for three-dimensional spheroids.
Both systems also have in common that the splitting of the modes can also be understood
in terms of plasmon hybridisation in the transformed frame, thus hinting at a connection
between symmetry breaking and plasmon hybridisation. But, it should be mentioned
that the modes obtained in the spherical shell geometry are not only the result of plasmon
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hybridisation, but also due to the space dependence of the permittivity [62]. As such
their spectrum is a little more complicated, but also richer than that of simple core-shell
structures [70].

3.2.2 Absorption and scattering: 3-D spheroid

The absorption and scattering spectrum can be calculated from the polarisability, as in
the two-dimensional case. Here we are interested in the absorption/scattering spectra
for a prolate spheroid under plane wave illumination, the oblate case is derived in an
analogous manner. In the quasi-static limit the source potential reads [62]

Φs = −Exx
′ − Ezz

′. (3.24)

As an expansion of associated Legendre polynomials this leads to the source coefficients

as
1,1 = iEx′ as

1,0 = −Ez′ , (3.25)

with all higher order coefficients being zero. Hence, the only non-zero scattering co-
efficients will be asca

1,1 and asca
1,0 . The polarisability is then obtained from the scattered

potential at infinity as [62],

Φsca(r′ −→ ∞) = asca
1,0

{
i
π

2P
0
1

[1
2

(
r + 1

r

)]
+Q0

1

[1
2

(
r + 1

r

)]}
cos(θ)

− asca
1,1

{
i
π

2P
1
1

[1
2

(
r + 1

r

)]
+Q1

1

[1
2

(
r + 1

r

)]}
sin(θ) cos(ϕ)

=
−2iasca

1,1

3r3 x−
asca

1,0

3r3 z = 1
4πϵ0

γx′Ex′x+ γz′Ez′z

r3 ,

with the polarisabilities γp
x′ = −8iπϵ0

Ex′
asca

1,1 and γp
z′ = − 4πϵ0

3Ez′
asca

1,0 . Radiation damping can
be accounted for by defining an effective polarisability, as in the two-dimensional case
[22, 52]. We obtain the extinction and scattering cross-sections as,

σ
x′/z′

ext = kIm
(

1
ϵ0/γp

x′/z′ −ik3/(6π)

)
, (3.26)

σx′/z′

sca = k4

6π

∣∣∣∣ 1
ϵ0/γPx′/z′ −ik3/(6π)

∣∣∣∣2 . (3.27)

The same expressions apply in the oblate case, but with γp
x′/z′ −→ γo

x′/z′ . It is
interesting to see that, similar to the two-dimensional ellipse, the polarisability only
depends on the dipolar scattering coefficient (l = 1), indicating that the same selection
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Figure 3.6: Absorption (left) and scattering (right) spectra for oblate (top) and prolate
(bottom) spheroids under plane wave illumination (Ex′ = Ez′ = E0, Ey′ = 0). Shown
are spectra for different values of the semi-major axis a′ = 5, 10, 30nm with b′ = 0.2a′.
We used the permittivity data of silver from Johnson and Christy [65] as ϵm and set
ϵd = 1. Reprinted with permission from [62]. Copyright 2014 by the American Physical
Society.

rules hold. Again, this is a consequence of the spheroid’s hidden symmetry, which is
much more prominent after the transformation to the rotationally symmetric shell.

Analytical results for both oblate and prolate spheroids are shown in figure 3.6,
providing further evidence of the selection rule. Note that the absorption cross-section
for a prolate spheroid remains one order of magnitude larger than the scattering cross-
section even for a′ = 30nm [62]. This makes the prolate spheroid a good candidate for
applications in which plasmonic particles are needed where radiation damping has to be
suppressed [62].

Figure 3.7 shows a comparison of our analytical calculation with COMSOL simula-
tions. Numerical and analytical spectra match very well, providing further verification
of our analytical approach.
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Figure 3.7: Comparison between analytically (solid lines) and numerically (open circles)
calculated absorption (left) and scattering (right) spectra for oblate (top) and prolate
(bottom) spheroids under plane wave illumination (Ex′ = Ey′ = 0, Ez′ = E0). Shown
are spectra for different values of the semi-major axis a′ = 5nm (black), a′ = 10nm
(blue) and a′ = 30nm (red), with b′ = 0.2a′. We used the permittivity data of silver
from Johnson and Christy [65] as ϵm and set ϵd = 1. Reprinted with permission from
[62]. Copyright 2014 by the American Physical Society.

3.3 Summary

In this chapter, we studied the plasmonic properties of a two-dimensional ellipse and
prolate and oblate spheroids, using the TO framework. Both, the two- and three-
dimensional structures were shown to possess ‘hidden’ rotational symmetries. These
symmetries, while not obvious from the original geometry, became apparent upon trans-
formation to the more symmetrical annulus and spherical shell, respectively. This meant
that the plasmon modes for the ellipse and spheroids could be classified in terms of the
symmetries of their more symmetrical counterparts. This did not only facilitate the
derivation of analytical solutions for plasmon modes, absorption and scattering spectra,
but also gave two key insights. First, it allowed us to derive ‘dipole’ selection rules in
the scattering and absorption spectra. These were easy to obtain in the annulus/shell
geometries and the reason that they also hold in the ellipse/spheroid frames, is that the
transformation between the two geometries did not lead to a mixing of eigenmodes. That
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is, both systems are simultaneously diagonalisable. Second, we obtained the plasmon
resonance conditions as a function of the shape parameters of the ellipse/spheroid. This
showed a splitting of the modes, when the ellipse/spheroids were deformed from a cylin-
der/sphere, i.e. the modes split because the rotational symmetry was broken. However,
in the annulus/shell frame this splitting could be attributed to plasmon hybridisation
and there thus seems to be a connection between the symmetry breaking in one frame
and plasmon hybridisation in the other.



Chapter 4

Hidden symmetries in plasmonic
systems II: plasmonic gratings

4.1 Introduction

Metallic gratings have a long standing history in optics research, spanning over a hundred
years. The interaction of electromagnetic radiation and metallic gratings is rich in
physics and full of subtleties, one of the earliest and most prominent being the discovery
of Wood’s anomalies in 1902, by Wood [71]. Wood discovered very sharp (in wavelength)
bright and dark bands in the spectrogram of a metallic grating [71, 72]: an unexpected
result which could not be explained by theory at the time [71].

The first theoretical explanation of Wood’s anomalies came with Lord Rayleigh’s
article ‘On the Dynamical Theory of Gratings’ in 1907 [73]. He explained the effect by
the vanishing and emergence of higher diffraction orders [73]. If a plane wave is incident
normally on a grating, one can observe higher order diffraction modes at particular angles
determined by d sin(θm) = mλ (d is the grating’s period). At some critical wavelength,
the m-th diffraction mode will travel parallel to the surface; increase the wavelength
ever so slightly and this diffraction order will vanish. This means the energy previously
contained in this m-th diffraction mode is distributed over all the other, still visible,
modes and leads to a sudden change in their intensity [72, 73]. This change is what
Wood observed [71].

Fano and Hessel et. al. later showed that there are two types of Wood anomalies: the
ones explained by Rayleigh and a second due to resonances in the grating itself (think
waveguide or plasmon modes) [72, 74–76]. The latter type is associated with the inter-
ference of a resonant and non-resonant mode leading to the characteristic asymmetric
line shape, now famously known as a Fano resonance [74, 75].

65
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We have come a long way since then, but investigations into Wood anomalies and
Fano resonances continue to the present day [77–81]. Research into one- or two-dimensional
metallic gratings has also continued and led to the discovery of such important effects
as extraordinary optical transmission (EOT) [82, 83]. It goes without saying that there
is a broad range of existing and potential applications for these gratings, however, in
the following we will focus on only two of these: Plasmonic gratings1 in sensing and
photovoltaics.

The common goal in sensing is to design a device capable of detecting a particular
substance, which could be a chemical compound or a biological sample. It has already
been shown that plasmonic nanoparticles are ideally suited to detect small changes in
the refractive index of the material surrounding the particle [4, 19, 84] . This is due
to the sensitivity of the nanoparticle’s plasmon resonance to the local environment of
the particle [4, 19, 84] . Several studies optimising plasmonic grating designs for this
particular effect exist and have been implemented successfully [85–87].

One of the most promising techniques for molecular sensing with the potential to go
all the way to single molecule detection is Surface Enhanced Raman Scattering (SERS)
[4, 18, 88] . This particular technique is ideally suited for plasmonic systems, since its
efficiency is extremely sensitive to the local electric field strength (the probability of
Raman scattering taking place is proportional to |E|4) [4, 88]. All plasmonic particles
show an enhanced local electric field at the plasmon resonance [4]. Moreover, some
special systems are able to harvest light over the whole visible spectrum and concentrate
its energy into hotspots, e.g. kissing cylinders and spheres [47, 57]. These structures
give spectacular field enhancements of the order of 103 at the hotspot, the only problem
being that it is a rare event that a target molecule sits exactly at the hotspot.

This is where plasmonic gratings come in. They, too, have the ability to harvest
incoming electromagnetic radiation and couple it to higher order plasmon resonances
showing strong field enhancements in the gap of the gratings [89, 90]. The field en-
hancements may not be as strong as for kissing cylinders; however, it is much easier
to produce a regular grating on a larger scale, featuring many more hotspots than pos-
sible with kissing cylinders/spheres. This greatly enhances the probability of a target
molecule being situated at the hotspot and thus increases the efficiency of SERS [89, 90].

1Metallic gratings can be considered plasmonic if the frequency of the exciting source is below the
plasma frequency of the metal.
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A problem of thin film solar cells (2µm) compared to conventional ‘thick’ solar cells
(180 − 300µm) is that, due to their small thickness, a lot of the incoming radiation
simply passes through the cell without interaction [91]. Plasmonic improvements of thin
film solar cells thus focus on trapping more of the incoming light in the thin photo-
voltaic device by integrating plasmonic elements in it [91]. Several design approaches
exist [91–97]. A metal film with a single groove at the back of a semiconductor solar
cell can couple incident light into a surface plasmon polariton, which propagates at the
semi-conductor metal interface and thus enhances the energy absorption of the device
[91, 97]. Other approaches place arrays of plasmonic nanoparticles on the semiconductor
surface, leading to multi-scattering events between the particles and the light reflected
at the back of the solar cell. This increases the optical path length and again the energy
absorption [91, 98]. Yet another approach is to embed the plasmonic particles into the
semiconductor, such that the localised surface plasmons trap the light inside it. In many
of these designs plasmonic gratings play a prominent role [91, 92, 94–96, 99, 100].

Without a doubt, an accurate theoretical description of the interaction of light with
plasmonic gratings is desirable. The question is, why use Transformation optics? Many
analytical and semi-analytical methods exist, which give reasonably accurate results
with some limitations. Rayleigh theory, as the most prominent example, works well
only for shallow gratings and cannot predict the field inside the grooves as it only
considers outgoing waves [73]. Green’s function methods and multiple scattering give
good results, but are often mathematically heavy and rely on the inversion of large
matrices, thus hiding the physics from view [101]. Of course, with todays computational
power, a brute force numerical method using software packages such as COMSOL can
give accurate results within a couple of hours, albeit giving little physical insight.

Still, I believe Transformation has a place here. Transformation optics has previously
been shown to give unique physical insights into plasmonic systems by reducing com-
plex problems to rather simple ones, allowing for a concise and elegant mathematical
description. This is something current analytical and numerical methods lack. Fur-
thermore, applications often demand optimisation of design parameters. This is where
numerical methods are most often applied. However, even if a single run only takes of
the order of hours, optimising the design by changing the geometry can quickly boost
simulation times to days and weeks. Here, I believe, a simple fully analytical description
of plasmonic gratings in the Transformation optics framework has a major advantage.
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4.2 Transformation of the geometry

Transformation optics is at its best when it can be used to reveal a connection be-
tween seemingly unrelated geometries. In this section, we show how a specific class of
transformations can be used to design several classes of plasmonic systems: semi-infinite
modulated planes, nanoparticle chains, thin gratings and nanoparticle chains on top of
a surface.

4.2.1 Semi-infinite periodically modulated plane

We start with the simplest case. Starting from a half-plane with metal-dielectric bound-
ary at x = 0, we can generate a semi-infinite modulated surface with period 2πγ using
the conformal transformation

w = γ log(eζ − iv0), (4.1)

Figure 4.1: Schematic of the step-by-step transformation from a half-plane to a half
space with a periodically modulated interface.
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where w = u + iv and ζ = x + iy. The effect of this transformation is summarised
in figure 4.1. It works by transforming a half-plane into a circle by the well known
exponential map [41]. A modulated half-plane is then obtained by taking a shifted
logarithm transform [102]. Note that this transformation ‘swaps’ left and right, as
depicted in figure 4.1. It is also worth noting that the transformation has branch points
at ζ = ∞ and ζ = log(|v0|) + i(π/2 + 2πn) for integer n.

There are two free parameters in this transformation. The first one, γ, determines
the periodicity of the modulated surface and the second one, v0, sets the amplitude of
the modulations on the surface. Changing the amplitude does, however, also change
the modulation profile. Eq.4.1 thus relates a whole class of periodically modulated
surfaces to a simple half-plane. Given that the electrostatic potential is conserved under
conformal maps [41, 43], there is a whole class of periodically modulated surfaces, which
is, in the electrostatic limit, physically equivalent to a simple half-plane. This has
profound physical implications, which we will explore in later sections.

4.2.2 Nanoparticle chain

The same transformation can also be used to map a half-plane into a chain of plasmonic
nanoparticles, as is shown in figure 4.2. The key to designing nanoparticles instead of
a modulated half-space, is to choose the inversion point v0 to be outside the metallic
cylinder. Just on the perimeter of the metallic circle the transformation yields an in-
finitely modulated periodic surface, increase v0 a little further and the lines of constant
radius in the cylindrical frame form closed loops again. The closer v0 is to the metallic
circle, the more elongated the nanoparticles will be. If v0 is increased, the nanoparticles
become more circular. The periodicity of the array is the same as that for the modulated
surface, namely 2πγ.

The conformal transformation in Eq.4.1 really is very powerful, as it does not only
relate a whole class of modulated surfaces to a simple planar half-space, but also a class
of nanoparticle chains with variable particle shape. Note that conformal maps have
previously been used to study particle arrays by McPhedran et al. [45, 46].

4.2.3 Periodically modulated plasmonic grating

The conformal transformation in Eq.4.1 is easily extended to treat thin plasmonic grat-
ings. Here, the starting point is a semi-infinite plasmonic slab of thickness d, with its left
interface at position x = x0. The standard exponential map ω′ = eζ transforms this slab
to a concentric annulus [27], rather than a solid cylinder. It is well known that a non-
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Figure 4.2: Schematic of the step-by-step transformation from a half-plane to an array
of ‘elliptical’ nanoparticles.

concentric annulus can be obtained from a standard Moebius transformation [41, 43],
ζ ′ = 1

w′−iw0
. Finally, it is possible to move from a non-concentric annulus to a plasmonic

grating by a shifted logarithm transformation, such that the complete transformation
from slab to plasmonic grating reads

w = γ log( 1
eζ − iw0

+ iy0), (4.2)

with w0, y0 ∈ R+ [102]. The effect of this transformation is summarised in figure 4.3.
To obtain a grating with one flat and one corrugated side, as it is shown in figure 4.3,
y0 cannot be chosen independently of w0. A logarithmic transformation can only map
a circle into a straight line if the circle is centred around the inversion point of the
logarithm, in this case y0. A circle not centred around y0 will transform to a periodically
modulated line. Thus to obtain a flat surface y0 must be at the centre of the inner
circle in the ζ ′−frame of figure 4.3, the centre of this inner circle is itself dependent on
the transformation parameter w0 and the position of the original slab interfaces, x0 and
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Figure 4.3: Schematic of the step-by-step transformation from a slab to a grating with
one periodically modulated and one flat interface. Modified with permission from [102],
available under the Creative Commons Attribution 3.0 License.

x0 + d. It can be determined as w0
(e2(x0+d)−w2

0) [102]. A plasmonic grating with one flat
and one corrugated side can thus be obtained if y0 = w0

(e2(x0+d)−w2
0) [102].

As has been stated many times, a conformal transformation preserves the in-plane
permittivity and permeability [42], meaning that slab and grating have the same material
parameters and the two systems are completely equivalent, as far as electrostatics is
concerned.

The great flexibility of the transformation in Eq.4.2 has to be stressed. Similar to
the case of a half-plane, there are two free parameters. One, γ, sets the periodicity
of the grating, the other, w0, determines its shape and modulation depth. So again,
a whole class of gratings can be related to a simple semi-infinite slab by the single
transformation given in Eq.4.2. In contrast to the case of a half-plane, the restriction
on y0 can be relaxed and the gratings second interface can also be modulated. This
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Figure 4.4: Schematic of the step-by-step transformation from a slab to an array of
‘elliptical’ nanoparticles close to a flat surface. Reprinted with permission from the
supplementary material of [102], available under the Creative Commons Attribution 3.0
License.

allows us to treat a vast number of different, yet very special, plasmonic gratings within
a unified framework.

4.2.4 Nanoparticle chain on a flat surface

Similar to the transformation from a simple slab to a periodic grating, it is possible to
obtain a chain of nanoparticles on top of a metallic surface. In this case the system
to start from is a metal-insulator-metal waveguide [102]. This will be transformed to a
chain of ‘elliptical’ nanoparticles if x1 < log(w0) and y0 = w0

(e2x2 −w2
0) . The first of these

conditions ensures that the area left of x1 is transformed into a chain of nanoparticles
rather than a continuous surface, while the second one leads to a flat surface upon
transformation of the area right of x2. An intuitive explanation for this behaviour will
follow in the next section.

4.2.5 Mathematical details of the transformation

Much of the remainder of this text will be concerned with the transformation from a
simple slab to a thin plasmonic grating, so it pays to take a closer look at the conformal
transformation in Eq.4.2, here again

w = γ log( 1
eζ − iw0

+ iy0). (4.3)
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Branch point type log(0) log(∞)
Slab frame log(w0 + 1/y0) + i(π/2 + 2πk) log(w0) + i(π/2 + 2πk)
Grating frame log(y0 + 1/w0) + i(π/2 + 2πk) log(y0) + i(π/2 + 2πk)

Table 4.1: Summary of branch points

First of all, the inverse transformation has the same functional form and is given by

ζ = log( 1
ew/γ − iy0

+ iw0). (4.4)

Second, the complex logarithm has branch points at the origin and infinity. Therefore
the transformation has branch points whenever the argument of the logarithm vanishes
or diverges. This holds true for the inverse transformation as well. The position of the
branch points for the transformation and its inverse are summarised in table 4.1. Yet,
a more intuitive feeling for the analytic structure of the transformation can be obtained
from figure 4.5 [102].

As has been pointed out in several papers [60, 102], the effect of any coordinate
transformation can be imagined as a ‘stretching’ and ‘pulling’ of the original coordinate
grid, to deform the grid according to the underlying transformation. In essence, this is
what is shown in figure 4.5. The original Cartesian grid is distorted into the irregular
mesh shown in figure 4.5 [102]. Note that the contour lines meet at right angles; the
defining property of a conformal transformation [41, 43]. As has been pointed out in
[102], there are number of interesting points to recognise here. Specifically, the points
where the contour lines ‘bunch up’ correspond to the branch points of the transforma-
tion; they equate to points at infinity in the slab frame, but are transformed into two
periodic arrays of singularities in the grating frame. Their position is given in table 4.1.
Furthermore, following a single contour line in-between the branch points shows how
one can generate a grating with a flat and corrugated side. Right in the centre between
the branch points there is single contour line, whose shape remains unaltered. Yet, all
other contour lines have a ‘wavy’ shape and repeat with period 2πγ [102]. The modula-
tion of these lines gets stronger and stronger the closer they lie to the branch points of
the transformation, until, right at the branch point, they become infinitely modulated
[102]. Finally, the behaviour of the contour lines past the branch points explains how
the transformation can be used to model a chain of nanoparticles above a substrate.
Once the contour lines move past a branch point, they do not form a continuous line
anymore, but instead break up and loop around the branch point, i.e. they form an array
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Figure 4.5: Analytic structure of the transformation in Eq.4.2 for γ = 1, y0 = 0.033
and w0 = 0.6. The solid lines show the deformation of the cartesian grid in the x-
y-frame under transformation to the u-v-frame. The dashed lines indicate the branch
cuts running from the branch points to infinity. Reprinted with permission from [102],
available under the Creative Commons Attribution 3.0 License.

of discrete particles rather than a continuous surface [102]. This effect is schematically
shown in figure 4.4 [102].

For later manipulations it is also beneficial to rewrite the transformation in Eq.4.2
in a slightly more amendable form. It turns out that in the region between the branch
points, i.e. for log(w0) < x < log(w0 + 1/y0), the transformation can be written as a
Fourier series. This allows us to obtain explicit expressions for the u− and v−coordinate
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[102]

u = γ

log(1 + y0w0) − x+
∞∑

g=−∞
g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy

 (4.5)

v = γ

−y +
∞∑

g=−∞
g ̸=0

(
h+

g e
|g|x + h−

g e
−|g|x

)
eigy

 , (4.6)

with

h+
g = e−i π

2 g

2|g|
sign(g)i

(w0 + 1/y0)|g| (4.7)

h−
g = isign(g)e−i π

2 g

2|g|
w

|g|
0 (4.8)

d+
g = e−i π

2 g

2|g|
−1

(w0 + 1/y0)|g| (4.9)

d−
g = e−i π

2 g

2|g|
w

|g|
0 . (4.10)

This representation is particularly useful as it is already in terms of the eigenfunctions
of the slab frame. See appendix B.1 for a derivation of the above Fourier series.

To conclude this section, we have presented two conformal transformations, which
allow the transformation of a half-plane into a modulated surface or a particle chain and
a simple slab into a thin grating or a nanoparticle chain on a substrate. The richness of
these transformations should not go unnoticed. In each case it is possible to treat a whole
class of structures within a unified framework by simply tweaking the free parameters
of the transformations. This will not only lead to mathematical simplicity, but also give
physical insight into the behaviour of these classes of structures.

4.3 Dispersion relation

One of the fundamental properties, if not the most fundamental, of a physical system is
its spectrum. For nanoparticles of size smaller than the wavelength of light or extended
systems with feature sizes smaller than the wavelength, the plasmonic spectrum is, to a
good approximation, given by the electrostatic spectrum [20, 52]. That is, it is given by
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Figure 4.6: The absorption and scattering spectra for two modulated half planes. The
top panel shows spectra for a half plane not obtained via a conformal transformation.
The bottom panel shows the spectra for a half-plane obtained from Eq.4.1 with γ = 10−8

and y0 = 0.5. The period and modulation depth are the same for both structures. The
permittivity is given by ϵm = 1 − ω2

p

ω(ω+iγ) , ϵd = 1, with γ = 0.032eV and ωp = 8eV , in
both cases.

the solutions to a modified Laplace’s equation,

∇ · (ϵ∇)φ = 0. (4.11)

Let us reiterate that the electrostatic potential is conserved under conformal transfor-
mations and so is the spectrum [41, 43]. This has some interesting consequences for the
structures introduced in the previous section.

4.3.1 Half-plane to modulated surface

In the previous section we showed that a whole class of periodically modulated half-
spaces could be designed via a conformal map (Eq.4.1), with a completely flat half-plane
as underlying ‘mother’ structure [102]. Since the spectrum is conserved under conformal
maps, this whole class of periodically modulated half-planes inherits its spectral proper-
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ties from one and the same half-plane. It is well known that all the plasmon resonance
modes are degenerate at the surface plasma frequency for a half-plane [4, 20].

Figure 4.6 provides a test of this assertion. It shows the absorption and scattering
spectra for two different periodically modulated half-spaces. The lower of the two has
been obtained from the conformal transformation given in Eq.4.1, the upper features a
simple rectangular grating with rounded corners, the period and modulation depth is
the same for both. In both cases the incident source is given by a plane wave at normal
incidence and with the electric field polarised in the plane of incidence. Since both
modulated surfaces have the ability to couple light into higher order Fourier modes due
to their periodic modulation, one could expect absorption and scattering spectra with
several distinct peaks. This is exactly what can be observed for the rectangular surface
with peaks emerging on either side of the surface plasma frequency. However, there
is only one peak visible for the modulated half-space designed from a conformal map.
This indicates that the plasmon modes of this structure are indeed degenerate at the
surface plasma frequency. This is a highly intriguing result and can only be explained
via the hidden symmetry of the modulated surface, i.e. its relation to the much more
symmetrical half-plane.

Of course, a simple plot of the absorption and scattering spectra does not constitute a
proof of the claim that the plasmon modes for the special class of periodically modulated
half-spaces discussed here are all degenerate. For this a rigorous numerical eigenmode
analysis is necessary. However, the remainder of this report will focus on the much more
interesting class of thin plasmonic gratings and an eigenmode analysis is carried out for
those structures instead. Nonetheless, the absorption and scattering spectra in figure
4.6 indicate that we are on the right track.

4.3.2 Slab to grating

The conformal map in Eq.4.3 relates a class of periodically modulated plasmonic gratings
to a simple infinite slab. As has been mentioned many times, the conformality of the map
between the two structures ensures that their plasmon spectra are the same. Calculating
the dispersion relation of a plasmonic grating is normally a laborious task, but not so
here, for the plasmon dispersion relation of the related slab is well known and very easy
to calculate. It is given by [102, 103]

ed|ky | = ±
(
ϵm − ϵd

ϵm + ϵd

)
, (4.12)
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Figure 4.7: Dispersion relation of two gratings in the first Brillouin zone. The yel-
low triangles and green, open circles are COMSOL simulations for a grating with
γ = 10−8, w0 = 2.5 and γ = 10−8, w0 = 1.5, respectively. In both cases we started
with a slab at position a = 1 and with thickness d = 0.5. The solid lines are analyti-
cal calculations. The dashed line corresponds to the light line. The permittivites were
ϵm = 1 − ω2

p

ω2 , ϵd = 1, with ωp = 8eV . Modified with permission from [102], available
under the Creative Commons Attribution 3.0 License.

where d is the thickness of the slab. Once more, the simplicity of this expression high-
lights the elegance of the transformation optics approach. It is worth noting that this is
also the plasmon resonance condition of the class of nanoparticles on a surface generated
in figure 4.4.

The dispersion relation in Eq.4.12 is quite unusual for a periodic grating, as its
spectrum is continuous, whereas one usually expects band gaps in the spectrum [3].
The absence of forbidden energy regions for our class of periodic gratings can only be
explained as a result of the hidden symmetry of the underlying slab system. The infinite
slab is translationally invariant, so its spectrum is naturally gap less.
Apparently the plasmons generated on the grating’s surface know nothing about the pe-
riodic modulation due to this hidden symmetry. It is thus appropriate to refer to the class
of gratings (or nanoparticles on a surface) generated by Eq.4.3 as a symmetry class [102].
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In the following, we will provide a detailed comparison between the analytical dis-
persion relation obtained from Eq.4.12 and a full electrodynamical numerical simulation
using the ‘eigenfrequency solver’ of the COMSOL Multiphysics software package. We
can hence test the validity of these analytical expressions and make statements about
their applicability.

Figure 4.7 shows the dispersion relation for two different gratings generated from
Eq.4.3 [102]. In both cases we assumed the grating to have the permittivity of a lossless
Drude model ϵm = 1 − ω2

p

ω2 with ωp = 8eV and to be surrounded by air (ϵd = 1). The
two gratings considered possess the same permittivity and period, but vary in their
modulation depth. Compared to previous analytical studies [101], both gratings can be
considered to be strongly modulated with modulation depth to period ratios of ≈ 16%
and ≈ 40%, respectively. This should be kept in mind for the remainder of this chapter,
as we will refer to the grating with ≈ 16% modulation as weakly modulated even though
its modulation is still substantial.

The solid lines in figure 4.7 give the analytical dispersion relation for the even (blue)
and odd (red) plasmon modes. As the weakly and strongly modulated grating are derived
from the same slab our theory predicts that their dispersion relations are identical [102].
This can be checked by comparing to the numerically obtained dispersion relation for
the strongly (purple triangles) and weakly modulated grating (green circles). The black
dashed line corresponds to the light line. Before analysing the results in detail, let us
note that the dispersion relation is shown in the first Brillouin zone using the reduced
zone scheme [3]. That is, points at ky = k0

y +2πm/a, where m ∈ Z0, k
0
y ∈ [0, π/a] with a

being the grating’s period are ‘folded’ back into the region 0 ≤ ky ≤ π/a. For example,
points with ky = 2π/a, 4π/a, etc. are folded back onto the ky = 0−axis. This means
that the mode at ≈ 3.5eV should really be thought of as the mode at ω(ky = 2π/a) on
the standard dispersion curve. Thus despite this mode appearing to be left of the light
line in this reduced zone picture, it actually is far to the right of the light line already,
if one simply plots the standard dispersion curve ω(ky) without folding back [102].

Comparing the analytical and numerical solutions we find excellent agreement near
the zone centre. Yet for larger values of ky the agreement between numerical and analyti-
cal solutions worsens and the numerical solutions for the weakly and strongly modulated
grating diverge [102]. Most importantly, at the zone edge the numerical solutions feature
a large band gap contradicting the analytical prediction of a gapless spectrum [102].

Furthermore, a magnified version of the dispersion relation around the mode at
ω ≈ 3.5eV (see figure 4.8) shows that at ky = 0 there is also a small band gap. However,
this band gap is of the order of a few milli electron-volts [102]. Such an energy differ-
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Figure 4.8: A magnified version of figure 4.7. Shown is the dispersion relation for the
grating around the 1st order mode at ≈ 3.55eV . The solid line corresponds to analytical
calcuations, the open circles are COMSOL simulations for the weakly modulated grating
and the triangles correspond to COMSOL simulations of the strongly modulated grating.
a is the lattice constant. Reprinted with permission from the supplementary material of
[102], available under the Creative Commons Attribution 3.0 License.

ence which could be resolved in high precision optical measurements in the absence of
radiation damping, but is very difficult to access in other experimental set-ups such as
electron energy loss spectroscopy. As will be shown in a later section, even numerical
simulations do not show this splitting, as the broadening of the resonance peak due to
radiation damping is much larger than a few milli electron-volts. Therefore, at ky = 0
the special class of gratings studied here does possess a near zero band gap [102]. These
‘degeneracy points’ can only be explained in terms of the hidden translational symmetry
of the gratings. The absence of an appreciable band gap at the zone centre and the ex-
cellent agreement between analytical and numerical calculations for small ky is a strong
indicator that transformation optics indeed allows one to design a whole symmetry class
of plasmonic gratings with equivalent spectral properties near the zone centre [102].

Before analysing the short-comings of the analytical approach it is worth discussing
the ‘degeneracy points’ at the zone centre in view of another famous occurrence of degen-
eracy: the Dirac point. The biggest similarity between Dirac points and the degeneracy
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points of the grating is the absence of an appreciable band gap, which leads to a fi-
nite group velocity at the zone centre [102]. However, near Dirac points the dispersion
relation takes its famous conical shape [104–106]. This is not the case for the grating
[102]. Moreover, the physical origin between the degeneracy points found in the grat-
ings’ spectra and Dirac points is altogether different. Dirac points in graphene [104],
photonic crystals [105] and other analogous plasmonic systems [106] are all due to a
special symmetry of the underlying ‘crystal lattice’, e.g. a honeycomb lattice [102]. On
the contrary, the emergence of the ‘degeneracy points’ for the grating is not due to any
special symmetry of the lattice. In fact, it is the absence of the lattice causing the de-
generacy [102]. This only becomes obvious upon transformation to the translationally
invariant slab.

The analytical theory presented here is very successful in predicting the dispersion
relation near the zone centre. Yet it fails very badly near the zone edge and there is also
a slight band gap at the zone centre. Two reasons for the theory’s limitations can be
identified.

The first and relatively minor effect is due to the electrostatic approximation [102].
The electrostatic potential is conserved under conformal transformations, because the
in-plane permittivity and permeability are conserved and the electrostatic fields are con-
fined in-plane. The out-of-plane permittivity and permeability, however, do change (see
section 2.2.2). Due to the periodicity of the transformation these out-of-plane compo-
nents will be periodic functions [102]. The plasmon modes of a deeply sub-wavelength
grating as studied here are mostly confined to the in-plane and dominated by electro-
statics [102]. Nonetheless, there is a small out-of-plane magnetic component, which
will ‘feel’ the modified out-of-plane permittivity and permeability when transforming
between grating and slab frame. It is this magnetic effect which gives rise to the small
band gap at the zone centre [102].

The second and stronger limitation is due to the analytical structure of the con-
formal transformation in Eq.4.3. Modes at the zone centre have the same periodicity
as the grating [102]. This naturally leads to continuous solutions in the grating frame
without any discontinuities across the branch cuts shown in figure 4.5. If the modes do
not have the same periodicity as the grating, unphysical discontinuities in the potential
arise across the branch cuts [102]. This indicates that the boundary conditions for finite
ky and thus the eigenmodes are not correct [102]. In principle, it should be possible to
avoid these discontinuities by applying additional boundary conditions at the Branch
cuts. However, this has proven tricky in the past. This provides a technical reason for
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the failure of the theory, but gives very little physical insight. Physically, the appear-
ance of the band gap at the zone edge is due to Bragg scattering [101]. Hence, a more
intuitive explanation of the failure of our theory is that it lacks the ability to treat Bragg
scattering [102]. We would thus like to stress that the large band gap at the zone edge
is not due to magnetic effects and that the electrostatic approximation holds there.

To summarise, the transformation optics approach allows us to design a whole sym-
metry class of plasmonic gratings with unusual properties, explained only by the hidden
symmetry of the ‘mother’ structure. Unfortunately, this approach seems unable to pre-
dict the dispersion relation near the zone edge. Yet from a practical point of view this
is not a major obstacle, as long as one is interested in the response of the grating under
the illumination of light. Light essentially carries zero momentum, so the only modes
that can be excited by a far field light source are the ones close to the zone centre, which
are exactly the ones that can be predicted very accurately using the present theory.

4.4 Optical response: theory

In this section, we will show how the Transformation optics approach outlined in the pre-
vious sections can be used to calculate the optical response of a thin plasmonic grating.
Specifically, we will consider the electromagnetic scattering problem for a plane wave at
normal incidence on the grating. A plane wave polarised along the vertical direction has
zero momentum in this direction, i.e. ky = 0. Following the discussion in the previous
section a good agreement between theory and full electrodynamic simulations can be
expected in this case.

4.4.1 Transformation of a plane wave

In the grating frame, a plane wave with the electric field polarised along the vertical (v-)
direction and incident on the modulated side of the grating, i.e. from the right, can be
written as [102]

Hsou = −ωϵ0ϵ

k
Esoue−ikuẑ. (4.13)

Note, that the z−component of the H−field is conserved under conformal transforma-
tions (see section 2.2.2). That is, the plane wave constituting the exciting source in the
grating frame is easily transferred to the slab frame. Thus to first order in k the exciting
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source field in the slab frame is given by [102]

Hsou ≈ −
(
ωϵ0ϵ

k
Esou + iωϵ0ϵE

souu
)
ẑ. (4.14)

A simple substitution for the u−coordinate from Eq.4.5 then gives the H−field in terms
of the slab frame coordinates [102]

Hsou = −ωϵϵ0

k
Esou

1 − ikγ

log(1 + y0w0) − x+
∞∑

g=−∞
g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy


 ẑ,
(4.15)

which is valid for log(w0) < x < log(w0 + 1/y0). For later manipulations it will be
advantageous to express the exciting source in terms of an electrostatic potential φsou.
We thus proceed by first calculating the electric field in the slab frame from Ampere’s
law [20],

∇ × Hsou = −iωϵϵ0Esou (4.16)
∂yHzx̂− ∂xHzŷ = −iωϵϵ0Esou. (4.17)

Thus

−iωϵϵ0Ex = iωϵϵ0γE
sou∂y

∞∑
g=−∞

g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy (4.18)

Ex = −γEsou
∞∑

g=−∞
g ̸=0

ig
(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy, (4.19)

and

Ey = γEsou∂x

−x+
∞∑

g=−∞
g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy



= γEsou

−1 +
∞∑

g=−∞
g ̸=0

|g|
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy

 . (4.20)



84 Hidden symmetries in plasmonic systems II: plasmonic gratings

Integrating the x−component of Esou = −∇φsou gives φsou up to a function of y

φ = γEsou
∞∑

g=−∞
g ̸=0

ig

|g|
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + Const(y), (4.21)

with Const(y) clearly given by γEsouy. Finally, for log(w0) < x < log(w0 + 1/y0) [102]

φsou = γEsou

 ∞∑
g=−∞

g ̸=0

isign(g)
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + y

 . (4.22)

It is an interesting feature of this expression that it does not depend on the free
space wave vector k. This means a plane wave travelling in the opposite direction in the
grating frame will lead to the exact same potential in the slab frame.

4.4.2 Scattered and induced potential in the slab frame

The expression for the source potential in Eq.3.6 is, conveniently, already written in
terms of the eigenfunctions of the slab geometry. To find the response of the slab to this
incident potential we start by writing down general expressions for the potential in the
three regions of interest, i.e. to the left and right of the slab, as well as inside. Hence,
the total potential Φ can be written as [102]

Φ =


φL = φsou + φnear

L + φrad
L log(w0) < x < x0

φI = φnear
ins x0 < x < x0 + d

φR = φnear
R + φrad

R . x0 + d < x < log(w0 + 1/y0)

(4.23)

As the conformal transformation from grating to slab reverses left and right, the
source potential is now incident on the left side of the grating [102]. The fields inside the
slab will be completely dominated by electrostatics, as the original grating is very thin
compared to the wavelength. The source potential in Eq.3.6 thus suggests the following
form for the potential inside the slab [102],

φnear
ins =

∞∑
g=−∞

g ̸=0

(
c−

g e
igye−|g|x + c+

g e
igye|g|x

)
+ Ev

0y. (4.24)
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Outside the slab, the story is a little different. Here there will be electrostatic near field
contributions which must decay to zero as x −→ ∞, i.e. to the left of the slab the near
field contributions take the form [102]

φnrea
L =

∞∑
g=−∞

g ̸=0

bsca
g eigye|g|x, (4.25)

whereas to the right they are given by [102]

φnrea
R =

∞∑
g=−∞

g ̸=0

esca
g eigye−|g|x. (4.26)

If the world was completely governed by electrostatics, the expansion coefficients could
now be determined from the boundary conditions at the two interfaces of the slab and
the scattering problem would be solved. However, we know that in reality energy con-
servation demands that the grating provides a radiative reaction in the form of an
electromagnetic wave carrying energy away from the grating [20, 52]. This radiative
reaction is encoded in the functions φrad

L and φrad
R [102]. A moment’s thought will reveal

their form in the slab frame.

In the original grating frame there is a plane wave incident on the grating with
the electric field polarised along the vertical direction. This field leads to a potential
decrease/increase along the vertical direction of the grating and sets the electrons of
the metal in motion, i.e. it produces a current [102]. Since this current can oscillate
on a scale much larger than the wavelength of light, it will lead to the radiation of
electromagnetic waves [20]. Because the grating is very thin in the horizontal direction
the contribution of the currents in this direction to the radiated wave will be small [102].
Thus only the vertical currents are of relevance, which means the thin grating effectively
‘looks’ like a uniform thin current sheet with an effective surface current [102]. Apart
from working in the quasi-static limit, this is the major assumption we will make about
the response of the grating.

It is well known that a uniform sheet of current radiates plane electromagnetic waves
along the direction of its surface normal [107], that is in the grating frame the fields
determining the radiative reaction are given by [102]
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Href = ωϵϵ0

k
Erefeikuẑ (4.27)

Htra = −ωϵϵ0

k
Etrae−ikuẑ. (4.28)

Finally, Eq.3.6 determines the form of φrad
L/R as [102]

φrad
L = γEref

 ∞∑
g=−∞

g ̸=0

isign(g)
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + y

 (4.29)

φrad
R = γEtra

 ∞∑
g=−∞

g ̸=0

isign(g)
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + y

 . (4.30)

To sum up, the potential in all three regions is given by [102]

φL = γ(Esou + Eref )

 ∞∑
g=−∞

g ̸=0

isign(g)
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + y


+

∞∑
g=−∞

g ̸=0

bsca
g eigye|g|x (4.31)

φR = γEtra

 ∞∑
g=−∞

g ̸=0

isign(g)
(
d+

g e
|g|x − d−

g e
−|g|x

)
eigy + y


+

∞∑
g=−∞

g ̸=0

esca
g eigye−|g|x (4.32)

φI =
∞∑

g=−∞
g ̸=0

(
c−

g e
igye−|g|x + c+

g e
igye|g|x

)
+ Ev

0y (4.33)

The unknown coefficients esca
g , bsca

g , c−
g , c

+
g and Ev

0 have to be determined from the bound-
ary conditions.
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4.4.3 Boundary conditions

In this and the next section we will determine the unknown coefficients esca
g , bsca

g , c−
g , c

+
g

and Ev
0 to obtain the induced and scattered fields in the slab frame, as well as the

radiative reaction parts.

4.4.3.1 Boundary conditions at the slab interfaces

Maxwell’s equations demand the continuity of the tangential component of the electric
field and normal component of the electric displacement field at an interface between
two media [20]. That is at the two slab interfaces x0 and x0 + d

−ϵdφ
dx
, (4.34)

and

−dφ

dy
, (4.35)

must be continuous. Since this must hold for any mode g, applying these two boundary
conditions at the slab interfaces leads to the following set of equations [102]

(Esou + Eref ) = Ev
0

Ev
0 = Etra

γ(Esou + Eref )
[
isign(g)

(
d+

g e
|g|x0 − d−

g e
−|g|x0

)]
+ bsca

g e|g|x0 =(
c−

g e
−|g|x0 + c+

g e
|g|x0

)
(
c−

g e
−|g|(x0+d) + c+

g e
|g|(x0+d)

)
=

γEtra
[
isign(g)

(
d+

g e
|g|(x0+d) − d−

g e
−|g|(x0+d)

)]
+ esca

g e−|g|(x0+d)

γ(Esou + Eref )
[
isign(g)

(
d+

g e
|g|x0 + d−

g e
−|g|x0

)]
+ bsca

g e|g|x0 =

ϵ
(
−c−

g e
−|g|x0 + c+

g e
|g|x0

)
ϵ
(
−c−

g e
−|g|(x0+d) + c+

g e
|g|(x0+d)

)
=

γEtra
[
isign(g)

(
d+

g e
|g|(x0+d) + d−

g e
−|g|(x0+d)

)]
− esca

g e−|g|(x0+d). (4.36)

In principle, the mode number g runs from −∞ to ∞, but in practice the contribution of
high order modes to the scattering quickly decreases and a finite number of terms suffices
to achieve convergence. If the highest mode number considered is G, the boundary
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conditions in Eq.4.36 constitute a set of 4G + 2 equations. One too few, as there are
4G+ 3 undetermined coefficients [102]!

Normally, the boundary conditions in Eq.4.34-4.35 are enough to determine the ex-
pansion coefficients for the different modes. However, we introduced a radiative reaction
term into the electrostatic potentials to model the grating’s ability to re-radiate electro-
magnetic waves, thereby introducing two additional variables Eref and Etra. It is these
two variables which lead to an underdetermined set of equations [102]. To determine
them we need to introduce an additional boundary condition. This will be the subject
of the next section.

Treating Eref as known for the moment, it is straightforward to solve the system of
boundary equations in Eq.4.36 to yield the expansion coefficients [102],

bsca
g =

e−x0|g|
(
(ϵ+ 1)(Agϵ− Cg)e2d|g| − (ϵ− 1)(Agϵ+ Cg) + 2ϵ(Bg −Dg)ed|g|

)
(ϵ+ 1)2e2d|g| − (ϵ− 1)2

c−
g =

e(x0+d)|g|
(
−(ϵ+ 1)(Ag + Cg)ed|g| +Bg(ϵ− 1) +Dg(1 − ϵ)

)
(ϵ+ 1)2e2d|g| − (ϵ− 1)2

c+
g =

e−x0|g|
(
(ϵ+ 1)(Bg −Dg)ed|g| − (ϵ− 1)(Ag + Cg)

)
(ϵ+ 1)2e2d|g| − (ϵ− 1)2

esca
g = −

e(x0+d)|g|
(
2ϵ(Ag + Cg)ed|g| + (ϵ+ 1)e2d|g|(Bgϵ+Dg) + (ϵ− 1)(Dg −Bgϵ)

)
(ϵ+ 1)2e2d|g| − (ϵ− 1)2 ,

(4.37)

with

Ag = −γ(Esou + Eref )
[
isign(g)

(
d+

g e
|g|x0 − d−

g e
−|g|x0

)]
(4.38)

Bg = γEtra
[
isign(g)

(
d+

g e
|g|(x0+d) − d−

g e
−|g|(x0+d)

)]
(4.39)

Cg = γ(Esou + Eref )
[
isign(g)

(
d+

g e
|g|x0 + d−

g e
−|g|x0

)]
(4.40)

Dg = −γEtra
[
isign(g)

(
d+

g e
|g|(x0+d) + d−

g e
−|g|(x0+d)

)]
. (4.41)

4.4.3.2 Radiation boundary condition

To unambiguously determine all expansion coefficients it is necessary to introduce an
additional boundary condition. This can be obtained from an approximation made
regarding the radiative reaction. The key assumption to obtain the form of the radiative
reaction φrad

L/R was to approximate the grating as a thin current sheet supporting a
finite and continuous surface current in the v−direction. If this approximation is a
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good approximation to model the far field response of the grating, Maxwell’s equations
provide an additional boundary condition in the grating frame [102]. They demand that
the H−field is discontinuous across an idealised current sheet with the discontinuity
determined by the surface current [20], i.e.

n × (HR − HL) = J. (4.42)

The far field contributions to HR/L are given in equations 4.13, 4.27 and 4.28. Thus
if the effective current sheet is at position u0 and the surface current is in the vertical
direction such that J = Jvv̂, the boundary condition 4.42 becomes,

ωϵ0

k
Esoue−iku0 − ωϵ0

k
Erefeiku0 − ωϵ0

k
Etrae−iku0 = Jv. (4.43)

To second order in ku0 this simplifies to [102]

ωϵ0

k
Esou − ωϵ0

k
Eref − ωϵ0

k
Etra = Jv. (4.44)

This equation provides an additional link between Eref and Etra and thus allows us to
unambiguously determine the radiative reaction of the grating [102]. However, one last
hurdle has to be overcome before this is possible, finding the effective current Jv.

4.4.4 Calculating the currents in the grating

In the previous section, we assumed that the grating could be approximated as a thin
current sheet with an effective and uniform surface current Jv. Here we will calculate
this current.

As aforementioned, the grating is very thin, meaning that the currents in the hor-
izontal direction do not contribute appreciably to the radiative reaction. This justifies
the assumption of a thin current sheet with current only along the vertical v−direction.
However, the vertical component of the current in the grating still depends on the posi-
tion (u, v). To overcome this and obtain an effective uniform current Jv we thus calculate
the total current inside the grating over a single unit cell and average over the height of
said cell, I.e. Jv = Jtot/(2πγ) [102]. The total current is given by [102]

Jtot =
∫

Sg

dvdujgra
v , (4.45)
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where Sg is the surface of a single unit cell of the grating.

This expression is still not straightforward to calculate as Sg is a somewhat com-
plicated surface and the form of the current jgra

v is not known. Here, Transformation
optics comes to the rescue, because this current can be evaluated in the slab frame [102].
Transformation optics demands that the v−component of the current in the grating is
related to the current in the slab frame via [102]

jgra
v = 1

det(Λ)(∂v
∂x
jx + ∂v

∂y
jy), (4.46)

where Λ is the Jacobian of the transformation given by

Λ =


∂u
∂x

∂u
∂y

0
∂v
∂x

∂v
∂y

0
0 0 1

 . (4.47)

It is also well known that the integration area transforms as [39]∫
Sg

dudv =
∫

Ss

dxdy det(Λ), (4.48)

where Ss is the surface of a single unit cell in the slab frame. The expression for Jtot in
terms of the slab frame coordinates thus becomes [102]

Jtot =
∫ x0+d

x0
dx
∫ 2π

0
dy(∂v

∂x
jx + ∂v

∂y
jy). (4.49)

This expression is much more susceptible for evaluation, as the integration area is very
simple and the partial derivatives ∂v

∂x
and ∂v

∂y
are known from Eq.4.5 as [102],

∂v

∂x
= γ

 ∞∑
g=−∞

g ̸=0

|g|
(
h+

g e
|g|x − h−

g e
−|g|x

)
eigy

 (4.50)

∂v

∂y
= γ

−1 +
∞∑

g=−∞
g ̸=0

ig
(
h+

g e
|g|x + h−

g e
−|g|x

)
eigy

 . (4.51)
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Likewise the currents inside the slab can be obtained from Ohm’s law [4] as [102]

jx = −iω(ϵm − 1)ϵ0

(
−∂φI

∂x

)
(4.52)

jy = −iω(ϵm − 1)ϵ0

(
−∂φI

∂y

)
, (4.53)

with the potential defined in Eq.4.33. Evaluating the partial derivatives yields the two
components of the current [102]

jx = iω(ϵm − 1)ϵ0

∞∑
g=−∞

g ̸=0

|g|
(
c+

g e
igye|g|x − c−

g e
igye−|g|x

)
(4.54)

jy = iω(ϵm − 1)ϵ0

 ∞∑
g=−∞

g ̸=0

ig
(
c+

g e
igye|g|x + c−

g e
igye−|g|x

)
+ Ev

0

 . (4.55)

The integral in Eq.4.49 can now be evaluated. The contribution of the x−components
reads

Jx
tot =

∫ x0+d

x0
dx
∫ 2π

0
dy
∂v

∂x
jx

= iω(ϵm − 1)ϵ0γ
∫ x0+d

x0
dx
∫ 2π

0
dy

 ∞∑
g=−∞

g ̸=0

|g|
(
c+

g e
|g|x − c−

g e
−|g|x

)
eigy



×

 ∞∑
p=−∞

p̸=0

|p|
(
h+

p e
|p|x − h−

p e
−|p|x

)
eipy

 . (4.56)

The integral over y is trivial to perform as
∫ 2π

0 ei(g+p)ydy = 2πδg,−p, hence

Jx
tot = iω(ϵm − 1)ϵ02πγ

∞∑
p=−∞

p ̸=0

∫ x0+d

x0
dx
[
|p|2

(
c+

−pe
|p|x − c−

−pe
−|p|x

)

×
(
h+

p e
|p|x − h−

p e
−|p|x

)]
= iω(ϵm − 1)ϵ02πγ

∞∑
p=−∞

p ̸=0

∫ x0+d

x0
dx|p|2

[
c+

−ph
+
p e

2|p|x + c−
−ph

−
p e

−2|p|x

− (c+
−ph

−
p + c−

−ph
+
p )
]
. (4.57)
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This integral can now be evaluated since

∫ x0+d

x0
e±2|p|xdx = e±2|p|x

±2|p|

∣∣∣∣∣
x0+d

x0

= 1
±2|p|

(
e±2|p|(x0+d) − e±2|x0|a

)
. (4.58)

Finally the x−contribution to the total current is given by

Jx
tot = iω(ϵm − 1)ϵ02πγ

∞∑
p=−∞

p ̸=0

|p|2
[
c+

−ph
+
p

2|p|
(
e2|p|(x0+d) − e2|p|x0

)

−
c−

−ph
−
p

2|p|
(
e−2|p|(x0+d) − e−2|p|x0

)
− (c+

−ph
−
p d+ c−

−ph
+
p d)

]
. (4.59)

The contribution from the y−component can be evaluated similarly and gives

Jy
tot = iω(ϵm − 1)ϵ02πγ

−Ev
0γd+

∞∑
p=−∞

p ̸=0

|p|2
[
c+

−ph
+
p

2|p|
(
e2|p|(x0+d) − e2|p|x0

)

−
c+

−ph
+
p

2|p|
(
e−2|p|(x0+d) − e−2|p|x0

)
+ (c+

−ph
−
p d+ c−

−ph
+
p d)

])
. (4.60)

Adding the two gives the final result for the total current [102]

Jtot = iω(ϵm − 1)ϵ02πγ (−Ev
0γd +

∞∑
p=−∞

p ̸=0

|p|

×
[
(c+

−ph
+
p

(
e2|p|(x0+d) − e2|p|x0

)
− c−

−ph
−
p

(
e−2|p|(x0+d) − e−2|p|x0

)])
. (4.61)

At the moment it is not yet clear how this expression can help to find a simple relation
between Eref and Esou. The usefulness of this formula becomes a little more obvious if
we use the fact that Ev

0 = Etra + Eref (see Eq.4.36) and that the expansion coefficients
c±

g are proportional to (Etra + Eref )γ (see Eq.4.37) such that we can write [102]

c±
g = (Esou + Eref )γc±

2,g. (4.62)

Hence, the expression for the total current becomes [102]

Jtot = iω(ϵm − 1)ϵ02πγ2(Esou + Eref )N, (4.63)
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with

N = −d+
∞∑

p=−∞
p ̸=0

|p|
[
(c+

2,−ph
+
p

(
e2|p|(x0+d) − e2|p|x0

)
− c−

2,−ph
−
p

(
e−2|p|(x0+d) − e−2|p|x0

)]
.

(4.64)
It pays off to inspect the expression for the total current before proceeding to solve the
remaining boundary condition. It is clear from Eq.4.64 that every single Fourier mode
contributes to the averaged total current in the grating frame. As aforementioned, the
current directly leads to the radiation of electromagnetic waves. Eq.4.63 and Eq.4.64
thus describe the grating’s ability to out-couple a fraction of each induced Fourier mode
into a plane electromagnetic wave [102]. This is the radiative reaction of the grating. It
is in contrast to the radiative reaction of a slab. In a slab, the current from the higher
order modes would average to zero and the only contribution would come at ω −→ 0
from the zeroth order mode.

The results are, however, to be expected from the transformation. We showed pre-
viously that a plane wave in the grating frame transforms into a sum of Fourier modes
in the slab frame, it is thus not unexpected that a single Fourier mode in the slab frame
also contributes to a plane wave in the grating frame upon transformation [102].

4.4.5 Reflection and transmission

In this section, we use the expression for the current and the radiation boundary con-
dition in Eq.4.44 to derive expressions for the transmission and reflection coefficient, as
well as the power absorption in the grating.

Starting from the additional radiation boundary condition in Eq.4.44

ωϵ0

k
Esou − ωϵ0

k
Eref − ωϵ0

k
Etra = Jv, (4.65)

Eref and Etra can, at last, be determined unambiguously. Substituting the expression
for the current while noting that Jv = Jtot/(2πγ) yields

ωϵ0

k
Esou − ωϵ0

k
Eref − ωϵ0

k
Etra = iω(ϵm − 1)ϵ0γ(Esou + Eref )N. (4.66)

Since the set of boundary conditions in Eq. 4.36 gives another relation between reflected
and transmitted field, Etra = Esou + Eref , these two simultaneous equations are easily
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solved. They give [102]

Eref = ik(ϵm − 1)γN
2 − ik(ϵm − 1)γNEsou (4.67)

Etra = 2
2 − ik(ϵm − 1)γNEsou. (4.68)

Eref and Etra represent the amplitude of two outgoing plane waves carrying energy
to infinity. One associated with reflection, the other with transmission. Since both are
proportional to the amplitude of the plane wave source Esou, the reflection (r) and trans-
mission (t) coefficients of the metallic grating under investigation can be easily inferred
from Eref = rEsou and Etra = tEsou. Thus [102],

r = ik(ϵm − 1)γN
2 − ik(ϵm − 1)γN (4.69)

t = 2
2 − ik(ϵm − 1)γN . (4.70)

The ratio of the power absorbed can then be simply calculated from [102]

Q

Psou

= 1 − |r|2 − |t|2, (4.71)

where Psou is the power contained in the source wave.
The two equations for reflection and transmission coefficients have the same form as

the reflection and transmission from a two-dimensional conducting sheet [108],

r = −σZ0

2 + σZ0
(4.72)

t = 2
2 + σZ0

, (4.73)

where σ is the surface conductivity and Z0 corresponds to the impedance of free space
Z0 =

√
µ0/ϵ0. The far field response of the grating can thus be described by a two-

dimensional conducting sheet with an effective surface conductivity given by σeff =
ik(ϵm − 1)γN/Z0 [102]. Of course this should not come as a surprise, because the main
assumption when modelling the grating’s far field response was that it can be described
as a thin current sheet, yet, Eq.4.69 and Eq.4.70 provide a neat formal analogy.

The simplicity of the reflection and transmission coefficients also allows to obtain
an intuitive understanding of the grating’s optical response before computing the result.
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The transformation parameter γ determines the overall system size (the system increases
monotonically with γ). Thus, if γ becomes very large the grating becomes very thick
and, as one would expect, the transmission coefficient decreases. Furthermore, the factor
(ϵm −1) ensures that the reflection vanishes if the permittivity of the grating approaches
that of its surroundings (in this case air with unit permittivity). All the structural
information about the grating is encoded into the factor N defined in Eq.4.64. It depends
on frequency via the coefficients c±

2,±p and the geometrical information is encoded in both
c±

2,−p and h±
p . It can be shown from the defining equations for c±

2,−p and h±
p that their

products c±
2,−ph

±
p decay slower versus p, the larger the grating’s modulation depth. This

is also an intuitive result as one might expect that a very strongly corrugated surface is
quite efficient in diffracting plane waves into higher order modes. This is then reflected
in the reflection and transmission coefficients.

Eq.4.69 and Eq.4.70 seem to make intuitive sense, the next section will provide a
quantitative analysis of their validity.

4.5 Optical response: results

In this section, we will test our theory’s prediction by comparison with full electrody-
namic simulations using the ‘frequency domain solver’ of the COMSOL Multiphysics
software. Reflection, transmission and absorption spectra are discussed, as well as the
maximum field enhancement obtainable in the structures.

4.5.1 Reflection, transmission and absorption

Eq.4.69 and Eq.4.70 give the reflection and transmission coefficients for a plane wave
normally incident on the grating. Figure 4.9 shows a comparison between the analyt-
ical results and full electrodynamic COMSOL simulations for the weakly and strongly
modulated grating. The COMSOL simulations have been performed in the frequency
domain, with exciting and receiving ports to model the source. The plane wave has been
chosen to be incident on the modulated side of the gratings. The discussion follows the
one in [102].

The agreement between analytics and simulations is near perfect for the weakly mod-
ulated grating. Only slight discrepancies arise in the peak heights of the transmittance
spectrum. Note that both gratings are nearly transparent around ω = 3eV , as the
transmittance approaches unity [102]. The excellent agreement in the peak position for
both gratings should not come as a surprise with regards to our earlier discussion of the
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Figure 4.9: Reflectance (top) and transmittance (bottom) for the weakly (left) and
strongly (right) modulated grating (shown in figure 4.7). Blue lines correspond to an-
alytical calculations, whereas the red lines with circles are COMSOL simulations. In
COMSOL the wave is incident on the modulated side of the grating. The insets show
the electric energy density in and close to the grating at the first transmission peak
and dip (same color scale). For both analytics and simulations the permittivity of the
grating was ϵm = 1 − ω2

p/(ω(ω + iγ)) with ωp = 8eV, γ = 0.032eV . The surrounding
dielectric is air with ϵd = 1. Reprinted with permission from [102], available under the
Creative Commons Attribution 3.0 License.

dispersion relation (see figure 4.7), but can be considered a clear success of the theory
[102]. It confirms our earlier statement that in the quasi-static limit, the plasmon res-
onance condition is solely determined by the underlying slab structure, for excitations
with ky near the zone centre [102].

A feature shared by the weakly and strongly modulated grating that is noteworthy
is the reflection peak at zero frequency [102]. The reflectivity rises in both spectra as
the frequency is lowered towards zero, signifying a coupling to the zeroth-order mode
(g = 0). Previous Transformation optics studies [47, 55, 62] did not report any coupling
to the zeroth order mode, as there is a fundamental difference between the systems
studied in, e.g. Refs. [47, 55, 62], and the gratings: the gratings are able to support
continuous currents on a scale larger than the wavelength, something the structures in
[47, 55, 62] cannot. This provides the coupling to the lowest order mode [102].
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Figure 4.10: Reflectance from the strongly modulated grating for incidence from the
right (on modulated side, red dashed) and left (flat side, green crosses). The analytical
solution lies between the two curves (blue line).

A close inspection of the reflection spectra in figure 4.9 reveals that the resonances
have an asymmetric line shape akin to a Fano resonance [77, 79, 81, 109]. Again this
is most easily understood using the Transformation optics framework. Figure 4.3 gives
a conformal transformation from an asymmetric annulus to the gratings under consid-
eration. Asymmetric annuli have been shown to support multiple Fano resonances; a
detailed study based on Transformation optics can be found in [55]. Figure 4.9 has two
insets showing the electric energy density distribution. It is apparent that the energy is
much more concentrated around the structure at the transmission dip than it is at the
transmission peak [102]. This is in agreement with the study in [55].
The question arises why the line shape for the strongly modulated grating is so much
more symmetric. Most likely the stronger radiation damping leads to a peak broadening
which covers the asymmetry [102].

While the agreement between theory and simulations is excellent for most of the spec-
trum, there are some discrepancies at the higher order modes near the surface plasma
frequency (≈ 5.6eV ). These higher order modes are not present for the weakly modu-
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lated grating, as it is not able to couple to them due to the rapid decay of the expansion
coefficients [102]. However, the strongly modulated grating is able to couple to them
as the expansion coefficients decay more slowly with increasing mode number and dis-
crepancies near the surface plasma frequency become visible [102]. The problem is easy
to understand intuitively, yet tricky to solve technically. Imagine a moderately thick
grating with a flat side and a modulated side. If a plane wave is incident on the flat
side there will, first of all, be a reflection into the zeroth order mode as the flat side
cannot provide any momentum to couple to the higher order modes. As the transmitted
part of the wave travels through the grating towards the modulated side it loses energy
due to resistive losses. That is, the wave will be attenuated by the time it reaches the
modulated interface where it can couple to the higher order modes. On the contrary, if
the plane wave is incident on the modulated side, the grating can immediately couple to
the higher order modes, meaning that more of the energy is funneled into these modes
as the wave has not been attenuated yet. This leads to a difference in the reflection
coefficient for a wave incident on the flat or modulated side and also means that the
out-coupling into radiation is different on both sides. The transmission coefficients are
of course identical, as they must be due to reciprocity [110]. Figure 4.10 shows this
behaviour. As predicted, the wave incident on the modulated side (red dashed line) cou-
ples more strongly to the higher order modes. The problem with the analytics is that it
does not capture this behaviour for two reasons. First, the source potential obtained in
the slab frame is independent of the direction of incidence in the grating frame. Second,
the assumption that the grating can be modelled as a thin current sheet means that the
grating radiates equally to either side.

Finally, figure 4.11 gives the ratio of the absorbed to incident power as calculated
from Eq.4.71. Again the agreement between analytics and theory is excellent, with the
exception of the modes around the surface plasma frequency. Note that the absorption
reaches around 70%, which is significant for such a thin grating.

4.5.2 Realistic permittivities

In the previous section, we looked at the optical response of our TO-designed grating
using a Drude model for its permittivity. While this gave rise to a set of well defined
and sharp resonances, which allowed us to accurately compare our theory with numer-
ical simulations, it is not the most realistic model for permittivity. Here, we take the
permittivity of the grating to be that of silver, using the experimental data published in
[65].
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4.5.2.1 Reflection and transmission for real silver

Here, we give the reflection and transmission of the weakly and strongly modulated
grating for a silver grating surrounded by a dielectric with ϵd = 1. Figure 4.12 com-
pares analytical results with COMSOL simulations. As expected, the graphs show fewer
resonances, as losses are much stronger than previously. As previously, the strongly mod-
ulated grating is more efficient in exciting higher order modes near the surface plasma
frequency (here around ≈ 3.67eV ) than the weakly modulated grating. Yet, even for the
strongly modulated grating the higher order modes are strongly damped, which leads to
a much better agreement between analytics and numerics in the reflection than previ-
ously. However, small discrepancies remain for the same reasons as in the Drude model
case. The overall agreement between analytics and numerical simulations is still excel-
lent and our theory correctly predicts the response of gratings with realistic material
parameters, as well.

4.5.2.2 Field enhancement

As has been pointed out in the introduction, applications of plasmonic gratings include
surface-enhanced Raman spectroscopy (SERS), where the strong field enhancements in
the grating’s grooves lead to an enhanced Raman signal. Here, we briefly touch upon
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Figure 4.11: Power absorbed by the grating. Left the weakly modulated grating, ana-
lytical solutions are in blue, red dashed solutions correspond to COMSOL and incidence
from the right. Right, the strongly modulated grating. Analytical solutions are shown in
blue, COMSOL simulations for incidence from the right (red-dashed lines) and incidence
from the left (green crosses).
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the viability of using the gratings studied here for SERS. Figure 4.13 shows the field
enhancement for the weak and strong grating with realistic values of the permittivity
[65]. It is apparent that most of the energy is concentrated near the thinnest parts of
the grating, thus forming a periodic array of hotspots [102]. The formation of hotspots
is easily understood from the transformation [102]. In the equivalent slab system the
energy is spread out evenly in the slab due to its translational invariance. Hence, figure
4.5 provides an explanation for the hotspots. At the thinnest part of the grating the
contour lines lie most dense, thus space is squashed and the energy has to be squeezed
into a smaller area than at the ‘fat’ part of the grating. As can be expected, the field
enhancement is larger for the strongly modulated grating (∼ 30) than for the weakly
modulated one (∼ 20). Unfortunately, both values are smaller than in previous transfor-
mation optics based studies [47] and also other grating designs [89], where enhancement
factors of about ∼ 200 have been reported. It does appear that there are better suited
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Figure 4.12: Reflection (top) and transmission (bottom) for the weakly (left) and
strongly (right) modulated grating (shown in figure 4.7). Blue lines correspond to ana-
lytical calculations, whereas the red open circles are COMSOL simulations. In COMSOL
the wave is incident on the modulated side of the grating. For both analytics and simu-
lations we used experimental values for the permittivity of silver [65]. The surrounding
dielectric is air with ϵd = 1.
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Figure 4.13: Maximum field enhancement normalised by the incident electric field for
the strongly (left) and weakly (right) modulated grating. The field enhancement was
calculated using COMSOL with experimental values for the permittivity of silver [65].
Re(ϵm) = −3.88, Im(ϵm) = −0.16 at ω ≈ 3.2eV . Reprinted with permission from [102],
available under the Creative Commons Attribution 3.0 License.

grating designs if one is interested in SERS, however, it should be stressed that no
optimisation procedures have been implemented and that the field enhancement could
probably be increased beyond the current values.

4.6 Bi-anisotropic effects in plasmonic gratings

In the previous section we calculated the optical response of our plasmonic grating un-
der plane wave illumination at normal incidence and compared to numerical simulations.
The agreement was mostly excellent, however some discrepancies arose for higher order
modes. Due to the strong decay of these high order modes, the reflection of the grating
was different for illumination on the flat or corrugated side of the grating. This effect
could not be described analytically using our simple ‘current sheet’ model with an ef-
fective surface conductivity. In fact, different reflection properties for waves incident
from opposite directions are a signature of bi-anisotropy. While bi-anisotropic effects
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could not be incorporated into our analytical model, they can still be characterised using
numerical simulations.

4.6.1 Parameter retrieval for bi-anisotropic metamaterials

A uniaxial bi-anisotropic medium is characterised via its ability to couple electric and
magnetic fields, which naturally leads to different reflection properties for left and right
travelling waves [110]. Specifically, the introduction of a magneto-electric coupling leads
to a redefinition of the auxiliary fields D and B according to [111]:

D = ϵE + ξH

B = µH + ζE,

with

ϵ =


ϵx 0 0
0 ϵy 0
0 0 ϵz

 ,µ =


µx 0 0
0 µy 0
0 0 µz

 (4.74)

and

ξ =


0 0 0
0 0 0
0 −iξ0 0

 , ζ =


0 0 0
0 0 iξ0

0 0 0

 . (4.75)

ξ0 is the magneto-electric coupling parameter and determines the strength of the bi-
anisotropy. It can be shown [110, 111] that the reflectivity of a slab of such a material
depends on the direction of incidence, whereas the transmission does not (due to reci-
procity, [110]). It thus shows the same properties as our strongly modulated grating,
indicating that the grating can be modeled as a thin bi-anisotropic slab with an effective
ϵeff , µeffand ξeff

0 .
For a wave travelling along the x−direction such that Hsou = −ωϵ0

k
Esoue−ik0uẑ, the

relevant components of the permittivity tensor are ϵeff
y and µeff

z . They can be retrieved
from the scattering (S-)parameters

S =
 S11 S12

S21 S22

 (4.76)
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as follows. First, determine the effective refractive index neff = ±
√
µeff

z ϵeff
y − (ξeff

0 )2

from [111]

cos(neffk0d) = 1 − S11S22 + S2
21

2S21
, (4.77)

under the ‘passive medium’ condition Im(neff ) ≥ 0. Here d is the thickness of the
effective medium slab [111]. The effective permittivity, permeability, magneto-electric
coupling parameter and the left and right incidence surface impedances are then obtained
from [111]

ξeff
0 = neff

−2 sin(neffk0d)

(
S11 − S22

S21

)
(4.78)

µeff
z = ineff

sin(neffk0d)

(2 + S11 + S22

2S21
− cos(neffk0d)

)
(4.79)

ϵeff
y = (neff )2 + (ξeff

0 )2

µeff
z

, (4.80)

zeff
± = µeff

z

neff ± ξeff
0

. (4.81)

Here, the ‘passive medium’ condition demands that Re(zeff
± ) ≥ 0.

The S-parameters are readily obtained from COMSOL simulations, note that S11/S22

are related to the reflection coefficients and S12/S21 determine the transmission coeffi-
cients.

Figure 4.14 shows the effective material parameters for the weakly (dashed lines) and
strongly (solid lines) modulated grating. Here, we used permittivity data for silver [65]
for the grating and assumed ϵd = 1. The effective material parameters are then obtained
from Eq.4.78-Eq.4.80 using the left and right reflection, and transmission coefficients ob-
tained from COMSOL simulations. Focussing on the effective permittivity, we observe
that at low frequencies the real part of the effective permittivity becomes very large and
negative. This is to be expected, as silver is a metal and thus is completely opaque
at low frequencies. This means the modulation of the grating is not too important at
these frequencies, as the grating simply reflects all incoming light and essentially behaves
like a slab. Thus the effective permittivity behaves as the real permittivity and attains
large negative values. Things are more interesting at higher frequencies. Whereas the
real part of the permittivity of silver behaves as an (almost) strictly increasing func-
tion of frequency [65], the effective permittivity shows several resonances, corresponding
to the plasmons excited in the grating (see figure 4.12). As expected, the resonances
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Figure 4.14: Effective material parameters for the strongly (solid lines) and weakly
(dashed lines) modulated grating. In both cases the equivalent metamaterial was a
symmetric slab. The thickness of the slab was set to the maximum thickness of the
grating 10.75nm and 26.1nm for the weakly and strongly modulated grating, respectively.
The original permittivity of the two gratings was that of silver with permittivity data
from [65], whereas the original permeability was 1.

are stronger for the more strongly modulated grating, especially at the surface plasma
frequency (≈ 3.67eV ). This difference is even more prominent for the effective mag-
netic response. The most interesting parameter in figure 4.14 is ξeff

0 , which leads to the
coupling between the electric and magnetic fields. For a completely symmetric system,
such as a slab or a conductive sheet, this parameter will be exactly zero. However, as is
evident from figure 4.14, it is non-zero for the two gratings. We see that the coupling
parameter ξeff

0 is of the same order as the effective permeability and should thus be
included in a complete description of the grating’s properties.

A more thorough simulation based and experimentally verified study of the role of
bianisotropy in plasmonic gratings has been published in [112].
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4.7 Summary

In this chapter, Transformation optics has been applied to analyse plasmonic gratings for
the first time. It was shown how a whole symmetry class of gratings can be treated within
a unified framework by relating it to a simple slab via a conformal map. The gratings thus
designed showed some very interesting behaviour; they exhibited ‘degeneracy points’ in
the dispersion relation caused by the hidden symmetry of the underlying slab structure
and they efficiently concentrated energy into hotspots (even though the light harvesting
was less impressive than in previous studies). Both these effects could be predicted
using the analytical theory developed in the report. The agreement between theory
and numerical simulations has been excellent in limiting cases, however, the range of
applicability is limited. The present theory is able to accurately predict the energy
band structure near the Brillouin zone centre, which is enough if one is interested in
the gratings’ response to far field light sources. However, it currently fails in predicting
the band structure near the zone edge, which means it is not suitable to calculate the
grating’s response to near field excitations (e.g. point dipoles). The second short-coming
of the theory is its inability to distinguish the reflection coefficient of the grating for
incidence from one side or the other. For non-symmetric lossy gratings the reflection
coefficients are different and render the gratings ‘bi-anisotropic’. This ‘bi-anisotropic’
has been studied numerically and quantified. As expected, it is relatively small in our
case, which explains the good agreement with our theory. However, for ‘thicker’ and
even more asymmetric gratings this effect is likely to become stronger and should be
included for an accurate calculation of the transmission and reflection properties of such
gratings.
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Chapter 5

Transformation optics applied to
Electron Energy-Loss Spectroscopy
(EELS)

5.1 A very brief introduction to EELS

In the previous two chapters, hidden symmetries were pivotal to our analyses of the
optical response of the ellipse, spheroids and the plasmonic grating. The properties
and response under plane wave illumination of all three systems have been studied by
transforming them to geometries with much higher symmetry. In this chapter, we will
apply the same formalism, but to a new application of TO. Namely, the study of Electron
Energy-Loss Spectroscopy and Cathodoluminescence problems.

Let us briefly outline a theorist’s take on what constitutes the most basic electron
energy loss and CL studies. Figure 5.1 illustrates the basic problem. An electron moves
past a (spherical) nanoparticle at high velocity. Associated with the moving electron is
an electric field containing a broad range of frequencies. This electric field leads to an
induced field in the nanoparticle and, if the particle supports them, can excite plasmons.
The electron thus transfers some of its energy to the nanoparticle. In EELS one measures
the energy lost by the electron as a function of frequency to obtain information about the
spectral properties of the nanoparticle. Complementary to this are CL measurements.
In those, one measures the photons scattered by the nanoparticle.

The aim of this chapter is thus to use TO to calculate the energy lost by a fast
moving electron when it moves past a nanoparticle and to calculate the nanoparticle’s
photon emission spectrum. We rely on several assumptions in our approach. First,
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e−ϵm(ω)

Figure 5.1: Schematic of an electron energy loss problem. An electron (red circle) moves
past a metallic nanoparticle at high velocity. The electric field of the moving electron
excites localised surface plasmons, leading to an energy transfer from electron to the
nanoparticle. The fields induced in the nanopartice also lead to a scattered field.

we work in the electrostatic limit (with the exception of radiative losses, which we can
introduce). This places limits on the particle’s size [20]. Second, and following from the
first, we ignore relativistic effects, so we cannot treat highly relativistic electrons, though
the non-relativistic approximation goes a long way. Third, we assume that the energy
lost by the electron is small compared to its total energy, such that its trajectory is
unaltered and its velocity remains constant. Last, and most importantly, we will apply
the TO approach to two-dimensional geometries. That is we assume invariance in the
solution along the third dimension, which means that instead of calculating the system’s
response with respect to a point charge, we do it for a line charge. Of course, in realistic
experiments this is not the case, as the exciting electron is a three-dimensional point
particle. However, there is a workaround. In realistic experiments on two-dimensional
nanoparticles, i.e. where one dimension is much larger than the other two, a real electron
is going to transfer energy in the two-dimensional plane, as well as out-of-plane. If the
electron transfers energy in the out-of-plane direction, there will be a change in its out-
of-plane momentum, too. Thus, if the electrons that have changed their out-of-plane
momentum are filtered out, one is left with the ones that have not lost any energy out-
of-plane. These can be considered as effectively two-dimensional, as there was no change
in their out-of-plane momentum. It is the energy lost by those electrons that can be
calculated in a two-dimensional calculation. This is absolutely crucial and has to be
kept in mind for the remainder of this chapter. In the following analytical treatment we
may speak of a line electron or simply electron at times, but it is understood that we
always mean a line electron, as it is a two-dimensional calculation.
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The results presented in this chapter are by and large based on the paper [66] and
its supplementary material, including the introduction below.

Historically, EELS has been pivotal to the development of plasmonics as we know it
today. Starting from the experimental discovery and characterisation of plasmons more
than half a century ago [113–115] up to present day investigations into quantum effects of
plasmonic systems [116–118], EELS (and CL) have proved valuable tools in fundamental
studies of plasmonic systems. Correspondingly large, is the literature associated with
it. We can thus only aim to refer to a select few studies that have influenced the field
in the past decade, but even here we cannot claim a complete list.

Of particular appeal are the high spatial resolution achieved in EELS (see [119],
p.13), which is of importance in the study of plasmonic particles with nanometer sized
features. The high resolution paired with the ability to excite ‘dark’ modes [120], which
cannot be excited by external radiation, makes EELS ideally suited to create maps of
the plasmon’s field patterns [120–125] and collect information about the local density of
states [126, 127]. As mentioned, this also allowed investigations into quantum effects of
closely spaced nanoparticles [116–118], where quantum tunneling becomes a possibility
[116, 128]. EELS measurements can be complemented by CL measurements, in which
the photons emitted from the nanoparticle are measured, rather than the electrons
itself [119]. This technique, too, has been applied in recent state-of-the-art plasmonic
experiments with great success [119, 123, 129, 130]. Reference [131] and [132] provide
nice reviews of the subject.

Experiments are supported by a wide range of theoretical techniques to model EELS.
A recent paper by Cao et. al. [133] implemented a finite-difference time-domain (FDTD)
simulation using the commercial software package Lumerical. In their introduction, the
authors give a nice overview of numerical techniques available for the study of EELS
experiments, from which we quote the following passage [133]:

“For such simulations a myriad of different numerical techniques have
been developed in the past years, including boundary element method (BEM)[134,
135], discrete dipole approximation (DDA)[136–138], finite-element method
(FEM)[118, 125, 139], finite-difference time-domain (FDTD) method [140]
and discontinuous Galerkin time-domain (DGTD) method [141]. Although
these methods are able to predict and interpret experimental EELS spectra,
they possess some of the following significant drawbacks: (i) the need for
large computational resources [136–138], (ii) limitations to nonpenetrating
electron trajectories [137–139, 141], (iii) requiring highly symmetrical ge-
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ometries [134–138], and (iv) complexity (i.e., programming skills required,
absence of user-friendly interface) [134–141].”

Clearly, there are numerous computational methods to obtain EELS spectra, all of
which seem to have one limitation or another, such that there is no de facto standard
for EELS computations yet. Analytical methods also exist, but are limited to a only a
few geometries. Examples where the response of metal/dielectric particles and surfaces
under excitation with electron beams have been studied include [132]: planar surfaces
[142, 143], spheres [144, 145], coupled spheres [146] and cylinders [147], ellipsoids [148]
and parabolic wedges [143]. Though this list may not be exhaustive, Garcia de Abajo
remarks [132]:

“...the list of structures that can be accessed with analytical tools is short
and we need in general to rely on numerical methods for more complicated
shapes.”

TO has proved a valuable tool in the analysis of plasmonic systems with complicated
geometries [27]; while we do not expect the remainder of this chapter to completely
change the validity of the above statement, we strongly believe that a TO approach
to EELS and CL can significantly extend the list of structures that can be analysed
analytically. This chapter introduces such an approach (see [61, 66, 149]) and we apply
it to a non-concentric annulus and an ellipse.

First, we calculate the electrostatic potential of a moving charge. Then we present
a detailed derivation of the electron energy loss probability and photon emission proba-
bility for a two-dimensional non-concentric annulus that is excited by an electron beam.
As a second example, we derive the same quantities for a two-dimensional ellipse. All
calculations are done in frequency space and are fully analytical, which allows us to
obtain time-domain solutions by an inverse fourier transform in a very time efficient
manner. The results presented here are based on [66] and influenced by [149].

5.2 The fields of a moving charge

As a first step in the calculation of the energy loss and photon scattering spectrum the
field associated with the exciting source has to be calculated. In the case presented here,
the line electron moves on a straight trajectory and with constant velocity ce. There
are many ways to calculate the potential associated with this moving line charge, but
the most elegant is arguably to start from the electrostatic potential of a stationary line
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charge and Lorentz boost it to velocity ce [20]. The outline of this calculation for an
electron moving along the vertical direction is given below. The four-vector potential A
for a stationary line charge is given by,

A =


φ/c

A1

A2

A3

 = Φ =


−λ

2πϵ0c
log

√
x2

1 + x2
2

0
0
0

 , (5.1)

where c is the velocity of light, λ is the charge per unit length, ϵ0 the permittivity of
free space and x1 and x2 two orthogonal Cartesian coordinates. Boosting the line charge
along the x2-direction with velocity ce changes the coordinates to

t′ = γ(t− β

c
x2) (5.2)

y′ = γ(x2 − vt), (5.3)
x′ = x1 (5.4)
z′ = x3 (5.5)

where β = ce/c. Expressed in terms of the primed coordinates this reads.

t = γ(t′ + β

c
y′) (5.6)

x2 = γ(y′ + vt′). (5.7)

Similarly the four potential changes to

φ′/c = γ(φ/c− A2β) = γφ/c (5.8)
Ay′ = γ(A2 − βφ/c) = γβφ/c (5.9)
Ax′ = A1 (5.10)
Az′ = A3. (5.11)

In the following, we will restrict ourselves to the non-relativistic limit, in which β ≪ 1. In
that case, we can ignore the contribution from Ay′ and work in the electrostatic regime,
i.e. the electrostatic potential is given by

φ′(x′, y′, t) = −λγ
2πϵ0

log
√

(x′)2 + γ2(y′ + cet)2. (5.12)
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To simplify matters we will carry out our analysis in the frequency domain, so we have
to ‘Fourier transform’ the potential with respect to time. That is: evaluate the integral

φ′(ω) = −λγ
4π2ϵ0

∫ ∞

−∞
dt log

√
(x′)2 + γ2(y′ + cet)2e−iωt. (5.13)

Despite the formal divergence of the integrand at |t| = ∞ this expression can be evalu-
ated by differentiating under the integral sign. After using γ ≈ 1, we obtain

φ′(x′, y′, ω) = − λ

4πϵ0ω
e−i ω

ce
y′
e−|x′| ω

ce for ω > 0, (5.14)

as in [149]. For a line charge moving in the vertical direction at position x′ = x′
e this

changes to
φ′ = − λ

4πϵ0ω
e−i ω

ce
y′
e−|x′−x′

e| ω
ce . (5.15)

Equivalently, the potential of a line charge moving in the horizontal direction at position
y′ = y′

e is given by
φ′ = − λ

4πϵ0ω
e−i ω

ce
x′
e−|y′−y′

e| ω
ce . (5.16)

5.3 EELS for a non-concentric annulus using TO

In this section, we will perform a theoretical analysis of EELS and CL for a two-
dimensional non-concentric annulus. We will calculate the electrostatic response of the
metallic, non-concentric annulus when a (line) electron moves past it on a straight trajec-
tory. The main objective is to derive experimentally measurable quantities. In EELS/CL
this would be the electron energy loss probability and the photon emission spectrum,
both as a function of frequency. These two quantities can be inferred from the power
absorption in the non-concentric annulus and the power scattered by it. The calculation
of these, is most easily carried out by transforming the non-concentric annulus to a more
symmetrical structure, i.e. a concentric annulus. This is where TO comes in. Again,
the transformation to a more symmetrical structure allows us to derive fully analytic
solutions to the problem at hand, albeit in the electrostatic limit. A nice consequence
of this is that a fully analytic solution to the EELS scenario considered here, makes it
possible to obtain the time-domain response in a computationally efficient manner, by
a simple ‘Fast Fourier Transform’ of the frequency space solution.

This section is structured as follows. We start by transforming the geometry then we
derive the electrostatic potential of the moving line electron in the symmetric annulus
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frame. From that we solve the electrostatic scattering problem by applying the usual
boundary conditions demanded by Maxwell’s equations at the interfaces [20]. We include
the radiative reaction of the nanoparticle and then derive the power scattered and power
absorbed by it. These are converted into electron energy loss and photon emission
probabilities, and finally results are compared to fully electrodynamic simulations using
COMSOL Multiphysics [66].

It must be noted that most of the results presented here have been published previ-
ously in [66] and the accompanying supplementary material. Any results not included
in [66] can be easily derived from it. We closely follow the presentation of the supple-
mentary material of [66].

5.3.1 Transformation of the geometry

x′

y′y

x
R′

0R′
1

R0
R1

x0
ζ ′ = g2

ζ−x0

ϵd

ϵd

ϵd

ϵd

ϵm

ϵm

x′

y′y

x

ζ ′ = g2

ζ−x0

e−
e−

e−

e−

(a) (b)

(c) (d)

Figure 5.2: Transformation of a concentric to a non-concentric annulus. The dashed
lines in (c) and (d) show the transformation of the electron trajectories. An electron
moving with constant velocity on a straight line in the non-concentric annulus’ frame
travels on a curved trajectory and with non-uniform velocity in the concentric annulus’
frame. Modified with permission from [66]. Copyright 2016 American Chemical Society.
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It is well known that a non-concentric annulus can be transformed to a concentric one
by means of a Möbius transformation [27, 41] and vice versa. Starting with a concentric
annulus described by the complex number ζ = x + iy (virtual frame), a non-concentric
annulus (physical frame) can be obtained from the following Moebius transformation

ζ ′ = g2

ζ − x0
, (5.17)

where ζ ′ = x′ + iy′ and g, x0 ∈ R [27, 41]. Inner and outer boundary (R0 and R1)
of the concentric annulus are easily related to the position and radius of the inner
and outer boundary of the non-concentric annulus [27]. The position and radius of
the dielectric inclusion are given by y′ = 0, x′ = g2x0

R2
1−x2

0
and R′

1 =
(

g4

R2
1−x2

0
+ x2

0

)1/2
.

Similarly, the surrounding metallic circle is centred at y′ = 0, x′ = g2x0
R2

0−x2
0

and has radius

R′
0 =

(
g4

R2
0−x2

0
+ x2

0

)1/2
.

Figure 5.2 ((a) and (b)) show the effect of the transformation in Eq.5.17 schemat-
ically. As previously, the conformality of the transformation ensures that the in-plane
components of the permittivity and permeability are conserved [42].

Evidently, a non-concentric annulus possesses a hidden rotational symmetry, too.
As was the case for the ellipse and the plasmonic grating studied in the previous two
chapters, this hidden symmetry facilitates the determination of the plasmon modes of
that system, as they are given by the ones of the concentric annulus. The task at hand is
thus to determine how these modes respond in the presence of the fields of a fast moving
electron. This is where difficulties can arise.

Figure 5.2 ((c) and (d)) hints at where these difficulties lie. While the trajectory of
a fast moving electron in the non-concentric annulus frame is taken as a straight line
(figure 5.2 (d)), it is far from trivial in the concentric annulus frame. Since charge is
a conserved quantity, the electron trajectory in the annulus frame is simply obtained
by transforming each point of the trajectory in the non-concentric frame via Eq.5.17.
The three straight trajectories in figure 5.2 (d) transform to the three circles shown in
5.2 (c). Thus, the electrons move on a circle in the concentric annulus frame, however,
because the transformation does not compress space uniformly, the electrons will move
with a space dependent velocity. This makes it difficult to calculate the electric fields
associated with the electrons directly. Progress can be made in the physical frame,
however, as the electrostatic potential of an electron moving on a straight trajectory
with constant velocity has already been obtained in Eq.5.15. The electrostatic source
potential must then be transformed into the virtual frame by substituting coordinates.
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5.3.2 Transformation of the source potential

In this subsection, we determine the electrostatic source potential of the moving electron
in the annulus frame. The potential in the non-concentric annulus frame by for a line
charge moving in the vertical direction at position x′ = x′

e is given by

φ′ = − λ

4πϵ0ω
e−i ω

ce
ye−|x−x′

e| ω
ce . (5.18)

and
φ′ = − λ

4πϵ0ω
e−i ω

ce
xe−|y−y′

e| ω
ce (5.19)

for a line charge moving in the horizontal direction at position y′ = y′
e, as has been

shown previously (see section 5.2). Since the transformation between annulus and non-
concentric annulus is conformal, we obtain the potential in the annulus frame simply by
substituting coordinates (see section 2.3). However, to determine the response of the
annulus’ plasmon modes, the potential has to be expanded in terms of these. In practice,
this can be the most challenging step in solving the whole problem. In the following,
we consider the potential for a line electron moving past the non-concentric annulus in
the vertical direction to its left and right, and a line electron moving horizontally past
its top.

5.3.2.1 An electron passing on the thin side of the non-concentric annulus

Here, we find the expansion of the source potential in terms of the plasmon eigenmodes
of the annulus for an electron moving to the left of the non-concentric annulus (red line
in figure 5.2). In this case, the source potential incident at the non-concentric annulus
is given by

φsou(x′, y′) := φ′ = λ

4πϵ0ω
exp

[
ω

ce

(iy′ − x′ + x′
e)
]

(5.20)

=
λ exp

[
ω
ce
xe

]
4πϵ0ω

exp
[
−ω

ce

(ζ ′)∗
]
, (5.21)
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since x′
e < x at the surface of the nanoparticle [66]. The potential in the annulus frame

is then obtained by substituting ζ ′ from Eq.5.17

φsou(x, y) =
λ exp

[
ω
ce
xe

]
4πϵ0ω

exp
[
−ω

ce

(
g2

ζ − x0

)∗]
(5.22)

=
λ exp

[
ω
ce
xe

]
4πϵ0ω

exp
[
−ω

ce

(
g2

reiφ − x0

)∗]
. (5.23)

As has been shown in Chapter 3, the plasmon eigenmodes of the annulus are of the form
r±ne±inφ. Hence, the potential above should be expanded in this form and can be found
as

φsou =
∞∑

n=0
as±

n

(
r

x0

)±n

e∓inφ, (5.24)

with the expansion coefficients given by [66, 149]

as+
0 =

λ exp
[

ω
ce
x′

e + ωg2

cex0

]
4πϵ0ω

(5.25)

as+
n =

λ exp
[

ω
ce
x′

e + ωg2

cex0

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
ωg2

cex0

)k

(5.26)

as−
0 =

λ exp
[

ω
ce
x′

e

]
4πϵ0ω

(5.27)

as−
n =

λ exp
[

ω
ce
x′

e

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
− ωg2

cex0

)k

. (5.28)
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Figure 5.3: The value of the source expansion coefficients as−
n with n = 1, 2, 3, 4 for

an electron passing to the left of the nanoparticle (see figure 5.2 (d), red line). The
parameters are λ = 1.602 × 10−19, g2 = 2 × 10−8, x0 = 1.5, x′

e = −0.4g2, ce = 0.1c
on the left and ce = 0.3c on the right. The data for ce = 0.1c is also shown in the
supplementary material of [66].

It is essential for the understanding of the electron energy loss and photon emission
spectra to examine the behaviour of these expansion coefficients in more detail. First,
it can be noted that the coefficients in Eq.5.25-Eq.5.28 are purely real [66]. Second,
they decay with distance from the nanoparticle and decay faster the slower the elec-
tron. Third, the coefficients in Eq.5.28, which determine the fields on the surface of the
nanoparticle, exhibit damped oscillations with respect to the parameter − ωg2

cex0
[66]. This

behaviour is shown in figure 5.3. Note that the expansion coefficients pass through zero
at some points, indicating that the source does not contain these modes at the partic-
ular frequency where they are zero [66]. The positions of these zeros move to higher
frequency for higher velocities.

5.3.2.2 An electron passing the crescent horizontally along its top

Here, we calculate the expansion of the source potential in terms of the plasmon eigen-
modes of the annulus, in the case of an electron moving along the top of the non-
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concentric annulus (green line in figure 5.2). The potential is given by

φsou := φ′ = λ

4πϵ0ω
exp

[
ω

ce

(ix′ + y′ − y′
e)
]

(5.29)

=
λ exp

[
− ω

ce
y′

e

]
4πϵ0ω

exp
[
i
ω

ce

(ζ ′)∗
]
. (5.30)

since y′
e > y′ at the surface of the crescent [66]. Substituting coordinates again, this

gives the potential in the annulus frame as [66]

φsou(r, φ) =
λ exp

[
− ω

ce
y′

e

]
4πϵ0ω

exp
[
i
ω

ce

(
g2

reiφ − x0

)∗]
, (5.31)

which can be expanded as [66, 149]

φsou =
∞∑

n=0
as±

n

(
r

x0

)±n

e∓inφ, (5.32)

with

as−
0 =

λ exp
[
− ω

ce
y′

e

]
4πϵ0ω

(5.33)

as−
n =

λ exp
[
− ω

ce
y′

e

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
i
ωg2

cex0

)n

(5.34)

as+
0 =

λ exp
[
− ω

ce
y′

e − i ωg2

cex0

]
4πϵ0ω

(5.35)

as+
n =

λ exp
[
− ω

ce
y′

e − i ωg2

cex0

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
−iωg2

cex0

)k

. (5.36)

This time the expansion coefficients in Eq.5.34 and Eq.5.36 feature both, real and imagi-
nary parts. They still decay with increasing distance from the source and with decreasing
electron velocity, but their behaviour with respect to the parameter iωg2

cex0
is rather differ-

ent than in the previous case [66]. A detailed view is given in figure 5.4. Here we plot
the absolute value of the expansion coefficients as−

n , as they are complex numbers. The
coefficients do not exhibit any oscillatory behaviour in their absolute value and do not
pass through zero [66]. Thus the source contains contributions from all the modes at all
frequencies in the range shown here.
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Figure 5.4: The absolute value of the source expansion coefficients as−
n with n = 1, 2, 3, 4

for an electron passing along the top of the nanoparticle (see figure 5.2 (d), green line).
The parameters are λ = 1.602 × 10−19, g2 = 2 × 10−8, x0 = 1.5, x′

e = −0.4g2, ce = 0.1c
on the left and ce = 0.3c on the right. The data for ce = 0.1c is also shown in the
supplementary material of [66].

5.3.2.3 An electron passing on the thick side of the non-concentric annulus

Last but not least, we consider the case of an electron passing to the right of the crescent,
where xe > x at the surface of the crescent. This means the incident potential is given
by

φsou = λ

4πϵ0ω
exp

[
ω

ce

(iy′ + x′ − x′
e)
]

(5.37)

=
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ω

ce

ζ ′
]
. (5.38)

in the non-concentric annulus frame and by

φsou(r, φ) =
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ω

ce

(
g2

reiφ − x0

)]
(5.39)
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in the normal annulus frame. As before, this can be expanded as a series over the
plasmon eigenmodes of the system, i.e

φ =
∞∑

n=0
as±

n

(
r

x0

)±n

e±inφ, (5.40)

depending on whether r > x0 or r < x0. Note though, the difference in the sign of the
phase factor compared to the previous two cases. The expansion coefficients are only
slightly modified compared to Eq.5.25-Eq.5.28.

as+
0 =

λ exp
[
− ω

ce
xe − ωg2

cex0

]
4πϵ0ω

(5.41)

as+
n =

λ exp
[
− ω

ce
xe − ωg2

cex0

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
− ωg2

cex0

)k

(5.42)

as−
0 =

λ exp
[
− ω

ce
xe

]
4πϵ0ω

(5.43)

as−
n =

λ exp
[
− ω

ce
xe

]
4πϵ0ω

n∑
k=1

(n− 1)!
k!(k − 1)!(n− k)!

(
ωg2

cex0

)n

. (5.44)

Note that the coefficients above are again purely real rather than complex. Their
behaviour with respect to the parameter ωg2

cex0
is shown in figure 5.5. Despite the reality

of the coefficients in this case, their behaviour is more akin to the case of an electron
moving along the top of the crescent. That is, they show no oscillatory behaviour, but
monotonic decay with respect to frequency.

The results indicate that the response of the nanoparticle to the fields of the passing
electron may be quite different depending on the direction of incidence. The behaviour
for an electron passing on the right or along the top can be expected to be quite similar,
as the expansion coefficients are monotonically decreasing with frequency, in both cases.
An electron moving to the left of the non-concentric annulus may, however, lead to a
qualitatively different response, as the expansion coefficients of the source show damped
oscillatory behaviour, in this case.

5.3.3 Induced potentials and boundary conditions

In this subsection, we determine the induced and scattered electrostatic potential of
the non-concentric annulus, albeit in the concentric annulus frame. This section closely
follows the presentation in the supplementary material of [66].
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5.3.3.1 Potentials and boundary condition at the interfaces

The source potential can be written in terms of the plasmon modes of the annulus system
as

φsou =
∞∑

n=0
as±

n

(
r

x0

)±n

e∓inφ, (5.45)

with the expansion coefficients determined in the previous section. For a potential that
is finite at the origin and at infinity, this indicates that the complete potential must be
written as [66]

Figure 5.5: The value of the source expansion coefficients as−
n with n = 1, 2, 3, 4 for

an electron passing to the right of the nanoparticle (see figure 5.2 (d), blue line). The
parameters are λ = 1.602 × 10−19, g2 = 2 × 10−8, x0 = 1.5, x′

e = −0.4g2, ce = 0.1c on
the left and ce = 0.3c on the right.
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φI =
∞∑

n=0

[
as+

n e−inφ + (bn + arad+
n )einφ

] ( r
x0

)n

for r < x0 (5.46)

φII =
∞∑

n=0

[
(as−

n + arad
n )

(
x0

r

)n

einφ + bn

(
r

x0

)n

einφ
]

for R0 > r > x0 (5.47)

φIII =
∞∑

n=0

[
cn

(
x0

r

)n

einφ + dne
inφ
(
r

x0

)n]
for R1 > r > R0 (5.48)

φIV =
∞∑

n=0
ene

inφ
(
x0

r

)n

for R1 > r > R0 (5.49)

where R0 and R1 are the inner and outer radius of the annulus as shown in figure
5.2. Three classes of expansion coefficients need to be distinguished here. First, the
source coefficients as±

n , which are already known. Second, the electrostatic scattering
coefficients bn, cn, dn and en. These can be determined from the boundary conditions at
the interfaces [66]. In a purely electrostatic calculation this would be the whole story;
we would like to include the radiative reaction of the nanoparticle, however. This effect
is modeled by the expansion coefficients arad

n [66]. Their form is determined in section
5.3.3.2 and their role is akin to the coefficients Etra and Eref introduced to model the
radiative reaction of the plasmonic grating in chapter 4.

Treating arad
n as known, the electrostatic expansion coefficients are easily determined

from the boundary conditions imposed on the electric and electric displacement field at
the interfaces [20, 66], i.e.

∂rφI |r=R0
= ϵm∂rφII |r=R0

(5.50)
1
r
∂φφI

∣∣∣∣
r=R0

= 1
r
∂φφII

∣∣∣∣
r=R0

(5.51)

and

∂rφIII |r=R1
= ϵm∂rφII |r=R1

(5.52)
1
r
∂φφI

∣∣∣∣
r=R1

= 1
r
∂φφII

∣∣∣∣
r=R1

. (5.53)



5.3 EELS for a non-concentric annulus using TO 123

From this we obtain a set of linear equations in terms as−
n and arad−

n [66]. These have a
unique solution give by [66]


bn

cn

dn

en

 =



(
R0
x0

)−2n

(ϵd−ϵm)(ϵd+ϵm)[
(

R0
x0

)2n

−
(

R1
x0

)2n

]

(ϵd−ϵm)2
(

R0
x0

)2n

−(ϵd+ϵm)2
(

R1
x0

)2n

−2ϵd(ϵd+ϵm)
(

R1
x0

)2n

(ϵd−ϵm)2
(

R0
x0

)2n

−(ϵd+ϵm)2
(

R1
x0

)2n

2ϵd(ϵd−ϵm)

(ϵd−ϵm)2
(

R0
x0

)2n

−(ϵd+ϵm)2
(

R1
x0

)2n

−4ϵdϵm

(
R1
x0

)2n

(ϵd−ϵm)2
(

R0
x0

)2n

−(ϵd+ϵm)2
(

R1
x0

)2n



[as−
n + arad−

n ]. (5.54)

5.3.3.2 Radiative reaction boundary condition

We showed in previous chapters that the fields induced in a nanoparticle lead to a
radiative reaction of the particle. That is, the particle itself will radiate into the far
field. In the present case, all the information about this effect is contained in the
hitherto undetermined expansion coefficients arad−

n . Their precise form is derived in the
following; the argument follows the one in [53] and is reproduced in the supplementary
of [66]. More details can be found in appendix C.

As a first step, we need to calculate the energy scattered into the far field by the
non-concentric annulus. Suppose we surround the non-concentric annulus with a fictive
absorbing material, with its circular boundary ‘far away’ from the non-concentric annulus
(see appendix C for details on our definition of ‘far away’) [66]. Then we can imagine
that the power radiated into the far field by the non-concentric annulus is equivalent to
the power absorbed by this fictive material [53, 66]. The power absorbed by the fictive
absorber is easily calculated in the concentric annulus frame. Here, the fictive absorber
transforms to a ‘small’ circular particle inside the annulus at x = x0, y = 0, with finite
polarisability [53, 66] (see appendix C.2 for details). If the polarisability is known,
the power absorbed by such a particle is readily calculated. Thus far, all the arguments
presented hold in a purely electrostatic framework and make no reference to any radiative
reaction. It must be realised, though, that a particle with finite polarisability in a non-
zero electric field will also give rise to a scattered field. There will thus be multiple
scattering events between the fictive absorber and the inner interface of the concentric
annulus [53, 66]. It is this multiple scattering that represents the radiative reaction of
the nanoparticle [53, 66].
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In the following, we will derive a relation between the radiative reaction coefficients
arad−

n and the electrostatic scattering coefficients bn, as defined in Eq.5.46. This relation
constitutes an additional ‘radiative’ boundary condition akin to the one presented in
Eq.4.44 and enables us to unambiguously determine all the expansion coefficients in
Eq.5.46-Eq.5.49. The calculation below has also been reproduced in the supplementary
of [66], so we omit further reference to it.

It has been shown in [53] and, using a slightly different approach, the appendix C.2
that the polarisability of the fictive absorber in the annulus frame is given by

γabs = iπ2ϵ0k
2
0g

4

2 . (5.55)

This leads to an induced dipole moment given by [52]

pabs = γabsEsca(r = x0, φ = 0). (5.56)

The scattered field can be obtained from the scattered potential inside the annulus,
which is (see Eq.5.46)

φsca =
∑

n

einφbn

(
r

x0

)n

. (5.57)

Hence, the fields are obtained from E = −∇φ [20],

Er
sca = −

∑
n

n

x0
bne

inφ
(
r

x0

)n−1
(5.58)

Eφ
sca = −

∑
n

in

x0
bne

inφ
(
r

x0

)n−1
. (5.59)

At r = x0, φ = 0, the relations x̂ = r̂ and φ̂ = ŷ hold. Thus

Ex
sca = −

∑
n

n

x0
bn (5.60)

Ey
sca = −

∑
n

n

x0
bni. (5.61)
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Substituting into Eq.5.56 yields the components of the dipole moment vector of the
fictive absorber as,

px
abs = −iπ2ϵ0k

2
0g

4

2x0

∑
n

nbn (5.62)

py
abs = +π

2ϵ0k
2
0g

4

2x0

∑
n

nbn. (5.63)

A particle with finite dipole moment at position x = x0, y = 0 leads to a potential

φrad = 1
2πϵ0

pabs · (r−x0x̂)
r2 + x2

0 − 2x0r cos(φ) (5.64)

= px
abs

2πϵ0x0

∑
n

(
x0

r

)n

cos(nφ) + py
abs

2πϵ0x0

∑
n

(
x0

r

)n

sin(nφ) for r > x0.

The potential above is the one generated by the scattering from the fictive absorber.
By construction, this has been introduced using the expansion coefficients arad

n in the
definition of the total potential (Eq.5.46). This means the radiative reaction part of the
potential in Eq.5.46,

φrad =
∑

n

(
x0

r

)n

(arad−
n cos(nφ) + arad−

n i sin(nφ)),

must be equal to the expression in Eq.5.64, i.e.

px
abs

2πϵ0x0

∑
n

(
x0

r

)n

cos(nφ) + py
abs

2πϵ0x0

∑
n

(
x0

r

)n

sin(nφ) (5.65)

=
∑

n

(
x0

r

)n

(arad−
n cos(nφ) + arad−

n i sin(nφ)). (5.66)

Substituting from Eq.5.62 and Eq.5.63 yields a relationship between arad
m and bn,

arad
m = −iπk2

0g
4

4x2
0

∑
n

nbn. (5.67)
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This constitutes the missing ‘radiative’ boundary condition. Substituting for bn from
Eq.5.54 gives

arad−
m = −iπk2

0g
4

4x2
0

∑
n


(

R0
x0

)−2n
(ϵd − ϵm)(ϵd + ϵm)[

(
R0
x0

)2n
−
(

R1
x0

)2n
]

(ϵd − ϵm)2
(

R0
x0

)2n
− (ϵd + ϵm)2

(
R1
x0

)2n


× n[as−

n + arad−
n ]

= −iπk2
0g

4

4x2
0

∑
n

b2,nn[as−
n + arad−

n ], (5.68)

with

b2,n =


(

R0
x0

)−2n
(ϵd − ϵm)(ϵd + ϵm)[

(
R0
x0

)2n
−
(

R1
x0

)2n
]

(ϵd − ϵm)2
(

R0
x0

)2n
− (ϵd + ϵm)2

(
R1
x0

)2n

 . (5.69)

The additional boundary condition can be written more concisely using matrix notation

(I − B)arad = Bas, (5.70)

with

Bjn = −iπk2
0g

4

4x2
0
b2,nn ∀j. (5.71)

The vector modeling the radiative reaction, arad, is thus found by inverting (I − B).
In the present case, this can be done analytically by noting that the matrix B can be
written as

ubT, (5.72)

where u is the eigenvector of B simply consisting of a column of ones and the components
of b are given by bn = − iπk2

0g4

4x2
0
bc

2,nn. Hence,

(I − B) = (I − ubT). (5.73)

The matrix (I − ubT) is considered a rank-one perturbation to the identity, since ubT

has rank one. Its inverse is given by the Sherman-Morrison formula [150],

(I − ubT)−1 = I + ubT

1 − bTu
. (5.74)
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Left multiplying Eq.5.70 with the expression above gives,

arad =
[(

I + ubT

1 − bTu

)
ubT

]
as (5.75)

=
[ u
1 − bTu

]
bTas. (5.76)

Since u is a column of ones each element in arad is given by

arad
m = bTas

1 − bTu
∀m

=
∑

n − iπk2
0g4

4x2
0
b2,nna

s−
n

1 +∑
n

iπk2
0g4

4x2
0
b2,nn

. (5.77)

Note that Eq.5.77 above consists of a sum over all source coefficients. Since the
expansion coefficients bn, cn, dn and en all have contributions from arad

n , this means the
radiative reaction does not only affect the magnitude bn, cn, dn and en, but also leads to
a coupling to all modes of the source as

n. For example b1, now contains contributions
from all coefficients as

n. Again, the results of this section have been reproduced in [66].
This concludes the derivation of the induced and scattered potential of the annulus, as

all expansion coefficients in Eq.5.46-Eq.5.49 have now been determined unambiguously.

5.3.4 Power scattered

The power scattered by the non-concentric annulus is now easy to calculate, as it is
equal in magnitude to the power absorbed by the fictive absorber in the annulus frame,
but of opposite sign. Thus [52]

Psca(ω) = −ω

2 Im(p ∗abs ·Esca(x0,0)).

Substituting the dipole moment from Eq.5.56 and the scattered field from Eq.5.58 gives
[66],

Psca(ω) =π
2ϵ0k

2
0g

4ω

4 |Esca(x0, 0)|2

=π
2ϵ0k

2
0g

4ω

2 |
∑

n

nbn

x0
|2. (5.78)
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Figure 5.6 shows a few realisations of this for a non-concentric annulus of diameter ≈
21nm. Here we assumed a low loss Drude model for the permittivity of the nanoparticle,

ϵm = 1 −
ω2

p

ω(ω + iγ) , (5.79)

with ωp = 8eV and γ = 0.032eV , as this leads to a set of well separated plasmon modes
with sharp resonances. Comparisons with numerical simulations for realistic values of
the permittivity are presented in a later section.

Figure 5.6 (a) compares the analytical results for the scattered power (in arbitrary
units) in a purely electrostatic calculation (arad

n = 0∀n) with the scattered power in-
cluding the radiative correction (arad

n defined in Eq.5.77 ). The results indicate that the
radiative correction for the geometrical parameters chosen is small, yet it is bound to
become more significant for larger nanoparticles. Figure 5.6 (b)-(d) give the power scat-
tered for an electron passing the nanoparticle on its left (b), on its right (c) and along
the top (d). Different curves correspond to different electron velocities. All three spectra
show resonances at the same frequencies, but their shapes are different indicating that
the response of the non-concentric annulus is very sensitive to the position and direction
of motion of the injected electron. Another feature shared by the spectra is the large
dip in scattering at the surface plasma frequency (ωsp ≈ 5.67). This means the modes
of high order n contribute only weakly to the scattering, which can be understood, since
those modes are highly confined near thinnest part of the non-concentric annulus.
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Figure 5.6: The power scattered by the non-concentric annulus. Figure (a) compares
the electrostatic results with the result containing the radiative reaction for an electron
passing on the crescent’s left with ce = 0.2c. Figure (b)-(d) all compare the scattered
power for different electron velocities, as indicated in the legend. Figure (b) is for an
electron passing on the left side, figure (c) for an electron passing on the right side and in
figure (d) the electron passes along the top in the horizontal direction. The geometrical
parameters were set to g2 = 2 × 10−8, x0 = 1.5, R0 = exp(1) and R1 = exp(1.2). The
distance of the electron to the nanoparticle was ≈ 3.3nm for figure (a,b), ≈ 3.6nm for
figure (c) and ≈ 2.4nm for figure (d). The permittivity of the nanoparticle is defined in
Eq.5.79, the surrounding medium has ϵd = 1. The power scattered is given in arbitrary
units.
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5.3.5 Power absorption

The power absorbed by the non-concentric annulus can be obtained from the resistive
losses in it [52], i.e. from

Q = 1
2

∫
S
dSRe(j∗ · E). (5.80)

Due to energy conservation, this must be the same as the power absorbed in the con-
centric annulus, which means the integration can be carried out over a rotationally sym-
metric domain and with the fields defined by the potential in Eq.5.46-Eq.5.49. Hence
[66],

Er = −∂rφ

= −
∞∑

n=0

[
−ncn

(
xn

0
rn+1

)
+ ndn

(
rn−1

xn
0

)]
eiφn (5.81)

Eφ = −1
r
∂φφ

= −1
r

∞∑
n=0

in

[
cn

(
xn

0
rn

)
+ dn

(
rn

xn
0

)]
eiφn. (5.82)

The current is related to the electric field via [20, 66],

j = −iωϵ0(ϵm − 1)E. (5.83)

Therefore, the power absorbed is given by the integral

Q =1
2Re

∫ R1

R0
rdr

∫ 2π

0
dφ
(
j∗

rEr + j∗
φEφ

)
, (5.84)

where R0 and R1 are the inner and outer boundary of the annulus, as defined in section
5.3.1. We start by evaluating the contribution from j∗

rEr. The integrand of this integral
reads [66],

j∗
rEr =iωϵ0(ϵ∗

m − 1)
∞∑

n=0

∞∑
k=0

[
−ncn

(
xn

0
rn+1

)
+ ndn

(
rn−1

xn
0

)]

×
[
−k(ck)∗

(
xk

0
rk+1

)
+ k(dk)∗

(
rk−1

xk
0

)]
eiφ(n−k). (5.85)
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Evaluating the angular integral gives [66]
∫ 2π

0
dφj∗

rEr =2πiωϵ0(ϵ∗
m − ϵd)

×
∞∑

n=0

[
n2|cn|2

(
x2n

0
r2n+2

)
− 2n2Re(dn(cn)∗) 1

r2 + n2|dn|2
(
r2n−2

x2n
0

)]
. (5.86)

Finally, the radial integration leads to [66],

∫ 2π

0
dφ
∫
rdrj∗

rEr = 2πiωϵ0(ϵ∗
m − 1)

∞∑
n=0

[
n

2 |cn|2x2n
0 (R−2n

0 −R−2n
1 )

− 2n2Re(dn(cn)∗) log(R1/R0) + n

2 |dn|2x−2n
0 (R2n

1 −R2n
0 )
]
. (5.87)

The contribution from the term j∗
φEφ can be calculated similarly and gives

∫ 2π

0
dφ
∫
rdrj∗

φEφ =2πiωϵ0(ϵ∗
m − ϵd)

∞∑
n=0

[
n

2 |cc
n|2x2n

0 (R−2n
0 −R−2n

1 )

+ 2n2Re(dc
n(cc

n)∗) log(R1/R0) + n

2 |dc
n|2x−2n

0 (R2n
1 −R2n

0 )
]
. (5.88)

Upon adding the two, the cross terms ∝ 2n2Re(dn(cn)∗) cancel and the final result is
given by [66]

Q = 1
2

∫
S
dSRe(j∗ · E)

= πωϵ0Im(ϵm)
∞∑

n=0

[
n|cn|2x2n

0 (R−2n
0 −R−2n

1 ) + n|dn|2x−2n
0 (R2n

1 −R2n
0 )
]
.

(5.89)

Eq.5.89 determines the power absorbed by the non-concentric annulus when an electron
moves past it in a straight line and at constant velocity.

Figure 5.7 gives the power absorption defined above for the same geometrical and
with the same material parameters (see Eq.5.79), as the power scattered in figure 5.6.
As before, the effect of the radiative correction shown in figure 5.7 (a) is quite small.
The positions of the resonances are also unchanged compared to the scattering spectra,
however, figure 5.7 (a)-(d) warrant some discussion. First, there is a qualitative difference
between the spectrum in figure 5.7 (b) and figure 5.7 (c)-(d). In figure 5.7 (b), where the
electron passes to the left of the crescent, higher order modes with n > 6 (counting from
the left/right to ωsp ≈ 5.67eV ) are barely visible. This is not the case for the electron
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passing to the right and along the top. Here, a large number of high order modes is
excited up to right below/above ωsp. The similarity between figure 5.7 (c)-(d) and their
contrast to figure 5.7 (a), does not come as a surprise. For we have shown previously
that the source expansion coefficients for an electron passing to the right and along
the top of the non-concentric annulus are in qualitative agreement, but that there is a

Figure 5.7: The power absorbed by the non-concentric annulus. Figure (a) compares
the electrostatic results with the result containing the radiative reaction for an electron
passing on the non-concentric annulus’ left with ce = 0.2c. Figure (b)-(d) all compare
the scattered power for different electron velocities, as indicated in the legend. Figure
(b) is for an electron passing on the left side, figure (c) for an electron passing on the
right side and in figure (d) the electron passes along the top in the horizontal direction.
The geometrical parameters were set to g2 = 2 × 10−8, x0 = 1.5, R0 = exp(1) and
R1 = exp(1.2). The distance of the electron to the nanoparticle was ≈ 3.3nm for
figure (a,b), ≈ 3.6nm for figure (c) and ≈ 2.4nm for figure (d).The permittivity of the
nanoparticle is defined in Eq.5.79, the surrounding medium has ϵd = 1. The power
absorbtion is given in arbitrary units.
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qualitative difference to an electron passing to the left of the non-concentric annulus (see
section 5.3.2). Second, in figure 5.7 (a) the dependence off the spectra on the electron’s
velocity is distinctly different from the other two cases. In figure 5.7 (b) and (c) the
change in the spectrum is fairly regular, with excitations away from the surface plasma
frequency increasing in strength for increasing velocity, whereas excitations close to ωsp

are easier to excite with lower velocities. Figure 5.7 (a) shows no such regularity. Taking
the resonance at ≈ 3.2eV , we can see that the electrons with velocities 0.05c and 0.2c
lead to similar absorption, however, the resonance is reduced by almost two orders of
magnitude for an electron with velocity 0.1c. Further, the next resonance at ≈ 3.9eV
shows a distinctively different behaviour. Here, the electron with ce = 0.1c leads to the
strongest excitation, whereas the one for ce = 0.05c is an order of magnitude smaller
and the one for ce = 0.2c is barely visible. Clearly, there is no monotonic relation
between the absorption peaks and the electron velocity. This too, can be explained
examining the expansion coefficients of the electron’s source potential. Recall that the
expansion coefficients for an electron passing to the left of the non-concentric annulus
showed damped oscillatory behaviour (see figure 5.3) [66]. It so happens that for the
n = 2 resonance at ≈ 3.2eV the expansion coefficient for ce = 0.1c is close to a zero
(see figure 5.3), so the strength of the resonance is strongly reduced. The same happens
with the n = 3 resonance at ≈ 3.9eV for ce = 0.2c, as the source expansion coefficient
is close to zero at that frequency. The oscillatory behaviour of the source expansion
coefficients thus opens up the possibility of ‘accidental’ degeneracies, where a zero of the
n−th order expansion coefficients coincides with the resonance frequency of the n−th
mode [66]. This also explains why this behaviour is not observed in figure 5.7 (b) and
(c), as the expansion coefficients are monotonically decreasing functions of frequency for
these cases (see figure 5.4 and 5.5).

5.3.6 Comparison with COMSOL

In this section, we compare our analytical theory with numerical simulations using COM-
SOL Multiphysics. Rather than comparing the power absorbed and power scattered, we
compare experimentally accessible quantities [126]. Namely, the electron energy loss
probability and the photon emission probability.

The electron energy loss probability can be obtained by first calculating the total
energy loss as a function of frequency

e−
loss(ω) = Psca(ω) +Q(ω), (5.90)
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then calculating
∫
e−

loss(ω)dω and defining the electron energy loss probability density as

p(e−
loss(ω)) = e−

loss(ω)∫
e−

loss(ω)dω . (5.91)

To obtain the particular probability of a specific electron losing energy at a specific fre-
quency one would have to normalise by the energy of the incident electron, i.e. multiply
the above probability by

∫
e−

loss(ω)dω/E(e−), where E(e−) is the energy of the incident
electron.

To obtain the photon emission probability we first convert the scattered power into a
photon number by dividing through ~ω and then calculate the total number of photons
emitted. The photon emission probability density is thus

p(γemis(ω)) = Psca(ω)/(~ω)∫
[Psca(ω)/(~ω)] dω . (5.92)

It is important to point out again that all the calculations presented in this chapter have
been done in two dimensions. This means that all the quantities given here are in units
of ‘electron per unit length’ (see section 5.1 for details).

A note on numerical simulations. Our simulations are based on the RF-module of the
COMSOL Multiphysics software package, which has been used to compare EELS simu-
lations with experiments before [125]. COMSOL uses a finite element method (FEM) to
model fully electrodynamic solutions to Maxwell’s equations in the frequency domain.
While there is no predefined function to model the electric field generated by a moving
line electron, it can be introduced as a surface current at the position of the line electron.
For this, it is sufficient to note that the current associated with a line charge at position
x = xe, moving with velocity ce in the y−direction is given by

j = λ

2πδ(x− xe)ei ω
ce

yŷ, (5.93)

where λ is the charge per unit length and δ is the Dirac Delta function, see [149] for
details. In the electrostatic and non-relativistic limit, this current leads to the exact
same potential as given in 5.15 [149]. Note that the simulations, too, are carried out
in two dimensions. COMSOL has a predefined function to calculate the resistive losses
in a metallic particle using the same definition as we used in our theory. The power
scattered by the nanoparticle can be obtained by drawing a box around the nanoparticle
and comparing the power flow out of that box for the whole system, that is moving line
electron and nanoparticle, with the power flow out of the box for the moving line electron,
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only. Note, the box must be in the far field. Convergence of the numerical simulations
with respect to mesh size and simulation domain has been ensured.

5.3.6.1 Vertically moving electron

Figure 5.8 gives the first comparison between COMSOL and our theory. To be as
close to experiment as possible, we used experimental data for the permittivity of the
nanoparticle. We chose Johnson and Christy’s data for silver [65], with a surface plasma
frequency ωsp ≈ 3.65eV . The surrounding medium is still assumed to have ϵd = 1. Figure
5.8 compares analytical and numerical results for the electron energy loss probability
density (Eq.5.91) and photon emission probability density (Eq.5.92), for a line electron
moving vertically on the left side of the non-concentric annulus [66]. The different
results correspond to different line electron velocities ce = 0.05c, 0.1c and 0.3c with
corresponding kinetic energies 0.64keV m−1, 2.58keV m−1 and 24.7keV m−1, respectively
[66].

Analytics COMSOL
e−

loss [eV m−1] N(γ) e−
loss [eV m−1] N(γ)

ce = 0.05c 6.04 × 10−11 3.76 × 10−12 6.11 × 10−11 3.91 × 10−12

ce = 0.1c 8.62 × 10−11 5.69 × 10−12 8.78 × 10−11 6.01 × 10−12

ce = 0.3c 4.65 × 10−11 2.78 × 10−12 4.74 × 10−11 2.92 × 10−12

Table 5.1: Table giving the total energy loss defined by
∫
e−

loss(ω)dω in units of [eV per
unit length] and the total number of photons emitted. Results for analytical calcula-
tions for a line electron passing to the left of the particle are compared with COMSOL
simulations.
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Figure 5.8: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing to the left of the non-concentric annulus. The
electron energy loss probability density is in units of [eV −1 per electon per unit length].
Similarly the photon emission probability density is in terms of the number of photons
emitted in units of [eV −1 per electron per unit length]. The area under each of the
curves is unity. The solid lines correspond to analytical results, with the accompanying
markers corresponding to COMSOL simulations. The geometrical parameters were set
to g2 = 2 × 10−8, x0 = 1.5, R0 = exp(1) and R1 = exp(1.2), the distance to the particle
was ≈ 3.3nm and the constant λ defined in Eq.5.15 was set to 1.602 × 10−19Cm−1. The
data for ce = 0.05 and ce = 0.1c is also published in [66].

Agreement between analytics and numerical simulations is very good for all three
velocities. This is also reflected in table 5.1, which gives the total energy lost by the
electron and total number of photons emitted for each of the three cases. There, too,
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agreement between analytics and numerical simulations is very good. Examining the
spectra in more detail, we note that it features an ‘accidental’ degeneracy, too. The
n = 2 mode at ≈ 3eV is absent for the electron moving at ce = 0.1c, whereas it is
strongly excited for the electrons moving at ce = 0.05c and ce = 0.3c [66]. This is visible
in both the electron loss and photon emission spectra. The same thing happens for the
n = 3 mode and the electron of velocity ce = 0.05c. The results indicate that it might
not be universally true that an electron with fixed velocity can probe any mode of the
system, as accidental degeneracies may occur [66]. However, this must not be a nuisance,
as it opens up the possibility of switching a particular ‘unwanted’ mode off by tuning
the electron’s velocity and direction of motion [66].

Figure 5.9 shows the electron loss and photon emission spectra for an electron passing
to the right of the non-concentric annulus. The agreement between theory and simu-
lations is excellent in this case as well. This is consolidated by the data for the total
energy loss and the total number of electrons presented in table 5.2. There are two
major differences between the spectra for the electron passing to the left and the right
of the nanoparticle. First, figure 5.9 does not show any accidental degeneracies for any
of the velocities shown here. This is understood, since the source expansion coefficients
for this case are monotonically decaying functions of frequency and do not vanish in the
frequency range of interest. Second, an electron passing to the right seems to be much
better suited to excite the higher order modes around the surface plasma frequency
(≈ 3.65eV ). In particular, slow electrons seem to be more efficient in exciting these
modes than faster ones. This is in agreement with our observations in section 5.3.5.

Analytics COMSOL
e−

loss [eV m−1] N(γ) e−
loss [eV m−1] N(γ)

ce = 0.05c 8.03 × 10−12 1.45 × 10−13 8.15 × 10−11 1.49 × 10−12

ce = 0.1c 3.29 × 10−11 9.19 × 10−13 3.45 × 10−11 9.48 × 10−12

ce = 0.3c 4.17 × 10−11 1.65 × 10−12 4.24 × 10−11 1.64 × 10−12

Table 5.2: Table giving the total energy loss defined by
∫
e−

loss(ω)dω in units of [eV per
unit length] and the total number of photons emitted. Results for analytical calculations
for a line electron passing to the right of the particle are compared with COMSOL
simulations.
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Figure 5.9: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing to the right of the non-concentric annulus. The
electron energy loss probability density is in units of [eV −1 per electon per unit length].
Similarly the photon emission probability density is in terms of the number of photons
emitted in units of [eV −1 per electron per unit length]. The area under each of the
curves is unity. The solid lines correspond to analytical results, with the accompanying
markers corresponding to COMSOL simulations. The geometrical parameters were set
to g2 = 2 × 10−8, x0 = 1.5, R0 = exp(1) and R1 = exp(1.2), the distance to the particle
was ≈ 3.3nm and the constant λ defined in Eq.5.15 was set to 1.602 × 10−19Cm−1.
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5.3.6.2 Horizontally moving electron

Finally, we check the validity of our theory for an electron moving horizontally along
the top of the non-concentric annulus. The results are shown in figure 5.10 (see also
[66]). The data resembles the one for the electron passing to the right of the particle.
This is to be expected since the source expansion coefficients for these two cases showed
qualitatively similar behaviour. Agreement between analytics and COMSOL simulations
is very good too, demonstrating the robustness of our approach. Data for the total energy
lost by the electron and the total number of photons scattered is given in table 5.3 and
consolidates the results.

Analytics COMSOL
e−

loss [eV m−1] N(γ) e−
loss [eV m−1] N(γ)

ce = 0.05c 3.05 × 10−11 8.71 × 10−13 3.15 × 10−11 9.98 × 10−13

ce = 0.1c 7.55 × 10−11 3.63 × 10−12 8.07 × 10−11 4.00 × 10−12

ce = 0.3c 5.01 × 10−11 2.60 × 10−12 5.34 × 10−11 2.82 × 10−12

Table 5.3: Table giving the total energy loss defined by
∫
e−

loss(ω)dω in units of [eV per
unit length] and the total number of photons emitted. Results for analytical calculations
for a line electron passing along the top of the particle are compared with COMSOL
simulations.
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Figure 5.10: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing along the top of the non-concentric annulus. The
electron energy loss probability density is in units of [eV −1 per electon per unit length].
Similarly the photon emission probability density is in terms of the number of photons
emitted in units of [eV −1 per electron per unit length]. The area under each of the
curves is unity. The solid lines correspond to analytical results, with the accompanying
markers corresponding to COMSOL simulations. The geometrical parameters were set
to g2 = 2 × 10−8, x0 = 1.5, R0 = exp(1) and R1 = exp(1.2), the distance to the particle
was ≈ 3.3nm and the constant λ defined in Eq.5.15 was set to 1.602 × 10−19Cm−1. This
data is also published in [66].

5.3.6.3 Breakdown of the theory

In the previous sections, we compared our analytical theory with fully electrodynamic
simulations using the COMSOL Multiphysics package. The agreement between analytics
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and simulations is very good. Here, we want to test the limits of our theory to gauge when
it breaks down. There are two mechanisms that can lead to a breakdown of our theory.
First, if the non-concentric annulus is taken to be larger we expect retardation effects
to set in that are not included in our theory. Previously, we took the non-concentric
annulus to be ≈ 21nm, which is much smaller than the free space wavelength in the
frequency region of interest. Here, we will increase its size. Second, if the electrons
are very fast we expect relativistic effects to set in, the result being that the source
field cannot be approximated by an electrostatic potential as in Eq.5.15. We expect
relativistic effects to become important when the kinetic energy of the exciting electrons
becomes comparable to their rest mass (m0 = 511keV ).

Figure 5.11 indicates the limitations of our theory. First, we compare analytics and
simulations for non-concentric annulus of diamater ≈ 84nm (yellow squares). Agreement
between analytics and simulations is still reasonable, however the numerical results are
red shifted with respect to the analytical ones. This means retardation effects start
to matter at this size. We expect the shifts to become stronger and the agreement
worse for even larger nanoparticles. Second, we analyse the effect of increasing the (line)
electron’s velocity. The agreement for an electron moving at ce = 0.5c (nanoparticle
diameter 21nm) is still excellent, indicating that the non-relativistic approximation on
the source goes quite a long way. These results are also reflected in the total electron
energy loss and number of photons scattered, see table 5.4

We can thus conclude that our theory provides good results for particles of size less
than ≈ 80nm and electron velocities at least up to 0.5c.

Analytics COMSOL
e−

loss [eV m−1] N(γ) e−
loss [eV m−1] N(γ)

ce = 0.5c 2.57 × 10−11 1.42 × 10−12 2.59 × 10−11 1.46 × 10−12

ce = 0.1c 1.02 × 10−10 2.05 × 10−11 1.05 × 10−10 2.13 × 10−11

Table 5.4: Table giving the total energy loss defined by
∫
e−

loss(ω)dω in units of [eV per
unit length] and the total number of photons emitted. Results for analytical calculations
for a line electron passing along the top of the particle are compared with COMSOL
simulations.
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Figure 5.11: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing to the left of the non-concentric annulus. The
electron energy loss probability density is in units of [eV −1 per electon per unit length].
Similarly the photon emission probability density is in terms of the number of photons
emitted in units of [eV −1 per electron per unit length]. The area under each of the
curves is unity. The solid lines correspond to analytical results, with the accompanying
markers corresponding to COMSOL simulations. The geometrical parameters were set
to x0 = 1.5, R0 = exp(1) and R1 = exp(1.2), with g2 as indicated. The distance to the
particle was ≈ 3.3nm for the data with ce = 0.5c, but was ≈ 5nm for the data with
ce = 0.1c. The constant λ defined in Eq.5.15 was set to 1.602 × 10−19Cm−1.
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5.3.7 Time-response of the non-concentric annulus

In this section, we study the time-response of the non-concentric annulus when a line
electron moves past it at high velocity. The section is based on results from [66]. The an-
alytical treatment presented in the previous section lead to a fully analytical description
of the system’s response in the frequency domain, all under the electrostatic approxima-
tion. The time-response can thus be obtained by ‘Fourier transforming’ the frequency
domain solutions. That is, by evaluating the integral [66]

φ̂(x′, y′, t) =
∫ ∞

−∞
dωφ(x′, y′, ω)e−iωt (5.94)

= 2Re
[∫ ∞

0
dωφ(x′, y′, ω)e−iωt

]
, (5.95)

where we used the reality condition on the potential, i.e. φ(−ω) = φ∗(ω). Since
φ(x′, y′, ω) is known, this integral can be evaluated numerically in a very time efficient
manner by using a ‘Fast Fourier transform’ algorithm [150]. Note that the integration
runs from ω = 0 to ∞. This can of course be truncated at some finite frequency, but the
experimental permittivity data available does not provide a sufficient frequency range.
We thus resort to the simple Drude model defined in Eq.5.79, but increase the losses to
a more realistic value of γ = 0.32eV .

The electron loss and photon emission spectra seen in figures 5.8, 5.9 and 5.10 al-
ready give some indication on the nature of the system’s time response. In essence, a
fast moving electron transfers some of its energy to the nanoparticle in a short ‘pulse’,
containing a range of frequencies, which, for a pulse of a few femtoseconds is of the order
of a few eV, due to Heisenberg’s uncertainty principle [66, 151]. That means that there
is a range of modes that are excited at the same time; they all influence the system’s
response [66]. The spectra in figures 5.8, 5.9 and 5.10 then tell us which modes dominate
the time response. We thus expect the time response for an electron passing to the left
of the non-concentric annulus to be dominated by the first two or maybe three plasmon
modes (see figure 5.8). In contrast, the response of the other two cases can be expected
to contain strong contributions from the higher order modes nearer the surface plasma
frequency (ωsp ≈ 3.65eV ), as well (see figures 5.9 and 5.10). The time-simulation videos
for the non-concentric annulus provided as supplementary (see appendix D), confirm
exactly that [66]. Each video shows the time evolution for a non-concentric annulus
with the geometric parameters set equal to the ones in figures 5.8 and 5.10, for each
case there is a video showing the vertical and horizontal component of the electric field.
As mentioned, the electron moves rapidly past the nanoparticle and excites a range of
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Figure 5.12: The top panel shows the electric field distribution at a specific time point
(indicated by the arrow). Ev on the left and |E| on the right. The bottom panel shows
the time response of the crescent at a particular point (marked by the black dot in the
top panel). In this case the electron moves vertically to the left of the nanoparticle.
The plots in the bottom panel have been normalised by the maximum source field at
the particular point. Modified with permission from [66]. Copyright 2016 American
Chemical Society.

plasmon modes in the nanoparticle. In the case of the electron passing on the left side
of the non-concentric annulus, these plasmons only exhibit one or two oscillations as one
traces the inner surface of the particle in the angular direction. This indicates that the
time signal is dominated by the two lowest order plasmon modes [66], as expected. On
the contrary, the electric field pattern for the horizontally moving electron contains more
oscillations along the angular direction and generally exhibits a richer and more complex
time response [66]. This supports our belief that there are many modes contributing to
the time response, in this case [66].

Earlier work on plasmonic nanoparticles with singular (i.e. very sharp) features
demonstrated their light harvesting capabilities [27]. A singular crescent, for example,
has been shown to harvest light over a broad range of frequencies and concentrate it
at the touching point [27]. The non-concentric annulus can be considered the non-
singular version of the crescent. While the light harvested in the singular crescent can
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Figure 5.13: The top panel shows the electric field distribution at a specific time point
(indicated by the arrow). Ev on the left and |E| on the right. The bottom panel shows
the time response of the crescent at a particular point (marked by the black dot in the
top panel). In this case the electron moves vertically to the left of the nanoparticle.
The plots in the bottom panel have been normalised by the maximum source field at
the particular point. Modified with permission from [66]. Copyright 2016 American
Chemical Society.

never reach its singular point [103], the missing of the singularity in the non-concentric
annulus means that the plasmons can propagate around the nanoparticle along the
angular direction [27]. This behaviour is visualised in the videos for the electron passing
the nanoparticle in the horizontal direction. Plasmons are excited at the ‘fat’ end of the
non-concentric annulus and can be seen to propagate towards its thin part in a clockwise
direction [66]. Since the non-concentric annulus has a finite width at its thin end, the
plasmons can propagate past it and loop around the nanoparticle until all their energy
is converted to heat via resistive losses or emitted as photons [66].

Figures 5.12 and 5.13 provide time slices through the video simulation and time
series data for a spatial point [66]. Here too, we note that the time response for the
electron passing on the left is dominated by the low order plasmon modes, while many
modes contribute in the horizontal case. This can be deduced from both the contour
plot of |E| (which shows more nodes and anti-nodes for the horizontal case) and the
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time series data, which features much stronger oscillations and appears a lot richer for
the horizontal case.

5.4 EELS for an ellipse using TO

In this section, we apply the TO approach to EELS to the case of an ellipse. We
have already shown in chapter 3 that an ellipse can be mapped onto an annulus via a
Joukowski transformation, which has been given in Eq.3.2 and is repeated here,

ζ ′ = c′

2 (ζ + 1
ζ

), c′ ∈ R+

Here, the primed coordinates refer to the ellipse’s frame with ζ ′ = x′ + iy′ and the
unprimed coordinates represent the annulus’ frame ζ = x + iy. As shown in chapter
3, an ellipse with semi-major axis a′ = c′ cosh(u0) and semi-minor axis b′ = c′ sinh(u0)
transforms to an annulus with inner and outer radius R0 = e−u′

0 and R1 = eu′
0 , respec-

tively. The transformation of the geometry and the trajectory of the moving electron
is shown schematically in figure 5.14. Note that the mapping from annulus to ellipse is
two-to-one and that there is a branch cut at r = 1 (see chapter 3), leading to a charge
trajectory both inside and outside the annulus.

Parts of the results in this section have been presented in the supplementary material
of [66].

ζ ′ = c′

2 (ζ + 1/ζ)

y′

x′

ϵd

ϵm a’
b’

ϵm

e−

y

x

ϵd

ϵm
ϵd

R0

R1

e−

e−

Figure 5.14: The transformation of the geometry and the (line) electron’s trajectory
from the ellipse’s frame to the annulus’ frame. Modified with permission from the
supplementary material of [66]. Copyright 2016 American Chemical Society.
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5.4.1 Transformation of the source potential

Here, we will derive the form of the source in the annulus frame. We know from Eq.5.15
that the potential of a charge moving in the vertical direction in the ellipse’s frame is
given by

φ′ = − λ

4πϵ0ω
e−i ω

ce
y′
e−|x′−x′

e| ω
ce . (5.96)

This means the potential incident on the ellipse, where x′ < x′
e, is given by [66]

φsou = λ

4πϵ0ω
exp

[
ω

ce

(iy′ + x′ − x′
e)
]

(5.97)

=
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ω

ce

ζ ′
]
. (5.98)

Substituting for ζ ′ from the Joukowski transformation in Eq.3.2 yields the potential in
the annulus frame [66]

φsou =
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ωc′

2ce

(
ζ + 1

ζ

)]
(5.99)

=
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ωc

2ce

(
reiϕ + 1

reiϕ

)]
. (5.100)

Similar to the non-concentric annulus case, we want to expand the above source potential
in terms of the eigenfunctions of the annulus. That is, we want to write [66]

φsou =
n=∞∑

n=−∞
as

nr
neinϕ. (5.101)

The expansion coefficients are determined in appendix A.2 and can be written as [66]

as
n =

λ exp
[
− ω

ce
u0
]

4πϵ0ω

∞∑
k=0

(
ωc

2ce

)2k+|n| 1
k!(k + |n|)!

=
λ exp

[
− ω

ce
u0
]

4πϵ0ω
I|n|(

ωc

ce

), (5.102)
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Figure 5.15: The value of the source expansion coefficients as−
n with n = 1, 2, 3, 4 for an

electron passing vertically to the right of the ellipse (see figure 5.14. The parameters are
λ = 1.602 × 10−19, c′ = 10−8, u0 = 0.4, x′

e = c′ cosh(u0) + 2 × 10−9, ce = 0.1 on the left
and ce = 0.3c on the right.

where we used the definition of the modified Bessel function of the first kind [152],

I|n|(
ωc

ce

) =
∞∑

k=0

(
ωc

2ce

)2k+|n| 1
k!(k + |n|)! . (5.103)

The dependence of as
n on ω is shown for two different electron velocities in figure 5.15.

Note that I|n|, and thus as
n, is purely real and positive in the frequency range of interest

(≈ 0eV...8eV ). Since no source coefficient passes through zero we do not expect any
‘accidental’ degeneracies, contrary to what has been observed for the non-concentric
annulus.

5.4.2 Induced potentials and boundary conditions

In the following, we will determine the induced and scattered potentials in the annulus
frame. We start by noting that as

g = as
−g, which means the source potential can be
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rewritten as [66]

φsou
I = as

0
2 +

∞∑
l=1

as
l r

−le−ilϕ +
∞∑

l=1
as

l r
leilϕϕ. (5.104)

The form of the source potential indicates that the total potential in each region of the
annulus geometry can be written as [66],

φI = as
0

2 +
∞∑

l=1
as

l r
−l(cos(lϕ) − i sin(lϕ)) +

∞∑
l=1

as
l r

l(cos(lϕ) + i sin(lϕ))

+
∞∑

l=1
rl(bc

l cos(lϕ) + bs
l i sin(lϕ)) for r < R0 (5.105)

φII = as
0

2 +
∞∑

l=1
r−l(cc−

l cos(lϕ) + cs−
l i sin(lϕ))

+
∞∑

l=1
rl(cc+

l cos(lϕ) + cs+
l i sin(lϕ)) for R0 < r < R1 (5.106)

φIII = as
0

2 +
∞∑

l=1
as

l r
l(cos(lϕ) + i sin(lϕ)) +

∞∑
l=1

as
l r

−l(cos(lϕ) − i sin(lϕ))

+
∞∑

l=1
r−l(dc

l cos(lϕ) + ds
l i sin(lϕ)) for R1 < r. (5.107)

There is an important difference here compared to the non-concentric annulus case.
Namely that the potentials above are purely electrostatic and do not contain any terms
modeling the radiative reaction of this system. This will be included separately in a later
section. The electrostatic expansion coefficients bc/s

l , c
c/s−
l , c

c/s+
l and dc/s

l are determined
from the boundary conditions in Eq.5.50-Eq.5.53, as before. We consider an ellipse with
permittivity ϵm surrounded by a dielectric of unit permittivity. Under these conditions,
the cosine coefficients are determined to be [66]

bc
l =


(
(ϵ2

m − 1)(R2l
1 −R2l

0 ) − 4ϵmR
2l
1 R

2l
0

)
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1

R−2l
0 − 1

 as
l (5.108)

cc−
l = −2(ϵm − 1)R2l

0 R
2l
1 + (ϵm + 1)R2l

1
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1
as

l (5.109)

cc+
l = −2 (ϵm − 1) + (ϵm + 1)R2l

1
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1
as

l (5.110)

dc
l =

[
(ϵ2

m − 1)(R2l
1 −R2l

0 ) − 4ϵm

(ϵm − 1)2R2l
0 − (ϵm + 1)2R2l

1
R2l

1 − 1
]
as

l , (5.111)
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and the sine coefficients as [66],

bs
l =


(
−(ϵ2

m − 1)(R2l
1 −R2l

0 ) − 4ϵmR
2l
1 R

2l
0

)
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1

R−2l
0 − 1

 as
l (5.112)

cs−
l = −2(ϵm − 1)R2l

0 R
2l
1 − (ϵm + 1)R2l

1
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1
as

l (5.113)

cs+
l = −2 −(ϵm − 1) + (ϵm + 1)R2l

1
(ϵm − 1)2R2l

0 − (ϵm + 1)2R2l
1
as

l (5.114)

ds
l =

[
(ϵ2

m − 1)(R2l
1 −R2l

0 ) + 4ϵm

(ϵm − 1)2R2l
0 − (ϵm + 1)2R2l

1
R2l

1 + 1
]
as

l . (5.115)

5.4.3 Power absorbed by the ellipse

Knowledge of the electrostatic potential inside the annulus makes it possible to calculate
the power absorbed by it in the same way as in section 5.3.5. That is, we calculate the
resistive losses in the annulus via

Q(ω) = −1
2Re(

∫
S

j∗ · EdS), (5.116)

and deduce from energy conservation that the energy absorbed by the ellipse is the same.
The steps to derive Q(ω) are outlined below and reproduced in the supplementary of
[66]. The electric field inside the annulus is obtained from the electrostatic potential
defined in Eq.5.106 as

Er =
∞∑

l=1
lr−l−1(cc−

l cos(lϕ) + cs−
l i sin(lϕ)) −

∞∑
l=1

lrl−1(cc+
l cos(lϕ) + cs+

l i sin(lϕ))

(5.117)

Eφ =
∞∑

l=1
lr−l−1(cc−

l sin(lϕ) − cs−
l i cos(lϕ)) +

∞∑
l=1

lrl−1(cc+
l sin(lϕ) − cs+

l i cos(lϕ)).

(5.118)
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The currents are obtained via Ohm’s law j = −iω(ϵm − 1)ϵ0E [4]. Hence,

j∗
r = iω(ϵ∗

m − 1)ϵ0

∞∑
l=1

[
lr−l−1((cc−

l )∗ cos(lϕ) − (cs−
l )∗i sin(lϕ))

− lrl−1((cc+
l )∗ cos(lϕ) − (cs+

l )∗i sin(lϕ))
]
, (5.119)

j∗
φ = iω(ϵ∗

m − 1)ϵ0

∞∑
l=1

[
lr−l−1((cc−

l )∗ sin(lϕ) + (cs−
l )∗i cos(lϕ))

+ lrl−1((cc+
l )∗ sin(lϕ) + (cs+

l )∗i cos(lϕ))
]
. (5.120)

The integral for Q(ω) has two contributions, the first from j∗
rEr the second from j∗

ϕEϕ.
The integrand of the first of these is given by,

j∗
rEr = iω(ϵ∗ − 1)ϵ0

∞∑
l,g=1

gl
([
r−l−1((cc−

l )∗ cos(lϕ) − (cs−
l )∗i sin(lϕ))

− rl−1((cc+
l )∗ cos(lϕ) − (cs+

l )∗i sin(lϕ))
]

×
[
r−g−1(cc−

g cos(gϕ) + cs−
g i sin(gϕ)) − rg−1(cc+

g cos(gϕ) + cs+
g i sin(gϕ))

])
.

(5.121)

While this is a long expression, the integral of it is straightforward to evaluate by noting
that sin(gϕ)/ cos(gϕ) are orthogonal and using the standard integral

∫ R1
R0
drr±2l−1 =

1
±2l−1

(
R±2l

1 −R±2l
0

)
. Similar considerations apply for j∗

ϕEϕ. Here we simply quote the
final result for the resistive losses in the annulus[66],

Q = −ω

2 πϵ0Im(ϵm)
∞∑

l=1

[
l2

2l − 1(|cs+
l |2 + |cc+

l |2)
(
R2l

1 −R2l
0

)

− l2

2l + 1(|cs−
l |2 + |cc−

l |2)
(
R−2l

1 −R−2l
0

)]
. (5.122)

5.4.4 Power scattered

The power scattered by the non-concentric annulus has been obtained by surrounding it
with a fictive absorber and calculating the power absorbed by this fictive material. Due
to energy conservation, the power scattered by the nanoparticle and the power absorbed
by the fictive absorber are equal. In the annulus frame this fictive absorber transformed
to a small particle with finite polarisability. The same method can be applied to find
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the power scattered by the ellipse [66]. In this case, the fictive absorber surrounding the
ellipse transforms to a small particle at the origin with finite polarisability.

Taking the polarisability of this fictive absorber to be γabs, the power absorbed by it
or equivalently the power scattered by the ellipse can be determined from the induced
dipole moment of the fictive absorber. We know dipole moment and incident electric
field of a particle at the origin are related via [52]

pabs = γabsEinc(x = 0, y = 0). (5.123)

The incident field is equal to the field scattered by the annulus, i.e. it can be obtained
from the potential [66] as

φsca
I =

∞∑
l=1

rl(bc
l cos(lϕ) + bs

l i sin(lϕ)) (5.124)

E(x = 0, y = 0) = −bc
1x̂− ibs

1ŷ. (5.125)

Substituting into the formula for the dipole moment gives,

pabs = γabs (−bc
1x̂− ibs

1ŷ) . (5.126)

As previously, the power absorbed by such a particle is [52, 66]

Pabs = ω

2 Im(p ∗abs ·Esca(0, 0)) (5.127)

= ω

2 Im(γ∗
abs(|bc

1|2 + |bs
1|2), (5.128)

which is identical to the power scattered by the ellipse. Of course, we have not said
anything about γabs yet, this will be determined in the next section.

Before moving on, it is worth to pausing and examining the implications of Eq.5.128.
In contrast to the power scattered by the non-concentric annulus, the formula in Eq.5.128
only contains contributions from the first order modes, meaning that the radiative re-
action of the nanoparticle will only affect these two modes [66]. Further, the scattering
spectrum will only have contributions from the first order modes. Of course, this should
not come as a surprise, as it simply restates the dipole selection rule discussed in chapter
3.
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5.4.5 Radiative reaction

In the previous section, we calculated the power scattered by the ellipse by introducing a
fictive absorber surrounding the ellipse. This absorber transformed to a small absorbing
particle at the origin of the annulus. It has previously been shown in [53] and in section
5.3.3.2 that the multiple scattering between this fictive absorber and the annulus can
be used to model the radiative reaction of the system. However, in the case of the
ellipse a complication arises. Since the Joukowski transformation (Eq.3.2) is a two-to-
one mapping from the annulus to the ellipse, the fictive absorber in the ellipse frame
transforms to two fictive absorbers in the annulus frame. One is the small absorbing
particle at the origin and the other is a fictive absorber surrounding the whole structure.
This is shown schematically in figure 5.16. In the following two sections, we determine
the influence of these two fictive absorbers on the plasmon excitations of the ellipse. The
presentation follows the supplementary material of [66].

2a
c′

ϵabs

a
ϵabs

ζ ′ = c′

2 (ζ + 1
ζ
)

Figure 5.16: Transformation of the fictive absorber surrounding the elliptical particle.
An absorber with a circular boundary at r′ = a and extending to infinity transforms
to a small absorber at the origin with radius r = c′/(2a) and an absorber surrounding
the annulus with its boundary at r = 2a/c′. Both absorbers lead to multiple scattering
with the annulus. Modified with permission from the supplementary material of [66].
Copyright 2016 American Chemical Society.
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5.4.5.1 Fictive absorber at the origin

To model the multiple scattering between the fictive absorber at the origin and the inner
surface of the annulus, it is paramount to relate the field scattered by the annulus to the
field scattered back by the fictive absorber. For this, the dipole moment and hence the
polarisability of the absorber have to be determined. It can be shown (see appendix C.1)
that the permittivity of the fictive absorber surrounding the ellipse at position r′ = a

has to be

ϵabs = 1 + 2iπ(k0

2 a)2, (5.129)

which is conserved under a conformal map to the annulus frame [42]. Next, we determine
the shape and size of the fictive absorber at the origin in the annulus frame. The
Joukowski transformation reads

ζ ′ = c′

2 (ζ + 1
ζ

). (5.130)

Thus, for a particle near the origin, ζ ≈ 0, the second term in the transformation formula
dominates and it reduces to

ζ ′ = c′

2ζ . (5.131)

Hence a circle of radius r′ = a in the ellipse’s frame transforms to a circle of radius

r = c′

2a (5.132)

in the annulus frame. To conclude, the fictive absorber at the origin in the annulus
frame is a cylindrical particle with radius r = c′

2a
and permittivity ϵabs = 1 + 2iπ(k0

2 a)2

[66]. A cylindrical particle at the origin with this radius and permittivity acquires a
dipole moment given by [66],
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pabs =2πϵ0
(c′2)
4a2

(
ϵabs − 1
ϵabs + 1

)
E(ζ = 0) (5.133)

≈2πϵ0
(c′)2

4a2 iπ(k0

2 a)2E(ζ = 0) (5.134)

=iπ2ϵ0
(c′2)

8 k2
0E(ζ = 0) (5.135)

=γabsE(ζ = 0), (5.136)

when an electric field is incident on it [52]. Here we defined the particles polarisability
as [66],

γabs = iπ2ϵ0
(c′)2

8 k2
0 (5.137)

and the results are accurate to order O((k0
2 a)2). Eq.5.126 then gives us the dipole

moment of the fictive absorber as [66]

pabs =
 −γabsb

c
1

−iγabsb
s
1

 . (5.138)

Finally, the potential scattered/radiated by the dipole absorber at the origin is given by

ΦI,rad = 1
2πϵ0

pabs,x cos(ϕ) + pabs,y sin(ϕ)
r

. (5.139)

Of course, this contribution has to be added to the total potential in that region. Which
means the potential in Eq.5.105 has to be changed to

ΦI = as
0

2 +
∞∑

l=1
as

l r
−l(cos(lϕ) − i sin(lϕ)) +

∞∑
l=1

rl(bc
l cos(lϕ) + bs

l i sin(lϕ))

+ 1
2πϵ0

pabs,x cos(ϕ) + pabs,y sin(ϕ)
r

for r < R0. (5.140)

This will alter the boundary condition for the l = 1 term, but higher order modes remain
unaffected [66].
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5.4.5.2 Fictive absorber surrounding the annulus

As aforementioned and shown in figure 5.16, there is also a fictive absorber surrounding
the annulus. If the fictive absorber is far away from the surface of the annulus, the term

ζ ′ = c′

2 ζ, (5.141)

dominates the Joukowski transformation ζ ′ = c′

2 (ζ + 1
ζ
); a circle of radius r′ = a trans-

forms to a circle of radius r = 2a/c′ in the annulus frame [66]. This circle forms the
inner boundary of the fictive absorber. Details on how to choose a are given in appendix
C.1, it essentially must be large enough such that all but the l = 1 modes have decayed
to zero when reaching the surface of the fictive absorber.

Of course, the absorber surrounding the annulus also gives rise to a reflected field
[66]. The field incident on the fictive absorber is equal to the field scattered by the
annulus and its potential is given by [66]

ΦII,sca(r −→ 2a/c) = 1
r
dc

1 cos(ϕ) + 1
r
ids

1 sin(ϕ). (5.142)

There will thus be a reflected and transmitted potential given by [66]

φII,rad = rRc
rad cos(ϕ) + riRs

rad sin(ϕ) for r <
2a
c′ (5.143)

φII,tra = 1
r
T c

rad cos(ϕ) + 1
r
iT s

rad sin(ϕ) for r >
2a
c′ . (5.144)

Matching φII,rad + φII,sca and φII,tra at r = 2a/c′ yields [66]

Rc
rad −

(2a
c′

)−2
dc

1 = −ϵabs

(2a
c′

)−2
T c

rad (5.145)

Rc
rad +

(2a
c′

)−2
dc

1 =
(2a
c′

)−2
T c

rad, (5.146)

which can be solved to give

Rc
rad =

(2a
c′

)−2 1 − ϵabs

1 + ϵabs

dc
1 (5.147)

and equivalently for the sine reflection coefficient

Rs
rad =

(2a
c′

)−2 1 − ϵabs

1 + ϵabs

ds
1. (5.148)



5.4 EELS for an ellipse using TO 157

Using ϵabs = 1 + 2iπ(k0
2 a)2 and expanding to first order, the coefficients reduce to [66]

R
c/s
rad = −

(2a
c′

)−2
iπ(k0

2 a)2d
c/s
1 (5.149)

= −iπ(c′)2k2
0

16 d
c/s
1 . (5.150)

As was the case for the fictive absorber at the origin, the field reflected by the fictive
absorber has to be added to the total potential in that region. That is, the potential in
Eq.5.107 has to be modified to [66]

ΦIII = as
0

2 +
∞∑

l=1
as

l r
l(cos(lϕ) + i sin(lϕ)) +

∞∑
l=1

r−l(dc
l cos(lϕ) + ds

l i sin(lϕ))

+ rRc
rad cos(ϕ) + riRs

rad sin(ϕ) for R1 < r <
2a
c
. (5.151)

Again, this only alters the l = 1 coefficients and leaves higher order modes unchanged.

5.4.5.3 Modified expression for the l = 1 scattering coefficients

The presence of the fictive absorber modifies the boundary conditions of the l = 1 mode.
Hence, we must re-derive expressions for the expansion coefficients bc/s

1 , c
c/s−
1 , c

c/s+
1 and

d
c/s
1 , but can use the formulae we derived earlier for any l ̸= 1. The modified potential

for the l = 1 term in each region reads[66]

φ1
I = as

1r
−1(cos(ϕ) − i sin(ϕ)) + r1(bc

1 cos(ϕ) + bs
1i sin(ϕ))

+ 1
2πϵ0

pabs,x cos(ϕ) + pabs,y sin(ϕ)
r

for r < R0 (5.152)

φ1
II = r−1(cc−

1 cos(ϕ) + cs−
1 i sin(ϕ)) + r1(cc+

1 cos(ϕ) + cs+
1 i sin(ϕ)) for R0 < r < R1

(5.153)

φ1
III = as

1r
1(cos(ϕ) + i sin(ϕ)) + r−1(dc

1 cos(ϕ) + ds
1i sin(ϕ))

+ rRc
rad cos(ϕ) + riRs

rad sin(ϕ) for R1 < r <
2a
c
. (5.154)

The usual boundary conditions at the interface (Eq.5.50-Eq.5.53) yield a set of linear
equations that can be solved to give [66]
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bc
1 = − as

1

([
C0(ϵ+ 1)2R2

0R
−2
1 − C0(ϵ− 1)2 −

(
ϵ2 − 1

)
(R2

0R
−2
1 − 1)R−2

1

]
− 4ϵR2

0R
−2
1

)
/C (5.155)

cc−
1 =2as

1R
2
0

([
C0(1 − ϵ0) + (1 + ϵ)R−2

1

]
−
[
R−2

1 (C0(1 + ϵ) +R2
0(1 − ϵ))

])
/C (5.156)

cc+
1 =2R−2

1 a2
1

([
(ϵ− 1)R2

0R
−2
1 − C0(ϵ+ 1)R2

0

]
+
[
(ϵ+ 1)R2

0 − (ϵ− 1)C0
])
/C (5.157)

dc
1 = − as

1

(
C0
[
(ϵ+ 1)2R2

0R
−2
1 − (ϵ− 1)2

]
−R2

0

[(
ϵ2 − 1

)
(R2

0R
−2
1 − 1)

]
− 4ϵR2

0R
−2
1

)
/C (5.158)

with the denominator

C = R2
0R

−2
1

[
(ϵ+ 1)2 − (ϵ− 1)2R2

0R
−2
1

]
+ C0

[
(ϵ2 − 1)(R2

0R
−2
1 − 1)(R2

0 +R−2
1 )

]
+ C2

0

[
(1 + ϵ)2R2

0R
−2
1 − (ϵ− 1)2

]
(5.159)

and
C0 = iπ(c′)2k2

0
16 . (5.160)

And similarly for the sine coefficients [66]

bs
1 = − as

1

(
−
[
C0(ϵ+ 1)2R2

0R
−2
1 − C0(ϵ− 1)2 −

(
ϵ2 − 1

)
(R2

0R
−2
1 − 1)R−2

1

]
− 4ϵR2

0R
−2
1

)
/C (5.161)

cs−
1 =2as

1R
2
0

(
−
[
C0(1 − ϵ) + (1 + ϵ)R−2

1

]
−
[
R−2

1 (C0(1 + ϵ) +R2
0(1 − ϵ))

])
/C (5.162)

cs+
1 =2R−2

1 a2
1

(
−
[
(ϵ− 1)R2

0R
−2
1 − C0(ϵ+ 1)R2

0

]
+
[
(ϵ+ 1)R2

0 − (ϵ− 1)C0
])
/C (5.163)

ds
1 = − as

1

(
C0
[
(ϵ+ 1)2R2

0R
−2
1 − (ϵ− 1)2

]
−R2

0

[(
ϵ2 − 1

)
(R2

0R
−2
1 − 1)

]
+ 4ϵR2

0R
−2
1

)
/C (5.164)

with C from Eq.5.159.
This completes the section on the radiative correction, as it is now included in the ex-

pressions for the expansion coefficients. As aforementioned, only the dipole l = 1 modes
are affected, since only those couple to plane waves transporting energy to infinity. A
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behaviour which does not come unexpected in light of the dipole selection rule discussed
in chapter 3.

5.4.6 Comparison with COMSOL

Here, we compare our analytical results for the electron energy loss and photon emission
spectra with fully electrodynamic solutions using COMSOL Multiphysics. The simu-
lations have been set up in the same way as described in 5.3.6, but using an elliptical
nanoparticle. Figure 5.17 shows results using a Drude model permittivity in Eq.5.79 for
the nanoparticle, with γ = 0.32eV , ωp = 8eV and ωsp ≈ 5.67eV . Whereas in figure
5.18 experimental data has been used [65]. In both cases, the surrounding medium has
ϵd = 1. The electron energy loss probability and photon emission probability have been
obtained from Eq.5.91 and Eq.5.92, respectively.

Figure 5.17 (left) shows the effect of the radiative reaction on the electron energy
loss and photon emission spectrum. The effect of the radiative reaction is much more
prominent than for a non-concentric annulus of similar dimensions, see figure 5.7 for
comparison. On the right of the same figure, we compare the electron energy loss
probability and photon emission probability with COMSOL simulations for different
electron velocities. Agreement between analytics and simulations is very good. While
the electron is able to excited higher order plasmon modes, as visible in the electron
loss spectrum, the dipole selection rule holds in the photon emission spectrum to good
accuracy. There are only slight discrepancies for the case of an electron moving with
velocity ce = 0.05c. There we can see a small peak at ≈ 6eV , which indicates coupling
between the quadrupole (l = 2) mode of the ellipse and the quadrupole mode of an
electromagnetic wave (see also chapter 3). This peak is likely to become stronger for

Analytics COMSOL
e−

loss [eV m−1] N(γ) e−
loss [eV m−1] N(γ)

ce = 0.05c 8.91 × 10−12 3.89 × 10−13 1.23 × 10−11 4.54 × 10−13

ce = 0.1c 1.80 × 10−11 1.14 × 10−12 2.26 × 10−11 1.31 × 10−12

ce = 0.3c 1.65 × 10−11 1.18 × 10−12 1.87 × 10−11 1.40 × 10−12

Table 5.5: Table giving the total energy loss defined by
∫
e−

loss(ω)dω in units of [eV per
unit length] and the total number of photons emitted. Results for analytical calculations
for a line electron passing to the right of the ellipse are compared with COMSOL sim-
ulations. This data is for a nanoparticle with experimental permittivity data of silver
[65].
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Figure 5.17: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing to the right of the ellipse. The electron energy loss
probability density is in units of [eV −1 per electon per unit length]. Similarly the photon
emission probability density is in terms of the number of photons emitted in units of
[eV −1 per electron per unit length]. The area under each of the curves is unity. The solid
lines correspond to analytical results, with the accompanying markers corresponding to
COMSOL simulations. On the left, we compare the electrostatic solution to the one
including the radiative reaction of the ellipse for ce = 0.3c. The geometrical parameters
were set to u0 = 0.4, c′ = 10−8 giving an ellipse of width ≈ 22nm and height ≈ 8nm .
The distance of the electron to the particle was 2nm. The constant λ defined in Eq.5.15
was set to 1.602 × 10−19Cm−1.

lower losses or larger nanoparticles. To conclude, the dipole selection rule also holds for
a moving electron as a source, but only approximately.

Figure 5.17 compares analytics and simulations for experimental values of the per-
mittivity of silver [65]. Agreement is good in this case too, though it is not as good
as it was for the non-concentric annulus. This is also reflected in the total energy lost



5.4 EELS for an ellipse using TO 161

by the (line) electron and total number of photons emitted as tabulated in table 5.5.
The discrepancies seem strongest for the lowest electron velocities. However, both the
resonance frequencies and their peak heights are predicted to very good accuracy.

Figure 5.18: The electron energy loss (top) and photon emission (bottom) probability
density for a (line) electron passing to the right of the ellipse. The electron energy loss
probability density is in units of [eV −1 per electon per unit length]. Similarly the photon
emission probability density is in terms of the number of photons emitted in units of
[eV −1 per electron per unit length]. The area under each of the curves is unity. The solid
lines correspond to analytical results, with the accompanying markers corresponding to
COMSOL simulations. We used permittivity data from [65] for the nanoparticle. All
other parameters are the same as in figure 5.17. This data has also been published in
the supplementary material of [66].
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5.4.7 Time response of the ellipse

In the previous few sections, we solved for the electromagnetic response of an elliptical
nanoparticle when a fast (line) electron moves past it. All the calculations have been
done in frequency space, but have been fully analytical. This allows us to obtain the
time response of the system in the same way as for the non-concentric annulus, i.e. by
implementing a ‘Fast Fourier transform’ of the frequency space solution, see Eq.5.95.

Please see the supplementary media files (appendix D) for a video simulation showing
the electric field distribution in and around the nanoparticle when the line electron moves
past it. As was the case for the non-concentric annulus, plasmons are strongly excited as
soon as the electron is in the vicinity of the particle. However, since the non-concentric
annulus possesses a ‘special’ point (where it is thinnest), plasmons could be seen to
propagate towards that point. Such a behaviour is not observed for the ellipse, as it

Figure 5.19: The top panel shows the electric field distribution at a specific time point
(indicated by the arrow). Eu on the left and |E| on the right. The bottom panel shows
the time response of the crescent at a particular point (marked by the black dot in the
top panel). In this case, the electron moves vertically to the left of the nanoparticle.
The plots in the bottom panel have been normalised by the maximum source field at
that particular point.
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does not possess a unique sharp feature at which the plasmons are concentrated (at
least not for a sufficiently ‘round’ ellipse).

Figure 5.19 shows a snapshot of the time response (top panels), together with a time
series at a particular point in space (bottom panels). The strong fields at the top of the
top two panels stem from the electron, which has just moved out of the frame. Near the
ellipse, the emergence of plasmons can be observed. The time series for the electric field
components and its magnitude show rapid oscillations modulated by a longer wavelength
envelope function, i.e. the characteristic field pattern for the interference of two waves
of different frequency. From the spectrum in figure 5.17 we deduce that this interference
pattern is generated by the two dipole resonances at ≈ 4.2eV and ≈ 6.7eV , as the
two other peaks are considerably smaller. As for the non-concentric annulus, these
oscillations are prominent on a time scale of about ten femtoseconds. At longer times
most of the energy has been absorbed via resistive losses or emitted as photons.

5.5 Summary

To summarise, we have shown that the TO approach to solve problems in plasmonics can
be adapted to treat electron energy loss calculations. We compared our theoretical re-
sults with fully electrodynamic simulations and found excellent agreement for structures
much smaller than the wavelength. Interestingly, despite the non-relativistic approxima-
tions applied in the theory, the results compared well with numerical simulations even
for rather large velocities ≈ 0.5c. The major advantage of the TO approach to electron
energy loss calculations is that it is fully analytic. This does not only lead to deeper
physical insight, but also allows us to study the time evolution of these systems in a
time efficient manner, by ‘Fourier transforming’ the frequency space solutions.
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Chapter 6

Conclusion

At the beginning of this thesis we set out to answer, among others, two questions:
firstly, “Can Transformation optics be used to study plasmonic systems of extent greater
than the wavelength of light, such that currents can flow on a scale larger than the
wavelength?” and secondly, “Can Transformation optics be used to reveal, study and
make use of symmetries in plasmonic systems?”. The answer to both is yes.

The crux of the first question is the current flowing on a scale larger or comparable to
the wavelength. This meant that magnetic effects could not be ignored. Indeed the study
of the plasmonic grating showed, that it is of paramount importance to treat the strong
currents induced in such systems for an accurate description of their optical response.
While several technical issues had to be overcome, TO has been successfully applied to
predict the spectral properties and calculate the optical response of a thin plasmonic
grating in the electrostatic limit, though incorporating magnetic effects in the form of a
radiative reaction is possible as well. This was achieved by transforming the grating to a
much simpler system. Although the plasmonic grating was the system studied in detail
in chapter 4, it is not the only one that can be analysed using this approach. Indeed
we showed that a chain of particles on top of a flat surface could be analysed using very
similar methods and so could half-spaces with a periodically modulated interface and
nanoparticle chains inside a dielectric. Moreover, all these systems were related in some
sense, which brings us to the second question.

While extending the TO approach to semi-infinite periodic structures was mainly
about tackling some technical challenges, using TO to study symmetries is more sub-
tle. Symmetries often provide a means of classification and so they did here. Albeit,
it was not the geometrical symmetries of the nanoparticle that provided classification
of the plasmon modes, but the symmetries of the underlying ‘mother’ structure. This
already was apparent in the first chapter, where a hidden rotational symmetry in the
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ellipse and spheroid could be revealed by transforming them to a symmetric annulus and
spherical shell, respectively. This rotational symmetry enabled us to classify the plas-
mon modes of the angular momentum numbers in the transformed ‘mother’ frame. Not
only did this allow us to solve the system analytically, but it also showed a connection
between symmetry breaking in the ellipse/spheroid frame and plasmon hybridisation in
the annulus/shell frame. Yet it was for the plasmonic grating that the usefulness of
TO to reveal hidden symmetries really showed its hand. Here, we were able to relate
not a single grating, but a whole class of gratings to a single underlying semi-infinite
slab. Since the slab was translationally invariant, this had profound consequences on
the spectra of the gratings. Translational invariance leads to a gapless excitation spec-
trum, while one expects energy bands and gaps for a periodically modulated plasmonic
grating. Yet, the underlying symmetry of the ‘mother’ structure forbids this, leading to
‘degeneracy’ points where two bands cross. Though this result only holds strictly at the
centre of the Brillouin zone, it is an intriguing feature that is most easily explained using
the TO framework. Moreover, the same transformation could be used to map a chain
of nanoparticles on a surface into the same translationally invariant slab. A modified
version of the transformation could similarly be used to map two half-spaces with mod-
ulated interface and an isolated chain of nanoparticles onto two half-spaces with planar
interface. In each case, it wasn’t a single structure that could be transformed, but a
whole ‘equivalence’ class, so to speak. This did not only confirm that TO can be used to
study underlying symmetries in plasmonic systems, but also that there are good reasons
for doing so. Namely, they classify both the eigenmodes and the spectral properties of
the system, they allow for analytical solutions, they provide unique physical insight and
TO provides the ideal tool to uncover them.

The last section of the thesis was less concerned with the concept of symmetries,
though they certainly played a large role in the analytical solution to the problem at
hand. There, we extended the TO approach to analytically calculate the electron en-
ergy loss (EELS) and cathodoluminescence (CL) spectra for a two-dimensional ellipse
and non-concentric annulus. Again, this was made possible and largely simplified by
transforming the ellipse and the non-concentric annulus to a more symmetrical ‘mother’
structure. Analytical solutions to EELS and CL problems are rare [132], but TO has
been shown previously to be a great tool to study the plasmonic properties of nanopar-
ticles with complex shapes and here we extended its range of applicability to EELS and
CL studies. Most importantly, these are not restricted to the frequency domain. Since
all calculations are done analytically and the resulting computations are very fast, it
is possible to conduct a time-domain analysis by a simple ‘Fast Fourier Transform’ of
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the analytical solutions. This makes it possible to create video simulations of ‘EELS
experiments’ and some examples are given in the supplementary, together with a simple
GUI program that implements the TO solutions to EELS and CL problems for a few
geometries.

Of course, no thesis is ever complete and this one is no exception to the rule. There
are a number of shortcomings that we would like to discuss here, as well as avenues of
future studies that became apparent during the research.

First, some technical issues. In the study of the plasmonic grating in chapter 4 the
calculation of the band structure was only accurate near the centre of the Brillouin zone,
but could not match numerical simulations at the zone edge. This also meant that the
calculation of the optical response was limited to normal incidence. Problems arose due
to the analytical structure of the conformal transformation, which features many branch
cuts that lead to unphysical discontinuities in the potential, for k-vectors away from the
zone centre. The solution to this problem has proven elusive to the author for quite
some time. Fortunately, John Pendry succeeded in extending the approach presented in
this thesis to calculate the band structure near the zone edge. This is not included in
this thesis, but we want to stress here that it is possible.

Second, this thesis mainly focussed on method development and as such, applica-
tions played only a minor part in it. Naturally, methods are only really useful if, some
day, they can be applied to solve some interesting problems. In our case, the methods
developed to treat the plasmonic grating have been successfully applied by Huidobro et.
al [153] to study graphene sheets with inhomogeneous doping on both flat and corru-
gated substrates. Here, too, TO could be used to calculate the optical response of the
system. Additionally, the analytical nature of the solution allowed to efficiently optimise
the system parameters to maximise absorption. It is our hope, that this does not remain
the only instance where our approach proved valuable in the physical interpretation and
accurate description of periodic plasmonic systems.

Third, interaction with experiments was minimal. This is the case for both the first
two sections and the section on TO for EELS. In the case of the plasmonic grating, a
particularly interesting route for further investigation is the bi-anisotropy. Experiments
are currently under way to design plasmonic gratings, which maximise this effect and
lead to a strong electro-magnetic coupling. The last chapter extended TO to treat EELS
and CL studies. Here, we were mainly concerned to develop the formalism and treat
two toy systems: the ellipse and the non-concentric annulus. We do expect, however,
to be able to treat more complicated and interesting systems and hope that we can
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provide some physical insight into EELS and CL experiments. We feel quite positive
that this is possible, as Luo et. al [149] have already considered two, closely spaced,
three-dimensional spheres.

To sum up, we believe that the techniques developed in this thesis are powerful
enough to have an impact on future theoretical investigations of plasmonic systems
and to possibly provide some insight into applications and experimental results. Some
promising routes of further research include: the extension of the TO approach for plas-
monic gratings to non-normal incidence, further investigations into the bi-anisotropy of
these gratings, the extension of the TO for EELS approach to other structures (e.g.
2-D knife edge, 2-D blunt knife edge, 2-D bow-tie antennas, 3-D spheroids, 3-D hyper-
boloids, etc.), application of these techniques to interpret experimental data and to use
the analytical properties of the solutions to optimise systems for a particular application.



Appendix A

Supporting analytical calculations
for a two-dimensional ellipse

A.1 Resonance condition for an ellipse

Here, we’ll derive the resonance condition for an ellipse. The ellipse with semi-major axis
a′ = c′ cosh(u0) and semi-minor axis b′ = c′ sinh(u0) can be transformed to an annulus
with inner radius R0 = e−u0 and outer radius R1 = eu0 , as has been shown in section 3.1.
The potential in the annulus region must satisfy Laplace’s equation in polar coordinates
[52]. This means the electrostatic potential can be written as

φI =
∑

n

r−n(asou
n cos(nφ) + Asou

n sin(nφ)) + rn((asca
n cos(nφ) + Asca

n sin(nφ)) (A.1)

φII =
∑

n

r−n(bin
n cos(nφ) +Bin

n sin(nφ)) + rn((cin
n cos(nφ) + Cin

n sin(nφ)) (A.2)

φIII =
∑

n

r−n(dsca
n cos(nφ) +Dsca

n sin(nφ)) + rn((dsou
n cos(nφ) +Dsou

n sin(nφ)), (A.3)

where φI holds for r < R0, φII holds forR0 < r < R1 and φIII for r > R1. Here, asou
n /Asou

n

and dsou
n /Dsou

n are the source coefficients of the dipole inside and the constant electric
field outside the annulus. The other coefficients give the scattered and induced fields
and are to be determined from the boundary conditions [20]. Demanding continuity of
the tangential component of the electric field and the normal component of the electric
displacement field yields the following set of boundary equations for each n for the cosine
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coefficients 
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These can be solved to give

asca
n =a

sou
n (ϵ2

d − ϵ2
m)(R2n

0 −R2n
1 ) − 4dsou

n ϵdϵmR
2n
0 R

2n
1

R2n
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1 ] (A.5)

bin
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1
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1 ] (A.6)

cin
n =2ϵd(ϵd − ϵm)asou

n − 2ϵd(ϵd + ϵm)R2n
1 d

sou
n

[(ϵd − ϵm)2R2n
0 − (ϵd + ϵm)2R2n

1 ] (A.7)

dsca
n =−4ϵdϵma

sou
n R2n

1 + (ϵ2
d − ϵ2

m)(r2n
− − r2n

+ )R2n
1 d

sou
n

[(ϵd − ϵm)2R2n
0 − (ϵd + ϵm)2R2n

1 ] . (A.8)

The coefficients for the sine terms are similar. The plasmon resonance condition is
obtained from the zeros of the denominator [52], i.e. from

[
(ϵd − ϵm)2R2n

0 − (ϵd + ϵm)2R2n
1

]
= 0 (A.9)

[(ϵd − ϵm)Rn
0 − (ϵd + ϵm)Rn

1 ] [(ϵd − ϵm)Rn
0 + (ϵd + ϵm)Rn

1 ] = 0. (A.10)

There are thus two types of modes corresponding to the zero of either factor, substituting
R0 = e−u0 and R1 = eu0 , and rearranging gives the two resonance condition for even

tanh(nu0) = − ϵd

ϵm

,

and odd modes
tanh(nu0) = −ϵm

ϵd

,

as given in section 3.1.
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A.2 Expansion coefficients: EELS for the ellipse

In this section, we derive the expansion coefficients given in Eq.5.102. We aimed for an
expansion of the source potential of an electron in the annulus frame in Eq.5.100

φsou =
λ exp

[
− ω

ce
x′

e

]
4πϵ0ω

exp
[
ωc

2ce

(
reiϕ + 1

reiϕ

)]
, (A.11)

as an infinite series of the form

φsou =
n=∞∑

n=−∞
as

nr
neinϕ. (A.12)

We start by writing

exp
[
ωc

2ce

(
reiϕ + 1

r
e−iϕ

)]
= exp

[
ωc

2ce

reiϕ
]

exp
[
ωc

2ce

1
reiϕ

]
(A.13)

=
∑
n=0

(
ωc

2ce

)n rneinϕ

n!
∑
k=0

(
ωc

2ce

)k r−ke−ikϕ

k! (A.14)

=
∞∑

n=0

∞∑
k=0

(
ωc

2ce

)n+k rn−kei(n−k)ϕ

n!k! . (A.15)

We now assume that the double sum in the equation above can be written as a single
sum, such that

∞∑
n=0

∞∑
k=0

(
ωc

2ce

)n+k rn−kei(n−k)ϕ

n!k! =
l=∞∑

l=−∞
slr

leilϕ. (A.16)

Multiplying both sides of the above equation by e−i|g|y and integrating y over a full
period gives

∞∑
n=0

∞∑
k=0

(
ωc

2ce

)n+k rn−k

n!k! 2πδ|g|,n−k =
l=∞∑

l=−∞
slr

lδ|g|,l2π (A.17)

∞∑
k=0

(
ωc

2ce

)2k+|g| r|g|

k!(k + |g|)!2π = s|g|r
|g|2π (A.18)

∞∑
k=0

(
ωc

2ce

)2k+|g| 1
k!(k + g)! = s|g|. (A.19)

This determines the coefficients sl with l > 0. Now let us evaluate the coefficients for
l < 0, we multiply by ei|g|y and integrate y over a full period to get,
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∞∑
n=0

∞∑
k=0

(
ωc

2ce

)n+k rn−k

n!k! 2πδ|g|,k−n =
l=∞∑

l=−∞
slr

lδ|g|,−l2π. (A.20)

Note that if we now substitute for n = k− |g|, we need to remember that the range of n
is restricted, since n > 0. This means that the sum over k can only run over the terms
where k − |g| ≥ 0. Thus we get

∞∑
k≥|g|

(
ωc

2ce

)2k−|g| r−|g|

k!(k − |g|)!2π = s−|g|r
−|g|2π. (A.21)

A simple change of variable from k −→ k′ + |g| brings this into the form

∞∑
k′=0

(
ωc

2ce

)2k+|g| r−|g|

k!(k + |g|)!2π = s−|g|r
−|g|2π (A.22)

∞∑
k′=0

(
ωc

2ce

)2k′+|g| 1
k!(k + |g|)! = s−|g|, (A.23)

which is identical to the coefficient s|g|. We can thus conclude that

as
n =

λ exp
[
− ω

ce
u0
]

4πϵ0ω
sn (A.24)

=
λ exp

[
− ω

ce
u0
]

4πϵ0ω

∞∑
k=0

(
ωc

2ce

)2k+|n| 1
k!(k + |n|)! , (A.25)

which is the equation given in Eq.5.102.



Appendix B

Supporting analytical calculations
for the grating

B.1 The conformal transformation as a Fourier se-
ries

Here we expand the conformal transformation generating a grating from a thin slab
given in Eq.4.3 as a Fourier series. We start from

w = γ log( 1
eζ − iw0

+ iy0), (B.1)

which we can rewrite as

w =γ log
( 1
eζ − ew1

+ ey1

)
, (B.2)

with ew1 = iw0 and ey1 = iy0. We now try to rewrite this expression in a more amendable
form.

log
( 1
eζ − ey1

+ ew1

)
= log

(
1

eζ(1 − ew1−ζ) + ey1

)

= log
(

1
eζ(1 − ew1−ζ)(1 + ey1eζ(1 − ew1−ζ))

)
= − log

(
eζ(1 − ew1−ζ)

)
+ log

(
1 + ey1eζ(1 − ew1−ζ)

)
= −ζ − log(1 − ew1−ζ) + log

(
1 + ey1eζ(1 − ew1−ζ)

)
. (B.3)
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The second term in this equation can be expanded as a power series such that

log(1 − ew1−ζ) =
∞∑

g=1

−1
g
eg(w1−ζ). (B.4)

This series converges if

|e(w1−ζ)| < 1 (B.5)
|w0| < ex (B.6)

log(|w0|) < x, (B.7)

i.e. as long as x is right of the left Branch point this is a convergent series. The third
term of the coordinate transformation

log
(
1 + ey1eζ − ew1+y1

)
(B.8)

can be expanded around ζ0 = −ew1+y1 , since

log(1 + x) = log(1 + x0) +
∞∑

g=1

(−1)g+1

g

1
(1 + x0)n

(x− x0)n. (B.9)

In our case this gives

log
(
1 + ey1eζ − ew1+y1

)
= log(1 − ew1+y1) +

∞∑
g=1

(−1)g+1

g

1
(1 − ew1+y1)g

×(ey1eζ − ew1+y1 + ew1+y1)g

= log(1 − ew1+y1) +
∞∑

g=1

(−1)g+1

g

1
(1 − ew1+y1)g

eg(ζ+y1). (B.10)

According to the ratio test [39] this series converges if

lim
g−→∞

∣∣∣∣∣e(g+1)(ζ+y1)(1 − ew1+y1)g

(1 − ew1+y1)g+1eg(ζ+y1)
g + 1
g

∣∣∣∣∣ < 1 (B.11)∣∣∣∣∣ e(ζ+y1)

(1 − ew1+y1)

∣∣∣∣∣ < 1 (B.12)

y0e
x < |1 + w0y0| (B.13)
ex < |w0 + 1/y0| (B.14)
x < log(|w0 + 1/y0|), (B.15)
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which means x has to be to the left of the right branch point. That means in the region
log(|w0|) < x < log(|w0 + 1/y0|) we can write the coordinate transformation as follows

w/γ = log(1 − ew1+y1) − ζ +
∞∑

g=1

1
g
eg(w1−ζ) +

∞∑
g=1

(−1)g+1

g

1
(1 − ew1+y1)g

eg(ζ+y1)

= log(1 + y0w0) − ζ +
∞∑

g=1

ig

g

[
(−1)g+1

(w0 + 1/y0)g
egζ + wg

0e
−gζ

]
. (B.16)

Let us rewrite this in terms of the real and imaginary part. The third term (hereafter
called Γ) can be rewritten as

Γ =
∞∑

g=1

ig

g

[
(−1)g+1

(w0 + 1/y0)g
egζ + wg

0e
−gζ

]

=
∞∑

g=1

i2g

2g

[
(−1)2g(−1)

(w0 + 1/y0)2g
e2gζ + w2g

0 e
−2gζ

]

+
∞∑

g=1

i2g−1

2g − 1

[
(−1)2g−1+1

(w0 + 1/y0)2g−1 e
(2g−1)ζ + w2g−1

0 e−(2g−1)ζ
]
. (B.17)

B.1.1 Real part of Γ

That means the real part of Γis given by

Re(Γ) =
∞∑

g=1

cos(2gy)i2g

2g

[
(−1)2g(−1)e2gx

(w0 + 1/y0)2g
+ w2g

0 e
−2gx

]
(B.18)

+
∞∑

g=1

i2g−1i sin((2g − 1)y)
2g − 1

[
(−1)2g−1+1e(2g−1)x

(w0 + 1/y0)2g−1 − w2g−1
0 e−(2g−1)x

]
(B.19)

Eventually, we would like to rewrite our plane wave in terms of functions e|g|x+igy, which
can be done by noting that

∞∑
g=1

i2g cos(2gy)
2g

[
(−1)2g(−1)e2gx

(w0 + 1/y0)2g
+ w2g

0 e
−2gx

]
=

∞∑
g=1

i2g

2g
ei2gy + e−i2gy

2

[
(−1)2g(−1)e2gx

(w0 + 1/y0)2g
+ w2g

0 e
−2gx

]
=

∞∑
g=−∞

g ̸=0

i2|g|

2
ei2gy

2|g|

[
(−1)2|g|(−1)e2|g|x

(w0 + 1/y0)2|g| + w
2|g|
0 e−2|g|x

]
.
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Likewise we can rewrite the sin part as

∞∑
g=1

i2g−1i sin((2g − 1)y)
2g − 1

[
(−1)2g−1+1e(2g−1)x

(w0 + 1/y0)2g−1 − w2g−1
0 e−(2g−1)x

]
=

∞∑
g=1

i|2g−1|

|2g − 1|
sign(2g − 1)ei(2g−1)y

2

[
(−1)2g−1+1e|(2g−1)|x

(w0 + 1/y0)|2g−1| − w
|2g−1|
0 e−|(2g−1)|x

]
+

0∑
g=−∞

i|2g−1|

|2g − 1|
sign(2g − 1)ei(2g−1)y

2

[
(−1)2g−1+1e|(2g−1)|x

(w0 + 1/y0)|2g−1| − w
|2g−1|
0 e−|(2g−1)|x

]
=

∞∑
g=−∞

i|2g−1|

|2g − 1|
sign(2g − 1)ei(2g−1)y

2

[
(−1)2g−1+1e|(2g−1)|x

(w0 + 1/y0)|2g−1| − w
|2g−1|
0 e−|(2g−1)|x

]
(B.20)

Now we can combine these two terms, but we do it stepwise. First we combine the terms
in the sum running from g = 1 to infinity

∞∑
g=1

i2|g|

2
ei2gy

2|g|

[
(−1)2|g|(−1)e2|g|x

(w0 + 1/y0)2|g| + w
2|g|
0 e−2|g|x

]
+

∞∑
g=1

i|2g−1|

|2g − 1|
ei(2g−1)y

2

[
(−1)2g−1+1e|(2g−1)|x

(w0 + 1/y0)|2g−1| − w
|2g−1|
0 e−|(2g−1)|x

]
=

∞∑
g=1

i|g|

2
eigy

|g|

[
(−1)|g|+1e|g|x

(w0 + 1/y0)|g| + (−1)|g|w
|g|
0 e

−|g|x
]

=

∞∑
g=1

(−i)|g|

2
eigy

|g|

[
−e|g|x

(w0 + 1/y0)|g| + w
|g|
0 e

−|g|x
]

= (B.21)

The terms for negative g can be written as

−1∑
g=−∞

i2|g|

2
ei2gy

2|g|

[
(−1)2|g|(−1)e2|g|x

(w0 + 1/y0)2|g| + w
2|g|
0 e−2|g|x

]
+

0∑
g=−∞

i|2g−1|

|2g − 1|
ei(2g−1)y

2

[
(−1)2g−1e|(2g−1)|x

(w0 + 1/y0)|2g−1| + w
|2g−1|
0 e−|(2g−1)|x

]
=

−1∑
g=−∞

i|g|

|g|
eigy

2

[
−e|g|x

(w0 + 1/y0)|g| + w
|g|
0 e

−|g|x
]
. (B.22)
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So finally we can write the real part of Γ as

Re(Γ) =
∞∑

g=−∞
g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy, (B.23)

where we defined

d+
g = (−i)|g|

2|g|
−1

(w0 + 1/y0)|g| for g > 0

= e−i π
2 g

2|g|
−1

(w0 + 1/y0)|g| ∀g (B.24)

d−
g = (−i)|g|

2|g|
w

|g|
0 for g > 0

= e−i π
2 g

2|g|
w

|g|
0 ∀g (B.25)

as given in Eq.4.7 the supplementary material of [102]. Note that the reality conditions
(d+

g )∗ = d+
−g, (d−

g )∗ = d−
−g hold.

B.1.2 Imaginary part of Γ

Similarly to the calculation above, we can also rewrite the imaginary part of Γ(as
defined in Eq.B.17) as a Fourier series. The imaginary part of gamma is given by

iIm(Γ) =
∞∑

g=1

i2g

2g i sin(2gy)
[

(−1)2g(−1)
(w0 + 1/y0)2g

e2gx − w2g
0 e

−2gx

]

+
∞∑

g=1

i2g−1

2g − 1 cos((2g − 1)y)
[

(−1)2g−1+1

(w0 + 1/y0)2g−1 e
(2g−1)x + w2g−1

0 e−(2g−1)x
]

(B.26)

Im(Γ) =
∞∑

g=1

i2g

2g sin(2gy)
[

(−1)2g(−1)
(w0 + 1/y0)2g

e2gx − w2g
0 e

−2gx

]

+
∞∑

g=1

i2g−1

2g − 1i cos((2g − 1)y)
[

(−1)2g−1

(w0 + 1/y0)2g−1 e
(2g−1)x − w2g−1

0 e−(2g−1)x
]
. (B.27)
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As for the real part we write,

∞∑
g=1

i2g−1

2g − 1i cos((2g − 1)y)
[

(−1)2g−1

(w0 + 1/y0)2g−1 e
(2g−1)x − w2g−1

0 e−(2g−1)x
]

=

∞∑
g=1

i2g−1

2g − 1i
ei(2g−1)y + e−i(2g−1)y

2

[
(−1)2g−1

(w0 + 1/y0)2g−1 e
(2g−1)x − w2g−1

0 e−(2g−1)x
]

=

∞∑
g=−∞

i|2g−1|

|2g − 1|
i
ei(2g−1)y

2

[
(−1)|2g−1|

(w0 + 1/y0)|2g−1| e
|(2g−1)|x − w

|2g−1|
0 e−|(2g−1)|x

]
= (B.28)

and
∞∑

g=1

i2g

2g sin(2gy)
[

(−1)2g(−1)
(w0 + 1/y0)2g

e2gx − w2g
0 e

−2gx

]
=

∞∑
g=1

i2g

2g (−i)sign(2g)e
i2gy

2

[
(−1)2g(−1)

(w0 + 1/y0)2g
e2gx − w2g

0 e
−2gx

]
+

−1∑
g=−∞

i2g

2g (−i)sign(2g)e
i2gy

2

[
(−1)2g(−1)

(w0 + 1/y0)2g
e2gx − w2g

0 e
−2gx

]
=

∞∑
g=−∞

g ̸=0

i2g

2g (−i)sign(2g)e
i2gy

2

[
(−1)2g(−1)

(w0 + 1/y0)2g
e2gx − w2g

0 e
−2gx

]
. (B.29)

Let us combine the terms running over positive values of g again,

∞∑
g=1

i2g

2g (−i)e
i2gy

2

[
−1

(w0 + 1/y0)2g
e2gx − w2g

0 e
−2gx

]
+

∞∑
g=1

i2g−1

2g − 1i
ei(2g−1)y

2

[
−1

(w0 + 1/y0)2g−1 e
(2g−1)x − w2g−1

0 e−(2g−1)x
]

∞∑
g=1

(−i)|g|+1

|g|
eigy

2

[
−1

(w0 + 1/y0)|g| e
|g|x − w

|g|
0 e

−|g|x
]
. (B.30)

Combining the terms running over negative g gives

0∑
g=−∞

i|2g−1|

|2g − 1|
i
ei(2g−1)y

2

[
−1

(w0 + 1/y0)|2g−1| e
|(2g−1)|x − w

|2g−1|
0 e−|(2g−1)|x

]
+

−1∑
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i2|g|

2|g|
i
ei2gy

2

[
−1

(w0 + 1/y0)2|g| e
2|g|x − w

2|g|
0 e−2|g|x

]
=

−1∑
g=−∞

i|g|+1

|g|
eigy

2

[
−1

(w0 + 1/y0)|g| e
|g|x − w

|g|
0 e

−|g|x
]
. (B.31)
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Finally we can write this as a single Fourier series

Im(Γ) =
∞∑

g=−∞
g ̸=0

(
h+

g e
|g|x + h−

g e
−|g|x

)
eigy, (B.32)

with

h+
g = (−i)|g|

2|g|
i

(w0 + 1/y0)|g| for g > 0

= e−i π
2 g

2|g|
sign(g)i

(w0 + 1/y0)|g| ∀g (B.33)

h−
g = i(−i)|g|

2|g|
w

|g|
0 for g > 0

= isign(g)e−i π
2 g

2|g|
w

|g|
0 ∀g (B.34)

as given in Eq.4.7 the supplementary material of [102]. Note that the reality conditions
(h+

g )∗ = h+
−g, (h−

g )∗ = h−
−g hold.

B.1.3 Coordinate transformation as a Fourier series

With the results obtained in the two previous sections we are now in a position to
write down explicit expressions for the real and imaginary part of our coordinate
transformation. That is in the region log(|w0|) < x < log(|w0 + 1/y0|) the
transformation

w =γ log
( 1
ez − ew1

+ ey1

)
=γ [log(1 + y0w0) − z + Re(Γ) + iIm(Γ)] . (B.35)

In terms of the real and imaginary part we have
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u = γ [log(1 + y0w0) − x+ Re(Γ)]

= γ

log(1 + y0w0) − x+
∞∑

g=−∞
g ̸=0

(
d+

g e
|g|x + d−

g e
−|g|x

)
eigy

 (B.36)

v = γ [−y + Im(Γ)]

= γ

−y +
∞∑

g=−∞
g ̸=0

(
h+

g e
|g|x + h−

g e
−|g|x

)
eigy

 (B.37)

as given in Eq.4.5 and the supplementary material of [66].



Appendix C

Modelling the radiative reaction

In this appendix, we derive an expression for permittivity of the fictive absorber that
is used to model the radiative reaction of a nanoparticle in the TO framework. This
section follows the presentation in [53] in spirit, but differs in the technical details. In
particular, section C.1 is published verbatim in the supplementary material of [66] and
is reprinted here with permission. Copyright 2016 American Chemical Society.

C.1 Permittivity of the fictive absorber

The problem that has to be addressed is the following. It is known that any nanoparticle
that has an electric field incident on it will scatter parts of that field. The question is, how
can the energy scattered to infinity by the particle be calculated within an electrostatic
framework? To answer this question we first look at what happens electrodynamically.

For 2-d nanoparticles smaller than the wavelength the fields scattered by them to
infinity will be given by cylindrical waves to a very good approximation. A cylindrical
wave with an electric field in the x − y−plane has a magnetic component in the z-
direction. That component only needs to fulfil the scalar wave equation in cylindrical
coordinates and, for outgoing waves, can be written as [110]:

Hz = H0Hm(k0r)eimφe−iωt, (C.1)

where Hm is the Hankel function of the first kind [152]. In the following we will not
write the time dependence explicitly. The electric field can be obtained from [20]
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∇ × H = −iωϵ0E, (C.2)

−iωϵ0E = 1
r
∂φHz r̂ − ∂rHzφ̂. (C.3)

Before we evaluate the derivatives we will make the near field approximation k0r << 1.
In this case (for m ≥ 0)

Hm(k0r) = 1 + i 2
π
(log(k0r/2) + γ) for m = 0

1
m!(

k0r
2 )m − i (m−1)!

π
( 2

k0r
)m for m > 0.

(C.4)

The derivatives of this asymptotic form are straight forward to evaluate

∂rHm(k0r) =
i 2

π
2

k0r
for m = 0

1
(m−1)!(

k0
2 )mrm−1 + im!

π
( 2

k0
)mr−m−1 for m > 0.

(C.5)

So we obtain for the angular component of the electric field

Eφ = H0

iωϵ0
eimφ ×

 2
π

2
k0r

for m = 0
1

(m−1)!(
k0
2 )mrm−1 + im!

π
( 2

k0
)mr−m−1 for m > 0.

 (C.6)

and for the radial component

Er = −H0

ωϵ0
eimφ

[
1

(m− 1)!(
k0

2 )mrm−1 − i
m!
π

( 2
k0

)mr−m−1
]

for m > 0, (C.7)

since the φ-derivative of the m = 0 component is zero.

To model these fields in an electrostatic framework we are going to assume that the
above fields are created by a radiating nanoparticle, which acts as a source and the
reflection of the source fields from an absorber. Our task is to find the permittivity of
the absorber which gives rise to a reflection matching the above solutions. That is we
assume our total field is given by

Etot = Esou + Esca, (C.8)

where Esou is the field generated by the nanoparticle and Esca corresponds to the field
reflected from by the absorber. But before we can do that we have to solve the electro-
static problem first. So we assume that there is a source at the origin leading to fields of
the form r−m. These fields are then reflected by the absorber, which we place at r = a,
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such that ak0 ≪ 1. The reflected fields have the form rm. Inside the fictive absorber
we can only have fields decaying with increasing radius. Therefore we can write the
electrostatic potential in the two regions

Φm
I = (r−m +Rrm)eimφ + Φ0 for m > 0, r < a (C.9)

Φm
II = Tr−meimφ for m > 0, r > a (C.10)

Φ0
I = A+D log(r) for m = 0, r < a (C.11)

Φ0
II = T0 log(r) for m = 0, r > a (C.12)

This leads to the fields

Eφ
I = −im(r−m−1 +Rrm−1)eimφ for m > 0, r < a (C.13)

Er
I = m(r−m−1 −Rrm−1)eimφ for m > 0, r < a

Eφ
II = −imTr−m−1eimφ for m > 0, r > a

Er
I = Tmr−m−1eimφ for m > 0, r > a

E0,r
I = Dr−1 for m = 0, r < a

E0,r
I = T0r

−1 for m = 0, r > a.

At the boundary between the two media (r = a) the tangential component of the electric
and the normal component of the displacement field have to be continuous [20]. This
gives

(a−m−1 +Ram−1) = Ta−m−1 (C.14)
(a−m−1 −Ram−1) = ϵabsTa

−m−1 (C.15)

or

1 +Ra2m = 1
ϵabs

(1 −Ra2m) (C.16)

ϵabs = (1 −Ra2m)
(Ra2m + 1) (C.17)

R = a−2m 1 − ϵabs

1 + ϵabs

. (C.18)
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For the zero order mode we only have one equation and thus cannot determine D un-
ambiguously, here we have

D = T0ϵabs. (C.19)

The task is now to match the electrostatic solution to the electrodynamic one. This
will yield a condition on the permittivity of the absorber ϵabs. We can see that we cannot
match the m = 0 mode to the electrodynamic solution because there Edynamic

φ ̸= 0,
whereas Estatic

φ = 0. The other modes can be matched, however. The resulting reflection
coefficient will depend on m. So the permittivity of the absorber would also have to
depend on m. To match the coefficients in front of r−m−1 between the electrostatic and
electrodynamic case we set H0 to be

Hm
0 = −iωϵ0m

π

m! (
2
k0

)−m. (C.20)

Then equating the electrodynamic (Eq.C.6) and electrostatic Eφ (Eq.C.13) gives the
value for R (we could equally well match Er)

−imeimφ

[
−iπ

m!(m− 1)!(
k0

2 )2mrm−1 + r−m−1
]

= −im(r−m−1 +Rrm−1)eimφ (C.21)

R = −iπ
m!(m− 1)!(

k0

2 )2m. (C.22)

This can now be used to determine the permittivity of the fictive absorber from Eq.C.18

ϵm
abs =

1 − −iπ
m!(m−1)!(

k0
2 a)2m

1 + −iπ
m!(m−1)!(

k0
2 a)2m

. (C.23)

For the first order mode m = 1, this becomes

ϵ1
abs =

1 + iπ(k0
2 a)2

1 − iπ(k0
2 a)2 (C.24)

≈ 1 + 2iπ(k0

2 a)2 − 2π2(k0

2 a)4 +O((k0

2 a)6). (C.25)

This means we can model scattered light propagating to infinity by placing a fictive
absorber around the scatterer that has a permittivity given by Eq.C.25. There are
however constraints on where to place that fictive absorber. On the one hand it has to
be in the near field such that k0a ≪ 1 holds. On the other hand it has to be far enough
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from the surface of the particle such that only the first order mode is present in the fields
that reach the absorber. The energy absorbed by the fictive absorber is then identical to
the energy scattered to infinity by the nanoparticle. This approach also allows to take
radiation damping into account. This can be done by solving the multiple scattering
problem between the nanoparticle and the fictive absorber, as has been shown above
[66].

C.2 Polarisability of the fictive absorber

Here, we deduce the polarisability of the fictive absorber used in our calculation of the
EELS spectra of a non-concentric annulus. As above, assume the non-concentric annulus
is surrounded by a fictive absorber with circular boundary at r′ = a. The transformation
to the concentric annulus,

ζ ′ = g2

ζ − x0
, (C.26)

transforms this fictive absorber into a small cylindrical particle of radius r = g2

a
, at

position (x = x′
0, y = 0). Here the primed coordinates refer to the non-concentric

annulus frame. Such a particle, placed in a constant electric field E0 and surrounded by
vacuum, will acquire a dipole moment given by

pabs =2πϵ0
g4

a2

(
ϵabs − 1
ϵabs + 1

)
E0 (C.27)

=γabsE0. (C.28)

Using the expression for the permittivity of the fictive in Eq.C.25 to second order in k0a,
allows us to write

(
ϵabs − 1
ϵabs + 1

)
≈
(

iπ(k0
2 a)2 − π2(k0

2 a)4

iπ(k0
2 a)2 − π2(k0

2 a)4 + 1

)
(C.29)

≈
(
iπ(k0

2 a)2 − π2(k0

2 a)4
)

×
(

1 − iπ(k0

2 a)2 + π2(k0

2 a)4
)

(C.30)

= iπ(k0

2 a)2 +O((k0

2 a)6). (C.31)
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Substituting this back into the equation for the dipole moment of the fictive absorber
gives

pabs =iπ
2

2 ϵ0g
4k2

0E0, (C.32)

which indicates that the polarisability of the fictive absorber is given by

γabs = i
π2

2 ϵ0g
4k2

0, (C.33)

as given in Chapter 5 and [53].



Appendix D

Supplementary material:
time-domain simulation files

Video files showing the time-domain solution of the EELS calculations discussed in
chapter 5 are provided as supplementary material. They can be found on the supplied
USB-drive or are available from the author. The following files are included:

• Horizontal_E_field_electron_passes_horizontally_annulus.mp4
Shows the time evolution of the horizontal component of the electric field as a line
electron moves past a non-concentric annulus horizontally along the top.

• Vertical_E_field_electron_passes_horizontally_annulus.mp4
Shows the time evolution of the vertical component of the electric field as a line
electron moves past a non-concentric annulus horizontally along the top.

• Horizontal_E_field_electron_passes_vertically_annulus.mp4
Shows the time evolution of the horizontal component of the electric field as a line
electron moves past a non-concentric annulus vertically to the left of the particle.

• Vertical_E_field_electron_passes_vertically_annulus.mp4
Shows the time evolution of the vertical component of the electric field as a line
electron moves past a non-concentric annulus vertically to the left of the particle.

• Horizontal_E_field_ellipse.mp4
Shows the time evolution of the horizontal component of the electric field as a line
electron moves past an ellipse vertically to the right.
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• Vertical_E_field_component_ellipse.mp4
Shows the time evolution of the vertical component of the electric field as a line
electron moves past an ellipse vertically to the right.
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