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Abstract

Starting from the hyperbolic Brownian motion as a time-changed Brownian motion,
we explore a set of probabilistic models–related to the SABR model in mathematical
finance–which can be obtained by geometry-preserving transformations, and show
how to translate the properties of the hyperbolic Brownian motion (density, probability
mass, drift) to each particular model. Our main result is an explicit expression for the
probability of any of these models hitting the boundary of their domains, the proof
of which relies on the properties of the aforementioned transformations as well as
time-change methods.
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1 Introduction

Stochastic analysis on manifolds is a vibrant and well-studied field dating back to
the seminal work of Varadhan [30], followed by Elworthy [11], Hsu [19], Stroock [29],
Grigoryan [13], Avramidi [2] and, in a financial context [1, 12, 16, 17]; of particular im-
portance in these works is Brownian motion on a Riemannian manifold1. The underlying
manifold here is the state space of the process, which is in most cases a complete open
manifold. This is not the case, for example for the following process:

dXt = YtX
β
t dWt +

β

2
Y 2
t X

2β−1
t dt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,

d〈Z,W 〉t = ρ dt,

(1.1)

where ν > 0, ρ ∈ (−1, 1), β ∈ [0, 1), and W and Z are two correlated Brownian motions
on a filtered probability space (Ω,F , (Ft)t≥0,P). The case β = 1 is excluded of the
analysis as it is a trivial case (see Remark 3.5). While in the case β = 0, the natural state
space is H := R × (0,∞) both open and complete, the natural underlying space when
β > 0 is H+ := [0,∞) × (0,∞), a (non-complete) manifold with boundary {0} × (0,∞).
In these situations it is natural to wonder about the probability that the process on
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Hitting the SABR Boundary

this state space never reaches the boundary. In the specific case β = ρ = 0, ν = 1,
the SDE (1.1) describes the dynamics of Brownian motion on hyperbolic plane. This
(hyperbolic) Brownian motion is particularly tractable, and its density is known in closed
form. Therefore, it is a good starting point for the study of the law and the large-time
behaviour of processes of the form (1.1). Indeed, restricting hyperbolic Brownian motion
toH+ with the addition of Dirichlet boundary conditions along the ray {0}×(0,∞) makes
this process suitable for the framework of Hobson [18, Theorem 4.2], who studies the
large-time behaviour of stochastic volatility models via coupling and comparison methods.
There, Hobson provides the following classification (and examples) of the large-time
behaviour of sample paths of the X process for such models: (i) it can hit zero in finite
time, (ii) it converges to a strictly positive limit, or (iii) it is always positive, but converges
to zero as time tends to infinity. Note that these cases are not necessarily exclusive
from one another, and (i) and (ii) can both happen with positive probability; for a given
model, however, it is in general difficult to estimate these probabilities precisely. In this
article we single out some processes for which these probabilities can be quantified.
The hyperbolic Brownian motion, for example, exhibits such a non-trivial large time
behaviour, where both (i) and (ii) occur with strictly positive probabilities, for which we
derive explicit expressions using time change techniques and properties of hitting times
of Brownian motion. We further present transformations of the hyperbolic Brownian
motion under which this large-time property remains valid, and provide formulae for
these probabilities; the resulting processes turn out to be precisely of the form (1.1)2.
One particular feature of (1.1) is that the state space is not compact. In geometry, the
large-time behaviour of the heat kernel (and the corresponding semigroup) is well known
in the compact case–via its infinite series representation (see for example [8])–and several
results have extended this to the non-compact case (see for example [9, 23, 25, 26]). The
majority of the existing literature however focuses on the case where the state space is
a complete manifold, and results for the case of manifolds with boundary are rare [31].
In probability, such results, known for continuous time Markov chains on finite state
space (by Perron-Frobenius theorem), do not have a general formulation for infinite state
space.

In this article, we display several tractable properties of the solution to (1.1), which
we refer to as a Brownian motion on the SABR plane, since it characterises a Brownian
motion in a suitably chosen Riemannian manifold with boundary (the SABR plane cf. [16,
Subsection 3.2]), as emphasized in Lemma 2.3 below. We analyse furthermore the
effect of the parameters β and ρ on the large-time behaviour of the process (1.1) by
focussing on the cases where either one of these parameters (or both) is zero. Our
analysis confirms that the large-time behaviour is independent of the order in which the
parameters β and ρ were introduced (this follows from the commutativity of the diagram
on Page 4, proved in Theorem 2.1). We also relate (whenever possible) the properties of
this model to those of the SABR model

dXt = YtX
β
t dWt, X0 = x0 > 0,

dYt = νYtdZt, Y0 = y0 > 0,

d〈Z,W 〉t = ρdt,

(1.2)

introduced in [15, 16], and now widely used in financial markets. Compared to the SABR
model (1.2), the X-dynamics of (1.1) include an additional drift term, which appears in
an expansion of the density only as a higher-order term perturbation correction [16]. The
behaviour of the drift in (1.1) is significantly different when β ∈ (0, 1/2) and β ∈ (1/2, 1):
in the former case the drift explodes when X approaches zero, while it vanishes in the

2 Up to a deterministic time change, ν can be taken equal to one, and we assume this without loss of
generality.
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Hitting the SABR Boundary

latter case; when β = 1/2, the drift does not depend on X at all. Interestingly however,
the large-time behaviour remains invariant under some transformations affecting β,
while local properties (such as the density) can be translated from one case to another,
reflecting the ‘phase transition’ occurring in the above three cases. As observed in [10],
the constraints ρ = 0 or β = 0 are the only parameter configurations where certain
advantageous regularity properties of (1.2) are valid. In fact these are the only cases
for which (1.2) can be written as a Brownian motion on some weighted3 manifold. Note
furthermore, that in the β = 0 case, the drift in (1.1) vanishes and the SDEs (1.1)
and (1.2) coincide for all values of ρ. According to [3] and [16], in the prevalence of low
interest rates, the choice β = 0 is rather common practice on interest rate desks, and, in
this case, (1.2) is usually referred to as the ‘normal SABR’ model.

Case (i) in Hobson’s classification coincides with the probability

P := P(Xt = 0 for some t ∈ (0,∞)), (1.3)

and our main result (Theorem 3.1) is an exact expression for this probability as

P =

∫ ∞
0

dt

∫ t

0

f(s, t)ds,

where the function f is available in closed form (as an infinite series). In the case
β = ρ = 0, the function f admits the simplified formulation (In denoting the Bessel
function of the first kind)

f(s, t) =
2 exp

(
− (x2

0+y2
0)(t+s)

4st

)
π(t− s)

√
st

∞∑
n=1

n sin

[
2n

(
π

2
− arctan

(
y0

x0

))]
In

(
(x2

0 + y2
0)(t− s)

4st

)
.

Similar probabilities (yet not this one in particular), of hitting some boundary, or a ball
around it, have been studied for the hyperbolic Brownian motion in [6, 7, 14, 21, 22]

In Section 2, we analyse the dynamics of (1.1) under different parameter configura-
tions, and propose several space transformations to translate properties of one model
configuration to the other. In Section 3, we use these maps to derive an exact formula
for P for general parameter values. We recall in Appendix A some notions on the heat
equation on manifolds, needed along the paper.

Notations: For a given real-valued stochastic process X (with continuous paths) and
a real number z, we denote by τXz := inf{t ≥ 0 : Xt = z} the first hitting time of X at
level z. For convenience, we shall use the (now fairly standard) notation ρ :=

√
1− ρ2.

For two functions f and g, we shall write f(z) ∼ g(z) as z tends to zero whenever
lim
z→0

f(z)/g(z) = 1.

2 SABR geometry and geometry preserving mappings

We first exhibit a set of mappings allowing to translate the properties of one model
configuration to another. Let H := R × (0,∞) and H+ := (0,∞)2, and introduce the
following pairs of spaces together with their metrics:

H := (H, h), H+ := (H+, h), U := (H+, u), S := (H+, g), S0 := (H, g0), S0
+ := (H+, g

0),

3See [13, Definition 3.17] for a precise definition of a weighted manifold.
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where the Riemannian metrics on their respective spaces are given by

h(x̃, ỹ) =
dx̃2 + dỹ2

ỹ2
, (x̃, ỹ) ∈ H,

g(x, y) =
1

ρ2

(
dx2

y2x2β
− 2ρdxdy

y2xβ
+

dy2

y2

)
, (x, y) ∈ H+,

g0(x̂, ŷ) =
1

ρ2

(
dx̂2

ŷ2
− 2ρdx̂dŷ

ŷ2
+

dŷ2

ŷ2

)
, (x̂, ŷ) ∈ H,

u(x̄, ȳ) =
1

ȳ2

(
dx̄2

x̄2β
+ dȳ2

)
(x̄, ȳ) ∈ H+.

Clearly, U corresponds to the uncorrelated (ρ = 0) model, while S0 is the general
SABR plane with β = 0; H represents the classical Poincaré plane with its associated
Riemannian metric [13, Section 3.9], and S the general SABR plane, generated by (1.1).
The following diagram summarises the different relations between the mappings and
the spaces (we also include the corresponding coordinate notations):

(x̃,ỹ)

H

χ̄
**(x̂,ŷ)

S0

φ̃0

44

χ

��

(x̄,ȳ)

U

ϕ̃0

jj

(x,y)

S

φ̄0

FF

ϕ̂0

WW
φ̃0

0

OO

Regarding the mapping notations, subscripts 0 are related to the correlation parame-
ter (for example, the parameter ρ vanishes by the action of φ̄0), whereas superscripts 0

indicate that the parameter β vanishes; the map χ reintroduces the parameter β. The
mappings between these spaces are defined as follows:

φ̃0
0 : S 3 (x, y) 7−→ (x̃, ỹ) :=

(
x1−β

ρ(1− β)
− ρy

ρ
, y

)
∈ H,

ϕ̂0 : S 3 (x, y) 7−→ (x̂, ŷ) :=

(
x1−β

1− β
, y

)
∈ S0,

φ̄0 : S 3 (x, y) 7−→ (x̄, ȳ) :=

(
(1− β)

1
1−β

(
x1−β

ρ(1− β)
− ρy

ρ

) 1
1−β

, y

)
∈ U, ρ ≤ 0

φ̃0 : S0
+ 3 (x̂, ŷ) 7−→ (x̃, ỹ) :=

(
x̂− ρŷ
ρ

, ŷ

)
∈ H,

χ : S0
+ 3 (x̂, ŷ) 7−→ (x, y) :=

(
(1− β)

1
1−β x̂

1
1−β , ŷ

)
∈ S,

χ̄ : H+ 3 (x̃, ỹ) 7−→ (x̄, ȳ) :=
(

(1− β)
1

1−β x̃
1

1−β , ỹ
)

∈ U,

ϕ̃0 : U 3 (x̄, ȳ) 7−→ (x̃, ỹ) :=

(
x̄1−β

1− β
, ȳ

)
∈ H+,

(2.1)
From now on, if not indicated otherwise, we restrict the domains of the above maps
to the first quadrant H+, which–when considering compositions–impose restrictions
on the parameters in order to ensure that images also belong to this set (for example
the restriction ρ ∈ (−1, 0] needs to be imposed for the composition φ̃0

0 ◦ χ). While the
map φ̃0 can be extended to the whole upper halfplane H, thus describing an asset with
negative value, the maps ϕ̃0, φ̃0

0, χ and χ̄ cannot be defined in the real plane. They can
be extended to the line {(x, y) ∈ H : x = 0} though, and are non-differentiable there. The
following theorem gathers the properties of all these maps:
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Theorem 2.1. The diagram is commutative and all the mappings in (2.1) are local
isometries on their respective spaces:

• the maps ϕ̂0 and χ (resp. ϕ̃0 and χ̄) on H+ are onto and inverse to one another;

• the compositions φ̄0 ◦ ϕ̃0 and ϕ̂0 ◦ φ̃0 coincide with φ̃0
0;

• the equalities χ ◦ φ̃0
0 = φ̃0 and φ̃0

0 ◦ χ̄ = φ̄0 hold, and the latter is well defined for
ρ ∈ (−1, 0];

• the map ϕ̂0 (resp. ϕ̃0) transforms the Brownian motion on (S, g) (resp. (U, u)) into
the SABR model (1.2) with β = 0 (resp. ρ = β = 0), which in turn is transformed
back to Brownian motion on its original spaces by the map χ (resp. χ̄);

• the maps φ̄0 (resp. the extension of φ̃0) transforms the Brownian motion on (S, g)

(resp. (S0, g0)) into its uncorrelated version on (U, u) (resp. (H, h)).

Proof. The first three items follow from simple computations; the remaining statements
follow from Lemmas 2.3, 2.6, 2.5 and 2.7 below.

Remark 2.2. The map φ̃0
0 was first considered in [16], and is a local isometry mapping a

Brownian motion on (S, g) to a Brownian motion on the hyperbolic half-plane (H, h). The
refined analysis of Theorem 2.1 confirms that we can treat the effect of the parameters ρ
and β separately. Disassembling the influence of the parameters ρ and β further allows
us to draw consequences on the large-time behaviour of these processes (see Remark 2.4
and Section 3 below).

As a first step we investigate the maps ϕ̂0, ϕ̃0, which annul β and χ, χ, which reintro-
duce β.

Lemma 2.3. The solution (X,Y ) to (1.1) coincides in law with a Brownian motion
on (S, g). The process (X̂, Ŷ ) defined pathwise by

(X̂t, Ŷt) := ϕ̂0(Xt, Yt) =

(
X1−β
t

1− β
, Yt

)
, for all t ≥ 0. (2.2)

is a SABR process (1.2) with β = 0, which coincides in law with a Brownian motion on
the correlated hyperbolic plane (S0, g0).

Remark 2.4. This map ϕ̂0 : S → S0 will be essential in our study of the long-time
behaviour of the process X in Section 3. Indeed, since β ∈ [0, 1), we have, for the
probability defined in (1.3),

P := P(Xt = 0 for some t ∈ (0,∞)) = P(X̂t = 0 for some t ∈ (0,∞)). (2.3)

Proof. The statement that (1.1) has the same law as Brownian motion on (S, g) follows
from the computation of the infinitesimal generator of (1.1), which coincides with
the Laplace-Beltrami operator 1

2∆g on a manifold with metric tensor g(x, y) (see (A.4)
and (A.5)). The second statement is an application of Itô’s formula, which transforms
the system (1.1) into

dX̂t := ŶtdWt, X̂0 = x̂0 := x1−β
0 /(1− β),

dŶt = νŶtdZt, Ŷ0 = ŷ0,

d〈W,Z〉t = ρdt,

(2.4)

which is identical to (1.2) with β = 0, and ρ ∈ (−1, 1). Its generator coincides with
the Laplace-Beltrami operator 1

2∆g0 of the respective manifold, which yields the last
statement.
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Lemma 2.5. The map χ (resp. χ̄) is a local isometry between (S0
+, g

0) and (S, g)

(resp. (H+, h) and (U, u)) and transforms the Brownian motion on the hyperbolic plane
(S0

+, g
0) (resp. (H+, h)), whose dynamics are described by (2.4), into a Brownian motion

on the general SABR plane (S, g) (resp. (U, u)), satisfying (1.1).

Proof. For a local isometry between (S0
+, g

0) and (S, g) (resp. (H, h) and (U, u)), it holds
that for any (x̂, ŷ) ∈ S0 (resp. (x̃, ỹ) ∈ H) there exists a small open neighbourhood
U(x̂,ŷ) ⊂ S0 (resp. U(x̃,ỹ) ⊂ H), such that the map χ|U(x̂,ŷ)

(resp. χ̄|U(x̃,ỹ)
) is an isometry

onto its image; in particular it satisfies the pullback relation (pullback notations and
definitions are explained in Appendix A)

(χ∗g) (x, y) = χ∗

(
dx2

ρx2βy2
+

2ρdxdy

ρxβy2
+

dy2

ρy2

)
=

dx̂2 + 2ρdx̂dŷ + dŷ2

ρŷ2
= g0(x̂, ŷ),

respectively, for zero correlation

(χ̄∗u) (x̄, ȳ) = χ̄∗

(
dx̄2

x̄2β ȳ2
+

dȳ2

ȳ2

)
=

dx̃2 + dỹ2

ỹ2
= h(x̃, ỹ).

For any (x̂, ŷ) ∈ S0 (resp. (x̃, ỹ) ∈ H), the Jacobians read

∇χ(x̂, ŷ) =

(
(1− β)

β
1−β x̂

β
1−β 0

0 1

)
and ∇χ̄(x̃, ỹ) =

(
(1− β)

β
1−β x̃

β
1−β 0

0 1

)
,

respectively, hence the local pullback property is clearly satisfied by χ (resp. χ̄). The last
statement follows by Itô’s lemma.

The maps φ̃0, φ0 affect the correlation parameter as follows:

Lemma 2.6. The map φ̃0 : S0 → H is a global isometry and transforms the SABR
model (1.2) with β = 0 into a Brownian motion on (H, h). Furthermore, the heat (or
transition) kernel of the solution of the system (2.4) is available in closed form:

ρ−1Kh
φ0(x,y)(s, φ0(x, y)), for s > 0 and (x, y) ∈ S0,

where Kh
(x̃,ỹ)(s, ·) denotes the hyperbolic heat kernel at (x̃, ỹ) ∈ H, for which a closed-

form expression and short- and large-time asymptotics are known ([13, Equation (9.35)]
and [16]).

Proof. The following shows that φ0 is in fact a global isometry: φ̃0 is onto and invertible
on S0 and, for any (x, y) ∈ S0, its Jacobian

∇φ̃0(x, y) =

(
1/ρ −ρ/ρ
0 1

)
,

is independent of x and does not explode at x = 0. Furthermore, for any (x, y) ∈ S0,(
φ̃0∗h

)
(x, y) =φ̃0∗

(
dx̃2 + dỹ2

ỹ2

)
=

1

y2

(
dx

ρ
− ρdy

ρ

)2

+
(dy)2

y2
= g0(x, y).

The last statement follows from Lemma A.4 together with det(∇φ̃0(·)) = 1/ρ 6= 0. One
can easily verify by Itô’s lemma that the dynamics (2.4) for general ρ ∈ (−1, 1) are
transformed into (2.4) for ρ = 0 under the map φ̃0.

We now verify that φ̄0 is a ‘geometry-preserving’ map from the general SABR
plane (S, g) into the uncorrelated SABR plane (U, u), which of course reduces to the
identity map when ρ = 0, and to φ̃0 when β = 0.
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Lemma 2.7. For any (ρ, x) ∈ (−1, 0]× S, the map φ̄0 is a local isometry between (S, g)

and (U, u).

Proof. The statement follows directly from the fact that the map φ̄0 and its partial
derivatives

∂xx̄(x, y) =
x−β

ρ
(1− β)

β
1−β

(
x1−β

ρ(1− β)
− ρy

ρ

)β/(1−β)

,

∂yx̄(x, y) = −ρ
ρ

(1− β)
β

1−β

(
x1−β

ρ(1− β)
− ρy

ρ
C

)β/(1−β)

,

∂xȳ(x, y) = 0, ∂y ȳ(x, y) = 1,

(2.5)

satisfy the following system of partial differential equations implied by the local pullback
property

(
φ̄∗0u

)
(x̄, ȳ) = g(x, y), for any (x, y) ∈ S, (x̄, ȳ) ∈ U for the Riemannian metrics g

and u: 

(∂xx̄)2

x̄2β ȳ2
+

(∂xȳ)2

ȳ2
=

1

ρ2y2x2β
,

2(∂xx̄∂yx̄)

x̄2β ȳ2
+

2(∂xȳ∂y ȳ)

ȳ2
=
−2ρ

ρ2y2xβ
,

(∂yx̄)2

x̄2β ȳ2
+

(∂y ȳ)2

ȳ2
=

1

ρ2y2
.

As an application of Lemma 2.7 it may be possible to relate the absolutely continuous
part of the distribution of the Brownian motion on the uncorrelated SABR plane (U, u)

and that of the Brownian motion on the general SABR plane (S, g) via the relation (A.3)
of the heat kernels [28]; this can be performed following similar steps as in [16], but
care is needed, as discussed below.

Lemma 2.8. Let Kg
Z and Ku

Z denote the fundamental solutions4 at Z ∈ H+ (i.e. the limit
lims↓0K

g
Z(s, ·) = δZ(·) is the Dirac delta distribution), of the heat equations corresponding

to the metrics g and u. Then, for any z = (x, y) ∈ H+,

Kg
Z(s, z) =

(1− β)
β

1−β

ρxβ

(
x1−β

ρ(1− β)
− ρy

ρ

) β
1−β

Ku
φ̄0(z)(s, φ

0
0(z)).

When β = 1/2, the formulae simplify to φ̄0(x, y) ≡
(

1
(1−ρ)2

(
x−
√
xρy + ρ2y2

4

)
, y
)

, and

det(∇φ̄0(x, y)) =
(

1− ρy
2
√
x

)
/(1− ρ)2, for all (x, y) ∈ S.

Proof. The statement follows from Lemma A.4: the Radon-Nikodym derivatives are
dz

dµg(z) = ρ2y2xβ and dz̄
dµu(z̄) = ȳ2x̄β, with µg and µu the Riemannian volume elements

on S and U (Definition A.2 in Appendix A), and the Jacobian of φ̄0 at z = (x, y) ∈ S is as
in (2.5), so that

det
(
∇φ̄0(x, y)

)
=

(1− β)
β

1−β

ρxβ

(
x1−β

ρ(1− β)
− ρy

ρ

) β
1−β

.

4More details about these fundamental solutions can be found on Page 13.
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Such a relation of heat kernels relies on the commutativity property of Laplace-
Beltrami operators in Lemma A.1, which is not meaningful for (A.4) at x = 0 for general β.
Hence a statement relating the heat kernels might not hold true in the vicinity of the
origin. Although in the case of exploding Jacobians the relation (A.3) of ‘kernels’ formally
indicates that the map under consideration induces an atom, it does not allow for
an exact computation. All the maps introduced above, except φ̄0 and φ̃0

0, are defined
on (0,∞)2 and can be extended by continuity along the ray {0} × (0,∞); they are
however not differentiable there. A direct application of Itô’s lemma would therefore
fail, and an enhanced version would be needed, which in turn could (alluding to Itô-
Tanaka-Meyer-type formulae [27, Theorem 1.5, Chapter VI.1]) induce local times there.
However, we bypass this issue by imposing Dirichlet (absorbing) boundary conditions
along this particular ray. A statement similar to Lemma 2.8 below was made in [16]
relating Kg to the hyperbolic heat kernel Kh; in their analysis, the determinant was
det(∇φ̃0

0(x, y)) ≡ x−β/ρ.
The knowledge of the exact form of the absolutely continuous part of the distribution

would provide a means to infer the probability of the process X hitting its boundary.
This, however, would involve intricate formulae with multiple integrals. Instead, in
the following section, we compute this probability in a more concise way, and use the
knowledge of the kernel only to show that introducing first β then ρ (or conversely) has
no influence on this probability.

3 Probability of hitting the boundary

Having characterised the isometries between the Brownian motion on the hyperbolic
plane and a more general version, with drift, on the SABR plane, we derive here a
concise formula to compute the hitting probability P (in (1.3)) of the boundary of this
general process. A key ingredient here is to note that this probability is equal to the limit
of P(Xt = 0) as t tends to infinity. We shall also determine the influence of the model
parameters (β, ρ) on this quantity. The computation of this probability (Theorem 3.1
below) follows the works of Hobson [18] on time changes. We apply such a technique
to progress from the Brownian motion on the correlated hyperbolic plane (2.4) to a
correlated Brownian motion on the Euclidean plane. The joint distribution of hitting
times of zero of two (correlated) Brownian motions without drift was first established
by Iyengar [20], and refined by Metzler [24] (see also [4] for further results on hitting
times of correlated Brownian motions). We also borrow some ideas from [10], where
Hobson’s construction for the normal SABR model [18, Example 5.2] is extended to (1.1)
for general β ∈ [0, 1]. This indeed follows from the observation that stochastic time
change methods, going back to Volkonskii [32], can still be applied to the Brownian
motion on the SABR plane. In order to formulate our next statement, we introduce
several auxiliary parameters (see [24]):

a1 :=
x1−β

0

1− β
, a2 :=

y0

ν
, r0 :=

√
a2

1 + a2
2 − 2ρa1a2

ρ2 ,

α :=


π + arctan

(
−ρ
ρ

)
, if ρ > 0,

π

2
, if ρ = 0,

arctan

(
−ρ
ρ

)
, if ρ < 0,

θ0 :=


π + arctan

(
a2ρ

ρ

)
, if a1 < ρa2,

π

2
, if a1 = ρa2,

arctan

(
a2ρ

ρ

)
, if a1 > ρa2.
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Theorem 3.1. For the SDE (1.1), the probability (1.3) satisfies

P =

∫ ∞
0

dt

∫ t

0

f(s, t)ds,

where for any s < t (Iz denotes the modified Bessel function of the first kind [5, Page
638]),

f(s, t) =
π sin(α)

2α2(t− s)
√
s(t− s cos2(α))

exp

(
− r

2
0

2s

t− s cos(2α)

2t− s(1 + cos(2α))

)
×
∞∑
n=1

n sin

(
nπ(α− θ0)

α

)
Inπ

2α

(
r2
0

2s

t− s
2t− s(1 + cos(2α))

)
.

Remark 3.2. In the uncorrelated case ρ = 0, the expressions in Theorem 3.1 simplify to

α = π
2 , θ0 = arctan

(
a2

a1

)
, r0 =

√
a2

1 + a2
2, and

f(s, t) =
2

π(t− s)
√
st

exp

(
−r

2
0(t+ s)

4st

) ∞∑
n=1

n sin
(

2n
(π

2
− θ0

))
In

(
r2
0(t− s)

4st

)
.

Remark 3.3. When β = 0, in Theorem 3.1 above, a1 is equal to the starting point x0. In
this case (1.1) corresponds to the original ‘normal’ SABR model (1.2) for any ρ ∈ (−1, 1).

Proof. Recalling the process X̂ in (2.2), and the SDE (2.4), we wish to apply [18, Theorem
3.1] to (2.4). Consider the system of SDEs

dX̃t = dW̃t, X̃0 = x̂0,

dỸt = νdZ̃t, Ỹ0 = y0,

d〈W̃ , Z̃〉t = ρdt,

(3.1)

where (W̃ , Z̃) is a two-dimensional correlated Brownian motion. With the time-change
process

τ(t) := inf

{
u ≥ 0 :

∫ u

0

Ỹ −2
s ds ≥ t

}
, (3.2)

Theorem 3.1 in [18] implies that

X̂t = X̃τ(t) and Yt = Ỹτ(t), (3.3)

for all t ≥ 0. In addition, the map ϕ̂0 in (2.2) gives Xt =
(
x1−β

0 + (1− β)W̃τ(t)

)1/(1−β)

for

all t ≥ 0. Let now ε denote the explosion time of (3.1), namely the first time that either X̃
or Ỹ hits zero. It is also the first time that the process W̃ hits the level −x̂0 or that Z̃
hits −y0/ν. Set Γt :=

∫ t
0
Ỹ −2
s ds and ζ := limt↑ε Γt. The process Γ is strictly increasing

and continuous, so that its inverse Γ−1 is well defined, and clearly the time-change
process (3.2) satisfies τ = Γ−1. Consider a new filtration G and two processes W and Z
defined, for each t ≥ 0, by Gt := Fτ(t),

Wt :=

∫ τ(t)

0

dW̃s

Ỹs
ds and Zt :=

∫ τ(t)

0

dZ̃s

Ỹs
ds.

Up to time ζ, W and Z are G-adapted Brownian motions, and the system (W,Z, X̂, Y ) is a

weak solution to (2.4). It is therefore clear thatP
(
τ X̃0 ∈ds, τ Ỹ0 ∈dt

)
=P

(
τ W̃−x̂0

∈ds, τ Z̃−y0/ν
∈dt

)
.

Moreover, it follows from [24, Equation 3.2] with ~µ = ~0, ~x0 = (x̂0, y0), and

σ =

(
ρ ρ

0 ν

)
,
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that P
(
τ X̃0 ∈ ds, τ Ỹ0 ∈ dt

)
= f(s, t)dsdt, where the function f is defined in Theorem 3.1,

so that

P
(
τ X̃0 < τ Ỹ0

)
=

∫ ∞
0

dt

∫ t

0

f(s, t)ds. (3.4)

Reversing the arguments presented in [10, 18], the probability P(τ X̃0 < τ Ỹ0 ) coincides
with the probability that the process X̂ hits zero over the time horizon [0,∞). Indeed,
through (3.3), the time change (3.2) converts the Brownian motion Ỹ into a geometric
Brownian motion Y started at y0 > 0, so that the (a.s. finite) point τ Ỹ0 is mapped to

τY0 =∞. Therefore the time-changed process X̃ over [0, τ Ỹ0 ) corresponds to X̂ considered
over [0,∞) and, using (3.3), we obtain

P
(
τ X̃0 < τ Ỹ0

)
= P

(
τ X̂0 < τY0

)
= P

(
τ X̂0 <∞

)
= P

(
X̂t = 0, for some t ∈ (0,∞)

)
,

and Theorem 3.1 follows from (2.3) and (3.4).

Remark 3.4. For the normal SABR model (β = 0) in (1.2), Hobson [18, Example 5.2]
found the following formula for the price process X:

Xt =
ρ

ν

(
Ỹτ(t) − y0

)
+ ρ2Z̃τ(t), for all t ≥ 0,

where the process Ỹ and the Brownian motion Z̃ are the same as in (3.1), and τ is as
in (3.2).

Remark 3.5. For β = 1, the SDEs (1.2) and (1.1) read

dXt = XtYtdWt and dXt = Xt

(
YtdWt +

1

2
Y 2
t dt

)
,

respectively, and, by the Doléans-Dade formula [27, Section IX-2], the solutions to these
equations are exponential functionals, and therefore do not exhibit mass at the origin.
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A Reminder on the heat equation on manifolds

We recall some standard results on heat kernels on Riemannian manifolds, needed in
Section 2. For a given metric g, we denote by ∆g the corresponding Laplace-Beltrami
operator. Following the notations from [13, Section 3.12], let k ∈ N ∪ {∞}, M1,M2 two
Ck+2-manifolds and φ : M2 →M1 a Ck+2-diffeomorphism which is an isometry between
(M2, g2) and (M1, g1). Any function f on M1 induces a pullback function φ∗f on M2 by
the relation φ∗f = f ◦ φ. We start with a fundamental property of this operator ([13,
Lemma 3.27]).

Lemma A.1. The Laplace-Beltrami operator ∆gi (i = 1, 2) commutes with φ in the sense
that ∆g2

(φ∗f) = φ∗(∆g1
f) holds for any f ∈ Ck+2(M1).

Definition A.2. Let (M, g) be a smooth Riemannian manifold and Z ∈M . The smooth
function pZ : (0,∞) ×M → R is a fundamental solution at Z of the heat equation on
(M, g) if:

(i) it solves the heat equation ∆gpZ = ∂tpZ on (M, g);

(ii) limt↓0 pZ(t, ·) = δZ(·), where δZ denotes the Dirac measure at Z ∈M :

lim
t↓0

∫
M

pZ(t, z)f(z)µg(dz) = f(Z),

for all test functions f ∈ C∞0 (M), with µg(dz) being the Riemannian volume element
at z.

The fundamental function pZ is said to be regular if furthermore pZ ≥ 0 and
∫
M
pZ(t, z)

µg(dz) ≤ 1.

Proposition A.3. Let k ∈ N∪{0}∪{∞}, φ : (M2, g2)→ (M1, g1) a Ck+2-smooth isometry,
pg1

Z1
the fundamental solution at Z1 ∈M1 of the heat equation on (M1, g1), and let Z2 ∈M2

be such that φ(Z2) = Z1. Then the map (t, z2) 7→ pg1

φ(Z2)(t, φ(z2)) ≡ φ∗p
g1

Z1
(t, z1) is the

(unique) fundamental solution at Z2 of the heat equation on (M2, g2).

Proof. Lemma A.1 implies that Definition A.2(i) holds for the above map. The opera-
tor ∆g2 acts only on the space variable z2 ∈M2 and not on the fixed point Z2 ∈M2, so
that

∆g2
pg1

φ(Z2)(t, φ(z2)) = ∆g2

(
φ∗p

g1

Z1
(t, z1)

)
= φ∗

(
∆g1

pg1

Z1
(t, z1)

)
= φ∗

(
∂

∂t
pg1

Z1
(t, z1)

)
=

∂

∂t
pg1

φ(Z2)(t, φ(z2)), (A.1)

with z1 := φ(z2), Z1 := φ(Z2), where the first equality follows from the pullback relation,
the second from the commutativity relation in Lemma A.1, and the third one since pg1

Z1

satisfies the heat equation on (M1, g1). We now check Definition A.2(ii). Let f1 ∈ C∞0 (M1)

be a test function and f := φ∗f1. Set z1 = φ(z2) and Z1 = φ(Z2) for any z2, Z2 ∈ M2.
Given that φ is an isometry, so is φ−1 and the pullback (φ−1)∗µg2

(d·) coincides with the
volume form on (M1, g1). Then

lim
t↓0

∫
M2

pg1

φ(Z2)(t, φ(z2))f(z2)µg2
(dz2) = lim

t↓0

∫
M2

pg1

Z1
(t, φ(z2))f1(φ(z2))µg2

(dz2)

= lim
t↓0

∫
M1

pg1

Z1
(t, z1)f1(z1)

(
(φ−1)∗µg2

)
(dz1)

= lim
t↓0

∫
M1

pg1

Z1
(t, z1)f1(z1)µg1(dz1) = f1(Z1) = f ◦ φ(Z2).
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The fundamental solutions in Proposition A.3 are denoted with respect to the Rie-
mannian volume form of the respective manifold, whereas they are expressed in terms
of the Lebesgue measure (the volume form on the Euclidean plane) in Lemma 2.8 and
Lemma A.4. This translation can be performed as follows: let the Riemannian volume
form be given in orthogonal coordinates, and let Kg

Z denote the fundamental solutions
(in terms of the Lebesgue measure) at Z ∈ H+ of the heat equation corresponding to the
Riemannian metric g in the sense that the Radon-Nikodym derivative with respect to the
Lebesgue measure is already incorporated into the expression for Kg

Z : if pgZ(s, ·) denotes
the fundamental solution (at Z ∈ H+) as in Proposition A.3, then, for any test function f ,∫

H+

f(z)Kg
Z(s, z)dz :=

∫
H+

f(z)pgZ(s, z)
dz

µg(dz)
µg(dz) =

∫
H+

f(z)pgZ(s, z)
µg(dz)√

det(g)
.

The following lemma follows directly from Proposition A.3. In order to translate the
coordinate-free result of Proposition A.3 to our setting, we assume from now on that
M1 = M2 = H+.

Lemma A.4. For any i = 1, 2, let Kgi
Zi

denotes the fundamental solution at Zi ∈ H+of the
heat equations corresponding to the metric gi:{

∂sK
gi
Zi

=
1

2
∆giK

gi
Zi
,

Kgi
Zi

(0, zi) = δ(zi − Zi).
(A.2)

If φ : (H+, g2)→ (H+, g1) is an isometry such that φ(Z2) = Z1 and φ(z2) = z1, then

Kg1

Z1
(s, z1) = det (∇φ(Z2))Kg2

φ(Z2)(s, φ(z2)). (A.3)

The generators of the Brownian motions on (S, g) (resp. (U, u))–(defined in Section 2)–
are defined on their respective spaces with {x 6= 0} and {x̄ 6= 0} for β 6= 0 respectively
and read

∆gf = y2

(
βx2β−1 ∂f

∂x
+ x2β ∂

2f

∂x2
+ 2ρxβ

∂

∂x

∂f

∂y
+
∂2f

∂y2

)
, for any f ∈ Ck+2(S),

∆uf = ȳ2

(
βx̄2β−1 ∂f

∂x̄
+ x̄2β ∂

2f

∂x̄2
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

(A.4)
while the infinitesimal generators of the original SABR model (1.2) are

Af = y2

(
x2β ∂

2f

∂x2
+ 2ρxβ

∂

∂x

∂f

∂y
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(S),

Aρ=0f = ȳ2

(
x̄2β ∂

2f

∂x̄2
+
∂2f

∂ȳ2

)
, for any f ∈ Ck+2(U),

(A.5)

Note that for β = 0 the operators ∆g and A (resp. ∆u and Aρ=0) coincide.
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