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Abstract. We show that double mills are more stable than single mills under stochastic pertur-
bations in swarming dynamic models with basic attraction-repulsion mechanisms. In order to analyse
this fact accurately, we will present a numerical technique for solving kinetic mean field equations
for swarming dynamics. Numerical solutions of these equations for different sets of parameters will
be presented and compared to microscopic and macroscopic results. As a consequence, we numeri-
cally observe a phase transition diagram in terms of the stochastic noise going from single to double
mill for small stochasticity fading gradually to disordered states when the noise strength gets larger.
This bifurcation diagram at the inhomogeneous kinetic level is shown by carefully computing the
distribution function in velocity space.
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1. Introduction In the last decade, the theoretical and mathematical biol-
ogy communities have paid a great deal of attention to explain large scale structures
in animal groups. Coherent structures appearing from seemingly direct interactions
between individuals have been reported in many different species of fish, birds, and
insects [40, 53, 50, 7, 23, 10] and many others, see the reviews [17, 12, 44] for more
literature in the subject. There are two types of patterns appearing regularly for
different species called flocking and milling behavior. In the flocking behavior, in-
dividuals agree in moving in certain direction with some spatial shape that changes
in time due to the effect of wind, hydrodynamic advantage, own desire, predator
presence, or roosting behavior. In the milling case, individuals organise themselves
rotating around a certain location, that may move in time, forming a thick group in
an annular/ring region.

Many individual based (particle) models have been proposed to explain or repro-
duce these patterns. In general, swarming dynamics have been described by systems of
interacting ordinary or stochastic differential equations: see [40, 33, 23] for the biologi-
cal aspects of the modeling of swarm dynamics and [47, 28, 3, 4, 45, 37, 2, 39, 48, 49, 24]
for including effects like the interaction between individuals, self propulsion, roosting,
and stochastic forces in these equations. All of these models start by including three
basic mechanisms: attraction, repulsion, and reorientation. The form in which each
of these effects is included in the modelling depends on the species and particular
biological parameters.

Dealing with large particle systems is cumbersome and even prohibitive numer-
ically if the system is very large. Therefore, many authors have proposed to use a
mean field approach in which one can derive effective PDEs of Fokker-Planck or Vlasov
type [26, 36, 34, 13, 16, 11, 18, 13] from these microscopic systems of equations. As

∗
†Department of Mathematics, Imperial College London, South Kensington Campus, London SW7

2AZ, UK, (carrillo@imperial.ac.uk).
‡Technische Universität Kaiserslautern, Department of Mathematics, Erwin-Schrödinger-Straße,

67663 Kaiserslautern, Germany, Fraunhofer ITWM, Fraunhoferplatz 1, 67663 Kaiserslautern, Ger-
many, (klar@mathematik.uni-kl.de).
§Technische Universität Kaiserslautern, Department of Mathematics, Erwin-Schrödinger-Straße,

67663 Kaiserslautern, Germany, (roth@mathematik.uni-kl.de) Corresponding author

1
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usual in kinetic theory, scaling arguments on these kinetic PDEs lead to macroscopic
approximations of the mean field equations as in [13, 36, 18, 51, 25].

A very interesting question that arises naturally is the stability of these patterns
under perturbations. This question has been recently analysed in [5, 1, 14] both for
flocks and rings in terms of initial data for the model introduced in [28]. However, an
stochastic perturbation also leads to very interesting phenomena called phase transi-
tion. This phase transition has been reported for the first time in swarming dynamics
in the so-called Vicsek model [63], and it has been studied in detail at the macroscopic
level in [25]. Essentially, in these works they analyse how the system undergoes a tran-
sition from an ordered state (pattern) to a disordered state (chaos) by increasing the
noise strength in the system.

The aim of our work is twofold. On the one hand, we focus on an accurate nu-
merical solution technique for the kinetic mean field equations in swarming dynamics.
We will describe a splitting scheme with a Semi-Lagrangian solver in space and a
semi-implicit finite-volume scheme in velocity space. On the other hand, we make use
of this accurate numerical tool to show for the first time, up to our knowledge, a phase
transition for an inhomogeneous mean field equation in swarming dynamics. By vary-
ing the amplitude of the stochastic forces, we show the influence on milling patterns
in the model without noise introduced in [28]. The results of the microscopic, kinetic
mean-field, and macroscopic equations are compared and discussed thoroughly. The
numerical scheme is an improvement of the schemes used in [56, 43] and of the FVM
solver described in [64, 65]. As a conclusion of our study, we have discovered that
double mills are quite robust and stable for small stochasticity. Mill solutions imme-
diately leads to double mills solutions under small noise, then fading gradually toward
disordered states for large noise strength. This single to double mill noise induced
phase transition is the main theoretical biology implication of this work.

The paper is organized as follows. In Section 2, we quickly summarize the micro-
scopic, kinetic mean field, and macroscopic equations derived for the model introduced
in [28]. It contains the discussion of different regimes and associated macroscopic ap-
proximations ranging from a situation with zero stochastic force, to an intermediate
case, where stochastic and propulsion force balance each other, leading finally to the
dominating force case. In Section 3, the numerical scheme is described in detail and
an investigation on the order of convergence of the scheme is presented both for the
homogeneous and inhomogeneous cases. Finally, section 4 shows the phase transition
of single to double mills for small noise strength and the phase transition toward dis-
ordered state for larger stochastic force. We first conduct a detailed comparison of
microscopic and kinetic simulations for both single and double mills with and without
noise for showing the accurate comparison of the models.

2. Model Hierarchy: Microscopic, Mean-Field, and Macroscopic Mod-
els We consider classical models for swarming dynamics, which include forces result-
ing from social interaction between individuals, self-propulsion, and friction as in [28].
The combined effect of self-propulsion and friction is to impose an asymptotic speed
for individuals. This means that individuals travel at a typical cruise speed asymp-
totically, similar to other classical models [63, 25]. Furthermore, a stochastic term
given by white noise is included as in [13, 17] to account for random and small error
interactions. Moreover, a term describing roosting behaviour is added as discussed
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and introduced in [18]. The microscopic equations are given by

dxi=vi dt (2.1)

dvi=vi(α−β|vi|2)dt− 1

N

∑
i 6=j

∇xi
U(xi−xj)dt

−(|vi|2I−vi⊗vi)∇xiφ(xi)dt−
A2

2
vi dt+AdWi,t, (2.2)

where xi,vi∈Rn,i= 1·· ·N,n= 2,3. U(x) =U(|x|) is a pairwise radial interaction po-
tential. A classical example is given by the Morse potential U(r) =−Ca exp(−r/la)+
Cr exp(−r/lr), with attraction/repulsion strengths Ca/Cr and radius of interaction
la/lr. Other examples for interaction potentials are considered in [19, 15] and the
references therein. α and β are the self propulsion parameter and φ is a poten-
tial defining the roosting force. The parameter A>0 describes the amplitude of the
stochastic force. The main purposes of the paper are to propose an accurate numerical
deterministic scheme for the mean field approximation of this microscopic system and
to study numerically the influence of the noise parameter A on particular patterns
present in this model. In fact, the microscopic model without noise has been shown to
be paradigmatic for self-organization, since it exhibits rich dynamical patterns such
as flocks, single and double mills, see [28, 22, 13, 18]. The main issue in the present
paper is to analyse the qualitative change of the pattern as noise increases. One may
expect some of these collective motions to survive for small noise up to some critical
value for which the introduced stochasticity destroys the self-organized pattern.

A classical derivation procedure as described, for example, in [13, 9, 52, 59, 32,
27, 58, 6] yields the mean field equations. For the one-particle distribution function
f(x,v,t) with x,v∈Rn and the density

ρ(x,t) =

∫
f(x,v,t)dv

with the normalization condition
∫
ρ(x,t)dx= 1, one obtains

∂tf+∇x ·(vf)+Sf =Lf (2.3)

where

Sf =∇v ·
(
v(α−β|v|2)f−(∇xU ?ρ)f−(|v|2I−v⊗v)∇xφf

)
(2.4)

and

Lf =
A2

2
∇v ·(vf+∇vf). (2.5)

Different regimes and approximate solutions for macroscopic quantities can be ob-
tained from the above mean field equation using different scaling assumptions ranging
from very small to very large stochastic force A.

2.1. Vanishing stochastic force The deterministic case A= 0 has been
treated in detail in many publications. A special feature is the appearance of sin-
gle and double mill solutions, we refer to [13]. Single mills of the mean field equation

∂tf+∇x ·(vf)+Sf = 0,
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where S is given by (2.4), can be found as follows. We look for a mono-kinetic solution,
compare [13, 22]

f(x,v) =ρ(x)δu(x)(v).

ρ and u are found by integrating against dv and v dv and closing the equations with
the above Ansatz. One obtains

∂tρ+∇x ·(ρu) = 0

and the momentum equation

∂tu+(u ·∇x)u=u(α−β|u|2)−∇xU ?ρ−(|u|2I−u⊗u)∇xφ

on the support of the density ρ. Stationary distributions can be found in the following
way. Assuming β|u|2 =α, we obtain from the hydrodynamic equations above that

∇x ·(ρu) = 0

(u ·∇x)u=−∇xU ?ρ−(|u|2I−u⊗u)∇xφ

on the support of the density ρ. Assuming a rotatory solution given by

u=

√
α

β

x⊥

|x|
,

compare [13], and looking for radial densities ρ=ρ(|x|), we obtain that the continuity
equation is trivially satisfied. Moreover, since

(u ·∇x)u=−α
β

x

|x|2

one obtains

−α
β

x

|x|2
=−∇xU ?ρ−

α

β

x

|x|2
x ·∇xφ.

Assuming φ(x) =φ(|x|) we end up with an integral equation for ρ:

U ?ρ=D+
α

β
(ln|x|−φ(|x|)) (2.6)

in the support of the density ρ. A numerical investigation of these stationary states
of the hydrodynamic equations, called single mills, is performed in [18].

A so called double mill solution can also be derived from an appropriate ansatz
with two opposing kinetic velocities, see [13]. In short, given the spatial profile of a
single mill, there is always a double mill solution with the same density but changing
the sign of the velocity to part of it. Let us finally remark that in particle simulations of
the microscopic system (2.1)-(2.2), double mills are observed very often by peforming
large perturbations of single mills when A= 0. Moreover, these double mills are
typically interlaced instead of overlapping on the same spatial region. This means
that the velocity of one mill is not totally opposite of the velocity of the other mill at
the same spatial point.
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2.2. Balance of stochastic and propulsion forces We consider a diffusive
scaling with large A and α,β for long time scales leading to the following scaled
equations

ε∂tf+∇x ·(vf)+ S̃f =
1

ε
L̃f,

where

L̃f =−∇v ·
(
v(α−β|v|2)f

)
+
A2

2
∇v ·(vf+∇vf)

and

S̃f =∇v ·
(
−(∇xU ?ρ)f−(|v|2I−v⊗v)∇xφf

)
.

To zeroth order in an expansion in the small parameter ε, we have L̃(f0) = 0. The
kernel of L̃ is given by the solution of

∇v ·(v(α−β|v|2)f) =
A2

2
∇v ·(vf+∇vf).

A simple computation gives that the local equilibrium solution is given by

f0(x,v) =ρ0C exp

(
− 2

A2
ψ(v)

)
with ψ(v) =

(
β
|v|4

4
−(α− A

2

2
)
|v|2

2

)
with a normalizing constant C and a given spatial density ρ0(x,t).

Remark 2.1. For A going to zero f0 goes to

ρ0δ|v|2=α/β(v).

For A going to infinity f0 converges to a standard Maxwellian ρ0M(v).

To compute ρ0 one has to proceed to first order. One obtains

L̃f1 =g=v∇xf0−divv((∇xU ?ρ0)f0)−divv((|v|2I−v⊗v)∇xφf0). (2.7)

We note that
∫
gf0dv= 0. This means, that the right hand side g of equation (2.7) is

orthogonal to the kernel of L̃, which is spanned by f0. Denoting by L̃−1 the inverse
of L̃ on (KerL̃)⊥ we define the tensors Di by

Di=

∫
v⊗ L̃−1(gi(v))dv, i= 0,1,2.

The vector fields gi are defined by

g0 =−vC exp

(
− 2

A2
ψ(v)

)
,

g1 =−C∇v
[
exp

(
− 2

A2
ψ(v)

)]
,

g2 =−C∇v ·
[
(|v|2I−v⊗v)exp

(
− 2

A2
ψ(v)

)]
.
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Multiplication by v and integration with respect to v gives

−
∫
vf1dv=D0∇xρ0 +D1(∇xU ?ρ0)ρ0 +D2∇xφρ0.

Integrating the scaled equation and using the above gives finally

∂tρ0 =∇x ·((D1∇xU ?ρ0 +D2∇xφ)ρ0 +D0∇xρ0). (2.8)

2.3. Dominating stochastic force We refer to [13, 18, 8, 31, 38] and consider
a diffusive scaling with large A and long time scales leading to the scaled equation

ε∂tf+∇x ·(vf)+Sf =
1

ε
Lf.

A straightforward asymptotic expansion gives to zeroth order f0 =ρ0M(v) where M
is the standard Maxwellian and

∂tρ0 =∇x ·((∇xU ?ρ0 +∇xφ)ρ+∇xρ0) .

The solution of the stationary problem is given by

ρ0 = C̃ exp(−U ?ρ0−φ) (2.9)

with C̃ prescribing the total mass. The associated momentum is

−
∫
vf1dv=∇xρ0 +(∇xU ?ρ0)ρ0 +∇xφρ0.

To summarize this overview, we expect the stationary solutions of the mean field
equations to change as follows when A goes from 0 to infinity. For A= 0 and well
prepared inital conditions, one obtains a single mill solution, i.e. a δ solution in
velocity and a radial solution in x of equation (2.6). Double mills appear depending
on the initial conditions and typically for large perturbations of the mill solution. As A
becomes very large, one approaches a Maxwellian solution in velocity and a solution
of equation (2.9) in x. These two behaviors will be confirmed by the numerical
investigations in Section 4.

On the other hand, the transition from the mill ordered state to the disordered
state by increasing the noise is not clear at this point. The macroscopic equations in
the middle regime seem to indicate a density profile near a non-isotropic maxwellian
due to the matrices Di in (2.8). However, the change in the spatial and velocity
profile are not clear for small noise when approaching the monokinetic solution. We
wil investigate this issue in detail in Section 4 showing that double mills play an
important role in this transition.

3. Numerical Scheme

3.1. Discretization In the following, we present a Semi-Lagrange Finite Vol-
ume method for the Fokker-Planck equations. We describe the method in 2-D, see
[41] for similar situations in fibre dynamics. An extension to 3-D is straightforward,
but computationally expensive, see [42] for similar problems. We split (2.3) using a
Strang splitting [21], that means we consider

∂tf
∗=−1

2
Sf∗+

1

2
Lf∗ f∗(t) =f(t) (3.1)

∂tf
∗∗=−v∇xf∗∗ f∗∗(t) =f∗(t+τ) (3.2)

∂tf =−1

2
Sf+

1

2
Lf f(t) =f∗∗(t+τ)
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where S and L are given by (2.4) and (2.5) respectively. The system is discretized
on the grid (xi,yj ,v

k), where xij = (xi,yj)∈R2 for the spatial domain and vk ∈R2 are
points in the velocity domain. Furthermore, we denote by tn the discretization points
in time with constant step size τ . For (3.2), which is a linear advection problem in the
spatial domain and has to be solved for each point vk of the velocity grid, we use a
third order Semi-Lagrange method (see [35, 43, 55]), where we apply an interpolation
procedure using cubic Bezier curves. Proceeding in the usual way, we look back in
time along the characteristic curves X(t;tn+1,xij ,v

k) starting in the respective grid
point xij and obtain a grid value for the current time step tn+1 by interpolating from
the old grid values f(xij ,v

k,tn) at the characteristic endpoint X(tn;tn+1,xij ,v
k). On

each cell [xi,xi+1]× [yj ,yj+1] of the grid in space, the solution at a given time is given
by the polynomial reconstruction

Bi+ 1
2
(tx,ty) =

3∑
k,l=0

Bk3(tx)Bl3(ty)ξkl (3.3)

with the Bernstein polynomials Bk3(t) =
(
3
k

)
tk(1− t)k,t∈ [0,1] and the 16 control

points ξkl. We used the notations tx= x−xi

hx
,ty =

y−yj
hy

here. Due to the nature of

the Bernstein polynomials, the interpolant never leaves the convex hull of the control
points. They are chosen appropriately so that we have a third order local approx-
imation for smooth data and a reduced order interpolant without oscillations for
non-smooth data.

In order to obtain a cubic Bezier polynomial like (3.3) with appropriate con-
trol values ξkl, one computes an interpolating Newton polynomial and then per-
forms a basis transformation from the Newton basis to the Bernstein polynomials.
We will demonstrate the procedure for a 1D problem. Assume we have the stencil
F = (fi−1,fi,fi+1,fi+2)T . Then, for x∈ [xi,xi+1] and t= tx= x−xi

hx
, we can write the

Newton polynomial Ni+ 1
2
(t) as follows

N(t) =
(
1 (t+1) t(t+1) (t−1)t(t+1)

)
b=
(
b0 b1 b2 b3

)T
Ni+ 1

2
(t) =N(t)b,

where we obtain the coefficients

b=


N(−1)
N(0)
N(1)
N(2)


−1

F =N−1F.

In the same way, we can write the Standard polynomial basis, the Bernstein
polynomial basis, the Bezier coefficients and the Bezier polynomial:

S(t) =
(
1 t t2 t3

)
B(t) =

(
(1− t)3 3t(1− t)2 3t2(1− t) t3

)
ξ=
(
ξ0 ξ1 ξ2 ξ3

)T
Bi+ 1

2
(t) =B(t)ξ.
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Figure 3.1: Convergence of the Semi-Lagrange method with Bezier interpolation for
linear advection as in (3.2). One obtains the predicted third order method in case
of smooth initial conditions, whereas the convergence order is reduced in the case of
non-smooth initial conditions due to the limiting procedure.

Now a change of basis gives

B(t) =S(t)TB and N(t) =S(t)TN ⇒ N(t) =B(t)T−1B TN .

In order to achieve the right interpolation order, we want the Bezier polynomial to be
equal to the Newton polynomial, i.e. B(t)ξ=N(t)b. That can be achieved if we set

ξ=T−1B TNN
−1F

⇒


ξ0
ξ1
ξ2
ξ3

=


fi

5fi
6 −

fi−1

9 + fi+1

3 −
fi+2

18
5fi+1

6 − fi+2

9 + fi
3 −

fi−1

18
fi+1

 .
Since the Bezier polynomial with these control values is the same as the Newton
polynomial, we know that we have a local approximation error of fourth order for
smooth data, resulting in a third order consistency error for linear advection in the
Semi-Lagrange scheme, see figure 3.1. However, as for every higher order scheme for
hyperbolic problems, oscillations will occur at discontinuities in the solution. Thus,
some kind of limiting procedure has to be applied. Avoiding oscillations in this case
is straight forward, due to the convex hull property of the Bernstein polynomials.
An oscillating interpolant between xi and xi+1 will leave the interval of neighbouring
grid values [fi,fi+1]. In such a situation, one or two of the coefficients ξi will also
be outside of this interval. If we put ξi back to either of the boundaries fi or fi+1,
the interpolated value too will be contained within the interval [fi,fi+1]. This can be
done by setting

ξ0 =fi

ξ1 = min
(
M,max

(
m,

5fi
6
− fi−1

9
+
fi+1

3
− fi+2

18

))
ξ2 = min

(
M,max

(
m,

5fi+1

6
− fi+2

9
+
fi
3
− fi−1

18

))
ξ3 =fi+1,

(3.4)
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where m= min(pi,pi+1) and M = max(pi,pi+1), see [57]. We note that as usual we
lose accuracy in the case of non-smooth solutions, compare [46, 60] for other limiting
procedures such as flux limiting. In figure 3.1 the numerical order of convergence is
shown for smooth and non-smooth data. Also, the mass conservation is destroyed
in that way, which is why a mass conservation procedure as in [43, 29] has been
implemented additionally, where we proceed as follows: Let m(tn) =

∫
f(x,v,tn)dvdx

be the mass at time tn. What we have to ensure in each time step is, that

m(tn+1) =

∫
f(x,v,tn+1)dvdx=

∫
f(x,v,tn)dvdx=m(tn) (3.5)

Let f̂(xij ,v
k,tn+1) be the value obtained from the Bezier interpolation for the grid

point xij , then we compute the perturbed characteristic curves

X+(tn) =X(tn)+τhx ·vk

X−(tn) =X(tn)−τhx ·vk,

where hx is the average grid size in the spatial domain. Then, we use the old mass
m(tn) and the mass of the interpolant m̂(tn+1) to obtain mass-corrected function
values f̄ in the following way:

f̄(xij ,tn+1) =

{
max(f̂(X+,vk,tn), f̂(X−,vk,tn)) , if m(tn)≥ m̂(tn+1)

min(f̂(X+,vk,tn), f̂(X−,vk,tn)) , if m(tn)<m̂(tn+1)

The values for f̂(X−,vk,tn), f̂(X+,vk,tn) are also obtained via Bezier interpolation.

The values f̂ and f̄ are then combined, such that (3.5) is satified:

f(xij ,v
k,tn+1) =

{
f̂(xij ,v

k,tn+1) , if m̂(tn+1) = m̄(tn+1)

θf̂(xij ,v
k,tn+1)+(1−θ)f̄(xij ,v

k,tn+1) , else

where

θ=
m(tn)−m̄(tn+1)

m̂(tn+1)−m̄(tn+1)
.

In the literature, similar examples of Semi-Lagrangian schemes and splitting methods
for the Vlasov equation are known, see for example [20, 30, 55, 35, 62]. The con-
tributions mostly differ in the interpolation scheme and the handling of oscillatory
solutions. For the advection problem (3.2), our procedure can be easily extended to
2D by extending the above described vectors in an appropriate way.

For the discretization in velocity, we apply a finite volume scheme [46] with a Lax
Wendroff type approximation [54] for the advection, which is an enhancement of the
methods used in [56, 65]: Denote the midpoints of rectangular cells Tk for (2.3) by
vk. The boundary between cells k and l is called Tkl with the normal e(v) and the
boundary midpoint vkl. We further denote the distance between cell midpoints vk

and vl by hkl, which decomposes into hkl=h1 +h2, where h1,h2 are the distances to
the boundary midpoint vkl. Since we have an equidistant, rectangular grid in x and
y-direction, hkl is either hx or hy and h1,h2 are hx/2,hy/2 respectively, see Figure 3.2.
N(k) is the set of neighbor cell indices to cell k. For the FVM nethod, one computes
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e(vkl)hklvk vl
vklTk Tl

Figure 3.2: A patch of the rectangular grid for FVM.

the cell averages over the cells [tn,tn+1]×Tk by integrating (3.1). This gives

1

τ

1

|Tk|

∫
Tk

∫ tn+1

tn

∂tf dtdv=− 1

τ

1

|Tk|

∫ tn+1

tn

∫
Tk

∇v ·(F (x,v)f(v,t))dvdt

+
1

τ

A2

2|Tk|

∫ tn+1

tn

∫
Tk

∇v ·(∇vf(v,t))dvdt,

where the notation F (x,v) :=v(α−β|v|2)−(∇xU ?ρ)−(∇xφ ·v⊥)v⊥− A2

2 v is used.
Rewriting

fnk =
1

|Tk|

∫
Tk

f(v,tn)dv

and applying the midpoint rule for the time integration and the divergence theorem
for the integration w.r.t v, one gets

fn+1
k −fnk

τ
=

1

|Tk|
∑

l∈N(k)

∫
Tkl

f(v(S),tn+ 1
2
)F (x,v(S)) ·e(v(S))dv(S)

+
A2

2|Tk|
∑

l∈N(k)

∫
Tkl

∇vf(v(S),tn+ 1
2
) ·e(v(S))dv(S)+O(τ2)

=
1

|Tk|
∑

l∈N(k)

|Tkl|f(vkl,tn+ 1
2
)F (x,vkl) ·e(vkl)

+
A2

2|Tk|
∑

l∈N(k)

|Tkl|∇vf(vkl,tn+ 1
2
) ·e(vkl)+O(|Tkl|3)+O(τ2).

(3.6)

Now, we have to approximate the quantities f(vkl,tn+ 1
2
) and ∇vf(vkl,tn+ 1

2
) ·e(vkl).

If we use

f(vkl,tn+ 1
2
) =

1

2

[
(fnk +fnl )− τ

hkl
e(vkl) ·

(
F (x,vl)fnl −F (x,vk)fnk

)]
:=fLW ,

we end up with a Lax-Wendroff type flux function for the normal direction only. To
obtain a fully 2D Lax-Wendroff scheme, one would have to consider approximations
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of cross-derivatives as well, which are omitted here for reasons of simplicity of the
scheme. For a numerical convergence analysis of the order of the error see Figure 3.4.
As any higher order flux function, oscillations for non-smooth solutions will appear
and one has to apply a limiter scheme to remedy this. In the present example, we
will blend the Lax-Wendroff type flux with a first order upwind advection fUW for
non-smooth solutions:

f(vkl,tn+ 1
2
) =φ(θkl)f

LW +(1−φ(θkl))f
UW ,

where

fUW =

{
fnk , if F (x,vkl) ·e(vkl)>0

fnl , else

and θkl measures the smoothness of the solution between cells k and l by comparing
slopes. φ is the van-Leer limiter [61, 60]

φ(θ) =
θ+ |θ|
1+ |θ|

.

Using this limiting procedure, oscillations are avoided. In order to get a value for
∇vf ·e(vkl), one can expand f around vkl in edge normal direction and obtains

∇vf(vkl) ·e(vkl) =
f(vl)−f(vk)

hkl
+O(h2kl)

for the equidistant grids used here. Together with the fluxes from the other l∈N(k),
the second order terms vanish and one obtains an estimate of order O(h3kl). In total,
multiplying by |Tkl| and dividing by |Ti|, we end up with a second order approximation
of ∇vf ·e(vkl) on the velocity grid. We have to note however, that the discretization
is not second order in time, since we did not account for the evaluation of ∇vf ·e(vkl)
at tn+ 1

2
. This can be remedied by applying the trapezoidal rule in (3.6) instead of

the midpoint rule for the time integral of the diffusion terms, which would lead to a
Crank-Nicholson scheme for the diffusive part of the problem. The convergence rate
in time does not influence the numerical results that much, since we are interested in
equilibrium solutions, which do not change in time any more. Plugging the approx-
imations for f(vkl,tn+ 1

2
) and ∇vf(vkl,tn+ 1

2
) ·e(vkl) back into (3.6), it becomes clear

that we have in fact a first order in time forward Euler discretization. For a numerical
investigation of the convergence rate of the velocity discretization in the case without
interaction and roosting, see figure 3.4.

In matrix form (3.6) can be rewritten as

fn+1 =fn−τ ·
(
AT f

n−ADfn
)

(3.7)

with matrices AT for the transport coefficients and AD for the diffusion coefficients.
For large values of the diffusion parameter (A>1) one will need a very small time step,
if the above method (3.7) is to converge. So instead of (3.7), we use the semi-implicit
ansatz

fn+1 =fn−τ ·
(
AT f

n−ADfn+1
)
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Figure 3.3: On the left, the diffusion coefficient A is set to 0.05, on the right, it
is A= 0.2. From top to bottom we have: Analytical equilibrium feq and numerical

equilibrium fNeq . For A→0, feq will approach δ(|v|−
√

α
β ).

or

(I−τAD)fn+1 = (I−τAT )fn. (3.8)

I−τAD can be proven to be strictly diagonally dominant and has positive diagonal
entries. We use the conjugate gradient method to solve system (3.8) in every time
step. For the implementation, it is unavoidable to use some sort of sparse format for
the matrices, which decreases computing time by a large factor, since we have to solve
this system at every point (xi,yj) in every time step.

3.2. Numerical investigation of the space homogeneous case First we
test our finite volume scheme for the space homogeneous equation without interaction
and roosting force. The equation reads

∂tf+∇v ·(v(α−β|v|2)f) =
A2

2
∇v ·(vf+∇vf). (3.9)

For the computations we use the numerical values α= 0.07 and β= 0.05. The analyt-
ical equilibrium solution is given by

feq(v) =C ·exp

(
−
(
β̃
|v|4

4
− α̃ |v|

2

2

))
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Figure 3.4: Logarithmic error plot for different grid sizes for the finite volume method
in the space homogeneous case. The coefficient A was chosen as A= 0.15. The con-
vergence for the present numerical example is second order, even though the scheme
is not second order by itself.

with β̃= 2β/A2 and α̃= 2α/A2−1. For A 6= 0 the solution of the time dependent
Fokker-Planck equation (3.9) converges to this equilibrium state, compare figure 3.3.
The convergence to equilibrium is investigated looking at the distance between nu-
merical fNeq and analytical equilibrium feq in L2. The values of this functional for
different grid sizes are displayed in Figure 3.4.

3.3. Numerical convergence analysis for the full problem Up to now,
we only tested the numerical scheme for spatial and velocity domain separately. In
this section a numerical convergence analysis is performed for the two regimes of
large diffusion A= 3.0 and no diffusion A= 0.0, for the full problem in space and
velocity. Starting from a Single Mill initial condition in all cases, we will compare
the stationary distributions for different grid sizes. Let ρ=

∫
f dx be the density of

the numerically computed stationary distribution function and ρR be the reference
density. To measure the errors we compute the distance

|ρ−ρR|2 =

√∫
(ρ−ρR)2 dx. (3.10)

The reference solutions are given on a finer grid than the numerical solutions. We will
interpolate the numerical data with a 3rd order accurate procedure to the reference
grid and compute the distance there. The occurring integrals will then be evaluated
with the midpoint rule on each grid cell.

3.3.1. A=3.0 In this case, we do not have an analytical equilibrium. However,
a very good approximation of the stationary density ρR can be obtained by taking
the solution of the fixed-point equation

ρR=
exp(−U ?ρR)∫

ρRdx
.

This equation has been obtained in the section 2.3 in the limit A→∞. For A= 3.0
the stationary density is well approximated by the limit density. The computational
domain is given by x∈ [−60,60]2,v∈ [−3,3]2. Table 3.1 shows the number of grid
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Figure 3.5: The top row contains the original data of the numerical solution for
A= 3.0, below there is the interpolated solution, which is then compared to ρR. The
colour scaling is the same as for the reference density in figure 3.7.

points in each of the 4 dimensions, the grid size h in the spatial domain, and the
error.

100.5 100.7 100.910−4

10−3

10−2
Convergence Densities

 

 

|.|2
1st
2nd

Figure 3.6: The blue line shows the nearly second order accuracy of the numerical
scheme in | · |2 for A= 3.0, in terms of the densities. The green and red lines are
references for convergence rates of first or second order, respectively.

n 15 22 30 45
h 8.5714 5.7143 4.1379 2.7273

|ρ−ρR|2 0.0049827 0.0044338 0.0021669 0.0008489

Table 3.1: Grid size and error for A= 3.0.

The step sizes in the velocity domain are decreased in the same way as the spatial
grid h for the convergence plots. In fact, we use as many grid points for the spatial
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Figure 3.7: On the left: radial plots of the numerical densities for the different grid
sizes and the reference density ρRfor A= 3.0. On the right: the reference solution ρR
on its native grid.

as for the velocity grid. The respective densities can be found in figure 3.5. We
get the logarithmic error plots in figure 3.6. Radial plots for the densities and the
reference density can be found in figure 3.7. Note, that the colour scaling is the same
for reference density in figure 3.7 and the densities in figure 3.5.

3.3.2. A=0.0 In this case without diffusion, we obtain a single mill solution as
equilibrium solution. Since there is no analytical solution to compare to, we take as a
reference solution the numerical solution with a fine resolution. In this investigation,
we use the solution with 60 grid points in each of the 4 directions as the reference
solution. The computational domain will be given by x∈ [−50,50]2,v∈ [−3,3]2. We
denote the density of the best resolved numerical solution by ρR and compare it to
the density ρ obtained from the lower resolutions, in the norm stated in (3.10). Table
3.2 shows the number of grid points in each of the 4 dimensions, the grid size h in the
spatial domain, and the error.

n 15 22 30 45
h 7.1429 4.7619 3.4483 2.2727

|ρ−ρR|2 0.0075987 0.0045355 0.0025808 0.0009124

Table 3.2: Grid size and error for A= 0.

The respective densities can be found in figure 3.8. From this, we get the logarith-
mic error plot in figure 3.9. Radial plots for the densities and the reference solution
can be found in figure 3.10.

4. Numerical investigation of milling States In this section we look at
numerical solutions for the full problem (2.3) and compare them to the microsopic
solutions of equation (2.1) and the macroscopic approximations derived in section 2.
We use the numerical values α= 0.07, β= 0.05, as before. Moreover, the constants of
the interaction potential are chosen as in [18] as Ca= 20,Cr = 50,la= 100,lr = 2. De-
pending on the initial conditions special stationary solutions, so called single or double
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Figure 3.8: The top row contains the original data of the numerical solution for
A= 0.0, below there is the interpolated solution, which is then compared to ρR. The
color scaling is the same as for the reference density in figure 3.10.
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Figure 3.9: The blue line shows the errors of the numerical scheme in | · |2 for A= 0.0.
The green and red lines show the errors corresponding to a convergence rate of first
or second order, respectively. We conclude that the numerical scheme is between first
and second order for A= 0.0, as expected.

mills, appear for diffusion coefficient A= 0. They are obtained as stationary states
of the interacting particle system as well as the kinetic equation. We discuss these
stationary states numerically and concentrate on the investigation of the behavior of
these solutions for increasing noise parameter A.

4.1. Milling solutions The single mill solution in the microscopic context is
a structure, where all the particles with positions xi∈R2 move around the origin with
velocities

vi=

√
α

β

x⊥i
||xi||

.
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Figure 3.10: On the left: radial plots of the numerical densities for the different grid
sizes and the reference density ρR for A= 0.0. On the right: the reference solution ρR
on its native grid.

In the kinetic case we display the spatial distribution of the density ρ=
∫
f dv. The

velocities are visualized by looking at the velocity distributions f(x0,v) at fixed spatial
points x0∈ suppρ. If a single mill is obtained, f(x0,v) will become concentrated at

v∼
√
α

β

x⊥0
||x0||

.

For comparison, we generate a distribution function f from the microscopic results,
by counting particles in a 4D-histogram, which is then normalized to mass 1 as for
the kinetic solution. We note, that a large amount of particles is needed to generate
a reasonably smooth histogram. In figure 4.1, we plotted 400 microscopic particle
positions with arrows indicating their velocities. The actual computation was carried
out with 13000 interacting particles, where we have chosen 400 particles randomly for
plotting the results. The histogram is based on the position and velocity data of all
13000 particles. The spatial density obtained from the kinetic equation and pictures
of the velocity distributions at corresponding fixed points obtained from microscopic
and kinetic solution are also shown in figure 4.1. The results coincide well, although
the peaks in the kinetic velocity distribution are broader than the microscopic ones,
due to the diffusivity of the kinetic solver.

The single mill is obtained for A= 0 for a specific type of initial conditions. One
has to prepare the system in a state which is not very far from the single mill solution.
In the kinetic case, this can be realised by using the initial condition

f0(x,v) =

{
C , if 12≤||x||≤29,

√
α
β −

1
2 ≤||v||≤

√
α
β + 1

2 , ||
v
||v||−

x⊥

||x|| ||≤
15
100 .

0 , else.

C is chosen in such a way, that
∫
f0 dxdv= 1. One can achieve a corresponding initial

condition in the microscopic case by placing particles i randomly at positions xi with
12≤||xi||≤29 and assigning random velocities vi with the corresponding deviation
from the direction x⊥i .
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Figure 4.1: Comparison of single mills from microscopic equations (top) and from
kinetic equations (bottom). To the left, we have the particle positions and kinetic
particle distribution, to the right, there are the velocity distributions at fixed points
on the grid. Note, that the grid in velocity space is different for the microscopic and
kinetic case, so the positions do not coincide exactly.

A double mill is, from the microscopic point of view, a situation, where one part
of the particles at the positions xi is circulating around the origin with speed

vi=

√
α

β

x⊥i
||xi||

,

while the other part at about the same location xi is going in the opposite direction
−vi. The kinetic spatial density looks like the one for the single mill solution, but the
velocity distributions at fixed points show two symmetric peaks in f at the sphere
|v|2 = α

β . Computing a histogram from the microscopic solution as before, we compare
the results in figure 4.2. Again, the two solutions agree reasonably well. Note, that
it is not possible to obtain a double mill with the macroscopic model because of the
monokinetic closure, see [13].

The double mill is again obtained for A= 0 by choosing appropriate initial con-
ditions. For example, one may use the following distribution function for the kinetic
equation:

f0(x,v) =

{
C , if 12≤||x||≤29, ||v||≤1.6

0 , else.
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Figure 4.2: Comparison of double mills from microscopic equations (top) and from
kinetic equation (bottom). To the left, we have the particle positions and kinetic
particle distribution, to the right, there are the velocity distributions at fixed points
on the grid. Note, that the grid in velocity space is different for the microscopic and
kinetic case, so the positions do not coincide exactly.

C is chosen as before. The corresponding initial values in the microscopic context are
obtained by placing particles randomly in the same region in space and assign random
velocity vectors vi, which are limited by ||vi||≤1.6. Note, that the initial condition
to get a double mill pattern is less restrictive than the one for the single mill. This
indicates that a double mill is in a certain sense more stable or robust than a single
mill for small stochasticity. This fact will become clearer investigating situations with
increasing noise parameter A in the next subsection.

4.2. Influence of the noise amplitude: Phase Transition In this section
the microscopic and kinetic equations are investigated for different values of A starting
with a single and a double mill initial condition. Figure 4.3 shows the behavior of
the microscopic system for three values of the noise coefficient: For A= 0, we obtain
the expected single mill or double mill depending on the initial conditions, then for
A= 0.123 the stationary state is still a double mill independent of the initial state
being a single or a double mill initial distribution. For A= 0.9, we have an unordered
state.

The crucial point is, that starting from the single mill state for A= 0, there is a
transition from single to double mills for small values of A, before milling structures
vanish as A increases. This can be observed for the solutions of the kinetic equation
as well. Figure 4.4 shows spatial density and velocity distributions at fixed points
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Figure 4.3: Solutions of the microscopic system with 400 particles: At the top on the
left, one can see a single mill for A= 0, on the right, we have a double mill for A= 0.
Below, A is raised first to 0.123, where we still have a double mill until we end up in
an unordered state at A= 0.9.

in space, for several values of A for single mill initial conditions. The evaluation
points in space are indicated above the respective velocity distribution. For A= 0 one
observes the milling solutions. In this case a δ-type velocity distribution is observed
for the fixed spatial points and a circular density distribution with zero density in the
center, as before. However, A= 0.123 yields a double mill type stationary state, as
can be seen by comparing the result to the double mill for A= 0 in figure 4.2. Further
increase of A yields the disappearance of milling structures.

Moreover, for A= 0.123 we compare the microscopic and the kinetic solutions.
We generate again a histogram from the particle data and give the comparison to
the kinetic result in figure 4.5. Again, the solutions match, with a slightly higher
diffusivity in the kinetic result due to the numerical scheme.

Additionally, we plot in Figure 4.6 the velocity distribution functions at one fixed
spatial point for a wider range of values of A, with separate plots for single mill and
double mill initial conditions. One can see, that the single mill state fades into a
double mill and then into a normal distribution. The double mill however persists for
small values of A.

In order to examine this behavior more closely, we computed for each numerical
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Figure 4.4: Solutions of the mean field equation: On the left, we have the spatial
density

∫
f dv and on the right, we have the velocity distribution at some fixed posi-

tions in the spatial domain. From top to bottom there are results for different values
of the diffusion coefficient A= 0,0.123,0.9. The constants of the interaction potential
are chosen according to [18]: Ca= 20,Cr = 50,la= 100,lr = 2.

solution fA of the kinetic equation the distance to a single mill

max
x∈suppρ

∫ ∣∣∣∣v−√α

β

x⊥

|x|

∣∣∣∣2fA(x,v)dv. (4.1)

Figure 4.7 shows the values of this functional depending on the diffusion parameter
A for initial conditions yielding either single or double mills. We can observe the
presumed behavior, where the double mill persists for some range of A and then fades
away as the single mill does.
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Figure 4.5: Comparison of results from microscopic equations (top) and from kinetic
equation (bottom). In each case, a single mill initial condition was used and the
diffusion/noise parameter was set to A= 0.123.

In order to further validate our results for the kinetic equation, we have also
compared the spatial densities of microscopic, kinetic and macroscopic equations. In
figure 4.8 one can find radial plots of the spatial densities of the mean-field equation
and the microscopic system for different values of A. For A= 0 we have the above-
mentioned circular distribution with zero density in the center, which fades away
for A= 0.123 until there is a normal distribution for A= 0.9 and higher values of A.
Furthermore, we compare our microscopic and kinetic solutions to the macroscopic
single mill result computed in [18] for A= 0 in figure 4.9. We get good agreement of
both the spatial density ρ and the tangential moment ρu. The mean-field solution is a
bit more diffusive than the corresponding microscopic and macroscopic ones. We note
again that the macroscopic solution is not able to reproduce the double mill solution,
since a mono-kinetic closure is used in section 2.1. For large A the radial density of
the mean field solution is shown together with the corresponding macroscopic solution
of the diffusion problem from section 2.3 and the microscopic solution in figure 4.10.

4.3. Computational remarks
All the computations were carried out on the cluster of the University of Kaiser-

slautern on an Intel Xeon E5 2670 with eight cores at 2.6 to 3.9 GHz each. The solver
for the Fokker-Planck equation is written in Fortran and with OpenMP paralleliza-
tion. We note that for the mean field equation, we only need to compute distances
between points of the grid to determine the influence of the interactions. Since the
grid is fixed, these distances can be precomputed. The methods discussed here can
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Figure 4.6: Here, we look at f at one of the fixed spatial points. On the left, we have
a single mill, which fades away gradually with increasing diffusion coefficient A. On
the right, we have the same situation starting from a double mill.
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Figure 4.7: Distance of the solution from the single mill solution (4.1) for different
values of A. The blue line is obtained for single mill initial condition, the green one
for a double mill initial condition.
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Figure 4.8: Comparison of spatial densities from microscopic and kinetic equations.
We show radial plots of them for different values of A: From left to right, we have
A= 0.0, A= 0.369 and A= 0.9.
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Figure 4.9: On the left: Radial plot of the densities obtained from microscopic, mean
field and macroscopic single mill solution for A= 0. On the right: radial plot of the
corresponding tangential moment.
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Figure 4.10: Radial plot of the densities obtained from microscopic, mean field and
macroscopic solution for A= 3.0.

be extended to three dimensions in space and velocity domain, but then memory
consumption and computing time will become important issues. For example, the
storage of the precomputed pairwise distances between grid points in 3 dimensions
takes a considerable amount of memory.
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