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Abstract 

When subjected to elevated temperatures, steel displays a reduction in both strength and 

stiffness, its yield plateau vanishes and its response becomes increasingly nonlinear with 

pronounced strain hardening. For steel sections subjected to compressive stresses, the extent 

to which strain hardening can be exploited (i.e. the strain at which failure occurs) depends on 

the susceptibility to local buckling. This is reflected in the European guidance for structural 

fire design EN1993-1-2 [1], which specifies different effective yield strengths for different 

cross-section classes. Given the continuous rounded nature of the stress-strain curve of 

structural steel at elevated temperatures, this approach seems overly simplistic and improved 

accuracy can be obtained if strain-based approaches are employed [2]. Similar observations 

have been previously made for structural stainless steel design at ambient temperatures and 

the continuous strength method (CSM) was developed as a rational means to exploit strain 

hardening at room temperature. This paper extends the CSM to the structural fire design of 

steel cross-sections. The accuracy of the method is verified by comparing the ultimate 

capacity predictions with test results extracted from the literature. It is shown that the CSM 

offers more accurate ultimate capacity predictions than current design methods throughout 

the full temperature range that steel structures are likely to be exposed to during a fire. 
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Moreover due to its strain-based nature, the proposed methodology can readily account for 

the effect of restrained thermal expansion on the structural response at cross-sectional level. 

 

Keywords: Continuous strength method, Structural fire design, Elevated temperatures, 

Steel structures, Stub column, Cross-section resistance 

 

1. Introduction 

The behaviour and design of steel structures subjected to fire poses a great challenge for both 

practising engineers and researchers due to its complexity and the severe safety and economic 

implications. At high temperatures, steel structures experience a substantial deterioration of 

their material characteristics and the development of thermal strains, which are, in most cases, 

non-uniform both along the member length and through the cross-section, whilst creep also 

becomes increasingly significant. These features, coupled with the inherent uncertainty 

associated with fire loading, have prompted widespread research, focusing on various aspects 

of structural fire design.  

The resistance of steel structures under fire conditions can be considered on four levels [3]: 

The material behaviour at elevated temperatures (Level 1); the cross-sectional behaviour 

considering local stability effects (Level 2); the member behaviour considering global 

stability effects (Level 3); and the global structural behaviour considering effects based on 

large deformations, change of structural systems and alternative load paths (Level 4). 

Experimental research on the behaviour of steel structures under fire is mainly restricted to 

the study of the material (Level 1) and structural response of isolated members (Level 2 and 

3), due to the high cost and complexity associated with testing of full-scale structures under 

fire. Nonetheless some fire tests on frame sub-assemblies [4], plane frames [5] and complete 

structures [6] (Level 4) have been reported. Numerous isothermal tests on isolated long 

columns [7-9], stub columns [10] and beams [11, 12] have been conducted to investigate the 

effect of high temperature on the structural response of members failing by local buckling or 



3 
 

overall buckling without the added complexity of the effects of heating rate. Tests on isolated 

members [13, 14] subjected to standardized fire curves [15], which allow a more realistic 

representation of the structural response of members in fire, have also been performed and 

are utilized to obtain critical temperatures as a function of parameters such as the load level 

and the member slenderness [16].  

Key to the structural response of either an isolated member or a complete structure subjected 

to elevated temperatures is the material response. Therefore, in addition to tests on structural 

members, numerous experimental studies have been conducted to study the effect of 

temperature on the material response of structural steel of various grades [17-19], 

cold-formed steel [20] and stainless steel [21, 22]. At elevated temperatures, the stress-strain 

curve of structural steel has been shown to deviate significantly from the elastic-perfectly 

plastic one traditionally assumed for steel design at ambient temperature [23] and becomes 

increasingly rounded with a pronounced loss of stiffness and strength and significant strain 

hardening occurring at low strains. The influence of strain rate [24] and heating rate on 

material response, depending on whether the experimental procedure followed is isothermal 

or transient, has also been studied [25]. Based on experimental results, suitable reduction 

factors for stiffness (i.e. Young’s modulus) and strength (i.e. ultimate tensile stress, effective 

yield stress and various proof stresses) have been proposed for the various material grades 

investigated. Moreover, material models reflecting the rounded nature of the stress-strain 

response of steel at elevated temperatures have been developed. The model proposed by 

Rubert and Schaumann [26], which assumes an elliptical transition from the end of the elastic 

range up to the effective yield strength corresponding to 2% strain has been adopted in EN 

1993-1-2 [1] and implicitly accounts for the effect of creep. Other material models, usually 

variants of the Ramberg-Osgood model [27, 28] and originally developed for stainless steel at 

ambient temperature [29-32], have also been proposed [17-22].  

This paper focuses on the structural response of steel members failing by local buckling at 

elevated temperatures. The continuous strength method (CSM), which was originally 

developed as a deformation-based approach to rationally incorporate strain hardening into the 

design of stainless steel [32-34] and structural steel [35, 36] cross-sections at room 
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temperature, is extended herein to cover the design of steel sections at elevated temperatures. 

Existing experimental data are first reviewed in Section 2 and subsequently used for the 

development and validation of the CSM in Sections 3 and 4, respectively. 

 

2. Review of existing experimental studies 

Key to the development of the CSM for steel sections at elevated temperatures is the collation 

of relevant test data against which the method can be validated. Given the high scatter 

typically encountered in the results of structural fire tests and the numerous factors affecting 

structural response at elevated temperatures, only isothermal test results on isolated steel stub 

columns and beams with unrestrained thermal expansion are utilized herein for the 

development and assessment of the method. Tests extracted from the literature are 

summarized in Section 2.1, recent experiments reported by the third author and his 

co-workers [37] are described in Section 2.2, where the aspects of these tests relevant to the 

deformation-based design approach developed herein are expanded upon. 

 

 2.1 Test data extracted from the literature 

The primary focus of the CSM is deformation-based design and the exploitation of strain 

hardening. Experimental data are therefore sought on non-slender cross-sections which 

exhibit material nonlinearity prior to failure. Slender (i.e. Class 4) cross-sections are not 

currently covered by the CSM and can be designed using the traditional effective width 

method [1, 38]. Hence experimental studies on slender steel sections at elevated temperatures 

have not been considered herein. 

A total of 42 isothermal test results on concentrically loaded non-slender stub columns have 

been gathered and are summarized in Table 1. The tested sections include SHS and I-sections 

of various slendernesses, while the material grades covered include hot-rolled structural steel 

[7, 9] and fire resistant steel [10]. Excluding the tests performed at room temperature and 
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those where insufficient information was provided for the elevated temperature material 

properties, left 26 test results from the literature suitable for the development of the CSM. 

These test data were augmented with the results of a series of tests recently performed at ETH 

Zurich [37], for which the material properties are reported in detail in [24]; these tests are 

summarised in the Section 2.2. All collated experimental results are utilized in Section 3 to 

develop and assess the CSM for steel sections at elevated temperatures. 

 

2.2 Additional recent test data from ETH Zurich  

The experimental data collected from the literature are supplemented with the results of 

additional tests recently performed at ETH Zurich [37], which are outlined herein, with the 

key aspects relevant to the development of the CSM expanded upon. The testing programme 

comprised a total of 106 structural tests at elevated temperatures (stub and slender column 

tests loaded concentrically and eccentrically) as well as corresponding material coupon tests 

at various temperatures and strain rates. SHS and RHS (square and rectangular hollow 

sections), as well as HEA sections, were examined. Given the high sensitivity of the material 

response to strain rate at elevated temperatures [24], only specimens for which the material 

response was obtained at a strain rate matching the strain rate of the stub column tests have 

been included in the subsequent analysis.  

 

Steady state tensile material coupon tests were carried out to determine the elevated 

temperature material behaviour of the steel sections used for the stub column tests. An 

electric furnace with three vertically distributed heating zones was used for the elevated 

temperature tests. In addition to the overall stress-strain relationship, the mechanical 

parameters, including the modulus of elasticity, the proportional limit, the 0.2% proof stress 

and effective yield strengths at different levels of total strain, were obtained from the test 

results. Fig. 1 shows the stress-strain relationships at different temperatures obtained from 

tensile coupons taken from the stub column specimens and tested at a strain rate of 

0.10 %/min as an example. Details of the test setup and results are given in [24]. 
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A series of steady state stub column tests at ambient and elevated temperatures under uniform 

axial compression was performed to determine their cross-sectional capacity. Measurements 

of the geometry of the specimens were taken prior to testing and are summarised in Table 2. 

Initial geometric imperfection measurements were made using a three-dimensional video 

extensometer, utilising two cameras. Fig. 2 shows the stub column testing arrangement which 

consists of the following main parts: an electric furnace with four vertically distributed 

heating zones, a double-action hydraulic loading jack with a capacity of 4.45 MN and a 

reaction frame. 

Full axial load-end shortening histories were recorded, including the post-ultimate range. The 

relative vertical displacement, i.e. the end shortening of the stub columns, was determined 

using two LVDTs located beneath the furnace. The LVDTs recorded the relative vertical 

displacement between the mid-heights of the 80 mm thick parallel end-plates of the testing 

device using two stainless steel bars. The axial load was measured using four load cells 

placed above the upper piston and outside the furnace. The vertical load was calculated as the 

sum of the measured vertical loads of the four cells. Three thermocouples were used to 

measure the temperature at the top, bottom and mid-height of one stub column surface. 

Applying the steady state testing method, the specimens were first uniformly heated with a 

heating rate of 5 °C/min (furnace air temperature) to the target temperatures of 400 °C, 

550 °C and 700 °C. During heating, a constant axial compressive load of approximately 5 kN 

was applied to the specimens. The thermal elongation during heating was not restrained. 

After reaching the target temperature, closed-loop strain-controlled (via the LVDTs) 

compressive loading was applied at strain rates of 0.1 %/min, 0.02 %/min and 0.01 %/min. 

More information about the test setup and measurements is given in [39]. 

Fig. 3 shows the axial load-end shortening curves of the SHS (top), RHS (middle) and HEA 

(bottom) test specimens with a strain rate of 0.1 %/min at 550 °C as examples. The ultimate 

loads Nu and the end shortening at ultimate load u are given in Table 2. The resistance at 

400 °C, 550 °C and 700 °C was reduced to 65 %, 38 % and 11 % of the resistance at room 

temperature for the SHS specimens, to 84 %, 53 % and 15 % for the RHS specimens and to 
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89 %, 45 % and 14 % for the HEA specimens. Further details of the test results are given in 

[39]. 

 

3. Deformation based design for steel structures at elevated temperatures 

3.1 Response of steel plates and sections at elevated temperatures 

The dependence of failure stress on cross-section slenderness of compressed sections is 

reflected in EN 1993-1-2 [1], which specifies different effective yield strength values 

according to the susceptibility of a cross-section to local buckling, as assessed on the basis of 

cross-section classification. Due to the discrete nature of classification, a step in the structural 

capacity occurs between slender and non-slender sections, as two distinct levels of effective 

stress are specified. Moreover, the utilization of the elastic section modulus for Class 3 

sections and the plastic section modulus for Class 1 and 2 sections induces a second step in 

the capacity of steel beams at elevated temperatures. In reality the cross-section resistance 

decreases continuously with increasing cross-section slenderness and any discontinuities 

occurring at the transition between the various classes are due to the stress-based approach 

underlying the cross-section classification process. The absence of a sharply defined yield 

stress renders the cross-section classification process, commonly employed for the design of 

metallic structures at both room and elevated temperature [1, 29], unrepresentative of the 

actual response, since no specific stress value exists at which a sudden loss of stiffness occurs 

and increasing strain is generally accompanied by hardening of the material.  

Knobloch and Fontana [2] recognised the shortcomings associated with a stress based method 

in the absence of a sharply defined yield stress and found that the design provisions in EN 

1993-1-2 [1] overestimate the resistance of stocky (Class 1-2) plates at room temperature and 

underestimate the resistance of slender (Class 4) plates at elevated temperatures [2]. A 

modified Winter formula was proposed to reduce the strength for the complete range of 

slenderness values. Unlike the effective width method used in Eurocode 3, which is based on 

an elastic stress distribution for both ambient and elevated temperatures, the strain-based 
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approach proposed in [2] uses a plastic stress distribution. The main advantages of the 

method proposed in [2] stem from its strain-based nature and include the avoidance of 

cross-section classification, the consideration of the non-linear material behaviour of carbon 

steel at elevated temperatures and the more realistic representation of the actual structural 

response. However, the extension of the effective width method across the full slenderness 

range renders this method rather laborious. A further shortcoming of the approach [2], which 

is in common with the current EN 1993-1-2 treatment, is the consideration of individual plate 

behaviour, rather than that of the full cross-section. This disregards any interaction between 

the constituent plate elements of a section and, in the context of [2], means that the ultimate 

strength of the individual plates is reached at different strains and thus also at different load 

levels. In practice, compatibility dictates common strains at the intersections of connecting 

plates, which should be reflected in the design approach. Finally, improvements to the 

material model adopted in [2] to capture better the strain hardening response of steel at 

elevated temperatures, may be achieved. Both the effect of strain hardening and element 

interaction are accounted for by the continuous strength method, which is a strain-based 

design approach, extended to steel elements in fire herein. 

 

3.2 Background to the CSM 

The continuous strength method (CSM) was originally developed [32-36] as a design 

approach which rationally exploits the significant strain hardening exhibited by stocky 

stainless steel cross-sections under load. The main principle underlying the method is that the 

exploitation of strain hardening for cross-sections subjected to compressive stresses is limited 

by the occurrence of local buckling. On this basis, an empirical relationship, referred to as the 

‘base curve’, between the level of strain that a given cross-section can attain prior to failure 

by local buckling and cross-section slenderness, was developed. Element interaction is 

accounted for [33] by utilizing the cross-section slenderness, rather than simply considering 

the most slender individual plate element. The method has also been extended to cover 

structural steel [35, 36] and aluminium [40, 41] design at room temperature. 
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There is an analogy between the response of stainless steel structures and that of steel 

structures at elevated temperatures [2], since in both cases the material displays no yield 

plateau and exhibits pronounced strain hardening with increasing stresses. The strain that can 

be attained by a steel section subjected to compressive stresses prior to failure depends on its 

susceptibility to local buckling [9]. Stocky steel sections subjected to compressive stresses 

can attain high strains prior to the occurrence of local buckling and hence benefit 

significantly from strain hardening, whilst more slender cross-sections fail at lower strains 

and will not experience strain hardening. This is the case both at ambient and high 

temperatures. Based on the test data summarized in Section 2, the CSM is extended to cover 

the design of steel cross-sections at elevated temperatures. In accordance with the CSM for 

room temperature, the main features of the CSM for elevated temperatures are the base curve 

and the material stress-strain model, taking due account of the temperature effects, as 

discussed hereafter. 

 

3.3 Base curve 

The first step towards extending the CSM to the design of steel sections at elevated 

temperatures is the determination of a suitable base curve, which is in essence an empirical 

equation relating the cross-section deformation capacity to the cross-section slenderness. The 

cross-section slenderness θp,λ  is defined according to Eq.(1):  

θcr,

θ0.2,
θp,

f

f
λ                                  (1) 

where f0.2,θ is the 0.2% proof strength at temperature θ and fcr,θ is the elastic critical local 

buckling stress of the cross-section, taking into account the relevant Young’s modulus value 

Eθ at temperature θ. The elastic critical local buckling stress fcr,θ of the cross-section can be 

obtained analytically [42] or numerically (using bespoke software such as CUFSM [43] or 

more general software packages), but may also be taken conservatively as that of the most 

slender plate element in the cross-section (i.e. ignoring element interaction). 
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The experimental deformation capacities were obtained directly from the load-deformation 

curves of the stub column tests considered, and used, in a similar manner as at room 

temperature [33-36], to underpin the establishment of the base curve. For stub columns 

failing beyond their theoretical squash load Ny, the cross-section deformation capacity εcsm,θ 

at temperature θ is expressed in terms of the strain at failure εlb (minus 0.2% strain to ensure 

compatibility with the CSM material model described later), normalized by the yield strain 

εy,θ=f0.2,θ/Eθ as defined in Eq.(2), whereas for stub columns failing below their squash load or 

beyond the yield slenderness limit of 68.0λ θp,  [34], the deformation capacity is obtained 

from Eq.(3). 

,
ε

0.002
L

δ

ε

0.002ε

ε

ε

θy,

u

θy,

lb

θy,

θcsm,





   for Nu≥Ny                      (2) 

,
N

N

ε

ε

y

u

θy,

θcsm,     for Nu<Ny or 68.0λ θp,                  (3) 

where εlb is the local buckling strain at failure determined as the end-shortening δu 

corresponding to the ultimate load Nu normalized by the stub column length L. Since both the 

cross-section slenderness and the elastic strain corresponding to f0.2 are temperature 

dependant, accurate material properties at the temperature at which the stub column tests 

were conducted, are required for the derivation of the base curve.  

On the basis of the test data summarized in Tables 1 and 2 and the material properties 

extracted from the relevant publications [7-10, 37], the cross-sectional slenderness values 

were determined according to Eq.(1) and plotted against their corresponding deformation 

capacities in Fig. 4. The CSM base curve applicable to both carbon steel and stainless steel at 

room temperatures, which is defined by Eq.(4), is also depicted. 

)
03.0

,15(min
ε

ε
but

λ

0.25

ε

ε

,yθy,

θcsm,

6.3
θp,θy,

θcsm,


  for 68.0λ θp,                   (4) 
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where the limiting value of 15 is to avoid excessive deformations [32-36] and the 3% strain 

limit is to avoid significant over-predictions of strength (not greater than 5%) from the 

simplified material model described in Section 3.4. Note that the 3% strain limit enables the 

use of strengths higher than those allowed in EN 1993-1-2, where the strength at 2% strain is 

employed for stocky cross-sections. The slenderness limit of 0.68 marks the transition from 

stocky to slender sections, beyond which, there is no benefit from strain hardening. 

Application of the CSM is currently limited to 68.0λ θp,  . 

In Fig. 4 it can be observed that the base curve derived for carbon and stainless steel sections 

at room temperature provides a good, generally lower-bound fit to the results considered 

herein. The same data are depicted in Fig. 5, where the test results are classified according to 

the temperature at which they were conducted. No significant difference appears between the 

individual datasets. The fit is considered to be acceptable because: (1) it captures well the 

general trend of the test data, (2) data on deformation capacity is inherently scattered, 

particularly in fire, due to the relatively ‘flat’ nature of the regions of the load-deformation 

curves from which they are determined and (3) resistance predictions in the inelastic range 

are not overly sensitive to the precise value of deformation capacity since the strain hardening 

modulus is substantially lower than the initial elastic modulus of the material. Hence the base 

curve for the CSM at room temperature is adopted herein as the base curve for the CSM at 

elevated temperatures. 

 

3.4 Material model 

The selection of an appropriate material model is key to the successful extension of the CSM 

to steel sections at elevated temperatures. As discussed in the introductory section of this 

paper, various material models based on the analysis of experimental data have been 

proposed, the most commonly utilized being the Rubert-Schaumann model [26] adopted in 

EN 1993-1-2 [1] and variants of the Ramberg-Osgood model [27-31], which have been 

shown to provide excellent fit to the test data in a number of experimental studies [17-22]. 

However, the adoption of a compound Ramberg-Osgood model results in lengthy design 



12 
 

expressions, particularly for sections subjected to a strain gradient (i.e. bending) [36]. This 

complicates the design process and discourages designers from using advanced design 

approaches such as the CSM. Given the inherently high uncertainty associated with fire 

loading, a trade-off between accuracy and simplicity in the material model is sought. The 

adopted material model has to reflect the basic features of the actual response, whilst at the 

same time being sufficiently simple to facilitate design using explicit design equations rather 

than resorting to cumbersome numerical integration, iterative schemes or design tables.  

In accordance with the latest developments of the CSM for stainless steel at ambient 

temperatures [34], a bilinear material model is adopted herein, which is shown to accurately 

capture basic material characteristics and results in efficient and accurate design. The 

proposed material model is defined by Eq.(5) and depicted in Fig.6. It is a function of only 3 

temperature dependant material parameters readily available to the designer, namely the 

Young’s modulus Eθ, the 0.2% proof stress f0.2,θ and the ‘effective yield strength’ f2.0,θ which 

is the stress value corresponding to 2% total strain at temperature θ. 

  θy,θcsm,θy,θcsm,θsh,θ0.2,θcsm,

θy,θcsm,θcsm,θθcsm,

εεfor  εεEff

εεfor  ε Ef




            (5) 

where Esh,θ is the strain hardening slope at temperature θ, given by:  

θy,

θ0.2,θ2.0,
θsh, ε0.02

ff
E




                                                         (6) 

In addition to the mathematical formulation of the material model, account need be taken of 

the effect of temperature on the basic model parameters. Clearly the determination of 

accurate temperature dependant material parameters is crucial for the successful application 

of the CSM. Although measured values for these key properties are used for the comparisons 

shown herein, it is proposed that the reduction factors given in EN1993-1-2 [1], which have 

been underpinned by extensive material testing, are used by designers when applying the 

CSM. 

3.5 Cross-section resistance 
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For the determination of the compressive resistance of a cross-section, the strain at failure 

εcsm,θ has to be obtained from Eq. (4) as a function of the cross-sectional slenderness. 

Thereafter the corresponding stress fcsm,θ is obtained from the bilinear elastic-linear hardening 

material model defined by Eq. (5), which is multiplied by the gross cross-section area A to 

yield the compressive resistance of the cross-section Ncsm,θ. The process is straightforward 

and does not require the calculation of effective properties.  

For the determination of the bending resistance of a cross-section, a similar procedure is 

followed. Assuming a linear strain distribution through the depth of the cross-section, the 

maximum attainable compressive strain at failure εcsm,θ is obtained from Eq. (4), which can be 

transformed into the corresponding stress distribution on the basis of Eq. (5). The obtained 

stress distribution can yield the ultimate moment resistance Mcsm via numerical integration. In 

order to eliminate the need for numerical integration, a simplified though very accurate 

approximation for the bending resistance of RHS, SHS and I-sections, which is in line with 

the above assumptions has been derived [36]. For the bending resistance of cross-sections at 

elevated temperatures Mcsm,θ, the derived expression, given by Eq. (7) [36] can again be used 

to explicitly obtain the moment resistance as a function of the local buckling strain εcsm,θ. 


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ε

ε

W

W
11

ε

ε

W

W

E

E
1

M

M
            (7) 

 

where α is a coefficient equal to 2 for RHS, SHS and I-sections bent about their major axis, 

and 1.2 for I-sections bent about their minor axis. 

 

4. Validation and discussion 

4.1 Assessment of CSM for stub columns at elevated temperatures 

The stub column tests summarized in Tables 1 and 2 are utilized to assess the accuracy of the 

predictions of the CSM. For comparison purposes the conventional design approach of 

EN1993-1-2 [1] is also assessed. For both the Eurocode method and the CSM, the material 
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properties utilized in the predicted capacities Nu,pred are the ones extracted from the tests and 

all partial safety factors have been set to unity. The accuracy of the predictions of each 

method is shown in Table 3, where the average ratios of predicted-to-experimental failure 

loads for each set of results, together with the corresponding coefficient of variation COV are 

given, where NEC3 and Ncsm are the predicted compression capacities according to EN 

1993-1-2 and the CSM and Nu is the ultimate test load. It can be seen that the CSM displays 

improved consistency of predictions (i.e. lower COV), compared to the Eurocode method, 

though it is slightly more conservative. The same conclusions can be drawn from Fig.7, 

where the CSM predictions are shown to be within a narrower band than the respective 

Eurocode predictions.  

4.2 Assessment of CSM for cross-sections in bending at elevated temperatures 

For the validation of the CSM for predicting cross-section bending resistances at elevated 

temperatures, isothermal test data on laterally restrained beams would ideally be utilized. 

However, the only relevant test data are described in [11], but the material properties at 

elevated temperatures are not reported. Therefore, the results of a comprehensive FE 

parametric study reported in [39] are utilized herein to assess the suitability of the CSM for 

the design of laterally restrained beams at elevated temperatures. The simulated sections 

include SHS, RHS and I-sections bent about both principal axes, whilst the temperatures 

considered vary from room temperature to 700 ˚C. The basic parameters (cross-section 

geometry, temperature, local slenderness range) considered in the parametric study are 

summarized in Table 4. From a total of 220 modelled sections, 86 have a cross-section 

slenderness 68.0λ θp,   and are hence utilized for the validation of the CSM.  

The numerically obtained ultimate moments Mu have been normalized by the respective 

plastic moment resistance (Mpl,θ=Wplf2.0,θ) and are plotted against the slenderness θp,λ  in Fig. 

8. The data have been classified into 3 groups: I-sections bent about their major axis, 

I-sections bent about their minor axis and SHS and RHS bent about either axis. All sections 

display a reduction in strength with increasing slenderness. However, the I-sections bent 

about their minor axis seem to retain their strength at higher slendernesses more effectively 
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than the other section types. Similar observations have been made previously by Bambach et 

al [44], who studied the stress distributions that developed in slender I-sections bent about the 

minor axis at room temperature and concluded that they display significant inelastic 

behaviour in the attainment of the ultimate moment.  

Figs. 9-11 depict the moment resistance predicted by the CSM normalized by the respective 

numerical ultimate moment Mu against the slenderness θp,λ for I-sections under major axis 

bending, I-sections under minor axis bending and SHS and RHS respectively. The EN 

1993-1-2 [1] predictions are also depicted, and Mpred is used to denote the predicted moment 

capacity. To facilitate the comparison of the two methods, the same data have been used for 

the assessment of both EN 1993-1-2 [1] and the CSM.  

As shown in Fig. 9, the I-sections under major axis bending seem to be very well predicted 

by the CSM, whilst an increasing conservatism with increasing slenderness is displayed by 

the EN 1993-1-2. The predictions of both methods lie within a narrow band. On the other 

hand, the capacity of I-sections subjected to minor axis bending seems to be significantly 

under-predicted by both methods, as evidenced in Fig. 10. The EN 1993-1-2 approach 

appears to be consistently highly conservative, with the degree of conservatism increasing 

with increasing slenderness, whilst the conservatism is less pronounced in the CSM 

predictions. The high conservatism exhibited by the EN1993-1-2 predictions is believed to 

relate to the inability of the design method to account accurately for the actual inelastic stress 

distribution exhibited by slender I-sections in minor axis bending at room temperatures [44]. 

Moreover, the large ‘step’ displayed by the EN 1993-1-2 predictions occurs at the Class 3 

limit and relates to the high shape factor (Wpl/Wel=1.5) of the I-sections bent about their 

minor axis.  

In Fig. 11, EN 1993-1-2 displays a wider scatter than the CSM for the prediction SHS and 

RHS moment resistances. Again the observed step in predicted resistances is related to the 

nature of the cross-section classification system, which specifies a sharp reduction in the 

section modulus at a discrete slenderness (i.e. Class 2) limit, whilst the continuous nature of 

the CSM approach eliminates such irregularities. The relative accuracy of both methods is 
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quantified in Table 5 (in which MEC3 and Mcsm are the moment capacities predicted by EN 

1993-1-2 and the CSM), where the CSM is shown to offer clearly improved ultimate capacity 

predictions both in terms of consistency and design efficiency compared to the EN 1993-1-2 

approach. 

 
 

5. Conclusions 

In fire, steel exhibits a distinctly rounded material stress-strain response with significant 

strain hardening occurring from low stress levels. In this paper, the continuous strength 

method (CSM), originally developed to incorporate the effect of strain hardening into the 

design of stainless steel structures at room temperature, has been extended to the design of 

steel cross-sections under fire. Utilising existing test data, a clear relationship between 

cross-section slenderness and deformation capacity was identified and an empirical equation, 

referred to as the base curve derived. This equation is the same as that used for stainless steel 

design at ambient temperatures [34]. Whilst the base curve is the same, the cross-section 

slenderness and the adopted strain hardening material model are different to those used for 

room temperature design, and reflect the elevated temperature material properties of 

structural steel. 

The proposed CSM design approach has been validated herein against test and FE results on 

isolated members subjected to uniform elevated temperatures. The comparisons generally 

reveal that the CSM offers improved accuracy compared to the stress-based design approach 

set out in EN1993-1-2 [1], whilst also eliminating the artificial steps in design resistance 

brought about by cross-section classification. The method is, in principle, applicable to any 

metallic material in fire, provided that accurate material models for elevated temperatures are 

available. Moreover, due to its strain-based nature, the CSM can readily accommodate the 

effects of restrained thermal expansion, by deducting the thermal strains from the 

deformation capacity, within the framework of the method. Further research is underway to 

extend the applicability of the method to cross-sections subjected to thermal gradients, which 

commonly arise in practice. 
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Fig.1: Tensile material response for Series 4, 6 and 8 at ambient and elevated 

temperatures. 
 
 

  

 
Fig. 2. Test setup for the stub column tests. 
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Fig. 3: Load-end shortening curve (left) and corresponding failure mode (right) for 
SHS 160×160×5 (top) and HEA 100 (bottom) stub column specimen at 550˚C. 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Relationship between deformation capacity and slenderness, with data grouped 
by specimen type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Relationship between deformation capacity and slenderness, with data grouped 
by temperature. 
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Fig. 6: Adopted bilinear CSM material model and EN1993-1-2 material model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Assessment of the CSM and EN 1993-1-2 design method based on isothermal 
stub column tests. 
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Fig. 8: Numerical moment resistances normalized by the respective plastic moment 
resistances with data grouped by cross-section type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Comparison of the CSM and EN 1993-1-2 for I-sections under major axis 
bending 
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Fig. 10: Comparison of the CSM and EN 1993-1-2 for I-sections under minor axis 
bending 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Comparison of the CSM and EN 1993-1-2 for SHS and RHS 



1 
 

 

 

Table 1: Collated isothermal stub column tests  

Source 
Section 

type 

Material 

grade 
Temperatures considered 

No. of stub 

column tests 

reported 

Class at 

RT 

Yang et al. 2006 [7] 
welded 

I-sections 

ASTM  

A572 Gr. 50 

RT, 300˚C, 400˚C, 450˚C, 

500˚C, 550˚C, 600˚C 
7 3 

Yang and Hsu 2009 [9] 
welded 

I-sections 
JIS SN490 RT, 500˚C, 550˚C, 600˚C 12 1-3 

Yang et al. 2005 [10] 

welded 

I-sections 

and SHS 

Fire resistant 

steel 
RT, 400˚C, 500˚C, 600˚C 23 1-3 

1RT=room temperature 

 

 

 

Table 2: Additional stub column test results [37]  

Specimen 
Test 

Series 
H 

(mm) 
B 

(mm) 
tw 

(mm) 
tf 

(mm) 
L 

(mm) 
T 

(ºC) 
Strain rate 
(%/min) 

Nu 
(kN) 

δu 
(mm) 

SHS160_Stub_400C 

Series 4 

160.2 161.5 5.4 5.4 480 400 0.1 795 4.2 
SHS160_Stub_550C 160.3 161.6 5.4 5.4 480 550 0.1 468 4.0 
SHS160_Stub_550Cs 160.4 161.2 5.4 5.4 480 550 0.02 403 4.3 
SHS160_Stub_700C 160.5 161.2 5.4 5.4 480 700 0.1 138 4.4 
SHS160_Stub_700Cs 160.6 160.9 5.4 5.4 480 700 0.02 88 5.3 

RHS120_Stub_400C 
Series 6 

119.4 60.5 3.9 3.9 360 400 0.1 408 3.4 
RHS120_Stub_550C 119.3 60.6 3.9 3.9 360 550 0.1 257 3.9 
RHS120_Stub_700C 119.4 60.5 3.9 3.9 360 700 0.1 74 3.2 

HEA100_Stub_400C 
Series 8 

98.9 101.4 5.5 8.1 300 400 0.1 996 8.0 
HEA100_Stub_550C 98.8 101.5 5.5 8.1 300 550 0.1 511 10.6 
HEA100_Stub_700C 98.9 101.4 5.5 8.1 300 700 0.1 162 3.5 
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Table 3: Assessment of EN 1993-1-2 and CSM based on isothermal stub column tests 

 

 

 

 

 

 

Table 4: Key parameters of the FE parametric study [39] 

 

 

Table 5: Assessment of EN 1993-1-2 and CSM based on FE parametric study [39] 

 

 

Source 
NEC3/Nu Ncsm /Nu 

Mean COV Mean COV 

[7] 0.88 0.03 0.88 0.06 
[10] 1.01 0.14 0.90 0.12 
[37] 0.98 0.19 0.94 0.09 
All 0.97 0.15 0.91 0.10 

Cross-section outer 
dimensions 

Axis of 
bending 

Temperatures 
C p,20λ  

range 

No. of 
specimens 
modelled 

No. of 
utilized 
results 

SHS 160×160 minor 

20 ˚C, 400 ˚C, 
550 ˚C, 700 ˚C 

0.27-1.62 44 16 
RHS 120×60 major 0.28-1.66 44 15 
RHS 120×60 minor 0.28-1.66 44 18 
I 100×100 major 0.32-1.91 44 14 
I 100×100 minor 0.32-1.91 44 23 

Cross-section - axis of bending 
MEC3/Mu Mcsm /Mu 

Mean COV Mean COV 

I-section - major 0.88 0.12 0.97 0.05 
I-section - minor 0.52 0.36 0.83 0.07 
SHS 0.96 0.17 0.98 0.03 
RHS - major 0.95 0.18 0.96 0.05 
RHS - minor 0.93 0.21 1.01 0.03 
HEA (both axes) 0.66 0.36 0.88 0.10 
RHS and SHS (both axes) 0.95 0.19 0.99 0.04 
All 0.82 0.30 0.94 0.09 


