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Abstract
It is challenging to identifymetrics that best capture hurricane destructive potential and costs.
Although it has been found that the sea surface temperature and vertical wind shear can bothmake
considerable changes to the hurricane destructive potentialmetrics, it is still unknownwhich plays a
more important role. Herewe present a newmethod to reconstruct the historical wind structure of
hurricanes that allows us, for the first time, to calculate the correlation of damagewith integrated
power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988.Wefind that
thosemetrics, which include the horizontal wind structure, rather than justmaximum intensity, are
much better correlatedwith the hurricane cost. The vertical wind shear over themain development
region of hurricanes plays amore dominant role than the sea surface temperature in controlling these
metrics and therefore also ultimately the cost of hurricanes.

1. Introduction

Currently, there are several well-known metrics to
infer the destructive potential of hurricanes, e.g.,
Saffir-Simpson Hurricane Scale [1] and hurricane
strength [2]. The accumulated cyclone energy (ACE)
and power dissipation index (PDI) have been widely
used as indicators of destructive potential [3, 4], as they
are able to consider the hurricane frequency, intensity
and duration. The important role of sea surface
temperature (SST) in hurricane intensity has been
identified using PDI and ACE [4–7]. However, the
limitation of these metrics is that they do not take into
account the spatial extent of the hurricane wind
structure, namely, any size effects.

The size effect is crucial to understanding the hur-
ricane destructive potential and cost [8–10]. For
instance, Hurricane Sandyʼs enormous size mainly
explains its great economic loss [11]. The vertical wind
shear is one of the most important atmospheric vari-
ables affecting hurricane size and wind structure evol-
ution [12]. However, it has been unclear whether the
SST or vertical wind shear plays a more important role
in the ultimate damage. To answer this question we
need metrics of hurricane destructive potential that

take into account the hurricane intensity and wind
structure at the same time. Although there have been
case studies [9, 11], to date it has not been possible to
conduct a comprehensive analysis because it requires
continuous historical profiles of near-surface wind
speed fromhurricane center to an outer storm limit.

To overcome this obstacle, we use a new analytical
model (‘theλmodel’) [13] to reconstruct the historical
wind profiles of all the landfalling hurricanes for
1988–2014 and correlate with damage for the first
time. The λ model is highly effective because it
requires no free scaling parameters. It constructs a
wind profile from only the minimum surface pressure
(pmin), the latitude (f) of hurricane center and one
measure of wind radius. Any of the following com-
monly reported measures of wind radii can be used:
the radius of maximum wind (Rmax), gale-force wind
(R18), damaging-force wind (R26) or hurricane-force
wind (R33).

2.Data andmethods

The hurricane records for 1988–2014 are taken from
the extended best track data set [14]. It provides the
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wind radii records, i.e., Rmax, R18, R26 and R33. R18, R26

andR33 aremeasured in four quadrants. The extended
best track data set covers 27 years, and is still the
longest available hurricane best track data set includ-
ing relatively complete size measurements. R18, R26

and R33 from 2004 onwards have been post-season
quality controlled [15], whereas the wind radii mea-
surements for 1988–2003 are only operational esti-
mated. The detailed description of the US landfalling
hurricanes is taken from the National Oceanographic
and Atmospheric Administrationʼs Atlantic hurricane
reanalysis project (http://www.aoml.noaa.gov/hrd/
hurdat/UShurrs_detailed.html). From 1988 to 2014,
there are 187 hurricanes and 41 of themmade landfall
57 times along the US coast. However, due to the
missing size records, Hurricane Emily is excluded in
the wind profile reconstruction at landfall. The
monthly SST and wind data are taken from the Hadley
Center Sea Ice and Sea Surface Temperature data set
[16] and the European Center for Medium-Range
Weather Forecasts ERA-Interim reanalysis data set
[17], respectively. In this study we only focus on the
environmental factors on hurricane destructive poten-
tial, so we use a normalized hurricane cost data set [18]
(http://www.icatdamageestimator.com). After nor-
malizing the cost, the societal changes, e.g., inflation,
population increase and per capita wealth increase,
causing artificial increase trends have been removed
[19, 20]. However, one should note that the spatial
variability in the exposure along the US coast is not
considered here.

Theλmodel [13] can bewritten as
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whereV is the tangential wind speed near the surface, r
the radius from the cyclone center, ρ the air density set
as 1.1 kg m−3, penv the pressure in the ambient
environment set as 1013 hPa, f the Coriolis parameter
that can be easily calculated with the latitude of
hurricane center, f. The λ represents the width of the
Gaussian distribution of moist entropy in the bound-
ary layer. By assuming ρ and penv are constant, we can
use the λmodel to reconstruct historical wind profiles
with observed pmin and f if we know how to
quantifyλ.

Substituting a threshold wind speed (Vth) in
equation (1), we can solve for the wind radius of Vth

(Rth) analytically [13]. The analytic solution can be
used to quantifyλ, which can bewritten as
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When the near-surface wind speed in equation (1)
reaches the maximum value, the numerical solution
forRmax can bewritten as

l = ( )R
1

1.89
. 3max

Equation (3) shows the other way to quantify λ.
We only use equation (3) when comparing the recon-
struction of wind profiles with the λmodel to the Hol-
land tropical cyclone wind profile model [21]. In
principle combining equations (1) and (3) can be used
to derive a new wind-pressure relationship, which can
bewritten as
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Equations (2), (3) and (4) suggest that the hurricane
intensity, Rmax and outer circulation size are related.
However, one should note that there are only weak
relationships found among them in the observations
[2, 22, 23].

TheHollandmodel can bewritten as
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where B is a scaling parameter describing the shape of
a wind profile. With observed Rmax, pmin and f, we
reconstruct wind profiles with different B values from
1.0 to 2.5 [21] and then find the optimal B by
comparing the observed and reconstructed Rmax for
every single case.

Four metrics of hurricane destructive potential are
calculated. They are the PDI, ACE, integrated power
dissipation (IPD) and integrated kinetic energy (IKE).

The PDI [4] is defined as

å=
t

( )VPDI , 6max
3

where Vmax is the maximum 1-min sustained wind at
the height of 10 m and τ the lifetime of a hurricane
with the maximum wind speed of at least hurricane
force. τ does not include the extratropical portion of a
life span. The annually accumulated PDI is calculated
by summing up the PDI of all hurricanes in a hurricane
season.

TheACE [3] is defined as

å=
t

( )VACE . 7max
2

The annually accumulated ACE is calculated by
summing up the ACE of all hurricanes in a hurricane
season.

The IPD [4] is defined as

ò r= ( )C V SIPD d , 8
S

D
3

where CD is the drag coefficient calculated with wind
speed [24] and S the integral area with the wind speed
of at least gale force.
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The IKE [9] is defined as

ò r= ( )V DIKE
1

2
d , 9

D

2

where D is the integral volume with the wind speed of
at least gale force. The integral volume D is 1 m in the
vertical and centered at the 10 m level.

The PDI and ACE are the metrics calculated from
the intensity only. In contrast, the IPD and IKE are the
metrics based on the whole wind structure at landfall,
whichmeans the hurricane intensity and size effect are
both considered. Because of the asymmetry of hurri-
cane wind structure during landfall, equation (3) is not
chosen to quantify λ for the calculation of IPD and
IKE at landfall. This is because there is only one mea-
surement of Rmax at one time in the best track data set.
Instead, we apply equations (1) and (2) using Rth from
each quadrant to get the wind profiles. Moreover, we
will discuss the uncertainty of IPD calculation, and
this error analysis can only be conducted when the
uncertainties of the hurricane location, intensity and
size are all given. However, the uncertainty ofRmax was
not reported whereas the uncertainties of the outer
wind radii (R33, R26 and R18) are available [15]. The
IPD and IKE are then calculated as the sum of every
quadrant. It should be noted that the λmodel was ori-
ginally developed as an axisymmetric model [13]
based on the assumption that the azimuthally aver-
agedmoist entropy in the boundary layer is a Gaussian
shape. However, in order to consider the asymmetry
of hurricane wind structure during landfall, here we
further assume that in every quadrant the azimuthally
averagedmoist entropy in the boundary layer follows a
Gaussian shape.

The vertical wind shear is defined as

= - + -( ) ( ) ( )u u v vShear , 10200 850
2

200 850
2

where u200, u850, v200 and v850 are the monthly means
of zonal (u) and meridional (v ) winds at the pressure
levels of 200 and 850 hPa. The SST and vertical wind
shear are computed as the mean within the main
development region of hurricanes (MDR, 20°W–60°
W,6°N–18°N) for the peakmonths (August–October)
of the hurricane season. The relative MDR SST [25]
shows similar results as the absoluteMDR SST, so only
the absolute MDR SST is shown in the following
analysis. The MDR definition follows a previous study
[4] and other studies also use different areas to define
MDR. The results shown in the next section are robust
when using otherMDRdefinitions.

For ease of comparison, we normalize the time ser-
ies shown in the next section. The normalization
formula is given as

¢ =
-
-

( )n
n n

n n
, 11i

i min

max min

where ni is the value in year i, ¢ni the normalized value,
nmin theminimumvalue and nmax themaximumvalue
of the time series. After normalization all the values of
a time series are scaled between 0 and 1.

3. Results

We first compare the hurricane intensity deduced
from the reconstructed wind profiles to observation.
The hurricane intensity is measured as the Vmax. For
comparison, the extensively used Holland model is
also applied. The Holland model requires one scaling
parameter that can be obtained by afitting. To evaluate
the reconstruction skill, the square of Pearson linear
correlation coefficient (R2), p-value (p), root mean
square error (RMSR) and bias are calculated. By using
the exactly same variables (pmin, f and Rmax), the λ

model performs superiorly to the Holland model (see
the supplementary figure 1), with stronger correlation
and smaller bias and RMSE at both the time of highest
intensity (R2=0.93, p<0.001, bias=+0.08 m s−1,
RMSE=3.18 m s−1) and landfall (R2=0.75,
p<0.001, bias=+3.57 m s−1, RMSE=5.06 m
s−1). The reconstruction with the λ model is also
effective when replacing Rmax with another wind
radius, e.g., R26 (figure 1). Comparing figures 1(a) and
(b) we can see that the λ model is more skilful at
reconstructing wind profiles over open oceans than
along the coast. This is understandable as the λmodel
is originally symmetric, assumes continuous entropy
flux from the ocean and does not take into account the
influence of land. Comparing the reconstruction at
landfall using R18, R26 and R33, the λ model provides
the best estimation of multiple wind radii by using R26

(see the supplementary figure 2 and supplementary
text 1).R26 is thus chosen for the following analysis.

With the reconstructed wind profiles, we can now
calculate two ‘integrated metrics’: the IPD and IKE.
These integrated metrics are based on the whole wind
structure at landfall so the hurricane intensity and size
effect are both considered at the same time. Figure 2(a)
shows that the IPD of individual hurricanes at landfall
is well correlated with the normalized hurricane cost
(R2=0.47, p<0.001). This is also found when using
R18 or R33 to reconstruct the wind profile (see supple-
mentary figure 3). The costliest hurricane is Hurricane
Katrina with an IPD of 6.88×1013 m2 s−3. However,
the IPD itself is only weakly related to hurricane inten-
sity. For example, category-5 Hurricane Andrew has
only 26% of the IPD of category-1 Hurricane Sandy.
As shown in figures 2(b) and (c), neither maximum
wind speed at landfall nor PDI correlate as well with
the hurricane cost as the IPD does. In addition, when
only considering the relatively costly hurricanes, e.g.,
those causing damage of more than US$10 Billion, the
IPD (R2=0.29, p=0.09) is again clearly superior to
the PDI (R2=0.08, p=0.39) and the maximum
wind speed (R2=0.06, p=0.49). There is also a good
correlation between the hurricane cost and the other
integrated metric IKE (R2=0.42, p<0.001). For the
intensity only drivenmetric ACE, the weak correlation
(R2=0.09, p=0.07) is similar to PDI (see the sup-
plementary figure 4).
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We next compare the annually accumulated IPD
at landfall to the annually accumulated PDI of all hur-
ricanes for 1988–2014. To explain the inter-annual
changes in IPD and PDI, we also show the annual var-
iations in SST and vertical wind shearwithin theMDR.
It is found that the annual changes in accumulated
PDI and IPD are similar (R2=0.46, p<0.001).
Some differences are expected as the IPD includes the
size effect and landfall counts in a year whereas the PDI
depends on the annual hurricane frequency and the
duration of individual hurricanes. As shown infigure 3
and table 1, the SST is somewhat positively related to
IPD (R2=0.14, p=0.05), but the vertical wind shear
shows a remarkably stronger anti-correlation
(R2=0.44, p<0.001). The significant peak of IPD
around 2005 coincides with an increase in SST and a
large decrease in vertical wind shear. The subsequently
anti-phased changes in SST and vertical wind shear
coincidewith a decrease in IPD around 2007.

In terms of hurricane cost shown in figure 3, theR2

between the annually accumulated IPD and cost is

0.66 (p<0.001) whereas the R2 between the annually
accumulated PDI and cost is only 0.24 (p=0.01).
After excluding the years in which there are no land-
falling hurricanes, the annually accumulated IPD still
shows a much better correlation (R2=0.61,
p<0.001) than the PDI (R2=0.30, p=0.003).
Since the annually accumulated IPD shows good cor-
relations with both inter-annual hurricane cost and
environmental factors, it is plausible to establish a link
between the cost and SST or vertical wind shear in the
MDR directly. It is surprising that the annual hurri-
cane cost is largely controlled by the vertical wind
shear in the MDR (R2=0.28, p=0.005, table 1). In
contrast, the correlation between the cost and SST is
much weaker and more uncertain (R2=0.05,
p=0.27). We note that there are a few outliers in cer-
tain years, e.g., 2005. After bootstrap resampling 1000
times, for example, the mean and standard deviation
of the R2 between IPD and MDR wind shear are 0.43
and 0.15 (see the supplementary table 1). The resam-
pling analysis suggests that the good correlations

Figure 1.Comparison between the reconstructed and observedVmax by using theλmodel andR26. The largestmaximumwind speed
of the reconstructedwind profiles in four quadrants is regarded as the reconstructedVmax. (a)Comparison between the reconstructed
and observedVmax at the time of highest intensity of 183 hurricanes for 1988–2014. (b)As in (a), but for 56 landfallsmade by 40US
landfalling hurricanes. The solid red line is the linear least squares fit of the reconstructedVmax, and the black dashed line represents
the perfect reconstruction (y=x).
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between the cost, integrated metrics and MDR wind
shear are not affected by the outliers.

4.Discussion and conclusions

Our results show that the wind structure at landfall is
crucial to the destructive potential of individual
hurricanes. The financial damage is clearly dependent
on the exposure. We are not trying to determine
accurate relationships between damage and the
cyclone metric (e.g., a statistical model [11]), which

would require exposure data, but rather show the
relative importance of the wind field metrics. We then
also establish the relative role of SST and wind shear to
the metrics and the cost. The maximumwind speed at
the landfall location is a relatively much weaker
measure of the footprint, exposure and hence total
damage. The intensity metrics would only be expected
to outperform the integrated metrics in damage
correlation, if the exposure was consistently located at
or near the center of the cyclone. On average this is not
the case, so it is intuitive that by considering the wind

Figure 2.Comparison between the hurricane cost andmetrics of hurricane destructive potential. (a) IPD at landfall. (b)Maximum
wind speed at landfall. (c)PDI. Themetrics are deduced from40US landfalling hurricanes for 1988–2014. The IPD at landfall of a
hurricane is the sumof IPD from all the landfalls itmakes, whereas themaximumwind speed is themaximumvalue ofmaximum
wind speeds at landfall. Themarkers are classified into 1–5 categories (CAT) according to the Saffir-SimpsonHurricane scale [1].
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structure at landfall, the total (spatially variable)
exposure is more implicitly taken into account than
can be done with a single point intensity measure.
Furthermore, the wind structure affects the storm
surge and subsequently coastal flooding [9, 26]. It has
been shown that the hurricane surge has a good
relationship with R26 [27]. Our results suggest that the
IPD and IKE capture the physical link to both the surge
and the total scale of wind damage. As the hurricane
damage mainly happens within 6–12 h after landfall
[28], it is understandable that these two integrated
metrics at landfall perform better than both the PDI

and ACE throughout the lifetime andmaximumwind
speed at landfall. The importance of taking into
account thewind structure as well as intensity has been
highlighted before [8–11]. However, none of these
studies compared the normalized hurricane cost with
the spatially integratedmeasures with all the hurricane
cases in the longest available data set. By conducting
such a comprehensive analysis, our results give more
confidence in the importance of spatially integrated
measures over the intensity onlymeasures.

In the best track data set, the mean absolute error
of R26, pmin and location relative to the average values
at landfall are given as approximately 30.0%, 12.5%
and 7.5%, respectively [15]. By randomly adding
errors into the best track records, we can numerically
assess the error propagation in the integrated metric
calculation. Taking IPD as an example, themean abso-
lute error relative to the average IPD caused by the
uncertainties in R26, pmin and location are 56.1%,
12.7% and 0.8%, respectively. If taking into account
the errors of R26, pmin and location at the same time,
the combined error of IPD is 57.6%. This means the
uncertainties in the integrated metrics are mainly
attributed to the errors of the sizemeasurements.

Figure 3.Variability of annually accumulated IPD, PDI, hurricane cost andMDRSST and vertical wind shear for August–October
mean. The annually accumulated IPD is computedwith 40US landfalling hurricanes at landfall and the annually accumulated PDI is
calculatedwith 187 hurricanes for 1988–2014. All the variables are normalized.

Table 1.Correlation between the annually accumu-
lated hurricane damage, themetrics of hurricane
destructive potential andMDRSST and vertical wind
shear for August–Octobermean.

R2 p-value

SST Shear SST Shear

COST 0.05 0.28 0.27 0.005

IPD 0.14 0.44 0.05 <0.001

IKE 0.14 0.45 0.05 <0.001

PDI 0.22 0.48 0.01 <0.001

ACE 0.24 0.48 0.01 <0.001
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For the inter-annual variability, table 1 shows that
the hurricane cost is the most uncertain term exam-
ined. Compared to the hurricane cost, the correlations
of IPD and IKE with environmental factors are both
stronger and the uncertainties lower. The PDI and
ACE show the best correlations and smallest uncer-
tainties. Compared to the SST in theMDR, the vertical
wind shear always shows a much stronger correlation
(and less uncertainty) with the hurricane cost and all
metrics. We have also investigated the relative MDR
SST and find similar correlations with IPD (R2 is equal
to 0.17 for the relative SST and 0.14 for the absolute
SST), supporting the dominant role of wind shear.
These results suggest that the vertical wind shear in the
MDR is a dominant factor that controls these metrics
of annual hurricane destructive potential and there-
fore also the annual hurricane cost in the US. We note
that a similar calculation regarding vertical wind shear
and SST versus US landfalling hurricane cost was con-
ducted for 1960–1996 in a previous study [29]. How-
ever, no significant correlation for either variable was
found at that time, perhaps because of the extreme
outlier of cost of Hurricane Andrew in 1992. As for
1988–2014 there are several years of similar damage to
1992 and our statistics aremore stable.

It has been well documented that the Atlantic
MDR vertical wind shear is significantly controlled by
the El Niño-Southern Oscillation (ENSO) [30, 31].
During a La Niña (El Niño) year, the Atlantic MDR
vertical wind shear is weaker (stronger), which could
lead to an increase (decrease) in the annually accumu-
lated integrated metrics at US landfall and therefore
also large (small) hurricane cost. The relationship
between ENSO cycle andUS landfalling hurricane cost
has been found from a statistical analysis [32]. To test
the sensitivity of our results, we exclude all the El Niño
years and find that the correlations of vertical wind
shear are changed only slightly from 0.28 to 0.22
(cost), 0.44 to 0.41 (IPD), 0.45 to 0.43 (IKE), 0.48 to
0.41 (PDI) and 0.48 to 0.40 (ACE), respectively. This
makes it unlikely that the good correlation between
the vertical wind shear and hurricane cost is only a
reflection of ENSO cycles. It thus further confirms the
important role of theMDR vertical wind shear on hur-
ricane cost.

We can only speculate on the cause of the strong
dependence of the metrics and damage on the MDR
vertical wind shear. One explanation could be that the
mean MDR vertical wind shear for 1988–2014 is
9.10±1.00 m s−1 which is close to the threshold
value (about 10 m s−1) when tropical cyclones do not
form [33]. It is thus plausible that theMDRwind shear
could play a more important role on the frequency of
tropical cyclone genesis than the SST. However, this
would not be consistent with a previous study [34] that
emphasized the importance of SST over vertical wind
shear in frequency of tropical cyclones. The important
role of the MDR vertical wind shear on the size and

intensity of the initial vortex and ultimately the size at
landfall could be another physical cause.

There have been many studies on projected chan-
ges in the hurricane intensity, duration, frequency and
outer size [35–38], but there have been no projections
of the integrated metrics IPD or IKE that relate
strongly to cost. There has been a study of the multi-
model ensembles suggesting no sign in the projected
wind shear in the crucial MDR [25]. However, larger
increases are projected further along the typical hurri-
cane tracks. Very recently it has been suggested that
the increased wind shear in the West Pacific has over-
whelmed the SST warming to cause a decrease in PDI
in this region [39]. Given the crucial role of vertical
wind shear in determining the cost of hurricanes and
cyclones globally, more research is needed on project-
ing changes in the vertical wind shear and the hor-
izontal wind field of future hurricanes.
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