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ARTICLE INFO ABSTRACT

The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent
vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual
spine components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for
Finite element modelling mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each
m‘ﬁrse m;lt)h()ds component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling
E}th‘;i:l pror;erties optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore

bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten
fresh-frozen bovine intervertebral discs at strain rates of 103-1/s. The experimental data were fed into the
inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of
the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the
Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based
on the obtained YM values for each test corresponding to a different strain rate (¢), the following relationship
was derived:YM = 35.51n£+527.5. These properties can be used in finite element models of the IVD that aim to
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simulate spinal biomechanics across loading rates.

1. Introduction

The intervertebral disc (IVD) is located between adjacent vertebral
bodies of the spine and consists of three components; the nucleus
pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates
(CEP). These components interact with one another such that the disc
is able to distribute compressive loading on adjacent vertebral bodies,
while allowing the vertebral column to bend and twist (Bogduk, 2005;
Humzah and Soames, 1988). The functional anatomy of the IVD is
determined by its complex material behaviour. As a viscoelastic
structure, the IVD has material properties that are sensitive to strain
rate (Virgin 1951). Capturing the behaviour of each of its components
is important to understand better processes such as ageing, degenera-
tion, and traumatic injury. It is also of importance for finite element
(FE) simulations of the IVD or indeed the spine where accurate
material models are essential to ensure valid predictions in mechanical
response under loading.

Disrupting the continuity of the disc to test each component
separately may have an effect on the obtained response and so result
in erroneous material properties (Adams and Green, 1993). In
particular, this is an issue for the most complex structure of the IVD,
the AF, which incorporates concentric layers, known as lamella, with

embedded fibres at alternating orientations. Inverse FE modelling
provides the opportunity to obtain material properties of the individual
components without disrupting the continuity of the IVD. The method
involves developing an FE model with an accurate geometry, simulat-
ing a controlled experiment and then altering material properties until
experimental and numerical responses of the IVD are in good agree-
ment. This method has been used previously for other tissues that have
complex interactions with surrounding components, for example the
heel fat pad (Erdemir and Viveiros, 2006; Grigoriadis et al., 2017), the
lung (Sadeghi Naini et al., 2011), and the cornea (Nguyen and Boyce,
2011), but, to the authors' knowledge, not the IVD.

Therefore, the aim of this study was to obtain material properties of
components of the IVD at a range of loading rates without having to
disrupt its structural integrity. We hypothesised that some components
will have a greater influence on the IVD's mechanical response than
others, and therefore, a specific objective was to perform a sensitivity
study to identify these.
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2. Methods
2.1. Specimen preparation

Ten vertebral body-disc-vertebral body (VB-disc-VB) specimens
were harvested from six bovine tails that had been obtained from a
local abattoir. Each specimen was Computed Tomography (CT)
scanned (IVIS SpectrumCT Imaging System, Caliper Life Sciences,
Hopkinton, MA, USA — voxel size 0.15x0.15x0.15 mm) to check for
vertebral fractures or any other signs of pathology that may affect the
properties of the IVD, and to allow accurate measurements of the
geometry of the disc. Specimens were stored frozen at —20°C and each
tail was thawed overnight at room temperature before dissection and
testing. Two separate motion segments were obtained from each tail by
cutting transversely through the first, second and third caudal VBs at
mid-height. Surrounding soft tissues were carefully removed leaving
VB-disc-VB specimens. Throughout the preparation process specimens
were regularly sprayed with phosphate buffered saline (PBS, 0.15 mol/
1) to keep them hydrated.

Using a custom built alignment jig the superior VB of the specimen
was positioned such that the mid-plane of the disc was parallel to the
ends of, and centred within, a 90 mm diameter pot. The superior VB
was then fixed in position using polymethyl-methacrylate (PMMA)
bone cement before being turned upside down allowing the inferior VB
to be lowered into a second pot and again secured into position using
PMMA.

2.2. Experimental procedure

Experiments were carried out using a servo-hydraulic materials
testing machine (8872; Instron, Canton, MA, USA). The potted speci-
mens were placed into the testing machine with a custom designed
hood that allowed the compressive load to be spread across the whole
pot (Fig. 1). The cross-head was lowered until a small compressive load
(~5N) was recorded by the testing machine indicating that the
compression tup was in contact with the top pot. The specimen was
subjected to three preconditioning cycles of compression from 10 to
50N at 1Hz. A similar preconditioning sequence has been used
previously (Adam et al., 2015), and preliminary tests suggested that
this range was sufficient to ensure a repeatable response. Following the
preconditioning cycles, the specimen was subjected to a main cycle to
15% strain. This strain was determined for each individual specimen
based upon central disc height measurements taken from the CT scans
and was chosen to ensure that the disc was not damaged, thus enabling
multiple tests on a single specimen. Each disc was compressed at four
strain rates (0.001, 0.01, 0.1, and 1/s), again calculated from central
disc height measurements taken from the CT scans. Preliminary
investigations showed that a 5 min relaxation period between tests
was sufficient to obtain a repeatable force-displacement response.

Compressive load —————

Connection to
hydraulic materials
Compression tup testing machine

Hood

Mounting pots Bone cement

Fixation screw

Base plate

Fig. 1. Diagram of the experimental setup allowing compression of the VB-disc-VB
specimen.
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2.3. FE model development

Ten subject-specific, non-linear, implicit, axisymmetric FE models
(MSC.Marce, v2015, MSC.Software, Santa Ana, CA, USA) were devel-
oped based on the CT scans of each specimen. The average of three
measurements of the central disc height, peripheral disc height, and
disc radius obtained from the CT scans were used to modify a generic
geometry and ensure that the developed models were subject specific
(Fig. 2). Internal geometry (NP:AF width ratio=3.72:1) and the number
of lamellae (16) included in the model was based upon previous
imaging studies of bovine IVDs (Adam et al., 2015). Fibre bundles in
the AF were modelled using rebar elements while the AF matrix and NP
were represented by quadrilateral 4-node axisymmetric elements. The
fibre bundles were only present in the AF region of the disc and were
assigned a constant Young's modulus in tension, but were not allowed
to resist compression. The AF matrix and the NP were assigned non-
linear hyperelastic material properties (Mooney-Rivlin). The strain
energy function for this material model is shown in Eq. (1), where W is
the strain-energy density function, I; and I, are strain invariants, and
Cjp and Cy; are material constants (Mooney, 1940):

W=C(-3) + Coi(1-3) 1

The fibre bundles were aligned at + 30° to the transverse plane. The
cross-sectional area of each bundle was assigned to be 3.212x107 mm,
and spacing of the bundles was set to 0.23 mm or 4.35 bundles/mm
(Adam et al., 2015; Marchand and Ahmed, 1990). Average element
edge length ranged between 1.0 and 1.2 mm for the ten models and the
results from a mesh convergence study ensured that this mesh density
was sufficient. The discs were assumed to have vertical sides prior to
loading although were allowed to bulge during the simulation, this
assumption has previously been proven to be reasonable for bovine
IVDs through assessment of polarised light micrographs (Adam et al.,
2015). A preliminary numerical investigation demonstrated that mod-
elling the endplates and vertebral bodies as deformable bodies with
material properties from the literature (YM of cortical
bone=11300 MPa, v =0.2 (Little et al., 2007; Lu et al., 1996), YM of
trabecular bone=140 MPa, v=0.2 (Little et al., 2007; Lu et al., 1996),
YM of endplate=23.8 MPa, v=0.4 (Belytschko et al., 1974; Ueno and
Liu, 1987; Yamada, 1970)), or rigid structures made little difference to
the peak force ( < 2.5%) or the final central disc height ( < 0.9%) when a
displacement that caused the disc to strain approximately 15% was
applied at a range of strain rates. Therefore, to reduce computational
cost, VBs and endplates were not modelled separately and were
represented by rigid curves (Fig. 2).

The input to the model was the displacement-time history profile of
the superior VB that was calculated from the displacement data
recorded by the testing machine and was applied via a ‘control node’
to the upper rigid boundary. Apart from the VBs and the endplates,
bone cement and pots were also assumed to be rigid since their
stiffness is much greater than the components of the disc; therefore, the
inferior boundary of the IVD was fixed while the superior boundary was
assumed to have the same kinetic response as the compression tup in
the experimental setup. Since the model was axisymmetric, nodes
along the axis of symmetry (shown by the dotted lines in Fig. 2) were
fixed in the radial direction.

2.4. Sensitivity study

A sensitivity study, to assess the contribution of the material
properties of the various components of the IVD to its behaviour was
conducted by adjusting the initial material properties, taken from
literature (Table 1), by +20% on one of the subject-specific models
that was selected due to its typical geometry (Specimen 1). Each
property was adjusted one-at-a-time such that its effect on the force-
time response could be determined. For the sensitivity study an
intermediate strain rate was used (0.1/s).
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Fig. 2. Subject-specific, axisymmetric FE models of the ten bovine disc specimens. The dashed lines represent the axis of symmetry for each model. The upper rigid boundary of the disc
was assigned a displacement to simulate each experiment and the lower rigid boundary was fixed. Rebar elements are not visualised in these figures but are within the AF matrix

elements that are visible.

Table 1
Material properties used for the sensitivity study and as initial values for the optimisation
study.

Component Material model Material Ref.
parameters

Collagen fibre Linearly elastic 500 MPa Ueno and Liu
bundles (1987)

AF ground Hyperelastic C10=0.7, Cp1=0.2 Natali and
substance Meroi (1990)

Nucleus pulposus Hyperelastic C10=0.07, Cp1=0.02  Adam et al.

(2015)

2.5. Optimisation of the material properties

Following the sensitivity study it was found that the collagen fibre
bundle material properties dominated the behaviour of the IVD and
therefore only the Young's modulus of the AF fibre bundles were
optimised. Their initial values were based on previous experimental
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studies (Table 1), before being optimised using a non-linear inverse FE
optimization algorithm. The algorithm is based on the derivative-free
Nelder-Mead or downhill-simplex method for function minimisation
(Nelder and Mead, 1965). Experimental and numerical results were
compared using the force measured above the specimen over time.
Each test was simulated numerically while the Young's modulus value
of the AF fibres was altered until a match between the numerical and
experimental force-time data was achieved. An objective function was
used to calculate the difference between numerical and experimental
data and was minimised through the optimisation procedure. The
optimisation was terminated when a) alterations of the fibre YM value
had an effect smaller than 10™° on the objective function; b) the
difference between fibre YM values suggested through consecutive
optimisation iterations was less than 107%; or ¢) the number of
optimisation iterations reached 5000. The permissible range of values
for the YM of the AF fibres during optimisation was restricted to
0.001-5000 MPa, thus ensuring that the resulting value would be
physiologically acceptable. This optimisation process resulted in a fibre
YM for each specimen, at each strain rate. The values were averaged at
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Table 2

Dimensions for each of the ten subject-specific models. Central disc height, peripheral
disc height and disc width values were taken from CT scans of the specimens while the AF
width was calculated as a ratio of the total disc width (NP:AF ratio, 3.72:1 — Adam et al.
(2015)). The numbers in brackets represent one standard deviation.

Specimen Central disc Peripheral disc Disc width ~ AF width
number height (mm) height (mm) (mm) (mm)

1 7.0 15.1 28.4 3.0

2 7.6 12.6 26.6 2.8

3 8.2 14.9 24.5 2.6

4 7.2 14.3 28.4 3.0

5 7.0 13.8 29.9 3.2

6 5.8 14.0 24.9 2.6

7 5.9 14.3 24.6 2.6

8 5.6 12.6 24.6 2.6

9 7.5 15.0 26.6 2.8

10 6.2 19.4 28.2 3.0
Average 6.8 (0.9) 14.6 (1.9) 26.7 (2.0) 2.8(0.2)

each strain rate and differences between the means at each strain rate
were determined using ANOVA, analysed post hoc using a Games-
Howell test with the significance level set at p=0.05 (SPSS Statistics,
Version 22.0, IBM Corp., Armonk, NY).

3. Results
3.1. FE model geometry

Dimensions of each specimen measured from the CT scans are
shown in Table 2. These values were used to develop the subject-
specific models shown in Fig. 2.

3.2. Experimental results

Force-displacement graphs for each of the specimens at each strain
rate are shown in Fig. 3.

In order to analyse the strain-rate dependence of the IVDs the
stiffness was calculated at three points along the curve (5, 10 and 15%
strain). The averaged stiffness at each of these strains, at each strain
rate is shown in Fig. 4.

3.3. Sensitivity study

The change in peak force seen when each of the material para-
meters was changed by +20% is shown in Fig. 5. The Young's modulus
of the AF fibre bundles had the greatest influence on the behaviour of
the disc (Fig. 5(i)). By comparison, the model was relatively insensitive
to any of the NP material properties, any of the AF matrix properties, or
the shear modulus, G of the AF fibres.
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Fig. 4. Average stiffness at 5, 10 and 15% strain for each strain rate. ‘represents a
statistical difference using ANOVA, analysed post hoc using a Games-Howell test with the
significance level set at p < 0.05.

3.4. Optimisation

The optimised Young's modulus of the AF fibres ranged from 125 to
799 MPa and averaged 277 + 95 MPa, 388 + 185 MPa, 415 + 149 MPa,
and 540 + 164 MPa, for strain rates of 0.001, 0.01, 0.1 and 1/s,
respectively (Fig. 6). A significant difference was seen between the
Young's moduli obtained at 0.001 and 1/s (p=0.038) but not between
the Young's moduli obtained at any other strain rates (p >0.05). A
logarithmic curve was fit to the data in order to obtain a relationship
between strain rate (¢é—s~!) and the Young's modulus (YM - MPa) (Eq.
2). The R? value for this fit was 0.9515.

YM =3551Iné + 5275

4. Discussion

The motivation of this work was to obtain material properties of the
individual components of the IVD without separating them from their
surrounding tissues and therefore risking disrupting material continu-
ity. This was achieved by using an inverse FE approach; this, to our
knowledge, has been attempted for the first time on the IVD.

Bovine IVDs were chosen in this study as they offer two distinct

1.5 1.5
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£
0.5 / 0.5 4
0 0
0 0.5 1 0 0.5 1
Displacement (mm) Displacement (mm)
0.1/s 1/s

Fig. 3. Force-displacement graphs for each of the ten specimens at (a) 0.001/s, (b) 0.01/s, (c) 0.1/s and (d) 1/s. Each sample is represented by the same colour across strain rates.
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Fig. 5. Sensitivity study overview. The y—axis represents a percentage change in peak axial force from that obtained from the initial baseline run of the model when a parameter was
changed by +20%. (a—d) are NP properties, (e—h) are AF matrix properties and (i—j) are AF fibre material properties.
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Fig. 6. Averaged optimised AF fibre Young's modulus for each of the ten subject-specific
models at each strain rate. Note the logarithmic scale on the x—axis of the larger graph.
The same data are presented with an x—axis that has a linear scale in the small, insert
graph. The fit, described by Eq. (2) is represented by the dotted line. Error bars represent
+ one standard deviation.
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advantages over human specimens. Firstly, young, healthy bovine
specimens are readily available, negating the complicating factor of
IVD degeneration which is common in older human specimens (Race
et al., 2000), and secondly, the transverse cross-section of the bovine
IVDs is almost perfectly round (Adam et al., 2015; O’Connell et al.,
2007), and therefore can be represented by a simple axisymmetric
geometry. The mechanical response of bovine specimens has been
found to be similar to that of human specimens, suggesting that disc
tissue material properties are similar across species (Beckstein et al.,
2008). Although the material properties of the bovine college fibre
bundles derived in this study are likely to be appropriate for implement
in FE models of the human spine, further tests on human IVDs are
required to ascertain this hypothesis.

In agreement with the experimental results of Race et al. (2000)
and Kemper et al. (2007), this study has shown that loading rates
influence the mechanical response of the IVD (Fig. 4). No differences
were seen in disc stiffness at each strain rate at 5 or 10% strain,
however, at 15% strain differences in stiffness were significant between
results from the lowest rate (0.001/s) and all other rates (0.01, 0.1, and
1/s), but no significant differences were seen between any of the higher
loading rates (0.01, 0.1, and 1/s). Therefore, this study supports the
findings of Race et al. (2000) who found a rate above which the strain-
rate sensitivity was negligible. In this study, this rate was found to be at
0.01/s which corresponded to a loading rate of 75 N/s which is similar
to the loading rate of 90 N/s found by Race et al. (2000).
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The Young's modulus for the fibre bundles found here (277-
540 MPa) is similar to values of 357-550 MPa that have been used in
finite element models (Kiapour et al., 2012; Little et al., 2008; Ueno
and Liu, 1987), and values of 100-470 MPa that have been measured in
experiments of single collagen type I fibres isolated from rat tendons
(Dutov et al., 2016), the dermis of sea cucumber (Shen et al., 2011,
2010), and bovine Achilles tendons (van der Rijt et al., 2006).
Experiments that have involved tensioning AF specimens harvested
from single lamellae along the axis of the fibres have been attempted
previously (Holzapfel et al., 2005; Pezowicz et al., 2005; Skaggs et al.,
1994). The samples tested in these experiments were a combination of
AF matrix and fibre bundles; the modulus of those samples was found
to be in the range of 28—136 MPa. In order to compare our results with
these experiments we calculated an equivalent modulus of an AF
specimen consisting of matrix and fibre bundles as follows: assuming
1) linear AF matrix properties of 0.814 MPa (Little et al., 2010), 2) fibre
bundle cross-sectional area and spacing calculated from the measure-
ments taken by Marchand and Ahmed (1990), and 3) samples with the
geometry in Holzapfel et al. (2005) (average width=3.90 mm and
thickness=0.56 mm), and using the fibre modulus of 277-540 MPa
found in this study, the equivalent modulus of an AF sample consisting
of matrix and fibre bundles is in the region of 49-95 MPa; this is
comparable to the experimental results mentioned above (28—
136 MPa). For the purposes of modelling the IVD accurately insofar
as ensuring that the load being transferred through it is correct, the
values presented here are more useful than those of AF specimens since
it is common for fibre bundles and AF matrix to be separate materials
in finite element models.

There were some simplifications with the geometry of the models of
the discs used in this study; we assumed an NP:AF ratio based on
imaging of other bovine discs (Adam et al., 2015), the fibre orientation
was based upon previous studies (Marchand and Ahmed, 1990), and
there was no initial disc bulge (at the outer AF or at the AF-NP
boundary). Furthermore, all FE models that the authors are aware of
define a clear boundary between the AF and the NP when in reality this
boundary is not so distinct. In addition, in the majority of FE models,
the lamellae are represented by concentric rings when in reality some
are circumferentially discontinuous (Adam et al., 2015; Marchand and
Ahmed, 1990). Similarly, there were some simplifications in the
material models assigned; the AF fibres had no initial stress, and there
was no initial pressure modelled in the NP. The sensitivity analysis
performed in this study also suggests that only the AF fibre properties
would need to be adjusted since their contribution to disc behaviour is
far greater than any other material entity in the disc. Therefore, the
potential geometrical and material inaccuracies mean that one must be
cautious when using the material properties obtained here for other
modelling configurations.

Experiments were conducted and modelled in pure axial compres-
sion in this study. The fibre bundles in the AF have been suggested to
be under large strains in bending and twisting (Jensen, 1980), and
therefore optimising the material properties for these modes of loading
is an obvious direction for future studies. Furthermore, the methodol-
ogy that was used successfully to characterise the behaviour of bovine
IVDs in this study could be also applied for obtaining material
properties of human IVDs by developing and using subject-specific
3D FE models.

5. Conclusions

The properties of the angled fibre bundles in the annulus fibrosus
were found to dominate the behaviour of the IVD under axial
compression. An optimisation algorithm utilising an inverse-FE tech-
nique performed on subject-specific models estimated the mean ( + SD)
Young's modulus of the fibre bundles to be 277 +95 MPa, 388 +
185 MPa, 415+ 149 MPa, and 540 + 164 MPa, for strain rates of
0.001, 0.01, 0.1 and 1/s, respectively. The following relationship can
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be used for the Young's modulus (YM - MPa) of type I fibre bundles as
a function of strain rate (é—s™!): YM = 35.5In£+527.5. These values
compare well with previous studies that have performed tensile tests on
collagen type I fibre bundles, and, as expected are greater than the
values obtained from tensile tests on single lamella anulus specimens
which represent the combined response of fibre bundles and matrix.
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