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Abstract 

The equations governing coupled consolidation in unsaturated soils are known to contain 

additional parameters when compared to the equations for saturated soils. Nonetheless, the 

variation of these parameters with suction or degree of saturation is not generally agreed 

upon. The paper introduces a novel approach to deriving general equations for each of these 

parameters and their variation, and explains that, for consistency with the constitutive and 

soil-water retention curve models adopted, these general equations need to be transformed 

into case-specific expressions. Finally, a conceptual model is presented highlighting how the 

behaviour of unsaturated soil reflects aspects of its water content. 
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Introduction  

Several attempts have been made to model hydro-mechanical coupling in unsaturated soil 

states, usually based on extending Biot’s theory (Biot, 1941). Different simplifications can be 

made in extending Biot’s approach, such as assuming that the air phase is drained and air 

pressure is equal to atmospheric pressure (e.g. Meroi et al., 1995; Wong et al., 1998; Sheng et 

al., 2003; Sheng et al., 2008; Wang et al., 2009). This assumption applies to the whole of the 

unsaturated region, independently of the water and air content of the soil, and the continuity 

equation for the air phase is ignored. The assumption of a static air phase may impede the 

applicability of the Governing Equations to a series of Geotechnical Engineering problems 

involving air pressure, such as Reservoir Engineering, where both water and gas exist under 

pressure. In certain cases the flow of air is explicitly modelled and air pressure is an 

additional primary variable (e.g. Darkshanamurthy et al., 1984; Schrefler & Xiaoyong, 1993; 

Schrefler et al., 1995; Gatmiri et al., 1998; Schrefler & Scotta, 2001; Laloui et al., 2003), yet 

transition between fluid phases may be ignored. The effect of temperature can be included in 

thermo-hydro-mechanical coupling in unsaturated soils (e.g. Olivella et al., 1994; Thomas & 

He, 1995).  

The work presented here is an extension of the work done by Darkshanamurthy et al. (1984) 

and Wong et al. (1998). Although in Darkshanamurthy et al. (1984) the flow of the gas phase 

is modelled, “the effect of air diffusing through water, air dissolving in the water phase and 

the movement of water vapour are ignored”. Wong et al. (1998) extended the work of 

Darkshanamurthy et al. (1984) to multidimensional cases and presented the Finite Element 

(FE) formulation for coupled consolidation problems, assuming that “(i) the pore-air pressure 

is atmospheric and remains unchanged during an analysis, and (ii) water flows through the 

soil skeleton in accordance with Darcy’s law”. These two assumptions were also made in the 

proposed approach. 

The original formulations of the governing equations in Biot (1941), Darkshanamurthy et al. 

(1984) and Wong et al. (1998) are explained in Appendix A and the main points are 

discussed in the subsequent section, in order to highlight the differences of the proposed 

approach. All the relevant equations reported from the literature have been reproduced in 

Appendix A employing the same symbols as in the original publication, with the exception of 

Poisson’s ratio which is always 𝜇. These equations are summarised in Table 1.  

The ground-breaking work of Biot (1941) set the basis for coupled consolidation analysis in 

saturated soils and in soils containing air in the form of occluded bubbles (i.e. not in a 

continuous form). The two equations proposed, i.e. the constitutive relationship for the soil 

structure and the constitutive relationship for the water phase, contain four moduli: 𝐸, which 

is Young’s modulus (the shear modulus 𝐺 is used for shear strains); 𝐻, which is similar to 

Young’s modulus and shows the effect of changing pore water pressure on the direct strains 

in the soil; 𝐻1, which is a physical constant describing the effect of changes in applied total 

stress on the water content; and 𝑅, which is a physical constant describing the effect of 

incremental pore water pressure on the water content. 

Biot (1941) demonstrated that 𝐻 = 𝐻1 for the particular stress condition where 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 
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and 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝜏𝑥𝑧 = 0, i.e. no distinction is necessary between the modulus governing the 

effect of changing pore water pressure on the direct strains and the modulus governing the 

effect of incremental pore water pressure on the water content. 

In extending Biot’s work to unsaturated soil conditions, Darkshanamurthy et al. (1984) and 

Wong et al. (1998) also assumed, either explicitly or implicitly that the two moduli remain 

equal and, as in Biot (1941), are physical constants. However, there is no particular reason 

why the modulus governing the effect of matric suction on the direct strains should be equal 

to the modulus governing the effect of net stress on the volumetric water content under all 

circumstances and especially for truly unsaturated soils containing continuous air, where the 

effect on soil behaviour of changing suction is distinctively and fundamentally different from 

the effect of changing applied stress (Burland & Jennings, 1962, Fredlund & Morgerstern, 

1964). As discussed in the subsequent section, not making a clear distinction between the 

moduli controlling the effect of suction on direct strains and the effect of net stresses on 

volumetric water content oversimplifies the complex behaviour of unsaturated soils.  

This drawback is addressed in the present paper, where a distinction between the two moduli 

is explicitly made. In addition to moduli 𝐸 and 𝑅, which are similar to the moduli in Biot 

(1941), modulus 𝐸𝑤, which governs the effect of net stress on the volumetric water content, 

and modulus  𝐻, which governs the effect of matric suction on direct strains, are required for 

the formulation of the Governing Equations in unsaturated states. Following an approach 

similar to Biot (1941) and Wong et al. (1998), the constitutive relationship for the water 

phase is rewritten in a form containing three parameters, Ω, 𝜔 and 𝐻, which are related to the 

four moduli and which are required to extend coupled consolidation to unsaturated soil states. 

The main differences of the current approach, which constitute the innovative aspects of this 

work, are:  

(a) a clear distinction is made between the two moduli controlling the effect of matric suction 

on direct strains, 𝐻, and the effect of net stress on the volumetric water content, 𝐸𝑤, as 

explained above. As a result, the three additional parameters, Ω, 𝜔 and 𝐻, which are required 

to extend coupled consolidation to unsaturated soil states, relate to four moduli, 𝐸, 𝐸𝑤, 𝑅 and 

𝐻 rather than to three as in Wong et al. (1998) (𝐸, 𝑅 and 𝐻, as no distinction is made between 

𝐸𝑤 and 𝐻);  

(b) Parameters Ω, 𝜔 and 𝐻 are not soil constants, and their variation with suction and degree 

of saturation is obtained in a consistent manner. Other Authors (e.g Gatmiri et al., 1998; 

Sheng et al., 2003; Khalili et al., 2008) have obtained similar expressions following different 

approaches to deriving the Governing Equations to the one presented here.  However, what is 

shown for the first time is that the Governing Equations need to be adjusted to the soil-water 

retention (SWR) and compressibility relationships (i.e. SWR and constitutive model) used to 

reproduce soil behaviour, as these will affect individual terms in the equations obtained for 

parameters Ω, 𝜔 and 𝐻. This is more fundamental than updating the value of parameters Ω, 𝜔 

and 𝐻, which vary in a highly non-linear manner with suction; it is shown that essentially 
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different Equations correspond to different SWR and constitutive models. More specifically, 

if the SWR model accounts for the effect of specific volume 𝑣 on the degree of saturation, 𝑆𝑟, 

in addition to matric suction, 𝑠, i.e. 𝑆𝑟 is a function 𝑓 of both 𝑣 and 𝑠, 𝑆𝑟 = 𝑓(𝑠, 𝑣), parameter 

Ω is no longer the same as in the case where 𝑆𝑟 is a function 𝑓 of 𝑠 only, 𝑆𝑟 = 𝑓(𝑠). This is 

an aspect of the Governing Equations commonly ignored in the literature.   

To illustrate the effect of the constitutive and SWR model on parameters Ω, 𝜔 and 𝐻, four 

cases are considered, where the compressibility and SWR relationships differ slightly but 

result in measurable differences in the values of parameters Ω, 𝜔 and 𝐻 and how these vary 

with suction and therefore degree of saturation. Of these cases one is further considered and 

used to present a conceptual model, highlighting how the behaviour of unsaturated soil 

reflects aspects of its water content. 

The FE element formulation of the governing equations proposed here and their use in non-

linear boundary value problems are discussed in Tsiampousi et al. (2016). 
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Table 1: Summary of constitutive relationships proposed for the soil structure and for the water phase 

 Constitutive relat. for the soil structure Constitutive relat. for the water phase 

B
io

t 
(1

9
4

1
) 

𝜀𝑥 =
𝜎𝑥

𝐸
−

𝜇

𝐸
(𝜎𝑦 + 𝜎𝑧) +

𝜎

3𝐻
 (A.1) 𝜃 =

1

3𝐻1

(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) +
𝜎

𝑅
 (A.3) 

and:  or:  

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
 (A.2) 𝜃 = 𝛼𝜀 +

𝜎

𝑄
 (A.4) 

  where:  

  𝛼 =
2(1 + 𝜇)

3(1 − 2𝜇)
∙

𝐺

𝐻
 (A.5) 

  𝑄 =
1

𝑅
−

𝛼

𝐻
 (A.6) 

Asumption: 𝐻 = 𝐻1  

Approach based on the use of moduli 𝐺, 𝑅 and 𝐻  

D
ar

k
sh

an
am

u
rt

h
y

 e
t 

al
. 
(1

9
8

4
) 

𝜀𝑥 =
(𝜎𝑥 − 𝑢𝑎)

𝐸1

−
𝜇

𝐸1

(𝜎𝑦 + 𝜎𝑧 − 2𝑢𝑎)

+ (
𝑢𝑎 − 𝑢𝑤

𝐻1

) 

(A.10) 
𝜃𝑤 =

(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 3𝑢𝑎)

3𝐻1
′

+
𝑢𝑎 − 𝑢𝑤

𝑅1

 

(A.11) 

and:  or:  

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
 (A.2) 𝜃𝑤 =

𝛽

3
𝜀 + 𝛾(𝑢𝑎 − 𝑢𝑤) (A.12) 

  where:  

  𝛽 =
𝐸1

𝐻1

1

1 − 2𝜇
 (A.13) 

  𝛾 =
1

𝑅1

−
𝛽

𝐻1
′  (A.14) 

Asumption: 𝐻1 = 𝐻1
′  

Approach based on the use of moduli 𝐸1, 𝑅1 and 𝐻1 

W
o

n
g

 e
t 

al
. 

(1
9

9
8
) 

𝜀𝑖𝑗 =
1 + 𝜇

𝐸
𝜎𝑖𝑗

𝑛 −
𝜇

𝐸
𝜎𝑛𝛿𝑖𝑗

+
𝑢𝑎 − 𝑢𝑤

𝐻
𝛿𝑖𝑗 

(A.17) 𝜃𝑤 = 𝛽𝜀𝑣 + 𝜔(𝑢𝑎 − 𝑢𝑤) (A.19) 

  where:  

  𝛽 =
𝐸

𝐻
∙

1

1 − 2𝜇
 (A.20) 

  𝜔 =
1

𝑅
−

3𝛽

𝛨
 (A.21) 

Asumption: No distinction between modulus 𝐻 in Eq. A.17 and A.20 

Approach based on the use of moduli 𝐸, 𝑅 and 𝐻 

P
p

ro
p

o
se

d
 a

p
p

ro
ac

h
 

𝜀𝑥 =
(𝜎𝑥 − 𝑢𝑎)

𝐸
−

𝜇

𝐸
(𝜎𝑦 + 𝜎𝑧 − 2𝑢𝑎)

+ (
𝑢𝑎 − 𝑢𝑤

𝐻
) 

(1) 
𝜃𝑤 =

(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 3𝑢𝑎)

𝐸𝑤

+
(𝑢𝑎 − 𝑢𝑤)

𝑅
 

(2) 

and:  or:  

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
 (1) 𝜃𝑤 = Ω𝜀𝑣𝑜𝑙 + 𝜔(𝑢𝑎 − 𝑢𝑤) (10) 

  where:  

  Ω =
𝐸

𝐸𝑤

1

(1 − 2𝜇)
 (9) 

  𝜔 = (
1

𝑅
−

3Ω

𝐻
) (11) 

Assumption: moduli 𝐻 and 𝐸𝑤 are independent 

Approach based on the use of moduli 𝐸, 𝐸𝑤 , 𝑅 and 𝐻 
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Original development of the constitutive relationships for saturated and 

unsaturated soils 

As noted above, the original formulation of the governing equations in Biot (1941), 

Darkshanamurthy et al. (1984) and Wong et al. (1998) is explained in Appendix A and the 

relevant equations are summarised in Table 1 for ease of reference. All symbols are defined 

in Appendix A. To aid the discussion and highlight the differences of the proposed approach, 

the main points from the original development of the equations are discussed here.  

Biot (1941) proposed two constitutive relationships to describe coupled consolidation in fully 

saturated soils and in soils containing air in the form of occluded bubbles; the constitutive 

relationship for the soil structure (Equations A.1 and A.2 in Table 1) and the constitutive 

relationship for the water phase (Equation A.3 in Table 1). These contain the moduli 𝐸 (or 

𝐺), 𝐻, 𝐻1 and 𝑅, as explained in the Introduction and detailed in Appendix A. Biot (1941) 

demonstrated that modulus 𝐻 governing the effect of changing pore water pressure on the 

direct strains and modulus 𝐻1 governing the effect of incremental pore water pressure on the 

water content (𝐻 = 𝐻1) are equal for the particular stress condition where 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 and 

𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝜏𝑥𝑧 = 0, thus reducing the number of required moduli to three. 

Equation A.3 can be rewritten in the form given by Equation A.4 , from which Biot (1941) 

concluded that for the case of a fully saturated soil 𝜃 = 𝜀, i.e. the increment of volumetric 

water content, 𝜃, is equal to the volumetric strain, 𝜀. It is shown in Appendix A that if 

compression is considered positive, as is the convention in Soil Mechanics, this relationship 

should actually be written as 𝜃 = −𝜀.  

Darkshanamurthy et al. (1984) and Fredlund & Rahardjo (1993) among others extended 

Biot’s coupled theory to unsaturated soils containing air in a continuous form (rather than in 

occluded bubbles as in Biot, 1941). In particular, Darkshanamurthy et al. (1984) altered 

Biot’s equations in order to make use of the two stress variables net stress and matric suction 

(Equations A.10 and A.11 in Table 1). As demonstrated in Appendix A, Darkshanamurthy et 

al. (1984) made the implicit assumption that the modulus governing the effect of matric 

suction on direct strains (𝐻1 in Equation A.10) is equal to the modulus governing the effect of 

net stress on the volumetric water content (𝐻1
′  in Equation A.11).  

Later, Wong et al. (1998) described the numerical implementation of the coupled formulation 

presented by Darkshanamurthy et al. (1984) (Equations A.17 and A.19 in Table 1). It is clear 

that no distinction was made between modulus 𝐻 in Equation A.17 and modulus 𝐻 in 

Equation A.20.  

However, there is no particular reason why the two moduli should be equal under all 

circumstances and especially for truly unsaturated soils containing continuous air, where the 

effect on soil behaviour of changing suction is distinctively and fundamentally different from 

the effect of changing applied stress (Burland & Jennings, 1962, Fredlund & Morgerstern, 

1977). Indeed, in fully saturated conditions, ∆𝜀𝑣𝑜𝑙 = ∆𝜃𝑤 = ∆𝑛 (where 𝜀𝑣𝑜𝑙 is the volumetric 
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strain, 𝜃𝑤 is the volumetric water content and 𝑛 is porosity), as 𝜃𝑤 = 𝑛 ∙ 𝑆𝑟, 𝑆𝑟 being the 

degree of saturation and equal to 1. Changes in porosity, ∆𝑛, can result from changes in pore 

water pressures and/or changes in total stress, with the two having an equal effect on 

porosity. In unsaturated conditions, however, ∆𝜀𝑣𝑜𝑙 ≠ ∆𝜃𝑤, as some deforming voids may be 

empty of water. As 𝜃𝑤 = 𝑛 ∙ 𝑆𝑟, changes in 𝜃𝑤 may result from changes in porosity 𝑛 and/or 

changes in degree of saturation 𝑆𝑟. In turn, each of these may result from changes in suction 

and/or changes in net stress, with net stress and suction affecting both 𝑛 and 𝑆𝑟 by different 

amounts. For example, it may be expected that suction changes have a greater effect on 𝑆𝑟 

than net stress changes. Similarly, drying a soil sample (suction changes) may be expected to 

affect its volume to a lesser extent than loading (net stress changes). Not making a clear 

distinction between the modulus controlling the effect of suction on direct strains and the 

modulus controlling the effect of net stresses on volumetric water content oversimplifies the 

complex behaviour of unsaturated soils.  

The above drawback is addressed in the present paper, where a distinction between the two 

moduli is explicitly made and the constitutive relationship for the water phase is re-derived to 

reflect the inclusion of the additional modulus. To avoid further confusion with the notation 

which has been used in previous publications, the modulus in the constitutive relation for the 

soil structure controlling the effect of suction on direct strains is denoted by the letter 𝐻, 

whereas the modulus in the constitutive equation for the water phase controlling the effect of 

net stresses on volumetric water content is denoted by 𝐸𝑤. 

Re-deriving of the constitutive relationship for the water phase 

The constitutive relationships for the soil structure and the water phase can be written as: 

𝜀𝑥 =
(𝜎𝑥 − 𝑢𝑎)

𝐸
−

𝜇

𝐸
(𝜎𝑦 + 𝜎𝑧 − 2𝑢𝑎) + (

𝑢𝑎 − 𝑢𝑤

𝐻
)        &         𝛾𝑥𝑦 =

𝜏𝑥𝑦

𝐺
 (1) 

𝜃𝑤 =
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 3𝑢𝑎)

𝐸𝑤
+

(𝑢𝑎 − 𝑢𝑤)

𝑅
 (2) 

and similar for 𝜀𝑦, 𝜀𝑧, 𝛾𝑦𝑧 and 𝛾𝑧𝑥, where 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 are direct strains and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are total 

direct stresses, 𝛾𝑥𝑦, 𝛾𝑦𝑧, 𝛾𝑧𝑥 are shear strains and 𝜏𝑥𝑦, 𝜏𝑦𝑧, 𝜏𝑧𝑥 are shear stresses, 𝑢𝑎 − 𝑢𝑤 is 

matric suction, 𝑢𝑎 being the pore air pressure and 𝑢𝑤 the pore water pressure, 𝐸 is Young’s 

modulus and 𝐺 is the shear modulus. 𝐻 is a modulus accounting for the effect of changing 

matric suction on the direct strains in the soil, and 𝐸𝑤 and 𝑅 are additional moduli controlling 

the effect of applied net stress and matric suction on the volumetric water content, 𝜃𝑤, of the 

soil, respectively. 1/𝑅 can be interpreted as the slope of the SWR curve in terms of 

volumetric water content, i.e. 1/𝑅 = 𝜕𝜃𝑤 𝜕⁄ (𝑢𝑎 − 𝑢𝑤). Equations 1 and 2 differ from 

Equations A.10 and A.11 of Darkshanamurthy et al. (1984) (see Appendix A and Table 1) in 

that the modulus 𝐸𝑤 is distinct from modulus 𝐻 (note that in Darkshanamurthy et al. (1984) 

𝐻1 = 𝐻1
′  and are both equivalent to 𝐸𝑤 in Equation 2).  

Equation 1 can be written as  
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(𝜎𝑥 − 𝑢𝑎) = 2𝐺(𝜀𝑥 + 𝛼𝜀𝑣𝑜𝑙) − 𝛽(𝑢𝑎 − 𝑢𝑤) (3) 

where 𝜀𝑣𝑜𝑙 is the volumetric strain.  

: 

𝛼 =
𝜇

1 − 2𝜇
 (4) 

and: 

𝛽 =
𝐸

𝐻
∙

1

1 − 2𝜇
 (5) 

Therefore: 

𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 3𝑢𝑎 = 2𝐺(𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 + 3𝛼𝜀𝑣𝑜𝑙) − 3𝛽(𝑢𝑎 − 𝑢𝑤) =

=
𝐸

(1 + 𝜇)
𝜀𝑣𝑜𝑙(1 + 3𝛼) − 3𝛽(𝑢𝑎 − 𝑢𝑤) =

=   
𝐸

(1 + 𝜇)
𝜀𝑣𝑜𝑙 (

1 − 2𝜇

1 − 2𝜇
+

3𝜇

1 − 2𝜇
) − 3𝛽(𝑢𝑎 − 𝑢𝑤) =

=
𝐸𝜀𝑣𝑜𝑙

(1 − 2𝜇)
− 3𝛽(𝑢𝑎 − 𝑢𝑤) 

(6) 

Equation 2 thus becomes: 

𝜃𝑤 =

𝐸𝜀𝑣𝑜𝑙

(1−2𝜇)
− 3𝛽(𝑢𝑎 − 𝑢𝑤)

𝐸𝑤
+

(𝑢𝑎 − 𝑢𝑤)

𝑅
=

=
𝐸𝜀𝑣𝑜𝑙

(1 − 2𝜇)𝐸𝑤
−

3𝛽(𝑢𝑎 − 𝑢𝑤)

𝐸𝑤
+

(𝑢𝑎 − 𝑢𝑤)

𝑅
=

=
𝐻𝐸𝜀𝑣𝑜𝑙

(1 − 2𝜇)𝐻𝐸𝑤
+ (𝑢𝑎 − 𝑢𝑤)(

1

𝑅
−

3𝛽

𝐸𝑤
) 

(7) 

Substituting Equation 5 into the one above: 

𝜃𝑤 =
𝐻𝛽𝜀𝑣𝑜𝑙

𝐸𝑤
+ (𝑢𝑎 − 𝑢𝑤) (

1

𝑅
−

3𝛽

𝐸𝑤
) (8) 

Introducing the new parameter Ω, such that: 

Ω =
𝛽𝐻

𝐸𝑤
=

𝐸

𝐸𝑤

1

(1 − 2𝜇)
 (9) 

the water phase constitutive equation becomes: 
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𝜃𝑤 = Ω𝜀𝑣𝑜𝑙 + 𝜔(𝑢𝑎 − 𝑢𝑤) (10) 

where: 

𝜔 = (
1

𝑅
−

3Ω

𝐻
) (11) 

Equation 10 represents the newly proposed constitutive relationship for the water phase for 

the case of unsaturated soils. The constitutive relationship for the soil structure is given by 

Equation 1. The finite element formulation of these two equations is explained in Tsiampousi 

et al. (2016). 

Equations 1 and 10 need to be considered simultaneously as in Biot’s approach and they 

replace Equations 1 and 2 in the modelling of the fully-coupled water flow in unsaturated 

soils. Therefore, instead of defining parameters 𝐸𝑤, 𝑅 and 𝐻 as implied by Equations 1 and 

2, the proposed approach requires the alternative parameters 𝜔, Ω and 𝐻 to be defined. 

Parameters Ω and 𝜔 in Equation 10 show the effect of volumetric strains and matrix suction, 

respectively, on the volumetric water content, 𝜃𝑤. This effect is expected to become 

progressively smaller as the soil becomes more unsaturated, continuity of bulk water ceases 

and residual conditions are approached. Additionally, the soil response to suction changes, 

defined by modulus 𝐻 in Equation 1, is expected to become progressively stiffer as the soil 

becomes more unsaturated. The variation of parameters Ω, 𝜔 and 𝐻 with suction should 

reflect this behaviour. This is discussed later in the paper in the form of a conceptual model.    

Parameters 𝜴, 𝛚 and 𝑯 

As explained above, the proposed approach requires that parameters 𝜔, Ω and 𝐻 are defined. 

The three parameters are related through Equation 11. Parameters 𝜔 and Ω can be defined as 

follows.  

The volumetric water content is given by the following phase relationship:  

𝜃𝑤 = 𝑛 ∙ 𝑆𝑟 (12) 

where 𝑛 is porosity and 𝑆𝑟 is the degree of saturation. Clearly: 

𝜕𝜃𝑤

𝜕𝑡
= 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑡
+ 𝑆𝑟 ∙

𝜕𝑛

𝜕𝑡
 (13) 

𝑡 being time. The same differential can be obtained from Equation 10:   

𝜕𝜃𝑤

𝜕𝑡
= Ω

𝑑𝜀𝑣𝑜𝑙

𝑑𝑡
+ 𝜔

𝑑𝑠

𝑑𝑡
 (14) 

where 𝑠 is the matric suction equal to 𝑢𝑎 − 𝑢𝑤. Equating Equations 13 and 14 parameters Ω 

and 𝜔 can be defined, as shown in Appendix B. Clearly, parameters Ω and 𝜔 should be 
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adjusted to the SWR model used, as this will affect the differentials 
𝜕𝑆𝑟

𝜕𝑡
 and 

𝜕𝑛

𝜕𝑡
 in Equation 

13. For example, for the simple case where the degree of saturation is a function of suction, 

𝑠, but not of specific volume 𝑣 (e.g. Van Genuchten, 1980), it can be shown that (see 

Appendix B): 

Ω = −𝑆𝑟 (15) 

and: 

𝜔 = 𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
 (16) 

In recent literature (e.g. Gallipoli et al., 2003; Tsiampousi et al., 2013) the SWR curve is 

expressed in the three-dimensional space 𝑠 − 𝑆𝑟 − 𝑣, so that 𝑆𝑟 is a function 𝑓 of both 𝑠 and 

𝑣, i.e. 𝑆𝑟 = 𝑓(𝑠, 𝑣). Therefore, the differential 
𝜕𝑆𝑟

𝜕𝑡
 in Equation 13 will also depend on specific 

volume according to the function 𝑓 that a particular SWR model adopts. In that case, Ω 

becomes (see Appendix B): 

Ω = −𝑆𝑟 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 (17) 

whereas the expression for 𝜔 remains unchanged, as explained in detail in Appendix B. The 

above equations are summarised in Table 2.  

The fact that parameter Ω is given by a different equation when 𝑆𝑟 = 𝑓(𝑠, 𝑣) in comparison 

to the case where 𝑆𝑟 = 𝑓(𝑠), is an aspect of the Governing Equations not explicitly discussed 

in the literature. Clearly, using Ω = −𝑆𝑟 when 𝑆𝑟 = 𝑓(𝑠, 𝑣) leads to inconsistencies, As 

Equations 13 and 14 are no longer equivalent.  

Parameter 𝐻 can then be defined from Equation 11. It is shown in Appendix B that: 

𝐻 = −
1

1

𝑣0
∙

𝜕𝑣

𝜕𝑠

 (18) 

𝑣0 being the specific volume, 𝑣, at the beginning of an increment of suction change. The 

negative sign in the above equation cancels out with the negative sign of the partial 

differential 
𝜕𝑣

𝜕𝑠
 in the same equation, as positive changes in suction (i.e. increase) cause a 

reduction in the specific volume, 𝑣. For example, in the case of the Barcelona Basic Model 

(BBM, Alonso et al., 1990), for elastic changes of suction: 

𝜕𝑣

𝜕𝑠
= −

𝜅𝑠

(𝑠 + 𝑝𝑎𝑡𝑚)
 (19) 

where 𝜅𝑠 is the coefficient of compressibility with respect to suction changes and 𝑝𝑎𝑡𝑚 is the 

atmospheric pressure. Clearly, the partial differential 
𝜕𝑣

𝜕𝑠
 depends on the particular constitutive 

model adopted and should be adjusted accordingly.  
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In Table 3 the equations obtained for parameters Ω, 𝜔 and 𝐻 are compared to equivalent 

expressions in the literature to explore differences and similarities. The expressions for 

parameters Ω and 𝐻 are similar to the equivalent expressions in Gatmiri et al. (1998), the 

main difference in the second term for Ω being associated with the fact that the degree of 

saturation is a function of suction and net stress in Gatmiri et al. (1998). Nonetheless, the 

second term in the expression for 𝜔 in Gatmiri et al. (1998) does not seem to be justified 

based on the current approach. It is not clearly explained by Gatmiri et al. (1998) why the 

term is needed.  

The expressions for Ω and 𝜔 are similar to the equivalent ones in Khalili et al. (2008). 

Nonetheless, the term 𝑛
𝜕𝑆𝑟

𝜕𝜀𝑣𝑜𝑙
 in Khalili et al. (2008) is not explicitly related to the degree of 

saturation being a function of suction and volume, whereas the term 𝑒
𝜕𝑆𝑟

𝜕𝑣
 in the expression 

derived here for Ω is shown to arise as a result of  𝑆𝑟 = 𝑓(𝑠, 𝑣). In fact, Khalili et al. (2008) 

adopt a SWR model similar to Brooks and Corey (1964) extended to include hysteresis and 

accounting for the initial pore size distribution, but ignoring the effect of subsequent volume 

changes on the degree of saturation. Parameter 𝐻 in the current approach is very different to 

the equivalent parameter in Khalili et al. (2008), where in effect 1/𝐻 = Ω. In the proposed 

approach, this would be equivalent to assuming that the modulus governing the effect of 

suction on the direct strains is the same as the modulus governing the effect of volumetric 

strains on the volumetric water content. 

Finally, similar differences can be observed between parameter 𝐻 in the current approach and 

in Sheng et al. (2003). Moreover, it should be noted that the equivalent parameter to 𝐻 in 

Sheng et al. (2003) includes a term relating to plasticity. Parameter 𝜔 is the same in the two 

approaches. On the contrary, in the equivalent to parameter  Ω in Sheng et al. (2003) the term 

𝑒
𝜕𝑆𝑟

𝜕𝑣
 has been ignored and Sheng et al. (2003) clearly state that the degree of saturation if a 

function of suction only. 

Although comparison with the literature cannot be exhaustive, the main differences are that 

in the approach described in this paper: (a) a clear distinction is made between the moduli 

controlling the effect of matric suction on direct strains and the effect of net stress on the 

volumetric water content, and (b) it is explicitly shown that the Governing Equations need to 

be consistent with the SWR model, as this will affect individual terms in the equation 

obtained for parameter Ω. This highlights the fact that when extending the capabilities of a 

numerical tool, e.g. of a Finite Element code, to model coupled consolidation in unsaturated 

soils, it is not merely sufficient to implement Governing Equations found in the literature, but 

the Equations need to be consistent with the particular SWR and constitutive models used, 

including the stress variables adopted. 

At full saturation it is expected that: 

𝜃𝑤 = −𝜀𝑣𝑜𝑙 (20) 
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for a compression-positive sign convention. This implies that Ω = −1 and 𝜔 = 0. However, 

for the general case in Table 2 (Case 2; 𝑆𝑟 = 𝑓(𝑠, 𝑣)), when 𝑠 = 0 kPa and 𝑆𝑟 = 1:  

Ω = −1 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 (21) 

and: 

𝜔 = 𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
 (22) 

and therefore it is required that both  
𝜕𝑆𝑟

𝜕𝑠
 and 

𝜕𝑆𝑟

𝜕𝑣
 are equal to zero at full saturation. Both 

differentials are usually assumed to be equal to zero for compressive pore water pressures or, 

depending on the SWR model, for suctions 𝑠 lower than the air-entry value, 𝑠𝑎𝑖𝑟. 

Nonetheless, the slope of the SWR curve may not be equal to zero at 𝑠 = 0 or 𝑠 = 𝑠𝑎𝑖𝑟, 

depending not only on the SWR model employed but also on the model parameters used. For 

example, Figure 1 (a) illustrates four SWR curves generated by Tinjum et al. (1997) using the 

Van Genuchten (1980) expression with the model parameters 𝑎 and 𝑛 indicated in the legend 

of the figure. Parameter 𝑚 was taken equal to 1 − 1/𝑛. The variation of the respective 
𝜕𝑆𝑟

𝜕𝑠
 

with suction is shown in Figure 1 (b). It can be seen that, depending on the model parameters 

employed, the partial differential 
𝜕𝑆𝑟

𝜕𝑠
 is not always sufficiently small at s=0 to be considered 

equal to zero. Consequently, although parameters Ω and 𝜔 should ideally tend to −1 and 0, 

respectively, as full saturation is approached, this may not always be the caser and an abrupt 

change may occur at the interface between fully saturated and unsaturated conditions. This is 

further discussed in the conceptual model presented later. This abrupt transition from one 

condition to the other is a consequence of the SWR model used and is common to all 

Governing Equations where 𝜔 = 𝑛
𝜕𝑆𝑟

𝜕𝑠
. It should not be confused with the transition from net 

stresses in unsaturated conditions to effective stresses in fully saturated conditions. The 

choice of net stress here was made so that the Governing Equations are consistent with the 

constitutive models available in the computer code ICFEP (Potts & Zdravkovic, 1999) into 

which the equations were implemented, as explained in Tsiampousi et al. (2016). 

 

Table 2: Expressions for parameters Ω, ω and H 

Case Parameter 𝛀 Parameter 𝝎 Parameter 𝑯 

Case 1 

𝑆𝑟 = 𝑓(𝑠) 

Ω = −𝑆𝑟 𝜔 = 𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
 𝐻 = −

3
1

𝑣0
∙

𝜕𝑣

𝜕𝑠

 

Case 2 

𝑆𝑟 = 𝑓(𝑠, 𝑣) 

Ω = −𝑆𝑟 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 𝜔 = 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
 𝐻 = −

3
1

𝑣0
∙

𝜕𝑣

𝜕𝑠
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Figure 1: (a) Soil water retention curves (SWR curves) generated by Tinjum et al. (1997) using the 

van Genuchten (1980) expression; (b) 
𝜕𝑆𝑟

𝜕𝑠
  versus 𝑠 for the same SWR curves. Parameters a and n in 

the legend refer to the van Genuchten (1980) parameters, while parameter m was taken equal to 1-

1/n. 
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Table 3: Comparison of expressions for parameters Ω, ω and H obtained here to literature 

Current approach Ω = −𝑆𝑟 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 𝜔 = 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
 

𝐻 = −
3

1

𝑣0
∙

𝜕𝑣

𝜕𝑠

 

Gatmiri et al. (1998) 

 

𝑆𝑟 − 𝑛
𝜕𝑆𝑟

𝜕(𝜎 − 𝑢𝑎)
𝐶 

𝐶 being the elasticity matrix 

𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
− 𝑛 ∙

𝜕𝑆𝑟

𝜕(𝜎 − 𝑢𝑎)
𝑚1 

𝑚1 being a constant 

−
1 + 𝑒0

𝜕𝑒

𝜕𝑠

 

Note: formulated in terms of net stress (𝜎 − 𝑢𝑎); the 

equation for the air phase has been ignored here 

Khalili et al. (2008) 

𝜓 = 𝑆𝑟 − 𝑛
𝜕𝑆𝑟

𝜕𝜀𝑣𝑜𝑙
 

𝜓 being the effective stress 

parameter in Bishop’s 

effective stress 
𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
 

1

𝜓
 

Note: formulated in terms of Bishop’s effective stress 

𝜎′ = 𝜎𝑛𝑒𝑡 − 𝜒𝑠; 

 the equation for the air phase has been ignored here 

Although this expression is 

similar to Ω in the current 

approach, it is not explicitly 

related to the case where 𝑆𝑟 =
𝑓(𝑠, 𝑣). In fact, it appears that 

𝑆𝑟 = 𝑓(𝑠). 

The effect of suction on direct 

strains is the same as the effect 

of volumetric strains on the 

volumetric water content.  

Sheng et al. (2003) 

 

−𝑆𝑟 
 

𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
 

Related to  
1

𝜑(𝑆𝑟)
 and includes a term for 

plasticity 

Note: formulated in terms of Bishop’s effective stress 

𝜎′ = 𝜎𝑛𝑒𝑡 − 𝜑(𝑆𝑟)𝑠, i.e. 𝜓 = 𝜑(𝑆𝑟); 

 the equation for the air phase has been ignored here 

𝑆𝑟 = 𝑓(𝑠) in Sheng et al. 

(2003) 

If plasticity is ignored, the 

effect of suction on direct 

strains appears to be the same 

as the effect of volumetric 

strains on the volumetric water 

content. 
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Figure 2: (a) Soil water retention curves (SWR curves); (b) 
𝜕𝑆𝑟

𝜕𝑠
  versus 𝑠 for Case 1a, 1b, 2a and 2b 

Variation of parameters 𝛀, 𝝎 and 𝑯 with suction 

The variation of parameters Ω, 𝜔 and 𝐻 with suction is subsequently presented. Each of the 

two cases in Table 2 has been coupled with two scenarios regarding the variation of specific 

volume with suction (see also Table 4): (a) in the first scenario the variation is similar to the 

BBM, i.e. 𝜅𝑠 in Equation 19 is constant, and (b) in the second scenario 𝜅𝑠 varies as a function 

of the degree of saturation, 𝑆𝑟 (i.e. 𝜅𝑠 = 𝑔(𝑆𝑟)) according to the expression proposed by 

Tsiampousi et al. (2013): 

𝜅𝑠 = 𝜒 ∙ (𝑆𝑟)𝜔𝑠 (23) 
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where 𝜒 and 𝜔 are fitting parameters (see also Table 4). To facilitate the discussion, the 

hysteretic SWR model by Tsiampousi et al. (2013) was used to determine the functions 𝑆𝑟 =

𝑓(𝑠) and 𝑆𝑟 = 𝑓(𝑠, 𝑣). The model equations and respective parameters are summarised in 

Table 4. Similar model parameters were used in Tsiampousi et al. (2013) to reproduce the 

behaviour of an artificial soil consisting of 70% HPF4 silt, 20% speswhite kaolin and 10% 

London clay, which was tested by Jotisankasa (2005).  Note that although the SWR model 

accounts for the effect of specific volume on the retention behaviour of the soil, by setting 

parameter 𝜓 in Table 4 to zero this effect is removed (i.e. 𝑆𝑟 = 𝑓(𝑠)). The SWR curves 

obtained for each case and scenario examined are illustrated in Figure 2 (a). Figure 2  (b) 

illustrates the slope of the SWR curves (i.e. 
𝜕𝑆𝑟

𝜕𝑠
) plotted versus suction. Evidently, Cases 1a 

and 1b produce the exact same hysteretic SWR curve. Cases 2a and 2b produce hysteretic 

SWR curves which are similar in between themselves but distinct when compared to Cases 

1a and 1b. Figure 3 presents the associated drying/wetting compression curves. In this latter 

figure, Cases 1a and 2a, for which 𝜅𝑠 is constant, coincide and, additionally, exhibit no 

hysteresis. On the contrary, Cases 1b and 2b, for which 𝜅𝑠 is a function of the degree of 

saturation, 𝑆𝑟, produce hysteretic compression curves on drying and wetting, which are also 

distinct in between themselves, as the corresponding SWR curves are distinct (see fig. 2a for 

Cases 1b and 2b), one employing a simpler function (i.e. 𝑆𝑟 = 𝑓(𝑠)) than the other (i.e. 𝑆𝑟 =

𝑓(𝑠, 𝑣)). The variation of parameters Ω, ω and 1/H with suction are shown in Figure 4 to 

Figure 6.  

 

Figure 3: Drying/wetting compression curves for Case 1a, 1b, 2a and 2b 
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Table 4: Model equations and parameters for the four cases considered (𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙  in the table is the initial 

specific volume at the beginning of drying) 

Equations (Tsiampousi et al. (2013) 

𝜅𝑠 = 𝜒 ∙ (𝑆𝑟)𝜔𝑠 (23) 

where 𝜒 and 𝜔 are fitting parameters.  

𝑆𝑟,𝑝𝑟
𝑑𝑟,𝑤𝑒𝑡 =

1 −
1

𝑠0
∗ ∙ 𝑠∗

1 + 𝛼𝑑,𝑤 ∙ 𝑠∗
 (24) 

𝜕𝑆𝑟,𝑝𝑟
𝑑𝑟,𝑤𝑒𝑡

𝜕𝑠∗
=

1

𝑠0
∗ + 𝛼𝑑,𝑤

(1 + 𝛼𝑑,𝑤 ∙ 𝑠∗)
2 (25) 

where 𝑆𝑟,𝑝𝑟 is the degree of saturation on the primary SWR curve, bearing the superscript 𝑑𝑟 

for drying and 𝑤𝑒𝑡 for wetting; 

𝛼 is a fitting parameter bearing the subscript 𝑑 for drying and 𝑤 for wetting; 

𝑠∗ = (𝑣 − 1)𝜓 ∙ (𝑠 − 𝑠𝑎𝑖𝑟) is the combined suction, 𝑠 being the current matric suction, 𝑣 

being specific volume and 𝜓 being a fitting parameter; 

𝑠0
∗ = (𝑣 − 1)𝜓 ∙ (𝑠0 − 𝑠𝑎𝑖𝑟) and; 

𝑠𝑎𝑖𝑟, 𝑠0 are the air-entry value of suction and the suction at which 𝑆𝑟 = 0, respectively. 

Parameters 

 

Case 1a 

𝑺𝒓 = 𝒇(𝒔) 

𝜿𝒔 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

Case 1b 

𝑺𝒓 = 𝒇(𝒔) 

𝜿𝒔 = 𝒈(𝑺𝒓) 

Case 2a 

𝑺𝒓 = 𝒇(𝒔, 𝒗) 

𝜿𝒔 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

Case 2b 

𝑺𝒓 = 𝒇(𝒔, 𝒗) 

𝜿𝒔 = 𝒈(𝑺𝒓) 

𝑠𝑎𝑖𝑟 0 kPa 0 kPa 0 kPa 0 kPa 

𝑠0 100,000 kPa 100,000 kPa 100,000 kPa 100,000 kPa 

𝜓 0 0 0.75 0.75 

𝛼𝑑 0.0011 0.0011 0.0011 0.0011 

𝛼𝑤 0.0045 0.0045 0.0045 0.0045 

𝜒 0.02 0.02 0.02 0.02 

𝜔𝑠 0 4 0 4 

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1.8 1.8 1.8 1.8 

 



18 
 

As the SWR curves in Figure 2 (a) are all hysteretic, so are the Ω and 𝜔 curves obtained. 

Parameter Ω appears in Equation 10 and provides a link between changes of volumetric 

strain, 𝜀𝑣𝑜𝑙, and volumetric water content, 𝜃𝑤. The variation of parameter Ω with suction for 

Case 1a is shown in Figure 4 (a). The parameter exhibits a maximum absolute value at low 

suction levels, where air is present within the soil pores in the form of occluded bubbles and 

can flow with bulk water. Its value continuously decreases in absolute terms with increasing 

suction (drying curve shown in black in Figure 4 (a)) and becomes zero when continuity of 

bulk water ceases. On the wetting curve (shown in grey in Figure 4 (a)), parameter Ω steadily 

increases in absolute terms with decreasing suction and acquires its maximum absolute value 

of 1 as full saturation is approached. It should be noted that this is particular to the SWR 

model adopted, which does not allow for values of 𝑆𝑟 smaller than 1 to be maintained when 

wetting to full saturation, as is often the case in laboratory experiments.  

The hysteresis observed implies that the application of the same change in 𝜀𝑣𝑜𝑙 will affect the 

volumetric water content 𝜃𝑤 by a different amount for a soil element which has been 

undergoing wetting in its recent history than for an element undergoing drying, even if both 

elements experience the same suction level. This is to be expected, as the amount of bulk 

water present and potentially available to flow within a soil element depends on its degree of 

saturation and void ratio.  

The above observations are common for all cases and scenarios examined, as demonstrated in 

Figure 4 (b). Whereas Cases 1a and 1b coincide in Figure 4 (b) both on drying and on 

wetting, Cases 2a and 2b produce curves which are distinct between themselves and when 

compared to Cases 1a and 1b. The small difference between Cases 2a and 2b is due to the 

slight difference in the corresponding SWR curves (see Figure 2), but also to the term 𝑒
𝜕𝑆𝑟

𝜕𝑣
 in 

Equation 21 (see also Table 2). This term is defined from the SWR curve and the constitutive 

model used to simulate soil behaviour. This emphasises the need to adjust parameter Ω in the 

governing equation both to the SWR and the constitutive models adopted. 

Similar observations can be made for the variation of parameter 𝜔 with suction, 𝑠. This 

parameter also appears in Equation 10 and provides a link between suction changes and 

volumetric water content, 𝜃𝑤. As shown in Figure 5 (a) for Case 1a, this is clearly hysteretic. 

Both on drying and on wetting the maximum absolute value corresponds to low suction levels 

(and high degrees of saturation), implying, that suction changes produce larger variations in 

the volumetric water content when the degree of saturation and, therefore, the amount of bulk 

water available to flow within the soil pores, is higher. Nonetheless, as discussed in the 

previous section, 𝜔 should ideally tend to zero as full saturation is approached for a smooth 

transition from full to partial saturation to occur. This is clearly not the case in the SWR 

model by Tsiampousi et al. (2013); the partial differential 
𝜕𝑆𝑟

𝜕𝑠
 (see eq. 25 in Table 4) is not 

zero at 𝑠∗ = 0, i.e. when 𝑠 = 𝑠𝑎𝑖𝑟. This is a particularity of the equation used to reproduce the 

primary drying and wetting paths (eq. 24 in Table 4) and implies that an abrupt change in the 

governing equations for fully saturated and unsaturated conditions occurs. 
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Figure 4: Variation of parameter 𝛺 (a) for Case 1a; (b) for all cases 

With reference to Figure 5 (a), on drying, parameter 𝜔 reduces in absolute terms with 

increasing suction and eventually becomes zero, reflecting the diminishing effect of suction 

changes on the variation of volumetric water content, as bulk water retreats in smaller voids 

and eventually loses its continuity. On subsequent wetting, 𝜔 gradually increases from zero, 

following a distinct path back to full saturation, where it obtains its maximum absolute value. 
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This is significantly larger than the maximum absolute value observed on the drying 𝜔 curve, 

as the primary wetting curve is significantly steeper than the primary drying curve at low 

suctions (parameter 𝜔 depends heavily on the slope of the SWR curve defined as 𝜕𝑆𝑟 𝜕𝑠⁄  – 

see also Table 2 and fig. 2b). This reflects the fact that in the low suction range (lower than 

100 kPa in the particular example examined), the degree of saturation is changing 

significantly faster for the primary wetting curve although its actual value is smaller than for 

the primary drying curve, as evident from Figure 2 (a) and (b).  

 

 

Figure 5: Variation of parameter 𝜔 (a) for Case 1a; (b) for all cases 
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The above observations are common to all cases and scenarios examined, as demonstrated in 

Figure 5 (b). Although the four 𝜔 curves corresponding to drying in this figure do not exhibit 

any noticeable difference, the difference between the four 𝜔 curves is significant on wetting. 

With reference to wetting, Cases 1a and 1b coincide similar to the Ω variation, whereas Cases 

2a and 2b produce distinct curves, reflecting the effect of porosity 𝑛 (see Table 2 and Figure 

3) on the simulated behaviour. Once again, the need to adjust the parameters in the governing 

equations, in this case parameter 𝜔, to the constitutive model adopted in addition to the SWR 

model is highlighted. 

 

Figure 6: Variation of parameter 1/H (a) for Case 1a; (b) for all cases 
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The variation of the term 1/𝐻 with suction is shown in Figure 6 (a) for Case 1a. The term 

appears in Equation 1 and defines the effect of changing suction on the direct strains 𝜀𝑥, 𝜀𝑦 

and 𝜀𝑧 and therefore on the volume of soil. From Figure 6 (a) it can be deducted that suction 

increase (i.e. drying) contributes to soil stiffness increase, as the term 1/𝐻 approaches zero. 

Changes in suction will have a gradually smaller effect on the strains 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧, reflecting 

the stabilising effect of menisci forming at interparticle contacts. On subsequent wetting, 

stiffness is gradually reduced, as pores are flooded with water and menisci disappear. For 

Case 1a where 𝜅𝑠 is constant, the curve obtained on wetting coincides with the curved 

followed on drying: the partial differential 
𝜕𝑣

𝜕𝑠
 in Equation 18 (see Table 2) is common for 

drying and wetting as the drying/wetting curve for Case 1a exhibits no hysteresis (see Figure 

3). Furthermore, the drying/wetting curve for Case 1a coincides with the drying/wetting curve 

for Case 2a (Figure 3), as discussed above and, therefore, the two produce the same 1/𝐻 

variation with suction, as evident in Figure 6 (b). On the contrary, Cases 1b and 2b produce 

distinct curves (Figure 6 (b)) when compared to Cases 1a and 2a and also when compared in 

between themselves, reflecting the differences exhibited by the corresponding drying/wetting 

curves in Figure 3.  Additionally, the curves for Cases 1b and 2b are hysteretic, reflecting the 

hysteresis of the drying/wetting curves (Figure 3). Again, parameter 𝐻 needs to be adjusted to 

the particular constitutive model adopted to reproduce soil behaviour.  

 

Conceptual model 

The above discussion emphasises how the behaviour of an unsaturated soil reflects aspects of 

its water content. It is possible to extend the above to a conceptual model for the coupled 

hydro-mechanical behaviour of unsaturated soils. The conceptual model presented below 

draws heavily on the work of White et al. (1970) and divides the soil into the four principle 

zones illustrated in Figure 7. Zone 3 is further subdivided into two zones of behaviour.  

To facilitate the description of the conceptual model, Case 1b is further considered and the 

corresponding SWR curve is repeated in Figure 8 (a). As the SWR curve can be obtained 

experimentally, it is convenient to try and identify the principle zones from its shape. These 

have been marked on Figure 8 (a). The zones have been additionally marked on Figure 8 (b) 

illustrating the variation of the slope of the SWR curve with suction, and on Figure 9 to 

Figure 11, which illustrate, respectively, the variation of parameters Ω, 𝜔 and 𝐻 with suction 

for Case 1b.  

On drying, the soil remains fully saturated within zone 1 and no air is present as shown in 

Figure 7 (a). The behaviour of the soil within this zone is governed by conventional soil 

mechanics.  

Within zone 2 air is present in the soil pores in the form of occluded bubbles, having come 

out of solution. Air may have also started to penetrate into the soil forming air-boundaries but 

will have not yet penetrated past the outer-most soil particles, as shown in Figure 7 (b). The 
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degree of saturation is smaller than but very close to unity (Figure 8 (a)).  

In zone 3, air will have penetrated significantly into the soil. It is reasonable to identify the 

boundary between zones 2 and 3 as the air-entry value of suction, 𝑠𝑎𝑖𝑟. Nonetheless, in 

numerous SWR models (e.g. Van Genuchten, 1980; Fredlund & Xing, 1994; Gallipoli et al., 

2003; Li, 2005; Tarantino, 2009; Pedroso & Williams, 2010), 𝑠𝑎𝑖𝑟 is not explicitly a model 

parameter, while in others (e.g. Tsiampousi et al., 2013) desaturation occurs at suction 𝑠𝑎𝑖𝑟 

for modelling purposes (i.e. 𝑆𝑟 = 1 at 𝑠 = 𝑠𝑎𝑖𝑟). In the example used here, it was assumed 

that 𝑠𝑎𝑖𝑟 = 0 kPa and both primary curves correspond to 𝑆𝑟 = 1 at s = 0 kPa. Setting the 

boundary between zones 2 and 3 at the air-entry value of suction would not be appropriate in 

this case, as it would eliminate zone 2. Instead, the boundary between the two zones is set 

here at the point where the degree of saturation becomes visibly smaller than 1.  

Zone 3 can be further divided in two zones, A and B. Zone 3A distinguishes the situation 

where, although the air phase is continuous from any point at which it is present within the 

soil back to an air boundary, it is not continuous all the way across the element (Figure 7 (c)). 

On the contrary, the water phase is continuous across the element and free to flow in all 

directions. The switch to zone 3B occurs when the air phase becomes continuous across the 

element (see Figure 7 (d)), while the water phase is also still continuous. Note that Figure 7 

(d) illustrates a two-dimensional slice through a three-dimensional element. Although in the 

figure it appears that the water phase has become discontinuous this is not actually the case. 

The switch from zone 3A to 3B is assumed to occur at the point of inflection of the SWR 

curve when plotted on a semi-logarithmic plane (Figure 8 (a)). 

Once the soil element is desaturated to the point that there can be no further flow of water, 

the model enters zone 4 (Figure 7 (e)). The degree of saturation reaches its residual value. In 

the SWR model by Tsiampousi et al. (2013) used as an example here (Figure 8 (a)), this is 

assumed to be zero (Figure 8 (a)) but it is appreciated that other SWR models may allow for a 

certain residual value of  Sr larger than 0 to be maintained. Despite exhibiting a practically 

zero slope (Figure 8 (b)) from earlier on, changes in 𝑆𝑟 are visible up until 𝑠 = 100,000 kPa 

when the SWR curve is plotted in a semi-logarithmic plane (Figure 8 (a)). Therefore, the 

onset of zone 4 is assumed at this particular value of suction. 

On subsequent wetting, zone 4 extends to smaller suctions than those marking the onset of 

this zone on drying; 𝑆𝑟 is practically zero up until 𝑠 = 4,000 kPa (Figure 8 (a)), from where 

it increases steadily as wetting continues. The above value of suction marks the boundary 

between zones 4 and 3 on wetting. The point of inflection of the wetting curve on the semi-

logarithmic plane marks the transition between sub-zones 3A and 3B (Figure 8 (a)) and again 

is obtained at a smaller suction than the corresponding one for drying. Finally, zone 2 is 

reached at a low suction where the degree of saturation becomes practically 1. Again, this is a 

simplification of the SWR model used as an example here; there is no particular reason why 

𝑆𝑟 should return to 1 on wetting to full saturation, whether this corresponds to zero suction or 

to the air-entry value of suction defined on drying. Indeed, there is sufficient experimental 

evidence to support the opposite.  
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Zone 3A   (c)   Zone 3B   (d)  

 

 
Zone 4   (e) 

Figure 7: Conceptual zones of behaviour (a) zone 1; (b) zone 2; (c) zone 3A; (d) zone 3B; (e) zone 4 

(after Smith, 2003) 
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Figure 8: Conceptual zones of behaviour on drying and on wetting for Case 1b: (a) SWR curve; (b) 
𝜕𝑆𝑟

𝜕𝑠
 versus 𝑠 

The zones of behaviour as identified on the SWR curve in Figure 8 (a) are also marked on 

Figure 9 to Figure 11, illustrating the variation of the corresponding parameters Ω, 𝜔 and 𝐻 

with suction. It can be observed that within zone 2, parameter Ω (Figure 9) exhibits a 

maximum absolute value of 1, both for drying and wetting. This implies that changes in 

volumetric strain are equal to changes in the volumetric water content and any air bubbles 

flow readily with bulk water. Within zone 3A, the absolute value of parameter Ω is smaller 

than 1, indicating that changes in volumetric water content are smaller than the associated 

changes in volumetric strain, despite the fact that the water phase is continuous and able to 

flow freely if the soil element in Figure 7 is subjected to external compression. As air has 

penetrated the larger pores, these are compressible and deform under the applied 
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compression. Additionally, water flow is restricted through the smaller pores to which the 

water phase has retreated. Within zone 3B, both water and air are continuous and both will 

flow if the element is subjected to a change in volume. However, it is to be expected that air 

will flow much more readily than water, so the value of parameter Ω, while still greater than 

zero in absolute value, will increasingly tend towards zero. Within zone 4, where water is 

present only in the form of menisci, flow of water is impossible and parameter Ω is zero.  

 

 

 

Figure 9: Variation of parameter 𝛺 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 

With reference to Figure 10, within zone 2 parameter 𝜔 exhibits its maximum absolute value 

both for drying and wetting, implying that suction changes produce the largest changes in 

volumetric water content in this zone. Indeed, this is the reason why the SWR curve is 

usually plotted in a semi-logarithmic plane. The reduced absolute values of parameter 𝜔 

within zone 3 indicate that as air penetrates the larger pores and water retreats to smaller 

voids, suction changes have a progressively smaller effect on the volumetric water content 

changes produced, until zone 4 is encountered, where water is only present in the form of 

menisci and the volumetric water content no longer changes with changes in suction. As 

pointed out in the previous section, the absolute value of parameter 𝜔 is larger on wetting 

than on drying for suction values smaller than about 100 kPa, as the slope of the primary 

wetting curve in Figure 8 (b) becomes larger than that of the primary drying curve. 
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Figure 10: Variation of parameter 𝜔 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 

Finally, with reference to Figure 11, the soil response to suction changes becomes 

progressively stiffer from zone 2 to zone 4, and it is visibly stiffer on wetting than on drying. 

This justifies the irreversibility observed in the volume of soil samples subjected to cycles of 

drying and wetting. Within Zone 2, where air is present in the pores in the form of occluded 

bubbles, there is little effect of suction on the value of stiffness. This is so both for drying and 

wetting. The soil response to changes in suction is significantly stiffer within zones 3A and 

3B, as menisci form at interparticle contacts. In the particular example examined, where 𝜅𝑠 =

𝑔(𝑆𝑟), the partial differential 
𝜕𝑣

𝜕𝑠
 tends to zero as 𝑆𝑟 tends to zero, thus 𝐻 in Equation 18 tends 

to infinity in zone 4. Although this prediction is clearly model dependent, it reflects the 

situation often observed in the laboratory where changes in suction no longer produce 

changes in the volume of a soil sample. 

The boundaries between the different zones of the conceptual model are shifted to the left 

(i.e. lower suctions) for wetting in comparison to drying. This is a result of the hydraulic 

hysteresis exhibited by most unsaturated soils. To avoid this additional complication, it is 

reasonable to explain and model soil behaviour with reference to the degree of saturation 

rather than the value of suction experienced by soils. Nonetheless, customarily, methods of 

analysis such as the Finite Element Method employ nodal pore water pressures as the primary 

variables (degrees of freedom). In this case, expressing parameters Ω, 𝜔 and 𝛨 as functions 

of 𝑆𝑟 helps overcome the complexity arising from the hydraulic hysteresis.  
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Figure 11: Variation of parameter 𝐻 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 

Conclusions 

The governing equations presented here are an extension of those proposed by 

Darkshanamurthy et al. (1984) and Wong et al. (1998). The air is assumed to be continuous 

and at atmospheric pressure and its flow is not explicitly modelled (i.e. air is not an additional 

primary variable in the governing equations).  

The main difference with the earlier work of Wong et al. (1998) is that a clear distinction 

between the modulus controlling the effect of matric suction on direct strains and the 

modulus governing the effect of net stress on the volumetric water content is made, consistent 

with unsaturated soil behaviour. Therefore, four moduli are required in order to formulate the 

Governing Equations, rather than three as in Wong et al. (1998).The Governing Equations 

were rewritten in a form containing three additional parameters, Ω, 𝜔 and 𝐻, which are 

required to extend coupled consolidation to unsaturated soil states and are related to the four 

moduli. Parameter Ω governs the effect of volume changes on the volumetric water content 

and parameter 𝜔 governs the effect of suction changes on the volumetric water content. 

Parameter 𝐻 represents the stiffness exhibited on changes of suction.  
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These additional parameters are not soil constants; however, it was shown that, for modelling 

purposes, their variation with suction and degree of saturation can be obtained in a consistent 

manner. It was actually shown that parameters Ω, 𝜔 and 𝐻, and therefore, the Governing 

Equations need to be adjusted to the SWR and constitutive models used to reproduce soil 

behaviour. In particular, it was shown parameter Ω is given by a different equation when the 

SWR curve is expressed in the three-dimensional space 𝑠 − 𝑆𝑟 − 𝑣, so that 𝑆𝑟 is a function 𝑓 of both 

suction 𝑠 and specific volume 𝑣, i.e. 𝑆𝑟 = 𝑓(𝑠, 𝑣), in comparison to the case where 𝑆𝑟 = 𝑓(𝑠). The 

effect of the constitutive and SWR model on parameters Ω, 𝜔 and 𝐻 was demonstrated considering 

a total of four cases, where the compressibility and SWR relationships differ slightly but 

result in measurable differences in the variation of parameters Ω, 𝜔 and 𝐻 with suction and 

therefore degree of saturation.  

A conceptual model was presented to illustrate how the behaviour of unsaturated soils 

reflects aspects of its water and air content and how this is captured by the variation of 

parameters Ω, 𝜔 and 𝐻. Four zones of behaviour were identified: in zone 1 the soil is fully 

saturated, in zone 2 air is present in the form of occluded bubbles, in zone 3A and B the water 

and the water and air, respectively, exist in a continuous form and in zone 4 no further flow 

of water is possible. The boundaries between the different zones were identified on the SWR 

curve and more specifically on a hysteretic but idealised model. The various assumptions and 

simplifications of the model were therefore transferred to the conceptual model. Nonetheless, 

the same principles can be applied to any SWR model and experimental data to explain 

aspects of the complex unsaturated soil behaviour in a simplified manner.  

Most importantly, it was shown that the variation of parameters Ω, 𝜔 and 𝐻 in the governing 

equations also reflects aspects of the water and air content in the soil, even though the flow of 

air is not explicitly modelled. Also, parameters Ω, 𝜔 and 𝐻 may vary in a hysteretic manner 

with suction. For this reason it is particularly convenient to express these parameters as 

functions of the degree of saturation 𝑆𝑟, as in the proposed approach.  

As the two governing equations need to be satisfied simultaneously in a coupled analysis, it is 

convenient to solve them employing a numerical method. The theoretical requirements of 

equilibrium, compatibility, constitutive behaviour and boundary conditions can then be 

satisfied.  The FE element formulation of the governing equations proposed here is presented 

in Tsiampousi et al. (2016). 
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Appendix A 

The work of Biot (1941) 

Biot (1941) based his approach on the following assumptions: (1) the soil is isotropic 

(anisotropy is considered in Biot, 1941 but has been neglected here for simplicity); (2) the 

stress-strain relationships are linear and (3) reversible under final equilibrium conditions (i.e. 

assumption of linear elasticity); (4) strains remain small (Biot does not explain the range of 

strains he considers “small”); (5) the water contained within the pores is incompressible but 

(6) may contain air bubbles (clearly the assumption is made that the mixture of water and 

occluded bubbles is incompressible); (7) Darcy’s law is applicable. Extending Hooke’s law 

for an isotropic elastic body to include the effect of the water pressure, for the case of a soil 

containing air bubbles, Biot (1941) proposes that: 

𝜀𝑥 =
𝜎𝑥

𝐸
−

𝜇

𝐸
(𝜎𝑦 + 𝜎𝑧) +

𝜎

3𝐻
 (A.1) 

and similar for 𝜀𝑦 and 𝜀𝑧, and: 

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
 (A.2) 

and similar for 𝛾𝑦𝑧 and 𝛾𝑥𝑧, where:  

 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are direct strains in x, y and z directions, respectively; 

 𝛾𝑥𝑦 is the shear strain acting on the x-plane in the y-direction (similar for 𝛾𝑦𝑧 and 𝛾𝑥𝑧);  

 𝜎𝑥, 𝜎𝑦 and σz are the direct total stresses in the x, y and z directions, respectively; 

 𝜏𝑥𝑦 is the shear stress acting on the x-plane in the y-direction (similar for 𝜏𝑦𝑧 and 𝜏𝑥𝑧); 

 𝜎 is the increment of pore water pressure; 

 𝐸 is Young’s modulus of the soil structure and 𝜇 is Poisson’s ratio; 

 𝐺 is the shear modulus, 𝐺 = 𝐸
2(1 + 𝜇)⁄  and; 

 𝐻 is an additional physical constant.  

𝐻 is similar to Young’s modulus and shows the effect of changing pore water pressure on the 

direct strains in the soil (as opposed to the shear strains on which it has no effect).  

Equations A.1 and A.2 give the constitutive relationship for the soil structure, linking the six 

strain components to the six total stress components in the soil and the pore water pressure. 

Biot (1941) highlights that, additionally to the above constitutive relationship, the 

dependence of the increment of water content on the stress variables has to be considered. He 

proposes that:  
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𝜃 =
1

3𝐻1
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) +

𝜎

𝑅
 (A.3) 

where: 

 𝜃 is the increment of volumetric water content; 

 𝐻1 and 𝑅 are two physical constants describing the effect of changes in applied total 

stress (𝐻1) and incremental pore water pressure (𝑅) on the water content. 

Equation A.3 describes the constitutive relation for the water phase and together with 

Equations A.1 and A.2 set the basis for coupled consolidation analysis. It can be deduced that 

changes in the applied total stress and in the pore water pressure will affect both the strains 

within the soil and the water content. 

Based on the assumption of the existence of a potential energy for the soil, Biot (1941) 

argues that the physical constant 𝐻1 in the constitutive relationship for the water phase 

(Equation A.3) equals 𝐻, the additional physical constant in the constitutive relationship for 

the soil structure (Equation A.1). He demonstrates that indeed 𝐻 = 𝐻1 for the particular 

stress condition where 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 and 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 𝜏𝑥𝑧 = 0. 

Biot (1941) rearranged Equation A.3 to: 

𝜃 = 𝛼𝜀 +
𝜎

𝑄
 (A.4) 

where: 

𝛼 =
2(1 + 𝜇)

3(1 − 2𝜇)
∙

𝐺

𝐻
 (A.5) 

𝑄 =
1

𝑅
−

𝛼

𝐻
 (A.6) 

and explained that the coefficient 𝛼 relates the changes in the volume of water to the volume 

changes of a soil element which is compressed under 𝜎 = 0 (i.e. full drainage). The 

coefficient 𝑄 is a measure of the volume of water that can flow into or out of the soil element 

under a given pore water pressure change when its volume is kept constant.  

For the case of a fully saturated soil, standard tests show that the volume change of a soil 

sample is equal to the volume of water extracted from the sample. Biot (1941) interpreted 

this observation as equivalent to adopting 𝑄 = ∞ and 𝛼 = 1, in which case Equation A.4 is 

reduced to: 

𝜃 = 𝜀 (A.7) 

indicating that the increment of volumetric water content, 𝜃, is equal to the volumetric strain, 

𝜀. It is expected that for elastic deformations, compression of a unit volume of soil is 
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associated with a decrease in volumetric water content, as the volume of voids and therefore 

the volume of water reduces, whereas dilation of a unit volume of soil is followed by an 

increase in volumetric water content. Consequently, dilative strains in Equation A.7 should 

be positive. Indeed, Biot (1941) states that “ε represents the volume increase of the soil per 

unit initial volume”. Nonetheless, conventionally compression is considered positive in Soil 

Mechanics, in which case the above equation can be written as: 

𝜃 = −𝜀 (A.8) 

It can therefore be concluded that for fully saturated conditions: 

𝛼 = −1 (A.9) 

 

The work of Darkshanamurthy et al. (1984) 

Darkshanamurthy et al. (1984) and Fredlund & Rahardjo (1993) among others extended 

Biot’s coupled theory to unsaturated soils containing air in a continuous form (rather than in 

occluded bubbles as in Biot, 1956). In particular, Darkshanamurthy et al. (1984) altered 

Biot’s equation for the soil structure (Equation A.1) in order to make use of the two stress 

variables net stress and matric suction: 

𝜀𝑥 =
(𝜎𝑥 − 𝑢𝑎)

𝐸1
−

𝜇

𝐸1
(𝜎𝑦 + 𝜎𝑧 − 2𝑢𝑎) + (

𝑢𝑎 − 𝑢𝑤

𝐻1
) (A.10) 

and similar for 𝜀𝑦 and 𝜀𝑧, where:  

 𝑢𝑎 is the pore air pressure (gauge pressure: above atmospheric); 

 (𝑢𝑎 − 𝑢𝑤) is the matric suction, 𝑢𝑤 being the pore water pressure; 

 𝐸1 is Young’s modulus of the soil structure with respect to the net stresses (𝜎𝑥 − 𝑢𝑎), 

(𝜎𝑦 − 𝑢𝑎) and (𝜎𝑧 − 𝑢𝑎) and;  

 𝐻1 is the elastic modulus of the soil structure with respect to (𝑢𝑎 − 𝑢𝑤), similar to 3𝐻 

in the equivalent equation by Biot (1941) (Equation A.1). 

For the water phase Darkshanamurthy et al. (1984) employed the following equation: 

𝜃𝑤 =
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 − 3𝑢𝑎)

3𝐻1
′ +

𝑢𝑎 − 𝑢𝑤

𝑅1
 (A.11) 

where 𝐻1
′  and 𝑅1 are similar to 𝐻1 and 𝑅 in the equivalent equation by Biot (1941) (Equation 

A.3), and 𝜃𝑤 is the volumetric water content (referred to as net inflow and outflow of water in 

the original paper). 

Darkshanamurthy et al. (1984) rewrote 𝜃𝑤 as: 
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𝜃𝑤 =
𝛽

3
𝜀 + 𝛾(𝑢𝑎 − 𝑢𝑤) (A.12) 

where: 

𝛽 =
𝐸1

𝐻1

1

1 − 2𝜇
=

2𝐺

𝐻1

1 + 𝜇

1 − 2𝜇
 (A.13) 

𝛾 =
1

𝑅1
−

𝛽

𝐻1
′  (A.14) 

However, this implies that the authors have interchanged 𝐻1 and 𝐻1
′ : rearranging Equation 

A.10 to obtain (𝜎𝑥 − 𝑢𝑎) (and similar for (𝜎𝑦 − 𝑢𝑎) and (𝜎𝑧 − 𝑢𝑎)), and substituting into 

Equation A.11: 

𝜃𝑤 =
𝐸1

3𝐻1
′

𝜀 (
1

1 − 2𝜇
) + (

1

𝑅1

−
𝛽

𝐻1
′
) ∙ (𝑢𝑎 − 𝑢𝑤) (A.15) 

If 𝐻1 = 𝐻1
′  then: 

𝛽 =
𝐸1

𝐻1

∙
1

1 − 2𝜇
=

𝐸1

𝐻1
′

∙
1

1 − 2𝜇
 (A.16) 

Then and only then can Equation A.12 be obtained.  It is not clear whether the assumption 

that 𝐻1 = 𝐻1
′  was made intentionally in the original paper, similar to Biot (1941) employing  

𝐻1 = 𝐻. 

Darkshanamurthy et al. (1984) carry on to explain the constitutive relation for the air phase 

(three phase flow), but as air is assumed herein to be continuous and at atmospheric pressure, 

the details of this relation are omitted.  

The work of Wong et al. (1998) 

Wong et al. (1998) described the numerical implementation of the coupled formulation 

presented by Biot (1941) and extended by Darkshanamurthy et al. (1984). They rewrote the 

constitutive relationships for the soil structure and the water phase in a different form and 

with slightly different notation. Equation A. 10 was rewritten in the general form: 

𝜀𝑖𝑗 =
1 + 𝜇

𝐸
𝜎𝑖𝑗

𝑛 −
𝜇

𝐸
𝜎𝑛𝛿𝑖𝑗 +

𝑢𝑎 − 𝑢𝑤

𝐻
𝛿𝑖𝑗 (A.17) 

where: 

 𝜀𝑖𝑗 are strain components; 

 𝜎𝑖𝑗
𝑛 are net stress components; 
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 𝜎𝑛 is the mean net stress equal to ∑ 𝜎𝑖𝑖
𝑛 /3; 

 𝑢𝑤 is the pore water pressure; 

 𝑢𝑎 is the pore air pressure; 

 𝐸 is Young’s modulus and 𝜇 is Poisson’s ratio for the soil skeleton; 

 𝛿𝑖𝑗 is the Kronecker 𝛿 and 

 𝐻 is the elastic modulus of the soil structure with respect to (𝑢𝑎 − 𝑢𝑤). The same 

modulus was denoted as 𝐻1 in Darkshanamurthy et al. (1984) and is equivalent to 3𝐻 

in Biot (1941). 

As explained above, Wong et al. (1998) state that 𝜎𝑛 is the mean net stress and is equal to 

∑ 𝜎𝑖𝑖
𝑛 /3. However, substituting 𝜎𝑛 = ∑ 𝜎𝑖𝑖

𝑛 /3 into Equation A.17: 

𝜀𝑥𝑥 =
1 + 𝜇

𝐸
𝜎𝑥𝑥

𝑛 −
𝜇

𝐸
∙

𝜎𝑥𝑥
𝑛 + 𝜎𝑦𝑦

𝑛 + 𝜎𝑧𝑧
𝑛

3
+

𝑢𝑎 − 𝑢𝑤

𝐻

= (
1 + 𝜇

𝐸
−

𝜇

3𝐸
) 𝜎𝑥𝑥

𝑛 −
𝜇

𝐸
∙

𝜎𝑦𝑦
𝑛 + 𝜎𝑧𝑧

𝑛

3
+

𝑢𝑎 − 𝑢𝑤

𝐻

=
3 + 2𝜇

𝐸
𝜎𝑥𝑥

𝑛 −
𝜇

𝐸
∙

𝜎𝑦𝑦
𝑛 + 𝜎𝑧𝑧

𝑛

3
+

𝑢𝑎 − 𝑢𝑤

𝐻
 

(A.18) 

which is not equivalent to Equation A.10, as intended. Instead, if 𝜎𝑛 = ∑ 𝜎𝑖𝑖
𝑛, Equation A.17 

is equivalent to Equation A.10, provided that 𝐸 = 𝐸1 and 𝐻 = 𝐻1. 

Similar to the constitutive relation for the soil structure, Wong et al. (1998) use the 

constitutive relation given by Darkshanamurthy et al. (1984) (i.e. Equation A.12) for the 

water phase, but rewritten in the following form: 

𝜃𝑤 = 𝛽𝜀𝑣 + 𝜔(𝑢𝑎 − 𝑢𝑤) (A.19) 

𝜀𝑣 being the volumetric strain (i.e. equal to 𝜀 in Darkshanamurthy et al., 1984) and where: 

β =
E

H
∙

1

1 − 2μ
 (A.20) 

and: 

ω =
1

R
−

3β

Η
 (A.26) 

It is clear that no distinction was made between modulus 𝐻 in Equation A.17 and modulus 𝐻 

in Equation A.20. 

For Equation A.19 to be equivalent to Equation A.12 of Darkshanamurthy et al. (1984), it is 

required that 3𝐸 = 𝐸1, 𝑅 = 𝑅1 and 𝐻 = 𝐻1 = 𝐻1
′ , where 𝐸, 𝑅 and 𝐻 are moduli in Wong et 
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al. (1998) and 𝐸1, 𝑅1, 𝐻1 and 𝐻1
′  are moduli in Darkshanamurthy et al. (1984). Indeed, 

substituting 𝛽 and 𝛾 from Equations A.13 and A.14 into Equation A.12: 

𝜃𝑤 =
1

3

𝐸1

𝐻1

1

1 − 2𝜇
𝜀 + (

1

𝑅1
−

𝛽

𝐻1
′) (𝑢𝑎 − 𝑢𝑤)

=
1

3

𝐸1

𝐻1

1

1 − 2𝜇
𝜀 + (

1

𝑅1
−

𝐸1

𝐻1

1

1−2𝜇

𝐻1
′ ) (𝑢𝑎 − 𝑢𝑤)

=
1

3

𝐸1

𝐻1

1

1 − 2𝜇
𝜀 + (

1

𝑅1
−

𝐸1

𝐻1𝐻1
′(1 − 2𝜇)

) (𝑢𝑎 − 𝑢𝑤) 

(A.22) 

Nonetheless, substituting 𝛽 and 𝛾 from Equations A.20 and A.21 into Equation A.19: 

𝜃𝑤 =
𝐸

𝐻

1

1 − 2𝜇
𝜀 + (

1

𝑅
−

3𝐸

𝐻2(1 − 2𝜇)
) (𝑢𝑎 − 𝑢𝑤) (A.23) 

For Equation A.23 to be equivalent to A.22 it is required that: 

3𝐸 = 𝐸1 

𝑅 = 𝑅1 

𝐻 = 𝐻1 = 𝐻1
′   

(A.24) 

However, as discussed above for Equation A.17to be equivalent to Equation A.10, it is 

required that 𝐸 = 𝐸1 and 𝜎𝑛 = ∑ 𝜎𝑖𝑖
𝑛. Indeed, if 3𝐸 = 𝐸1 and 𝜎𝑛 = ∑ 𝜎𝑖𝑖

𝑛 3⁄  as proposed by 

Wong et al. (1998): 

εxx =
1 + μ

E1

3

σxx
n −

μ
E1

3

∙ (
σxx

n + σyy
n + σzz

n

3
) +

ua − uw

H

=
3(1 + μ)

E1
σxx

n −
μ

E1
∙ (σxx

n + σyy
n + σzz

n ) +
ua − uw

H

=
3 + 2μ

E1
σxx

n −
3μ

E1
∙ (σyy

n + σzz
n ) +

ua − uw

H
 

(A.25) 

which is not equivalent to Equation A.10. It is not clear whether Wong et al. (1998) intended 

to alter the equations by Dakshanamurthy et al. (1984).  
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Appendix B 

As discussed in the text: 

𝜃𝑤 = Ω𝜀𝑣𝑜𝑙 + 𝜔(𝑢𝑎 − 𝑢𝑤) (B.1) 

Therefore: 

𝑑𝜃𝑤

𝑑𝑡
= Ω

𝑑𝜀𝑣𝑜𝑙

𝑑𝑡
+ 𝜔

𝑑(𝑢𝑎 − 𝑢𝑤)

𝑑𝑡
 (B.2) 

where:  

𝑑𝜀𝑣𝑜𝑙

𝑑𝑡
= −

1

𝑣0
∙

𝑑𝑣

𝑑𝑡
 (B.3) 

and: 

𝑑(𝑢𝑎 − 𝑢𝑤) = 𝑑𝑠 (B.4) 

where 𝑠 is the matric suction and 𝑣0 is the specific volume, 𝑣, at the beginning of the 

increment.  

It follows that: 

𝑑𝜃𝑤

𝑑𝑡
= Ω (−

1

𝑣0
∙

𝑑𝑣

𝑑𝑡
) + 𝜔

𝑑𝑠

𝑑𝑡
 (B.5) 

The volumetric water content is also given by the following relationship: 

𝜃𝑤 = 𝑛 ∙ 𝑆𝑟 (B.6) 

and therefore, for the general case where 𝑆𝑟 = 𝑓(𝑠, 𝑣): 

𝑑𝜃𝑤

𝑑𝑡
= 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑡
+ 𝑆𝑟 ∙

𝜕𝑛

𝜕𝑡
= 𝑛 ∙ (

𝜕𝑆𝑟

𝜕𝑠
∙

𝑑𝑠

𝑑𝑡
+

𝜕𝑆𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑡
) + 𝑆𝑟 ∙

𝜕𝑛

𝜕𝑣
∙

𝑑𝑣

𝑑𝑡
 (B.7) 

Noting that: 

𝑛 =
𝑒

1 + 𝑒0

 (B.8) 

𝑒0 being the void ratio at the beginning of the increment, Equation B.7 can be written as: 

𝑑𝜃𝑤

𝑑𝑡
= 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
∙

𝑑𝑠

𝑑𝑡
+

𝑒

1 + 𝑒0

∙
𝜕𝑆𝑟

𝜕𝑣

𝑑𝑣

𝑑𝑡
+ 𝑆𝑟 ∙

𝜕𝑛

𝜕𝑣
∙

𝑑𝑣

𝑑𝑡
 (B.9) 

where: 
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𝜕𝑛

𝜕𝑣
=

1

𝑣0
 (B.10) 

Finally: 

𝑑𝜃𝑤

𝑑𝑡
= 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
∙

𝑑𝑠

𝑑𝑡
− (𝑒

𝜕𝑆𝑟

𝜕𝑣
+ 𝑆𝑟) ∙ (−

1

1 + 𝑒0

∙
𝑑𝑣

𝑑𝑡
) (B.11) 

Equating Equations B.5 and B. 11, it is possible to calculate parameters Ω and 𝜔: 

𝜔 = 𝑛 ∙
𝜕𝑆𝑟

𝜕𝑠
 (B.12) 

and: 

Ω = −𝑆𝑟 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 (B.13) 

Clearly, both parameters are dependent on the soil-water retention curve (SWRC) employed 

and in the case where 𝑆𝑟 = 𝑓(𝑠), and not 𝑆𝑟 = 𝑓(𝑠, 𝑣) as above: 

Ω = −𝑆𝑟 (B.14) 

The negative sign in Equations B.13 and B.1 signifies that compression of a unit volume of 

soil causes a decrease in volumetric water content (see Eq. B.2). 

Parameter 𝐻 can now be calculated from Equation 11, as follows. 

𝜔 =
1

𝑅
−

3Ω

𝐻
⇒ 𝐻 =

3Ω
1

𝑅
− 𝜔

 

 

(B.15) 

For the general case where 𝑆𝑟 = 𝑓(𝑠, 𝑣): 

1

𝑅
=

𝜕𝜃𝑤

𝜕𝑠
=

𝜕𝜃𝑤

𝜕𝑆𝑟
(

𝜕𝑆𝑟

𝜕𝑠
+

𝜕𝑆𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑠
) +

𝜕𝜃𝑤

𝜕𝑛

𝜕𝑛

𝜕𝑣

𝜕𝑣

𝜕𝑠

= 𝑛 (
𝜕𝑆𝑟

𝜕𝑠
+

𝜕𝑆𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑠
) + 𝑆𝑟

1

𝑣0

𝜕𝑣

𝜕𝑠
 

(B.16) 

It has already been shown that Ω = −𝑆𝑟 − 𝑒
𝜕𝑆𝑟

𝜕𝑣
 and 𝜔 = 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠
, therefore: 

𝐻 =
3 (−𝑆𝑟 − 𝑒

𝜕𝑆𝑟

𝜕𝑣
)

𝑛 (
𝜕𝑆𝑟

𝜕𝑠
+

𝜕𝑆𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑠
) + 𝑆𝑟

1

𝑣0

𝜕𝑣

𝜕𝑠
− 𝑛 ∙

𝜕𝑆𝑟

𝜕𝑠

=
3 (−𝑆𝑟 − 𝑒

𝜕𝑆𝑟

𝜕𝑣
)

𝑒

𝑣0

𝜕𝑆𝑟

𝜕𝑣

𝜕𝑣

𝜕𝑠
+ 𝑆𝑟

1

𝑣0

𝜕𝑣

𝜕𝑠

 

 

(B.17) 
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and finally: 

𝐻 = −
3

1

𝑣0

𝜕𝑣

𝜕𝑠

 

 

(B.18) 

It can easily be shown that the above equation is also true for the case where 𝑆𝑟 = 𝑓(𝑠). 
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List of Figures 

Figure 1: (a) Soil water retention curves (SWR curves) generated by Tinjum et al. (1997) using the 

van Genuchten (1980) expression; (b) 
𝜕𝑆𝑟

𝜕𝑠
  versus 𝑠 for the same SWR curves. Parameters a and n in 

the legend refer to the van Genuchten (1980) parameters, while parameter m was taken equal to 1-

1/n. 

Figure 2: (a) Soil water retention curves (SWR curves); (b) 
𝜕𝑆𝑟

𝜕𝑠
  versus 𝑠 for Case 1a, 1b, 2a and 2b 

 

Figure 3: Drying/wetting compression curves for Case 1a, 1b, 2a and 2b 

 

Figure 4: Variation of parameter 𝛺 (a) for Case 1a; (b) for all cases   

 

Figure 5: Variation of parameter 𝜔 (a) for Case 1a; (b) for all cases 

 

Figure 6: Variation of parameter 1/H (a) for Case 1a; (b) for all cases 

Figure 7: Conceptual zones of behaviour (a) zone 1; (b) zone 2; (c) zone 3A; (d) zone 3B; (e) zone 4 

(after Smith, 2003) 

 

Figure 8: Conceptual zones of behaviour on drying and on wetting for Case 1b: (a) SWR curve; (b) 
𝜕𝑆𝑟

𝜕𝑠
 versus 𝑠 

 

Figure 9: Variation of parameter 𝛺 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 

Figure 10: Variation of parameter 𝜔 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 

Figure 11: Variation of parameter 𝐻 with suction for Case 1b and zones of behaviour on drying (in 

black) and wetting (in grey) 

 


