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The spectral model of Perry et al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199)
predicts that the integral length scale varies very slowly with distance to the wall in
the intermediate layer. The only way for the integral length scale’s variation to be
more realistic while keeping with the Townsend–Perry attached eddy spectrum is to
add a new wavenumber range to the model at wavenumbers smaller than that spectrum.
This necessary addition can also account for the high-Reynolds-number outer peak
of the turbulent kinetic energy in the intermediate layer. An analytic expression is
obtained for this outer peak in agreement with extremely high-Reynolds-number
data by Hultmark et al. (Phys. Rev. Lett., vol. 108, 2012, 094501; J. Fluid Mech.,
vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows,
1976, Cambridge University Press) production–dissipation balance and the finding of
Dallas et al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the
eddy turnover time scales with skin friction velocity and distance to the wall implies
that the logarithmic derivative of the mean flow has an outer peak at the same location
as the turbulent kinetic energy. This is seen in the data of Hultmark et al. (Phys.
Rev. Lett., vol. 108, 2012, 094501; J. Fluid Mech., vol. 728, 2013, pp. 376–395). The
same approach also predicts that the logarithmic derivative of the mean flow has a
logarithmic decay at distances to the wall larger than the position of the outer peak.
This qualitative prediction is also supported by the aforementioned data.
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1. Introduction
Considering turbulent pipe/channel and turbulent boundary layer flows, Townsend

(1976) developed his well-known attached-eddy model to predict the profile with
distance from the wall of the turbulent kinetic energy. This model is operative
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in the intermediate range where the wall distance is much larger than the wall
unit δν and much smaller than, say, the pipe radius δ. In this intermediate range
the turbulent kinetic energy scales with the square of the wall friction velocity uτ
and decreases logarithmically with distance to the wall. However, measurements in
turbulent boundary layers dating from about 20 years ago (see Fernholz & Finley
1996) as well as more recent turbulent pipe flow measurements from the Princeton
Superpipe (Morrison et al. 2004; Hultmark et al. 2012, 2013) show that an outer
peak appears in the mean square fluctuating streamwise velocity at distances from the
wall between about 100δν and 800δν when the turbulent Reynolds number Reτ = δ/δν
is larger than about 20 000. Such non-monotonic behaviour in regions where the
mean velocity is monotonically increasing is hard to account for in current turbulence
models and theory, and inconceivable within the current framework of Townsend’s
attached eddy model.

Starting with the spectral model of Perry, Henbest & Chong (1986) there have been
numerous developments and extensions of the attached eddy model (see the review by
Smits, McKeon & Marusic 2011 and references therein) but none has accounted for
the outer peak in turbulent kinetic energy. Here we start from the observation (given
in § 3) that the Perry et al. (1986) attached eddy model has a basic shortcoming to do
with the integral length scale it predicts. There is only one way to repair this model
without removing its attached eddy part, and this way naturally leads to an outer peak
in turbulent kinetic energy.

In § 2 we provide some basic background on the type of turbulent pipe/channel
flow considered in this paper and in § 3 we briefly describe the Townsend–Perry
attached eddy model and its consequences on the integral scale. Section 4 is on
the modification to the Townsend–Perry attached eddy model that we are forced to
implement to remedy the integral scale problem. This section contains comparisons
between the predictions of this modified attached eddy model and the Nano Scale
Thermal Anemometry Probe (NSTAP) data obtained in the Princeton Superpipe by
Hultmark et al. (2012, 2013). In § 5 we explain how intermittency in wall shear
stress fluctuations could modify the attached-eddy k−1

1 spectrum and make it slightly
steeper. In § 6 we predict that the logarithmic derivative of the mean flow must have
an outer peak at the same distance from the wall where the turbulent kinetic energy
has its outer peak and report that the data of Hultmark et al. (2012, 2013) show
clear evidence of this. We end the paper with a list of main conclusions in § 7. The
words ‘turbulence intensity’ appear in the title of this paper because it is concerned
primarily with the mean square fluctuating streamwise velocity (§§ 3–5) but also with
the streamwise mean flow (§ 6).

2. Turbulent pipe/channel flow
We consider a flow in a long enough smooth pipe/channel operating at high

enough Reynolds number and steadily driven by a constant (in space and time)
pressure gradient so that a turbulent region exists far enough from the inlet where
turbulence statistics are independent of streamwise spatial coordinate x and of time t.
The mean flow is (u, 0, 0) and the fluctuating velocity field is (u′, v′,w′) where u and
u′ are along the streamwise axis and v′ is parallel to the coordinate y normal to the
wall. In the rest of the paper we refer to pipe flow only but our discussion applies
to channel flow too.

The mean balance of forces along x, i.e. −1/ρ(d/dx)P= u2
τ/δ where δ is the half-

width of the channel or the radius of the pipe, allows determination of the skin friction
velocity uτ from measurements of the mean pressure gradient −(d/dx)P (ρ is the mass
density of the fluid).
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The wall unit is δν ≡ ν/uτ . It is well known that if the Reynolds number is large
enough, then δν� δ, e.g. see Pope (2000). In such flows, one often uses the Reynolds
number Reτ ≡ δ/δν as reference. High Reynolds number then trivially implies wide
separation of outer/inner length scales and an intermediate layer δν� y� δ where y
is the wall-normal spatial coordinate with y= 0 at the wall.

For a given channel/pipe (i.e. a given δ), a given fluid (i.e. a given kinematic
viscosity ν), a given driving pressure drop (i.e. a given uτ ) and at a given distance
y from the wall, a streamwise wavenumber k1 could be comparable to 1/δ, 1/y, 1/η
or 1/δν (η≡ (ν3/ε)1/4 is the Kolmogorov microscale which is a function of y via its
dependence on kinetic energy dissipation rate per unit mass ε).

The argument which shows that δν is smaller than η is based on the log-law of
the wall and on the direct balance between production and dissipation which one
classically expects in the y-region where the Prandtl–von Kármán law of the wall
holds, e.g. see Townsend (1976) and Pope (2000). At extremely high Reτ , this balance
may be written as u2

τ (d/dy)u≈ ε where we have replaced the Reynolds stress by u2
τ .

It can be proved that the Reynolds shear stress is approximately equal to u2
τ in the

range δν� y� δ. This follows from the turbulent pipe flow axial momentum balance
and a very mild extra assumption, see § 3 of Dallas, Vassilicos & Hewitt (2009).

This equilibrium argument implies that ε ∼ u3
τ/y (assuming that the log-law

(d/dy)u ∼ uτ/y holds) in δν � y� δ. It is now possible to compare η = (ν3/ε)1/4

and δν = ν/uτ and it follows from δν � y that 1/η� 1/δν in the range δν � y� δ.
It is worth stressing that 1/η� 1/δν and ε ∼ u3

τ/y were obtained on the basis that
the range δν � y� δ is an equilibrium log-law range in a pipe flow. We revisit this
assumption in § 6.

From the above arguments, where y is much larger than δν but much smaller than
δ, the axis of wavenumbers k1 is marked by wavenumbers 1/δ, 1/y, 1/η and 1/δν in
this increasing wavenumber order. This order of cross-over wavenumbers is important
in the spectral interpretation given by Perry et al. (1986) of Townsend’s attached eddy
hypothesis.

3. The Townsend–Perry attached eddy model

Townsend (1976) assumed ‘that the main, energy-containing motion is made up of
contributions from “attached” eddies with similar velocity distributions’ and developed
a physical space argument based on the notion of a constant Reynolds shear stress
which led to

1
2 u′2(y)/u2

τ ≈Cs0 +Cs1 ln(δ/y) (3.1)

in the range δν� y� δ. The two constants Cs0 and Cs1 are independent of y and Reτ .
Perry et al. (1986) developed a spectral attached eddy model and argued that where

δν� y� δ, the streamwise energy spectrum E11(k1, y) has three distinct ranges:

(i) k1 < 1/δ where E11(k1) ≈ u2
τδgo(k1δ) which must be E11(k1) ≈ C∞u2

τδ with a
constant C∞ at small enough wavenumbers;

(ii) 1/δ < k1 < 1/y where E11(k1)≈C0u2
τk
−1
1 (the ‘attached eddy’ range);

(iii) 1/y< k1 where E11(k1) has the Kolmogorov form E11(k1, y)∼ ε2/3k−5/3
1 gK(k1y, k1η),

see Frisch (1995) and Pope (2000).

By integration of E11(k1) they obtained for δν� y� δ

1
2 u′2(y)/u2

τ ≈C∞ +C0 ln(δ/y) (3.2)
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where the constants C∞ and C0 are independent of y and Reτ . Application of a strict
matching condition for the energy spectra at k1 = 1/δ gives C0 = C∞ but this is of
course not necessary. In fact, the constant C∞ in (3.2) is not the same as the constant
C∞ in the spectral model if we allow for the wavenumber dependency of the outer
function go(k1y) and for the fact that this constant has a small contribution from the
high-wavenumber Kolmogorov range (iii). The detail of this Kolmogorov contribution
has been neglected in (3.2) as it only adds a term proportional to 1− (y+)−1/2 to the
right-hand side (y+ ≡ y/δν) which is of little effect in the considered range.

A consequence of the Perry et al. (1986) model is that the integral scale L11 is
proportional to δ and very weakly dependent on y in the intermediate layer δν� y� δ.
This follows from πE11(k1 = 0, y)= u′2(y)L11(y) (see e.g. Tennekes & Lumley 1972)
which leads to

L11(y)≈ πC∞δ
C∞ +C0 ln(δ/y)

(3.3)

where δν� y� δ. However, one expects that L11 may depend on y much more steeply.
For example, the turbulent boundary layer measurements of Tomkins & Adrian (2003)
suggest that L11 ∼ y.

The only way for the Townsend–Perry attached eddy wavenumber range to be
viable, i.e. the only way to have an integral scale which depends more substantially
on y while keeping with the Townsend–Perry attached eddy wavenumber range
(where, in particular, the constant C0 is independent of y and Reτ ) is to modify the
model of Perry et al. (1986) by inserting a fourth range to E11(k1) between the very
low-wavenumber range where E11(k1) ≈ C∞u2

τδ and the ‘attached eddy’ range. We
develop such a model in the following section.

4. A modified Townsend–Perry attached eddy model
We now consider a model of the energy spectrum E11(k1, y) with the following four

ranges (see figure 1)

(i) k1<1/δ∞ where E11(k1)≈C∞u2
τδ with a constant C∞ independent of wavenumber;

(ii) 1/δ∞ < k1 < 1/δ∗ where E11(k1)≈ C1u2
τδ(k1δ)

−m where 0<m< 1 and C1 is also
a constant independent of wavenumber;

(iii) 1/δ∗ < k1 < 1/y where E11(k1)≈ C0u2
τk
−1
1 where C0 is a constant independent of

wavenumber, y and Reτ (the ‘attached eddy’ range);
(iv) 1/y< k1 where E11(k1) has the Kolmogorov form E11(k1, y)∼ ε2/3k−5/3

1 gK(k1y, k1η).

The new range which is dictated by the requirement of an integral scale significantly
dependent on y is range (ii) and it lies, as is necessary for this requirement, between
ranges (i) and the ‘attached eddy’ range (iii). This range therefore corresponds to
rather large length scales which may naturally be expected to be the large and very
large-scale motions first discovered by Tomkins & Adrian (2003) and confirmed for a
range of Reynolds numbers by Hutchins & Marusic (2007) (see also Bailey & Smits
2010 in the present pipe flow context and the review of Smits et al. 2011). Indeed,
such long regions of momentum deficit elongated in the streamwise direction should
introduce long-range correlations in this direction. These long-range correlations will
appear as a range of reduced rate of decline at the higher separation distances of
the streamwise fluctuating velocity autocorrelation function which, when Fourier
transformed, will give rise to a range such as range (ii) in the energy spectrum.

The bounds of the new range (ii) are determined by the two new length scales δ∞
and δ∗. The only physics that we impose on them is the expectation that this range
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FIGURE 1. (Colour online) Schematic log–log plot of E11(k1)/u2
τ versus k1 according to

the modified Townsend–Perry attached eddy model for the region δν � y� δ. Given an
ansatz such as (4.1) with p, q> 0 and p> q set by the physics described in the second
and third paragraphs of § 4, the new range (ii) exists where y< y∗, in which case δ∗<δ∞,
but does not exist where y> y∗ in which case the original Townsend–Perry model remains
unaltered and δ∗ = δ∞ = δ.

grows as y approaches the wall and distances itself from the centre of the pipe within
δν � y� δ. The range (1/δ∗)/(1/δ∞) = δ∞/δ∗ can only depend on y, δ, ν and uτ .
Without loss of generality, it is therefore a function of y/δ and Reτ or, equivalently,
y+ and Reτ . At fixed Reτ , δ∞/δ∗ must be a decreasing function of y/δ and also a
decreasing function of y+. At fixed y/δ, δ∞/δ∗ must be a decreasing function of Reτ as
this implies that y+ increases. And at fixed y+, δ∞/δ∗ must be an increasing function
of Reτ as this means that y/δ decreases.

An arbitrary but not impossible functional dependence is

δ∞/δ∗ ≈ A (y/δ)−pRe−q
τ ≈ A(y+)−pReτ p−q (4.1)

where A is a dimensionless constant. The qualitative physics which we described in
the previous paragraph impose p, q > 0 and p > q. We adopt (4.1) indicatively in
what follows as the aim of this work is to show the possibilities which open up with
the adoption of the extra wavenumber range 1/δ∞ < k1 < 1/δ∗ for the purpose of
reconciling the Townsend–Perry attached eddy hypothesis with a more realistic integral
length scale. We limit the values of the exponents p and q to p, q > 0 and p > q
without further constraints.

Matching of the energy spectral forms at k1≈ 1/δ∞ gives C∞=C1(δ/δ∞)−m and at
k1≈ 1/δ∗ gives C1=C0(δ/δ∗)m−1. It is not strictly necessary to impose these matching
conditions as they unnecessarily restrict the cross-over forms of the energy spectra,
but they do indicate that we need an expression for δ∗/δ if we are to proceed with
or without them. Given that in all generality, δ∗/δ is a function of y/δ and Reτ , we
again assume a power-law form

δ∗/δ = B (y/δ)αReβτ (4.2)

where, like A, B is a dimensionless constant.
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There are also two requirements for the viability of our spectra: y� δ∗ and δ∗<δ∞.
The former is met provided that β > α − 1 for y� δν . The latter is met if y< y∗ ≡
δA1/pRe−q/p

τ .
We therefore adopt the new range (ii) for y < y∗ but keep the Perry et al. (1986)

model unaltered for y> y∗. Their model can indeed remain unaltered if δ∞ = δ∗ = δ
at y > y∗ = δA1/pRe−q/p

τ . The continuous passage from (4.1) and (4.2) to δ∞ = δ∗ = δ
requires β = αq/p and BAα/p = 1.

By integration of E11(k1) we obtain for δν� y 6 y∗

1
2 u′2(y)/u2

τ ≈Cs0 −Cs1 ln(δ/y)−Cs2(y/δ)p(1−m)Req(1−m)
τ (4.3)

where Cs0 = (C0/(1−m)) + C0 ln B + C0α(q/p) ln Reτ , Cs1 = C0(α − 1) and Cs2 =
(mC0Am−1)/(1−m). (Note that Cs0 is a weak function of Reτ whereas Cs1 and Cs2
are independent of Reτ .) These new constants have been calculated by taking into
account the perhaps over-constraining matching conditions C∞=C1(δ/δ∞)−m and C1=
C0(δ/δ∗)m−1.

The integral length scale is now

L11/δ =πC0AmB(y/δ)α−pmReβ−qm
τ /(u′2(y)/u2

τ ) (4.4)

clearly more strongly dependent on y than in (3.3).
Equation (4.3) can be compared with the Townsend–Perry form which remains valid

here for y∗ 6 y� δ and which is (taking C∞ =C0)

1
2 u′2(y)/u2

τ ≈C0 +C0 ln(δ/y). (4.5)

The two profiles (4.3) and (4.5) match at y= y∗ ≡ δA1/pRe−q/p
τ and so do also the

integral length-scale forms (4.4) and (3.3) if C∞=C0. Our approach does not modify
the Townsend–Perry form of L11 at large distances from the wall, i.e. at y> y∗, but it
does return a significant dependence of L11 on y which, however, is arbitrarily set by
(4.1) and (4.2). Even so, the possibility is now open for a stronger dependence of L11
on y. This possibility has been opened by the adoption of an extra wavenumber range
1/δ∞< k1 < 1/δ∗ which, in turn, returns a form of the u′2(y) profile which allows for
a maximum value (a peak) inside the intermediate region δν� y� δ. No such peak is
allowed by the Townsend–Perry forms (3.1) and (3.2) although such a peak has been
observed in measurements of both turbulent boundary layers and turbulent pipe flows
over the past 20 years or so, see Fernholz & Finley (1996), Morrison et al. (2004)
and Hultmark et al. (2012, 2013). It has been suggested that this peak is associated
with the large and very large motions (see Smits et al. 2011 and references therein)
which is consistent with the view that the wavenumber range 1/δ∞< k1< 1/δ∗ results
from these very elongated streamwise structures.

Straightforward analysis of (4.3) shows that a maximum streamwise turbulence
intensity does exist in the range δν � y� δ if 0 < α − 1 < pm (i.e. if Cs1 > 0 and
α < pm+ 1) and that the position ypeak of this maximum is

ypeak/δ ∼ Re−q/p
τ (4.6)

which decreases with increasing Reτ and, equivalently,

ypeak/δν ∼ Re1−q/p
τ (4.7)
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FIGURE 2. (Colour online) Plots of u′2(y)/u2
τ versus y+ (a) and y/δ (b) obtained from the

NSTAP Superpipe data of Hultmark et al. (2012, 2013) for different values of Reτ . The
circles are calculated from (4.5) and (4.9) with C0= 1.28, y∗= δRe−d2/d1

τ for all Reynolds
numbers and the values of d1 and d2 and the constants in (4.9) given in figure 3.

which increases with increasing Reτ as q< p. It also follows from (4.3) that

d
d ln Reτ

(
1
2

u′2(ypeak)/u2
τ

)
≈C0(αp/q− αq/p+ q/p) > 0. (4.8)

The maximum value of u′2(y)/u2
τ at y = ypeak therefore grows logarithmically with

increasing Reτ .
We now compare our functional dependence of (u′2(y)/2)/u2

τ on y and Reτ with
smooth wall turbulent pipe flow data obtained recently with a new NSTAP by
Hultmark et al. (2012, 2013). Below we refer to this data as NSTAP Superpipe data.

We start by fitting the data with (4.5) in the range y∗ < y� δ and

1
2 u′2(y)/u2

τ ≈Cs0 −Cs1 ln(δ/y)−Cs2(y/δ)d1Red2
τ (4.9)

instead of (4.3) in the range δν � y < y∗ where y∗ = δRe−d2/d1
τ . This is a model

where we ignore the various matching conditions which led to (4.3) with the specific
relations between Cs0, Cs1 and Cs2 and the parameters C0, m, p, q, A, α and Reτ . It
is also a model where we just set A = 1, d1 = p(1 − m) and d2 = q(1 − m) so that
y∗= δRe−d2/d1

τ . In figure 2 we show the result of this fit against the NSTAP Superpipe
data and in figure 3 we show the fitting values of Cs0, Cs1, Cs2 and d1 and d2 and
their dependence on Reτ in a lin-log plot.

First note in figure 2 the clear presence when Reτ is larger than about 20 000 of
a logarithmic region at the higher y-values in agreement with the Townsend–Perry
equation (4.5) which fits it quite well (the fit is much better if we allow C∞ to be
different from C0 as in (3.2)). This was of course already noted by Hultmark et al.
(2012, 2013). Second note the gradual development as Reτ increases of a peak of
turbulence intensity inside the intermediate region δν � y � δ. This outer peak is
distinct from the well-known near-wall peak at y+≈ 15 and starts appearing clearly at
Reτ larger than about 20 000. Of course this was also noted in Hultmark et al. (2012,
2013) who pointed out that the position ypeak of the outer peak depends on Reynolds
number as ypeak/δν ≈ 0.23Re0.67

τ . In terms of our model this means d2/d1 = q/p≈ 1/3.
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FIGURE 3. (Colour online) Model parameters Cs0, Cs1, Cs2, d1 and d2 appearing in (4.9).
Plotted as functions of Reτ .

As predicted by the physics instilled in our model (see the paragraph containing
(4.1) and the paragraph preceding it) ypeak/δ decreases and ypeak/δν increases with
increasing Reτ (see figure 2). As also predicted by the physics of our model, the
value of u′2/u2

τ at the outer peak slowly increases with increasing Reτ and the fits in
figure 2 which we discuss in the following paragraph indicate that this increase is
indeed only logarithmic as in (4.8).

The point y = y∗ is clearly seen in figure 2 because we did not adopt matching
conditions to ensure a continuous passage from (4.9) to (4.5). Nevertheless the new
(4.9) returns a satisfactory fit of the outer peak, including its shape, intensity and
location. In figure 3 we plot the Reynolds number dependence of the constants Cs0,
Cs1 and Cs2, d1 and d2 involved in these fits. Note how the parameters Cs1, Cs2, d1
and d2 do not deviate much from a constant value except for Cs0 which grows slowly
with Reτ , in fact approximately linearly with ln Reτ as in prediction (4.3).

In figure 4 we fit the NSTAP Superpipe data with (4.5) in the range y∗< y� δ and
(4.3) in the range δν� y< y∗ where y∗= δA1/pRe−q/p

τ and with Cs0, Cs1 and Cs2 given
by

Cs0 = C0

1−m
+C0 ln B+C0α

q
p

ln Reτ , (4.10)

Cs1 =C0(α − 1), (4.11)

Cs2 = mC0Am−1

1−m
(4.12)

where B = Aα/p as obtained above in the text between (4.2) and (4.3). The fits in
figure 4 are obtained for A= 0.2, C0= 1.28, m= 0.37, q= 0.79, p= 2.38 and α= 1.21.
It works rather well, although not perfectly, for Reτ larger than about 30 000. Note that
we did not optimise the choice of our fitting parameters to obtain the best possible
fit. As things stand, (4.9) fits better the outer peak than (4.3) with (4.10)–(4.12) and
B = Aα/p. However, as of course expected, the latter over-matched model returns a
continuous transition to (4.5) at y = y∗. Note that ypeak ≈ 0.45 y∗ (from ypeak/δν ≈
0.23 Re0.67

τ and y∗ = δA1/pRe−q/p
τ ).
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FIGURE 4. (Colour online) Plots of u′2(y)/u2
τ versus y+ (a) and y/δ (b) obtained from the

NSTAP Superpipe data of Hultmark et al. (2012, 2013) for different values of Reτ . The
circles are calculated for all Reynolds numbers from (4.5) and (4.3) with y∗= δA1/pRe−q/p

τ

and A= 0.2, C0 = 1.28, m= 0.37, q= 0.79, p= 2.38 and α = 1.21.
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FIGURE 5. (Colour online) NSTAP Superpipe energy spectra E11(k1, y) at various
distances from the wall for Reτ = 98 190. At this Reynolds number, y∗/δν ≈ 2130. The
spectra are normalised by u′2(y)L11(y) where L11(y) are the integral scales obtained from
these spectra.

Indicatively and only for illustrative purposes, we mention that the fits in figure 4
correspond, approximately (we have rounded off the exponents to make them
look like fractions without any intention to suggest a deeper level of theory), to
δ∞/δ∗ ≈ 0.2(y/δ)−7/3Re−4/5

τ and δ∗ ≈ 2.26δ(y/δ)6/5Re2/5
τ given that β = αq/p. The

model leading to these particular fits also effectively assumes that the longitudinal
spectra in the region δν � y < y∗ ≈ 0.5δRe−1/3

τ have a range of wavenumbers
1/δ∞ < k1 < 1/δ∗ which are lower than the usual attached eddy ones and where
E11(k1) ≈ (2/3)u2

τyRe1/3
τ (k1δ)

−1/3 = (2/3)u2
τy(k1δν)

−1/3. Note the presence of both y
and δν in these particularly low-wavenumber spectra. Note also that δ∗ < 0.2δ and
δ∞ > 5δ/100 given that y< y∗ ≈ 0.5δRe−1/3

τ . Finally, y∗ > 15δν as long as Reτ > 165.
In the region y∗≈0.5δRe−1/3

τ < y� δ no such spectral range exists; only the attached
eddy form E11≈ 1.28u2

τk
−1
1 is present in the usual range 1/δ < k1 < 1/y. The constant

C0 = 1.28 is the one used to fit the data in both figures 4 and 2.
Figure 5 shows spectra plotted indicatively as wavenumber spectra at many

distances from the wall for a value of Reτ equal to 98 190 and y∗/δν ≈ 2130. These
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Modified model
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FIGURE 6. (Colour online) Normalised integral scales L11/δ obtained from NSTAP
Superpipe energy spectra plotted versus y/δ for various Reynolds numbers. Also plotted
are the Townsend–Perry and our modified model’s prediction for L11/δ.

spectra are really frequency spectra as we cannot expect the Taylor hypothesis to be
accurate enough at the lower wavenumbers and at the closer positions to the wall.
With this serious caveat firmly in mind it is nevertheless intriguing to see in figure 5
that very high-Reynolds-number spectra do indeed have an extra low-frequency range
at y< y∗ where the spectrum is much shallower than k−1

1 yet not constant; and that
this range is absent at higher positions from the wall where y > y∗. At distances
y from the wall larger than y∗ one sees a spectral wavenumber dependence which
is close to k−1

1 (perhaps a little steeper) between a very low-wavenumber constant
spectrum and a very high-wavenumber spectrum which is much steeper than k−1

1 ,
perhaps close to k−5/3

1 . Even the deviation from the k−1
1 spectrum which makes it

look a little steeper could be a frequency domain signature which does not quite
correspond to k−1

1 because of Taylor hypothesis failure, see del Alamo & Jimenez
(2009) but also Rosenberg et al. (2013).

Our initial motivation for modifying the Perry et al. (1986) model and adding an
extra spectral range to it was the y-dependence of the integral scale. The values of
the exponents α, q, p and m used in the fits of figure 4 combined with the constraint
β =αq/p are such that L11/δ∼ (y/δ)1/3Re0.1

τ if we neglect the logarithmic dependence
of u′2(y)/u2

τ in (4.4). In figure 6 we plot L11/δ versus y/δ as obtained from the lowest
frequencies of the NSTAP Superpipe spectra (see for example figure 5) for different
Reynolds numbers. Again, the integral scales plotted in figure 6 should be taken with
much caution and only very indicatively as they are really integral time scales and
the Taylor hypothesis cannot be invoked at these low frequencies. In that same figure
we nevertheless plot the Townsend–Perry formula (3.3) where C∞ = C0 as per the
fitting constants for figure 4 (i.e. L11 ≈ πδ/(1+ ln(δ/y))) and formula (4.4). In (4.4)
we used the fitting constants that we also used for the fits in figure 4. Note that (4.4)
is defined for y in the range δν� y< y∗ = 0.5δRe−1/3

τ and that, even in the modified
model, L11 is given by (3.3) in the range y∗� y<δ. The points in figure 6 where the
modified model curves meet the Townsend–Perry curve are at y= y∗ for the different
Reτ . It is clear that the modified model succeeds in steepening the y-dependence of
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L11 in the range δν � y < y∗ and that it keeps the original y-dependence of L11 in
the range y∗ � y < δ. It is also clear, though, that formulae (4.4) and (3.3) do not
match the NSTAP Superpipe integral scales well with the fitting constants used for
figure 4. We repeat that the integral scales obtained from the NSTAP Superpipe data
are really integral time scales and it is not clear that they should be proportional to L11.
If such a proportionality could be established, however, then the data would indicate
that L11/δ ∼ (y/δ)1/3 for all Reynolds numbers in some agreement with our modified
model’s L11/δ ∼ (y/δ)1/3Re0.1

τ , but the constants of proportionality are different.
Finally, we draw attention to the fact that the integral scale L11 is not proportional

to y in the range δν� y� δ as one might have expected (see Tomkins & Adrian 2003
who found several spanwise length scales, including L11, to be proportional to y in a
turbulent boundary layer).

5. Intermittent attached eddies

We now address the possibility brought up by experimental results such as figure 5
that, in the appropriate Townsend–Perry attached eddy range of wavenumbers, the
energy spectra may not scale as k−1

1 but as a slightly steeper power of k1. As pointed
out by del Alamo & Jimenez (2009), observed deviations from k−1

1 could result from a
failure of the Taylor hypothesis, a point which we do not dispute. However, we show
in this section that slightly steeper powers of k1 can also arise because of intermittent
fluctuations of the wall shear stress, as observed for example by Alfredsson et al.
(1988) and Örlü & Schlatter (2011).

One way to argue, in the region δν � y � δ, that E11(k1, y) ∼ u2
τk
−1
1 in the

wavenumber range 1/δ � y � 1/y is by hypothesising that the attached eddies
dominate the spectrum in that range independently of y and that these eddies are
themselves dominated by the wall shear stress, i.e. the skin friction, at the wall.
Hence, E11(k1, y) can only depend on u2

τ and k1 in the region δν � y � δ, which
implies that E11(k1, y)∼ u2

τk
−1
1 .

We now show how this argument can be modified to take into account the
intermittency in the wall shear stress. To do this we adopt the way that Kolmogorov
(1962) took into account the inertial-range intermittency of kinetic energy dissipation
in homogeneous turbulence and adapt it to the intermittency of wall shear stress in
wall turbulence. We therefore define the scale-dependent filter averages

u2
∗(x, r, t)= 1

2r

∫ x+r

x−r
ν

du
dy

∣∣∣∣
wall

(x, t) dx. (5.1)

Following Kolmogorov’s (1962) approach we assume that the statistics of u2
∗(x, r, t)

are lognormal at scales r large enough for u2
∗(x, r, t) to be reasonably presumed

positive. It may be reasonable to assume scales r much larger than y to be such
scales if δν� y� δ. For such scales we therefore define ξr≡ ln(u2

∗/u
2
τ ) and assume ξr

to be a Gaussian-distributed random variable, i.e. its probability distribution function
(PDF) is

P(ξr)= 1√
2πσr

e−(ξr−mr)
2/2σ 2

r . (5.2)

The constraint 〈u2
∗(x, r, t)〉 = u2

τ implies mr =−σ 2
r /2 (the angular brackets signify an

average over time or over x or both). The exact form of this PDF does not really
matter as we are only concerned with low-order moments.
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We now hypothesise that, in the appropriate Townsend–Perry attached eddy range of
wavenumbers, the average of (u′(x+ r, y)− u′(x, y))2 conditioned on a given value of
u2
∗(x, r, t) depends only on that value and r (u′ is the streamwise fluctuating turbulence

velocity component). By dimensional analysis the dependence on r drops out, and
as the structure function 〈(u′(x + r, y) − u′(x, y))2〉 is the average over all of these
conditional averages, we are left with 〈(u′(x+ r, y)− u′(x, y))2〉 ∼ 〈u2

∗(x, r, t)〉. Using
(5.2) to calculate this average, we obtain

〈(u′(x+ r, y)− u′(x, y))2〉 ∼ u2
τ

∫
dξ

eξ√
2πσr

e−(ξ−mr)
2/2σ 2

r ∼ u2
τe
−σ 2

r /9. (5.3)

A logarithmic dependence of σ 2
r on r, for example σ 2

r = const. + 9µ ln(δ/r) where
µ> 0, returns 〈(u′(x+ r, y)− u′(x, y))2〉 ∼ u2

τ (r/δ)
µ, i.e.

E11(k1, y)∼ u2
τδ(k1δ)

−1−µ. (5.4)

This demonstrates that the attached eddy hypothesis suitably modified to take into
account the intermittent fluctuations of the wall shear stress can lead to spectra that
are slightly steeper than k−1

1 . The statistics of the intermittently fluctuating wall shear
stress can therefore have some bearing on energy spectra and, in turn, on vertical
profiles of the turbulent kinetic energy. One can readily see that replacement of
E11(k1, y) ≈ C0u2

τk
−1
1 by E11(k1, y) ≈ C0u2

τδ(k1δ)
−1−µ in range (ii) of the Perry et al.

(1986) model (§ 3) and in range (iii) of our modified model (§ 4) would lead to
profiles such as (4.5) and (4.9) where the ln(δ/y) terms would be replaced by weak
power laws of y/δ. However, for very small exponents µ this difference would be
very hard to detect experimentally.

6. The mean flow profile
As already noted by Townsend (1976), the attached eddy hypothesis is incompatible

with the assumption that du/dy is independent of δ. This assumption is required to
argue that du/dy depends only on y and uτ in the range δν � y� δ. As Reτ →∞
an intermediate layer δν � y � δ does emerge, however, where something may
nevertheless be independent of ν and δ. Dallas et al. (2009) presented evidence
from direct numerical simulations (DNS) of turbulent channel flow which shows that
the eddy turnover time τ ≡ E/ε (where E is the total turbulent kinetic energy) is
proportional to y/uτ in the range δν� y� δ for a variety of moderate values of Reτ .

Here we make the reasonable extrapolation that the observation of Dallas et al.
(2009) is not limited to moderate Reynolds numbers and that τ is independent of ν
and δ at all large enough Reynolds numbers. Hence, τ ∼ y/uτ in the range δν� y� δ
for turbulent pipe flows.

Following Townsend (1976) we also assume local balance between production and
dissipation, i.e. −〈u′v′〉(du/dy) ≈ ε = E/τ , but only in a region yPε < y� δ where
δν � yPε . Making use of the well-known axial momentum balance in turbulent pipe
flow, see Pope (2000),

ν
d
dy

u− 〈u′v′〉 = u2
τ (1− y/δ), (6.1)

and introducing the constant Cs in τ ≈Cs(y/uτ ), we are led to(
1− y/δ − du+

dy+

)
du+

d ln y+
≈CsE/u2

τ =CsE+ (6.2)

in the region yPε < y� δ.
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FIGURE 7. (Colour online) Linear-logarithmic plot of (1− y/δ− (du+/dy+))(du+/d ln y+)
versus y+ for different values of Reτ obtained from the NSTAP Superpipe mean flow data
of Hultmark et al. (2012, 2013).

We know from the Townsend–Perry attached eddy model and also from this paper’s
modified model that E+≈M0+M1 ln(δ/y) in the range y∗< y� δ where M0 and M1
are constants different from C∞ and C0 in (3.2) because one needs to also take into
account (w′2(y)/2)/u2

τ and (v′2(y)/2)/u2
τ . Hence, the first prediction of our approach

based on τ ≈ Cs(y/uτ ) and −〈u′v′〉(du/dy) ≈ ε is that the left-hand side of (6.2) is
approximately equal to CsM0 +CsM1 ln(δ/y) in y∗ < y� δ.

If E+ has an outer peak at the same y= ypeak location as (u′2(y)/2)/u2
τ and if yPε <

ypeak then the second prediction of our approach is that the left-hand side of (6.2) has
an outer peak at y= ypeak.

Figure 7 is a plot of the left-hand side of (6.2) based on the NSTAP Superpipe
data of Hultmark et al. (2012, 2013). This plot suggests that there is indeed an outer
peak in the functional dependence on y of the left-hand side of (6.2). It is also not
inconsistent with the prediction that the left-hand side of (6.2) is a logarithmically
decreasing function of y for much of the region where y is greater than the location
of this outer peak. Figure 8 shows this left-hand side for the higher Reτ NSTAP
Superpipe data (Reτ between 20 000 and 100 000). There is no evidence that the left-
hand side of (6.2) decreases logarithmically with y for the lower Reynolds numbers
in figure 7, in agreement with (6.2) and figures 2 and 4 which show that there is no
such logarithmic decrease in (u′2(y)/2)/u2

τ either at Reτ < 10 000. However, such a
y-dependence is not inconsistent with much of the y-dependence for the Reτ > 20 000
data at the right of the outer peak in figure 8.

In figure 9 we replot the high-Reτ data of figure 8 but as functions of y/δ in one
plot and of y/ypeak in the other. These plots demonstrate that the position of the outer
peak in the left-hand side of (6.2) is the same as the position of the outer peak in
(u′2(y)/2)/u2

τ . And they also demonstrate that the left-hand side of (6.2), if indeed
logarithmically decreasing, is approximately equal to CsM0+CsM1 ln(δ/y) in y∗< y�
δ (though the data in our disposal do not permit us to check that the constants CsM0
and CsM1 are indeed the products of Cs with M0 and M1 respectively).

In figure 10 we use the NSTAP Superpipe data to plot (1 − y/δ − (du+/dy+)) as
a function of y/δ in one case and y+ in the other. As these are pipe data, the plots
in figure 10 are effectively plots of the normalised Reynolds stress −〈u′v′〉/u2

τ . It is
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FIGURE 8. (Colour online) Blow up of figure 7 for the four highest Reynolds
numbers with a superposed dotted line suggesting logarithmic dependence of (1− y/δ −
(du+/dy+))(du+/d ln y+) on y at the right of the peak.
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FIGURE 9. (Colour online) Blow ups of figure 7 for the four highest Reynolds numbers
plotted versus y/δ (a) and versus y/ypeak (b) where ypeak = 0.23δνRe0.67

τ is the fit by
Hultmark et al. (2012) of the location of the outer peak in the streamwise turbulent energy
plotted in figures 2 and 4. The superposed dotted line suggests a logarithmic dependence
of (1− y/δ − (du+/dy+))(du+/d ln y+) on y/δ at the right of the peak.

clear that −〈u′v′〉 ≈ u2
τ only if Reτ > 40 000 and for distances from the wall such

that 100 < y+ and y/δ < 0.01. (See also Zhao & Smits 2007 who showed that the
viscous contribution to the total stress is less that 1 % at y+ > 250.) It of course
remains perfectly true that −〈u′v′〉/u2

τ is a linear function of y/δ at a distance of a
few hundred wall units from the walls but it is also true that this linear dependence is
small compared to 1 (the leading term) for y/δ smaller than O(10−2). The resulting
intermediate range of wall distances y where −〈u′v′〉 ≈ u2

τ is a good approximation
requires Reτ to be larger than O(104) to exist. At values of y larger than δ/10 the
normalised Reynolds stress decreases abruptly towards 0 which explains why the left-
hand side of (6.2) does the same in figures 7–9 at these values of y.

Figure 10 makes it clear that (6.2) simplifies to

du+
d ln y+

≈CsE+ (6.3)
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FIGURE 10. (Colour online) Normalised Reynolds stress −〈u′v′〉/u2
τ calculated from the

NSTAP Superpipe mean flow data of Hultmark et al. (2012, 2013) as (1 − y/δ −
(du+/dy+)) (for turbulent pipe flow) versus y+ (a) and versus y/δ (b). Here Reτ ranges
from about 2000 to about 100 000.

in turbulent pipe flow only if Reτ > 40 000 and only in the range 100δν < y< δ/100.
Using the attached eddy model’s E+ ≈M0 +M1 ln(δ/y) in the range y∗ < y� δ we
obtain the following asymptotic form of the mean flow profile in y∗ < y< 0.01δ (as
y∗ is larger than 100δν):

u+ ≈CsM0 ln(y/δ)− CsM1

2
[ln(y/δ)]2 +M2 (6.4)

in terms of an extra integration constant M2. We stress again the limited y-range of
validity of this high-Reynolds-number mean flow profile (to the right of the outer
peak) and that it can only be expected at Reτ > 40 000. This y-range can be made
longer if we do not use −〈u′v′〉 ≈ u2

τ which leads to (6.3) but −〈u′v′〉 ≈ u2
τ ≈ 1− y/δ

which holds for y/δν larger than O(100) and leads to (1− y/δ)(du+/d ln y+)≈ CsE+
in place of (6.3).

As shown in § 5, E+ ≈M0 +M1 ln(δ/y) and therefore also (6.4) are based on the
additional assumption that any intermittency which might exist in the fluctuating wall
shear stress is of such a nature that the Townsend–Perry spectral scalings E11(k1, y)∼
u2
τk
−1
1 remain intact. Otherwise one can expect power laws of y/δ instead of logarithms

of y/δ in the formula for the mean flow profile (6.4).
We close this section with a comment on the mesolayer, a concept introduced by

Long & Chen (1981) and most recently discussed by Vallikivi, Ganapathisubramani
& Smits (2014) who also provide a list of relevant references. In the present paper,
profiles have been obtained for u′2(y) in the range δν� y� δ and for u(y) in the range
yPε < y< 0.01δ where production has been assumed to balance dissipation. George &
Castillo (1997) argued that the mesolayer is a region from y+' 30 to y+' 300 where,
owing to low turbulent Reynolds number y+ values, the dissipation does not have its
high-Reynolds-number scaling and the Kolmogorov range (iv) of our spectral model
in § 4 is effectively absent. This has no bearing on our calculations of §§ 4 and 5
because the energy in the Kolmogorov range (iv) is small compared with the other
ranges and the outer peak comes from the new small wavenumber range (ii). (In fact
it is easy to check that the Kolmogorov range in the Townsend–Perry model cannot,
by itself, lead to an outer turbulent energy peak.) However, it might be that we cannot
use the scaling τ ∼ y/uτ at y+ . 300 and that our approach for obtaining the mean
flow gradient profile might therefore be valid only in the region max(300δν, yPε) <
y� 0.01δ. Note that the value of ypeak in the Princeton NSTAP data is about 300δν
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at Reτ ≈ 40 000 and about 500δν at Reτ ≈ 100 000, which means that the mesolayer is
indeed under ypeak for Reτ > 40 000. The prediction that the mean flow gradient has
an outer peak at the same distance from the wall where the streamwise turbulence
intensity has an outer peak has been based on the assumption that yPε < ypeak. The
region where production and dissipation balance and where turbulent transport has
negligible effects may or may not be expected to have an overlap with the mesolayer.
The task of working out the scalings of yPε and how it compares with 300δν must be
left for a future study which will have the means to address these questions.

7. Conclusion
In way of conclusion we list the main points made in this paper.

(i) For the Townsend–Perry k−1
1 spectrum to be viable, i.e. to be compatible with a

realistic integral scale dependence on y, we need to add to the Perry et al. (1986)
spectral model an extra wavenumber range at wavenumbers smaller than those
where E11(k1, y)∼ u2

τk
−1
1 .

(ii) Simple modelling of this range (see § 4) implies the existence of an outer peak in
the streamwise turbulence kinetic energy at a y-position ypeak which grows with
respect to δν and decreases with respect to δ as Reτ increases. The streamwise
kinetic energy at that peak grows logarithmically with Reτ .

(iii) The functional form which results from our modified Townsend–Perry model and
which may be useful as a starting point in future investigations is the following:
in the range δν� y< y∗ ∼ δRe−1/3

τ

1
2 u′2(y)/u2

τ ≈Cs0 −Cs1 ln(δ/y)−Cs2(y/δ)dRed/3
τ (7.1)

where all of the constants are independent of y, δ, ν and Reτ except for Cs0 which
may be a logarithmically increasing function of Reτ ; in the range y∗ < y� δ

1
2 u′2(y)/u2

τ ≈C3 +C4 ln(δ/y) (7.2)

as predicted by Townsend (1976) and Perry et al. (1986).
(iv) The very high-Reτ Princeton Superpipe NSTAP data used here and the turbulent

channel flow DNS of Dallas et al. (2009) support the view that it is the eddy
turnover time τ ≡ E/ε that is independent of ν and δ in the range δν � y� δ
rather than the mean flow gradient. This implies τ ∼ y/uτ in that range, a relation
which can serve as a unifying principle across Reynolds numbers in turbulent
pipe/channel flows. Of course, further research is needed to fully establish such
a unifying principle.

(v) The mean flow profile and scalings can be obtained from τ ∼ y/uτ if enough
is known about the production–dissipation balance/imbalance. Here we have
assumed that production and dissipation balance in a range yPε < y� δ where
yPε is smaller than ypeak. Due to this balance, a profile for E+ similar to that of
u′2/u2

τ implies that (1 − y/δ − (du+/dy+))(du+/d ln y+) (i) has an outer peak at
the same position y = ypeak where u′2/u2

τ has an outer peak, and (ii) decreases
with distance from the wall as a function of ln(δ/y) where y∗ < y� δ. In the
intermediate range of wall distances where −〈u′v′〉 ≈ u2

τ is a good approximation
(see point 6 below), these two conclusions hold for du+/d ln y+. The very high
Reτ NSTAP Princeton Superpipe data show clear evidence in support of these
conclusions.
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(vi) The same data also show that the Reynolds stress 〈u′v′〉 is approximately equal
to −u2

τ only if Reτ > 40 000 and for distances from the wall such that 100< y+,
y/δ < 0.01. The balance −〈u′v′〉(du/dy)≈ ε and the kinetic energy profile E+ ≈
M0 +M1 ln(δ/y) (where M0 and M1 are dimensionless constants) in y∗� y� δ
therefore imply in terms of an integration constant M2 that

u+ ≈CsM0 ln(y/δ)− CsM1

2
[ln(y/δ)]2 +M2 (7.3)

in y∗< y< 0.01δ provided that Reτ > 40 000. This is the modified log-law of the
wall.
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