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ABSTRACT: The aims of this study are to generate experimental data and develop numerical 

models for aluminum alloy continuous beams, and to utilize the results to underpin the 

development of revised design methods for indeterminate structures. This paper presents an 

experimental program and finite element (FE) analyses for two-span continuous beams (i.e. five-

point bending) of square and rectangular hollow sections (SHS/RHS). The experimental program 

comprised 27 five-point bending tests with three different positioning of loads. The testing 

procedures and key results are reported. The test specimens were manufactured by extrusion, with 

18 of grade 6061-T6 and 9 of grade 6063-T5 heat-treated aluminum alloys. The test specimens 

were non-slender sections, and mostly of Class 1 proportions according to Eurocode 9 (2007). 

Generally, the specimens failed by the formation of a collapse mechanism comprising three 

plastic hinges. The distances between the supports and the loading points were varied in order to 

form the first plastic hinge in different locations, to achieve different load levels between the first 

hinge and collapse, and to change the rotation demands on the first hinge that formed. The FE 

models were developed using ABAQUS 6.10-1 (2010), and failure was defined as either when a 

plastic collapse mechanism was formed or the material fracture strain was reached on the tension 

flange, whichever occurred first. The numerical models were first validated against the 

experimentally obtained load-deflection responses, as well as the failure modes. The experimental 
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and FE ultimate loads were both found to be beyond the theoretical loads corresponding to the 

formation of the first hinge, as well as the calculated plastic collapse loads. A key characteristic of 

aluminum alloy, strain hardening, is shown to be particularly significant in both the experimental 

program and the numerical investigation. The validated FE models are used to generate numerical 

results through parametric studies in the companion paper. The development of design rules for 

indeterminate aluminum alloy structural systems is then described.  
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INTRODUCTION 

 

Aluminum alloys are non-linear materials, and despite the fact that they are typically less 

ductile than structural steel and stainless steel, aluminum alloy structural sections may still have 

sufficient rotation capacity to allow for moment redistribution and to enable the application of 

plastic design methods (Nethercot et al., 1995). The use of continuity in a structural system brings 

about several benefits, such as increased load-carrying capacity and reduced deflections. That is to 

say, for given loads and deflection limits, a more economical cross-section may be used 
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(Nethercot et al., 1995). Although aluminum alloys have been used in a range of structural 

engineering applications, underpinned by many international design standards, plastic design 

methods are not currently applicable in most of these standards. Hence, investigation into the 

structural response of aluminum alloy indeterminate assemblages is the focus of the present study. 

To date, only a limited number of tests have been carried out on continuous beams of 

nonlinear materials, including those conducted by Panlilio (1947) on two-span systems and those 

of Welo (1991) on three-span arrangements, with both studies examining aluminum alloy 

members. More recent experimental studies, exploring the behavior of cold-formed and hot-

finished steel and stainless steel elements, have also been performed (Mirambell and Real, 2000; 

Gardner et al., 2010, 2011; Theofanous et al., 2014). To supplement the limited existing data, a 

comprehensive laboratory testing program comprising experiments on 27 continuous beams on 

aluminum alloy square and rectangular hollow sections (SHS/RHS) was conducted at The 

University of Hong Kong. 

In terms of numerical simulations, there have been a number of studies into the structural 

behavior of determinate aluminum alloy elements, such as plates (Moen et al. 1998; Xiao and 

Menzemer, 2003), columns (Lai and Nethercot, 1992; Mazzolani et al., 1997; Hassinen, 2000; 

Zhu and Young, 2006, 2008a, 2008b), and beams under three-point bending (Moen et al., 1999; 

De Matteis et al., 2001, 2004; Su et al., 2014b) and four-point bending (Opheim, 1996; Wang et 

al., 2007; Kim and Peköz, 2010; Su et al., 2014b), but simulations of indeterminate aluminum 

alloy structures are far fewer. Manganiello et al. (2006) developed FE models of indeterminate 

aluminum alloy structures and validated the models against the five-point bending tests results of 

Welo (1991). Following validation, the models were used to generate structural performance data 

for fixed ended beams, continuous beams and portal frames. 

The aims of the present study are to examine the behavior of indeterminate aluminum 

alloy structures through experimentation and numerical modelling, and to use the generated data 



to underpin a proposed design method. Two-span continuous beam tests on non-slender, extruded 

square and rectangular hollow section (SHS/RHS) members are presented. Two material grades 

(aluminum alloys 6061-T6 and 6063-T5) and three loading configurations are considered. The 

experimental results are supplemented with additional data established by means of validated 

finite element models. Finally, comparisons of the results are made with existing design 

provisions and a newly proposed design method. 

EXPERIMENTAL INVESTIGATION 

The experimental program comprised 27 continuous beam tests on specimens with a series 

of different cross-sectional geometries, defined using the symbols illustrated in Fig. 1. The cross-

sectional dimensions given in Table 1 are the average measured values for each test specimen in 

this study. The measured material properties are also provided. The symbols employed in Table 1 

are defined as follows: L is the member length, E is the Young’s Modulus, fy is the material yield 

stress (taken as the 0.2% proof stress), fu is the material ultimate stress, εu is the strain 

corresponding to the ultimate tensile stress of the material, εf is the strain corresponding to the 

material fracture and n is the exponent of the Ramberg-Osgood expression (Ramberg and Osgood, 

1943; Hill, 1944), as given by Equation (1). The stress-strain curves obtained from tensile coupon 

tests and the Ramberg-Osgood model are compared in Fig. 2. The Webster surface hardness of the 

material is also reported.  These measured cross-sectional dimensions and material properties are 

used later in this study for both the finite element validation and the calculation of design. 

0.002( )σ σε = + n

yE f        (1) 

where σ is stress and  ε  is strain. 

The specimens were labeled according to the material strength, cross-sectional dimensions 

and the test configuration. For example, the label “H55×70×4.2B5I-R” defines an RHS specimen 



of high “H” strength aluminum alloy 6061-T6, with cross-sectional dimensions of width B (55 

mm) × height H (70 mm) × thickness t (4.2 mm). If the label starts with “N”, it signifies that the 

specimen is of normal-strength aluminum alloy 6063-T5. The overall nominal length of the 

continuous beams was 1690 mm for all test specimens. The symbol “B5I” following the 

dimension refers to the first five-point loading configuration I where L1=L2=400 mm, as presented 

in Fig. 3, while the other two configurations are denoted as B5II where L2=266.7 mm (i.e. the 

loads are at one third of the span from the central support) and B5III where L2=533.3 mm (i.e. the 

loads are at two thirds of the span from the central support). If a test is repeated, a letter “R” is 

included in the label. The arrangement of the cross-sectional dimensions also refers to the bending 

axis. In this case, the specimen H55×70×4.2B5I-R was bent about the major axis, while the 

specimen H70×55×4.2B5I was bent about the minor axis. 

The bending tests were conducted to assess the flexural resistance and rotation capacity of 

aluminum alloy beams, as well as the significance of strain hardening and moment redistribution. 

Three symmetrical five-point bending test configurations were employed herein. The loads were 

applied at two points through a spreader beam, as shown in Figs 3 and 4. Steel rollers and a half 

round were employed to achieve rotationally free conditions at the beam ends, central support and 

loading points; longitudinal translation was restrained at the central support. Steel stiffening plates 

of 100 mm width and 10 mm thickness, as well as wooden blocks inside the tubes were used at 

the loading points and the mid-span support to prevent web crippling due to load concentration. 

Furthermore, steel bearing plates were placed between the specimen and rollers/half rounds for 

the purpose of spreading the concentrated loads. A 1000 kN capacity servo-controlled hydraulic 

testing machine was used to apply compressive force by displacement control at a constant rate of 

0.8 mm/min for all tests. Two 100 mm LVDTs were used to measure the vertical deflection at the 

loading points. Two 50 mm LVDTs were placed 150 mm either side of the mid-span, in order to 



estimate the mid-span rotation. Two 25 mm LVDTs were placed at each end of the beams to 

measure the end rotation.  

The specimens generally failed by material yielding and the formation of a collapse 

mechanism comprising three plastic hinges (Fig. 5), while some specimens failed due to material 

fracture on the tension flange (Fig. 6). Inelastic local buckling was also observed for some beams 

at large deformations. For the loading configurations I and II, the first hinge formed at the central 

support and the latter two hinges formed at the loading points, while in configuration III the 

plastic hinges formed in the reverse sequence. In all cases, the ultimate loads attained in the tests 

were beyond the calculated loads corresponding to the occurrence of the first hinge (Fh1), as well 

as the calculated loads corresponding to the formation of the plastic collapse mechanism (Fcoll), as 

presented in Table 2. This is attributed primarily to the significant effect of strain hardening on the 

cross-section capacity, and is explored further in the companion paper. The load-deflection graphs 

for all test specimens are given in Fig. 7. 

NUMERICAL MODELING APPROACH 

The experimental investigation was supplemented by parallel numerical studies. The 27 

continuous beam tests described in the previous section were initially replicated numerically by 

means of the nonlinear finite element (FE) analysis package ABAQUS 6.10-1 (2010). The 

measured stress–strain curves from the tensile coupon tests conducted on material cut from the 

flat portions of the test specimens were used in the analyses. The material nonlinearity was 

included in the FE models by specifying sets of values of true stress and plastic strain to define a 

piecewise linear response. The relationship between true stress σtrue and engineering stress σ, as 

well as true plastic strain ε pl
true and engineering strain ε are given by Equations (2) and (3), 

respectively.  



( )1σ σ ε= +true           (2) 

ln 1( /)ε ε σ= + −pl
true true E         (3) 

The reduced integration four-noded doubly curved shell element S4R was employed in the 

present study to model the continuous beams. The S4R general purpose shell element has six 

degrees of freedom per node and provides accurate solutions to problems of the nature addressed 

in this study (Ellobody and Young, 2005). The steel loading plates utilized in the tests were 

modeled using 10 mm thick solid elements that were free to rotate in-plane.  A uniform mesh size 

of 10 mm × 10 mm was chosen for all specimens and bearing plates. These element types and size 

have been shown to perform well for the modeling of aluminum alloy structural members (Zhou 

and Young, 2008; Zhu and Young, 2006, 2008a, 2008b; Su et al., 2014b).  

Residual stresses in the test specimens were not measured and not explicitly modeled in 

the FE analysis for two reasons: (1) the presence of bending residual stress in extruded aluminum 

alloy sections is, to a significant extent, implicitly reflected in the material properties obtained 

from tensile coupon tests (Rasmussen and Hancock, 1993; Jandera et al., 2008); (2) residual 

stresses have only a very small effect on the load-bearing capacity of aluminum alloy extruded 

members (Mazzolani, 1994). Initial local geometric imperfections were incorporated in the FE 

models in the form of the lowest regular elastic buckling mode shape. A linear eigenvalue 

buckling analysis was therefore initially performed. The initial local geometric imperfection 

amplitude was defined as 0.2 mm, which represented the average local imperfection amplitudes 

measured in the test specimens (Su et al., 2014a). It was found that sensitivity of the simulated 

results to imperfections was generally relatively low. 

Even though specimens displayed symmetry in geometry and loading configurations, 

modeling of the full specimen length (1690 mm) and cross-sections was performed. This was 

done to ensure that possible anti-symmetric local buckling modes were not suppressed, which, in 



some cases, had marginally lower corresponding eigenvalues than their symmetric counterparts 

(Theofanous et al., 2014). The boundary conditions were modeled in accordance with the tests 

conducted in the laboratory. Line loads were applied through bearing plates to avoid high load 

concentrations. Appropriate degrees of freedom were restrained at the bottom flange of the 

specimens to simulate simple supports. The beams were restrained longitudinally at the mid-span 

only.  

The interfaces between the steel bearing plates and the aluminum alloy specimens were 

modeled using a contact pair. Hard contact in the normal direction and friction penalty contact 

(with the friction coefficient = 0.1) in the tangential direction were adopted between the solid 

plate (master surface) and the beam surface (slave surface). Penetration of the contact pairs was 

prevented. The loading control employed in the FE analysis was similar to that used in the tests, 

whereby the load was applied by imposing vertical displacement to the solid bearing plates. The 

Riks procedure with automatic increment sizing, as described in ABAQUS 6.10-1 (2010), was 

used to allow the post-ultimate path of the modeled specimen to be captured. 

VALIDATION OF NUMERICAL MODEL 

In this section, the FE models are validated by the comparison against the 27 physical test 

results. Comparisons are made in terms of ultimate loads and the corresponding end rotations 

(Table 2). Failure criteria, failure modes and general load-deformation behavior are also 

described.  

Failure Modes 

Observed failure modes included material yielding (Y) with the formation of a plastic 

collapse mechanism, and tensile material fracture (F). The formation of a collapse mechanism 



comprising three plastic hinges was clearly observed in all simulated specimens. Local buckling 

was also found in the compression flanges of the relatively slender sections when the beam had 

large deformations. A comparison of the typical failure modes between tested and simulated 

specimens is depicted in Fig. 8. 

In the experimental program, some specimens failed by material fracture at the tension 

flanges, due to exceedance of the material fracture strain εf. This failure mode was accounted for 

in the FE models by monitoring the tensile strains and identifying when the tensile fracture strain 

εf, as obtained from tensile coupon tests, was reached. This is shown in Fig. 9, where a typical 

load-deformation response is given. In the graph, the solid dot signifies the point where the strain 

at the tension flange of the simulated specimen reaches the material fracture strain εf, hence 

signifying tensile failure.  

Load-Displacement Behavior 

The full load-deflection responses from all tests and simulations were compared; a typical 

example is shown in Fig. 9. In general, the initial stiffness and the shape of the numerical load-

deflection curves closely matched those obtained from the experiments. Overall, good agreement 

between the experimental and numerical results was observed, though for some cases, the 

predicted load-bearing capacity deviated to some extent from the test results. On average, ultimate 

loads FFE were predicted to within 2% of the test results Fexp and with a low coefficient of 

variation (COV = 0.061), as shown in Table 2. The end rotations at ultimate load (θexp and θFE) 

were less accurately captured, but predicted, in most cases within 10% of the experimental 

measurements, as shown in Table 2. Therefore, it can be concluded that the FE model developed 

herein is able to simulate accurately the behavior of the tested members and to capture strain 

hardening and the spread of plasticity in aluminium alloy continuous beams. 



Results from the FE models can be used to plot the moment-deflection curves at the plastic 

hinge locations (i.e. the mid-span support and the loading points), together with the applied load-

deflection curve, to assess the load level at which the plastic hinges formed and the degree of 

moment redistribution. A pair of typical curves for loading configuration II (from specimen 

H64×64×3.0B5II) is shown in Fig. 10. Key observations from Fig. 10 include: (1) Initially, the 

moment at the support was approximately twice that in the span, as predicted by elastic bending 

theory; (2) the support moment therefore reached its ultimate capacity earlier than the span 

moment, after which the support moment decreased slightly while, at the same time, the span 

moment kept increasing until reaching its cross-section moment capacity; (3) the applied load 

continued to increase after the support moment had reached its maximum value, and only dropped 

when the degree of reduction in the support moment outweighed the increase in the span moment; 

(4) both the support moment and the span moment achieved capacities greater than the plastic 

moment Mpl, owning to the effect of strain hardening. 

CONCLUSIONS 

A total of 27 experiments on aluminum alloy square and rectangular hollow section 

beams, consisting of three different five-point bending configurations, have been presented in this 

paper. The test specimens were non-slender sections, and were mostly of Class 1 proportions 

according to Eurocode 9 (2007). Parallel numerical simulations of aluminum alloy continuous 

beams were performed using ABAQUS 6.10-1 (2010). The results obtained from the developed 

FE models were compared with those from the tests and it was found that the models were 

capable of replicating accurately the structural behaviors of the test specimens. The observed 

failure modes included inelastic local buckling, the formation of a plastic collapse mechanism and 

tensile facture. A high degree of both strain hardening and moment redistribution was exhibited. 

The validated numerical models are used to carry out an extensive parametric study in the 



companion paper, and thus a database comprising sufficient experimental and numerical results 

on aluminum alloy continuous beams is formed for the purpose of assessing and developing 

design rules. 
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NOTATION 

B     = Section width 

b     = Flat width of flange 

COV     = Coefficient of variation 

E     = Young's modulus 

fy   = Yield strength, taken as the 0.2% proof strength 

fu    = Ultimate tensile strength 

Fcoll   = Ultimate load level at which the plastic collapse mechanism forms (with 

cross-sectional capacity at the hinge equal to Wplfy) 

FFE    = Numerical ultimate load  

Fexp    = Experimental total ultimate load 

Fh1 = Ultimate load level at which the first hinge forms (with cross-sectional 

capacity at the hinge equal to Wplfy) 

H         = Section depth 



h       = Flat depth of web 

L    = Member length 

Mpl    = Wplfy is the plastic moment capacity 

n    = Exponent in Ramberg-Osgood expression 

t    = Wall thickness 

Wpl    = Plastic section modulus 

ε  = Engineering strain 

εf   = Material fracture strain 

ε pl
true   = true plastic strain 

εu  = Strain at ultimate tensile stress 

θexp  = Rotation at hinge point obtained from tests 

θFE  = Rotation at hinge point obtained from FE models 

σ = Engineering stress 

σtrue = True stress 
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Table 1. Measured five-point bending specimen dimensions and material properties obtained from tensile coupon 
tests 

 

Specimen B     
(mm) 

H    
(mm) 

t        
(mm) 

L        
(mm) 

E     
(GPa) 

f y 
(MPa) 

f u    
(MPa) 

ε u    
(%) 

ε f    
(%) n Webster 

Hardness 

H55×70×4.2B5I 54.9 70.0 4.09 1695 70 261 282 5.95 6.45 16 14 
H55×70×4.2B5I-R 54.9 69.9 4.08 1649 70 261 282 5.95 6.45 16 14 
H70×55×4.2B5I 70.0 54.9 4.10 1702 70 261 282 5.95 6.45 16 14 
H50×95×10.5B5I 49.7 94.7 10.34 1646 70 179 220 8.13 14.13 8 13 
H95×50×10.5B5I 94.8 49.8 10.38 1696 70 179 220 8.13 14.13 8 13 
H64×64×3.0B5I 63.9 63.9 2.86 1693 66 234 248 6.65 9.54 12 12 
N50×95×10.5B5I 49.8 94.8 10.38 1696 69 164 211 7.28 13.65 10 11 
N70×120×10.5B5I 70.0 119.9 10.42 1690 71 139 194 6.58 14.08 9 11 
N120×70×10.5B5I 119.9 69.9 10.27 1652 71 139 194 6.58 14.08 9 11 
N120×120×9.0B5I 120.0 120.0 8.89 1700 71 183 225 9.71 14.30 10 11 
H55×70×4.2B5II 54.9 69.9 4.09 1652 70 261 282 5.95 6.45 16 14 
H55×70×4.2B5II-R 54.9 69.9 4.07 1699 70 261 282 5.95 6.45 16 14 
H70×55×4.2B5II 69.9 54.9 4.10 1695 70 261 282 5.95 6.45 16 14 
H50×95×10.5B5II 49.7 94.8 10.39 1669 70 192 232 7.17 10.03 13 11 
H95×50×10.5B5II 94.7 49.6 10.33 1694 70 179 220 8.13 14.13 8 13 
H64×64×3.0B5II 63.9 63.9 2.85 1698 67 232 245 6.82 10.06 12 12 
N70×120×10.5B5II 69.9 119.7 10.27 1694 71 139 194 6.58 14.08 9 11 
N120×70×10.5B5II 119.8 69.9 10.26 1649 71 139 194 6.58 14.08 9 11 
N120×120×9.0B5II 119.9 119.9 8.90 1696 69 188 229 9.10 13.21 11 11 
H55×70×4.2B5III 54.9 69.9 4.08 1692 67 207 222 6.77 11.83 16 13 
H55×70×4.2B5III-R 54.9 69.9 4.10 1694 70 261 282 5.95 6.45 16 14 
H70×55×4.2B5III 69.9 54.9 4.11 1693 65 193 207 5.08 9.84 23 12 
H50×95×10.5B5III 49.7 94.8 10.36 1643 70 192 232 7.17 10.03 13 12 
H95×50×10.5B5III 94.8 49.7 10.34 1655 70 192 232 7.17 10.03 13 12 
H64×64×3.0B5III 63.9 63.9 2.85 1696 66 234 248 6.65 9.54 12 12 
N70×120×10.5B5III 69.9 119.8 10.27 1654 71 139 194 6.58 14.08 9 11 
N120×70×10.5B5III 119.9 69.9 10.33 1644 71 139 194 6.58 14.08 9 11 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 
 

Table 2. Comparisons of continuous beam test results with first hinge Fh1 and plastic collapse Fcoll loads as well as 
finite element results 

 

Specimen b/t Class 
(EC9) 

Failure 
Mode^ 

Fexp 
(kN) 

θexp 

(rad) Fexp/Fh1 Fexp/Fcoll 
exp  

 
FE

F
F

 
exp  

 
θ
θFE

 

H55×70×4.2B5I 11.4 2 Y 114.1 0.072 1.46 1.29 0.99 1.04 
H55×70´4.2B5I-R 11.5 2 Y 112.3 0.098 1.40 1.24 0.93 1.01 
H70×55×4.2B5I 15.1 2 Y 84.9 0.092 1.29 1.15 1.10 0.91 
H50×95×10.5B5I 2.9 1 F 329.9 0.133 1.87 1.67 0.92 0.99 
H95×50×10.5B5I 7.1 1 Y 188.2 0.144 1.83 1.63 0.98 0.88 
H64×64×3.0B5I 20.4 3 Y 65.3 0.037 1.31 1.17 0.95 0.95 
N50×95×10.5B5I 2.9 1 Y 306.7 0.177 1.96 1.74 0.92 1.44 
N70×120×10.5B5I 4.7 1 F 532.9 0.121 2.19 1.95 1.05 1.03 
N120×70×10.5B5I 9.7 1 Y 362 0.070 2.22 1.97 0.90 0.95 
N120×120×9.0B5I 11.5 1 F 655.2 0.102 1.64 1.46 0.99 1.06 
H55×70×4.2B5II 11.4 2 F 141.5 0.059 1.74 1.25 1.14 1.16 
H55×70×4.2B5II-R 11.5 2 F 130.6 0.060 1.66 1.20 1.05 1.02 
H70×55×4.2B5II 15.1 2 Y 120.2 0.056 1.80 1.30 0.96 1.00 
H50×95×10.5B5II 2.9 1 F 436 0.111 2.31 1.66 0.92 1.29 
H95×50×10.5B5II 7.2 1 Y 222.1 0.111 2.15 1.55 0.92 0.95 
H64×64×3.0B5II 20.4 3 Y 80.8 0.026 1.62 1.17 0.94 0.90 
N70×120×10.5B5II 4.8 1 F 693.9 0.072 2.87 2.07 1.00 1.33 
N120×70×10.5B5II 9.7 1 Y 450.8 0.081 2.73 1.96 0.98 0.68 
N120×120×9.0B5II 11.5 1 F 657.8 0.138 1.58 1.14 0.99 2.55 
H55×70×4.2B5III 11.4 1 Y 91.6 0.108 1.36 1.31 1.02 0.82 
H55×70×4.2B5III-R 11.4 2 Y 109.6 0.137 1.29 1.24 0.93 1.13 
H70×55×4.2B5III 15.0 2 Y 72.1 0.128 1.36 1.31 1.06 0.91 
H50×95×10.5B5III 2.9 1 F 346.2 0.152 1.68 1.62 0.97 1.13 
H95×50×10.5B5III 7.2 1 Y 191.4 0.176 1.57 1.51 0.96 0.85 
H64×64×3.0B5III 20.4 3 Y 64.3 0.061 1.20 1.15 0.99 1.00 
N70×120×10.5B5III 4.8 1 F 589.7 0.123 2.22 2.14 0.91 1.21 
N120×70×10.5B5III 9.6 1 Y 377.7 0.105 2.11 2.04 0.99 1.19 
Mean        0.98  
COV        0.061  

^In terms of failure mode, “F” means tensile material fracture and “Y” signifies material yielding 
and the formation of a plastic collapse mechanism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

Fig. 1. Definition of symbols for SHS/RHS 
 
 
 
 
 

 

 
Fig. 2: Typical stress–strain curves of high-strength aluminum alloy 6061-T6 and normal-strength aluminum alloy 

6063-T5 measured in this study and predicted from the Ramberg-Osgood model 
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Fig. 3. Schematic illustration of five-point bending configuration (dimensions in mm) 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Experimental setup for five-point bending test  
 
 
 

 
 

 
 
 
 



 
 
 

 

 
 

Fig. 5: Deformed five-point bending test specimens (N50×95×10.5B5I, N120×70×10.5B5II and 
H95×50×10.5B5III) 

 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 6: Failure of test specimen by material tensile (N70×120×10.5B5III) 
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Fig. 7: Load versus mid-span deflection curves for five-point bending tests of configuration I (a), II (b) and III (c) 
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Fig. 8: Experimental and numerical failure modes for specimen H95×50×10.5B5I 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Experimental and numerical load-deflection curves for specimen H95×50×10.5B5I 
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Fig. 10:  Applied load and moment displacement curves for specimen H64×64×3.0B5II from finite element 
models 
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