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a b s t r a c t 

We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the 

challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth anal- 

ysis of the limitations of current networks proposed for similar applications. To overcome the computa- 

tional burden of processing 3D medical scans, we have devised an efficient and effective dense training 

scheme which joins the processing of adjacent image patches into one pass through the network while 

automatically adapting to the inherent class imbalance present in the data. Further, we analyze the de- 

velopment of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger 

contextual information, we employ a dual pathway architecture that processes the input images at mul- 

tiple scales simultaneously. For post-processing of the network’s soft segmentation, we use a 3D fully 

connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively 

evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with trau- 

matic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three 

applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our 

method is computationally efficient, which allows its adoption in a variety of research and clinical set- 

tings. The source code of our implementation is made publicly available. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Segmentation and the subsequent quantitative assessment of

esions in medical images provide valuable information for the

nalysis of neuropathologies and are important for planning of

reatment strategies, monitoring of disease progression and predic-

ion of patient outcome. For a better understanding of the patho-

hysiology of diseases, quantitative imaging can reveal clues about

he disease characteristics and effects on particular anatomical

tructures. For example, the associations of different lesion types,

heir spatial distribution and extent with acute and chronic se-

uelae after traumatic brain injury (TBI) are still poorly under-

tood ( Maas et al., 2015 ). However, there is growing evidence that

uantification of lesion burden may add insight into the functional

utcome of patients ( Ding et al., 2008; Moen et al., 2012 ). Ad-

itionally, exact locations of injuries relate to particular deficits
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epending on the brain structure that is affected ( Lehtonen et al.,

005; Warner et al., 2010; Sharp et al., 2011 ). This is in line with

stimates that functional deficits caused by stroke are associated

ith the extent of damage to particular parts of the brain ( Carey

t al., 2013 ). Lesion burden is commonly quantified by means of

olume and number of lesions, biomarkers that have been shown

o be related to cognitive deficits. For example, volume of white

atter lesions (WML) correlates with cognitive decline and in-

reased risk of dementia ( Ikram et al., 2010 ). In clinical research on

ultiple sclerosis (MS), lesion count and volume are used to anal-

se disease progression and effectiveness of pharmaceutical treat-

ent ( Rovira and León, 2008; Kappos et al., 2007 ). Finally, accurate

elineation of the pathology is important in the case of brain tu-

ours, where estimation of the relative volume of a tumour’s sub-

omponents is required for planning radiotherapy and treatment

ollow-up ( Wen et al., 2010 ). 

The quantitative analysis of lesions requires accurate lesion

egmentation in multi-modal, three-dimensional images which is

 challenging task for a number of reasons. The heterogeneous
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Fig. 1. Heterogeneous appearance of TBI lesions poses challenges in devising discriminative models. Lesion size varies significantly with both large, focal and small, diffused 

lesions (a,b). Alignment of manual lesion segmentations reveals the wide spatial distribution of lesions in (c,d) with some areas being more likely than others. (e) shows the 

average of the normalized intensity histograms of different MR channels over all the TBI cases in our database, for healthy (green) and injured (red) tissue. One can observe 

a large overlap between the distributions of healthy and non-healthy brain tissue. (For interpretation of the references to colour, the reader is referred to the web version of 

this article.) 
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appearance of lesions including the large variability in location,

size, shape and frequency make it difficult to devise effective seg-

mentation rules. It is thus highly non-trivial to delineate contu-

sions, oedema and haemorrhages in TBI ( Irimia et al., 2012 ), or

sub-components of brain tumours such as proliferating cells and

necrotic core ( Menze et al., 2015 ). The arguably most accurate seg-

mentation results can be obtained through manual delineation by

a human expert which is tedious, expensive, time-consuming, im-

practical in larger studies, and introduces inter-observer variabil-

ity. Additionally, for deciding whether a particular region is part of

a lesion multiple image sequences with varying contrasts need to

be considered, and the level of expert knowledge and experience

are important factors that impact segmentation accuracy. Hence, in

clinical routine often only qualitative, visual inspection, or at best

crude measures like approximate lesion volume and number of le-

sions are used ( Yuh et al., 2012; Wen et al., 2010 ). In order to cap-

ture and better understand the complexity of brain pathologies it

is important to conduct large studies with many subjects to gain

the statistical power for drawing conclusions across a whole pa-

tient population. The development of accurate, automatic segmen-

tation algorithms has therefore become a major research focus in

medical image computing with the potential to offer objective, re-

producible, and scalable approaches to quantitative assessment of

brain lesions. 

Fig. 1 illustrates some of the challenges that arise when devis-

ing a computational approach for the task of automatic lesion seg-

mentation. The figure summarizes statistics and shows examples

of brain lesions in the case of TBI, but is representative of other

pathologies such as brain tumours and ischemic stroke. Lesions can

occur at multiple sites, with varying shapes and sizes, and their

image intensity profiles largely overlap with non-affected, healthy

parts of the brain or lesions which are not in the focus of interest.

For example, stroke and MS lesions have a similar hyper-intense

appearance in FLAIR sequences as other WMLs ( Mitra et al., 2014;

Schmidt et al., 2012 ). It is generally difficult to derive statistical

prior information about lesion shape and appearance. On the other

hand, in some applications there is an expectation on the spatial

configuration of segmentation labels, for example there is a hierar-

chical layout of sub-components in brain tumours. Ideally, a com-

(  
utational approach is able to adjust itself to application specific

haracteristics by learning from a set of a few example images. 

.1. Related work 

A multitude of automatic lesion segmentation methods have

een proposed over the last decade, and several main categories

f approaches can be identified. One group of methods poses the

esion segmentation task as an abnormality detection problem,

or example by employing image registration. The early work of

rastawa et al. (2004) and more recent ones by Schmidt et al.

2012) and Doyle et al. (2013) align the pathological scan to a

ealthy atlas and lesions are detected based on deviations in tis-

ue appearance between the patient and the atlas image. Lesions,

owever, may cause large structural deformations that may lead to

ncorrect segmentation due to incorrect registration. Gooya et al.

2011) ; Parisot et al. (2012) alleviate this problem by jointly solving

he segmentation and registration tasks. Liu et al. (2014) showed

hat registration together with a low-rank decomposition gives as

 by-product the abnormal structures in the sparse components,

lthough, this may not be precise enough for detection of small

esions. Abnormality detection has also been proposed within im-

ge synthesis works. Representative approaches are those of Weiss

t al. (2013) using dictionary learning and Ye et al. (2013) using

 patch-based approach. The idea is to synthesize pseudo-healthy

mages that when compared to the patient scan allow to highlight

bnormal regions. In this context, Cardoso et al. (2015) present

 generative model for image synthesis that yields a probabilis-

ic segmentation of abnormalities. Another unsupervised technique

s proposed by Erihov et al. (2015) , a saliency-based method that

xploits brain asymmetry in pathological cases. A common advan-

age of the above methods is that they do not require a training

ataset with corresponding manual annotations. In general, these

pproaches are more suitable for detecting lesions rather than ac-

urately segmenting them. 

Some of the most successful, supervised segmentation meth-

ds for brain lesions are based on voxel-wise classifiers, such as

andom Forests. Representative work is that of Geremia et al.

2010) on MS lesions, employing intensity features to capture
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he appearance of the region around each voxel. Zikic et al.

2012) combine this with a generative Gaussian Mixture Model

GMM) to obtain tissue-specific probabilistic priors Van Leemput

t al. (1999) . This framework was adopted in multiple works,

ith representative pipelines for brain tumours by Tustison et al.

2013) and TBI by Rao et al. (2014) . Both works incorporate mor-

hological and contextual features to better capture the hetero-

eneity of lesions. Rao et al. (2014) also incorporate brain struc-

ure segmentation results obtained from a multi-atlas label propa-

ation approach ( Ledig et al., 2015 ) to provide strong tissue-class

riors to the Random Forests. Tustison et al. (2013) additionally

se a Markov Random Field (MRF) to incorporate spatial regular-

zation. MRFs are commonly used to encourage spatial continuity

f the segmentation ( Schmidt et al., 2012; Mitra et al., 2014 ). Al-

hough those methods have been very successful, it appears that

heir modelling capabilities still have significant limitations. This is

onfirmed by the results of the most recent challenges , 1 and also

y our own experience and experimentation with such approaches.

At the same time, deep learning techniques have emerged as a

owerful alternative for supervised learning with great model ca-

acity and the ability to learn highly discriminative features for the

ask at hand. These features often outperform hand-crafted and

re-defined feature sets. In particular, Convolutional Neural Net-

orks (CNNs) ( LeCun et al., 1998; Krizhevsky et al., 2012 ) have

een applied with promising results on a variety of biomedical

maging problems. Ciresan et al. (2012) presented the first GPU

mplementation of a two-dimensional CNN for the segmentation

f neural membranes. From the CNN based work that followed,

elated to our approach are the methods of Zikic et al. (2014) ;

avaei et al. (2015) ; Pereira et al. (2015) , with the latter being

he best performing automatic approach in the BRATS 2015 chal-

enge ( Menze et al., 2015 ). These methods are based on 2D CNNs,

hich have been used extensively in computer vision applications

n natural images. Here, the segmentation of a 3D brain scan is

chieved by processing each 2D slice independently, which is ar-

uably a non-optimal use of the volumetric medical image data.

espite the simplicity in the architecture, the promising results ob-

ained by these methods indicate the potential of CNNs. 

Fully 3D CNNs come with an increased number of parameters

nd significant memory and computational requirements. Previous

ork discusses problems and apparent limitations when employ-

ng a 3D CNN on medical imaging data ( Prasoon et al., 2013; Li

t al., 2014; Roth et al., 2014 ). To incorporate 3D contextual in-

ormation, multiple works used 2D CNNs on three orthogonal 2D

atches ( Prasoon et al., 2013; Roth et al., 2014 ; Lyksborg et al.,

015 ). In their work for structural brain segmentation, Brebisson

nd Montana (2015) extracted large 2D patches from multiple

cales of the image and combined them with small single-scale 3D

atches, in order to avoid the memory requirements of fully 3D

etworks. 

One of the reasons that discouraged the use of 3D CNNs is

he slow inference due to the computationally expensive 3D con-

olutions. In contrast to the 2D/3D hybrid variants ( Roth et al.,

014; Brebisson and Montana, 2015 ), 3D CNNs can fully exploit

ense-inference ( LeCun et al., 1998; Sermanet et al., 2014 ), a tech-

ique that greatly decreases inference times and which we will

urther discuss in Section 2.1 . By employing dense-inference with

D CNNs, Brosch et al. (2015) and Urban et al. (2014) reported

omputation times of a few seconds and approximately a minute

espectively for the processing of a single brain scan. Even though

he size of their developed networks was limited, a factor that

s directly related to a network’s representational power, their
1 links: http://braintumorsegmentation.org/ , www.isles-challenge.org . 

o

 

t  

t  
esults on MS and brain tumour segmentation respectively were

ery promising. 

Performance of CNNs is significantly influenced by the strat-

gy for extracting training samples. A commonly adopted approach

s training on image patches that are equally sampled from each

lass. This, however, biases the classifier towards rare classes and

ay result in over-segmentation. To counter this, Cire ̧s an et al.

2013) proposes to train a second CNN on samples with a class

istribution close to the real one, but oversample pixels that were

ncorrectly classified in the first stage. A secondary training stage

as also suggested by Havaei et al. (2015) , who retrain the clas-

ification layer on patches extracted uniformly from the image.

n practice, two stage training schemes can be prone to overfit-

ing and sensitive to the state of the first classifier. Alternatively,

ense training ( Long et al., 2015 ) has been used to train a network

n multiple or all voxels of a single image per optimisation step

 Urban et al., 2014; Brosch et al., 2015; Ronneberger et al., 2015 ).

his can introduce severe class imbalance, similarly to uniform

ampling. Weighted cost functions have been proposed in the two

atter works to alleviate this problem. Brosch et al. (2015) manu-

lly adjusted the sensitivity of the network, but the method can

ecome difficult to calibrate for multi-class problems. Ronneberger

t al. (2015) first balance the cost from each class, which has an ef-

ect similar to equal sampling, and further adjust it for the specific

ask by estimating the difficulty of segmenting each pixel. 

.2. Contributions 

We present a fully automatic approach for lesion segmentation

n multi-modal brain MRI based on an 11-layers deep, multi-scale,

D CNN with the following main contributions: 

1. We propose an efficient hybrid training scheme, utilizing dense

training ( Long et al., 2015 ) on sampled image segments, and an-

alyze its behaviour in adapting to class imbalance of the seg-

mentation problem at hand. 

2. We analyze in depth the development of deeper, thus more

discriminative, yet computationally efficient 3D CNNs. We ex-

ploit the utilization of small kernels, a design approach pre-

viously found beneficial in 2D networks ( Simonyan and Zis-

serman, 2014 ) that impacts 3D CNNs even more, and present

adopted solutions that enable training deeper networks. 

3. We employ parallel convolutional pathways for multi-scale pro-

cessing, a solution to efficiently incorporate both local and con-

textual information which greatly improves segmentation re-

sults. 

4. We demonstrate the generalization capabilities of our system,

which without significant modifications outperforms the state-

of-the-art on a variety of challenging segmentation tasks, with

top ranking results in two MICCAI challenges, ISLES and BRATS.

Furthermore, a detailed analysis of the network reveals valu-

ble insights into the powerful black box of deep learning with

NNs. For example, we have found that our network is capable of

earning very complex, high level features that separate grey mat-

er (GM), cerebrospinal fluid (CSF) and other anatomical structures

o identify the image regions corresponding to lesions. 

Additionally, we have extended the fully-connected Conditional

andom Field (CRF) model by Krähenbühl and Koltun (2011) to 3D

hich we use for final post-processing of the CNN’s soft segmenta-

ion maps. This CRF overcomes limitations of previous models as it

an handle arbitrarily large neighbourhoods while preserving fast

nference times. To the best of our knowledge, this is the first use

f a fully connected CRF on medical data. 

To facilitate further research and encourage other researchers

o build upon our results, the source code of our lesion segmenta-

ion method including the CNN and the 3D fully connected CRF is

http://braintumorsegmentation.org/
http://www.isles-challenge.org
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Fig. 2. Our baseline CNN consists of four layers with 5 3 kernels for feature extraction, leading to a receptive field of size 17 3 . The classification layer is implemented as 

convolutional with 1 3 kernels, which enables efficient dense-inference . When the network segments an input it predicts multiple voxels simultaneously, one for each shift of 

its receptive field over the input. Number of FMs and their size depicted as ( Number × Size ). 
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made publicly available on https://biomedia.doc.ic.ac.uk/software/

deepmedic/ . 

2. Method 

Our proposed lesion segmentation method consists of two main

components, a 3D CNN that produces highly accurate, soft seg-

mentation maps, and a fully connected 3D CRF that imposes reg-

ularization constraints on the CNN output and produces the final

hard segmentation labels. The main contributions of our work are

within the CNN component which we describe first in the follow-

ing. 

2.1. 3D CNNs for dense segmentation – setting the baseline 

CNNs produce estimates for the voxel-wise segmentation la-

bels by classifying each voxel in an image independently taking

the neighbourhood, i.e. local and contextual image information,

into account. This is achieved by sequential convolutions of the

input with multiple filters at the cascaded layers of the network.

Each layer l ∈ [1, L ] consists of C l feature maps (FMs), also re-

ferred to as channels . Every FM is a group of neurons that de-

tects a particular pattern, i.e. a feature, in the channels of the

previous layer. The pattern is defined by the kernel weights as-

sociated with the FM. If the neurons of the m th FM in the l th

layer are arranged in a 3D grid, their activations constitute the im-

age y m 

l 
= f ( 

∑ C l−1 

n =1 
k 

m,n 
l 

∗ y n 
l−1 

+ b m 

l 
) . This is the result of convolving

each of the previous layer’s channels with a 3-dimensional ker-

nel k 

m,n 
l 

, adding a learned bias b m 

l 
and applying a non-linearity

f . Each kernel is a matrix of learned hidden weights W 

m,n 
l 

. The

images y n 
0 
, input to the first layer, correspond to the channels

of the original input image, for instance a multi-sequence 3D

MRI scan of the brain. The concatenation of the kernels k l =
(k 

m, 1 
l 

, . . . , k 

m,C l−1 

l 
) can be viewed as a 4-dimensional kernel con-

volving the concatenated channels y l−1 = (y 1 
l−1 

, . . . , y 
C l−1 

l−1 
) , which

then intuitively expresses that the neurons of higher layers com-

bine the patterns extracted in previous layers, which results in

the detection of increasingly more complex patterns. The acti-

vations of the neurons in the last layer L correspond to partic-

ular segmentation class labels, hence this layer is also referred

to as the classification layer. The neurons are thus grouped in

C L FMs, one for each of the segmentation classes. Their activa-

tions are fed into a position-wise softmax function that produces

the predicted posterior p c (x ) = exp (y c 
L 
(x )) / 

∑ C L 
c=1 

exp (y c 
L 
(x )) for

each class c , which form soft segmentation maps with (pseudo-)

probabilities. y c 
L 
(x ) is the activation of the c th classification FM at

position x ∈ N 

3 . This baseline network is depicted in Fig. 2 . 

The neighbourhood of voxels in the input that influence the ac-

tivation of a neuron is its receptive field . Its size, ϕ l , increases at

each subsequent layer l and is given by the 3-dimensional vector:

ϕ 

{ x,y,z} 
l 

= ϕ 

{ x,y,z} 
l−1 

+ ( κ{ x,y,z} 
l 

− 1) τ{ x,y,z} 
l 

, (1)
here κl , τ l ∈ N 

3 are vectors expressing the size of the kernels and

tride of the receptive field at layer l . τ l is given by the prod-

ct of the strides of kernels in layers preceding l . In this work

nly unary strides are used, as larger strides downsample the FMs

 Springenberg et al., 2014 ), which is unwanted behaviour for accu-

ate segmentation. Thus in our system τ l = (1 , 1 , 1) . The receptive

eld of a neuron in the classification layer corresponds to the im-

ge patch that influences the prediction for its central voxel. This

s called the CNN’s receptive field , with ϕ CNN = ϕ L . 

If input of size δin is provided, the dimensions of the FMs in

ayer l are given by: 

{ x,y,z} 
l = � ( δ{ x,y,z} 

in − ϕ 

{ x,y,z} 
l 

) / τ{ x,y,z} 
l 

+ 1 � (2)

In the common patch-wise classification setting, an input patch

f size δin = ϕ CNN is provided and the network outputs a sin-

le prediction for its central voxel. In this case the classifica-

ion layer consists of FMs with size 1 3 . Networks that are im-

lemented as fully-convolutionals are capable of dense-inference ,

hich is performed when input of size greater than ϕ CNN is pro-

ided ( Sermanet et al., 2014 ). In this case, the dimensions of FMs

ncrease according to Eq. (2) . This includes the classification FMs

hich then output multiple predictions simultaneously, one for

ach stride of the CNN’s receptive field on the input ( Fig. 2 ). All

redictions are equally trustworthy, as long as the receptive field is

ully contained within the input and captures only original content,

.e. no padding is used. This strategy significantly reduces the com-

utational costs and memory loads since the otherwise repeated

omputations of convolutions on the same voxels in overlapping

atches are avoided. Optimal performance is achieved if the whole

mage is scanned in one forward pass. If GPU memory constraints

o not allow it, such as in the case of large 3D networks where

 large number of FMs need to be cached, the volume is tiled in

ultiple image-segments , which are larger than individual patches,

ut small enough to fit into memory. 

Before analysing how we exploit the above dense-inference

echnique for training, which is the first main contribution of our

ork, we present the commonly used setting in which CNNs are

rained patch-by-patch. Random patches of size ϕ CNN are extracted

rom the training images. A batch is formed out of B of these sam-

les, which is then processed by the network for one training iter-

tion of Stochastic Gradient Descent (SGD). This step aims to alter

he network’s parameters �, such as weights and biases, in order

o maximize the log likelihood of the data or, equally, minimize

he Cross Entropy via the cost function : 

(�; I i , c i ) = −1 

B 

B ∑ 

i =1 

log 
(
P (Y = c i | I i , �) 

)
= −1 

B 

B ∑ 

i =1 

log (p c i ) , (3)

here the pair ( I i , c i ), ∀ i ∈ [1, B ] is the i th patch in the batch and

he true label of its central voxel, while the scalar value p c i is the

redicted posterior for class c i . Regularization terms were omitted

or simplicity. Multiple sequential optimization steps over different

atches gradually lead to convergence. 

https://biomedia.doc.ic.ac.uk/software/deepmedic/
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Fig. 3. Consider a network with a 2D receptive field of 3 2 (for illustration) densely- 

applied on the depicted lesion-centred image segments of size 7 2 or 9 2 . Relatively 

more background (green) is captured by larger segments and around smaller le- 

sions. (For interpretation of the references to colour, the reader is referred to the 

web version of this article.) 
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Fig. 4. The replacement of the depicted layer with 5 5 kernels (left) with two suc- 

cessive layers using 3 3 kernels (right) introduces an additional non-linearity with- 

out altering the CNN’s receptive field. Additionally, the number of weights is re- 

duced from 200k to 86.4k and the required convolutions are cheaper (see text). 

Number of FMs and their size depicted as ( Number × Size ). 
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.2. Dense training on image segments and class balance 

Larger training batch sizes B are preferred as they approximate

he overall data more accurately and lead to better estimation

f the true gradient by SGD. However, the memory requirement

nd computation time increase with the batch size. This limita-

ion is especially relevant for 3D CNNs, where only a few dozens of

atches can be processed within reasonable time on modern GPUs.

To overcome this problem, we devise a training strategy that

xploits the dense inference technique on image segments. Follow-

ng from Eq. (2) , if an image segment of size greater than ϕ CNN is

iven as input to our network, the output is a posterior probabil-

ty for multiple voxels V = 

∏ 

i = { x,y,z} δ
(i ) 
L . If the training batches are

ormed of B segments extracted from the training images, the cost

unction (3) in the case of dense-training becomes: 

 D (�; I s , c s ) = − 1 

B · V 

B ∑ 

s =1 

V ∑ 

v =1 

log (p c v s 
(x 

v )) , (4)

here I s and c s are the s th segment of the batch and the true la-

els of its V predicted voxels respectively. c v s is the true label of

he v th voxel, x v the corresponding position in the classification

Ms and p c v s 
the output of the softmax function. The effective batch

ize is increased by a factor of V without a corresponding increase

n computational and memory requirements, as earlier discussed in

ection 2.1 . Notice that this is a hybrid scheme between the com-

only used training on individual patches and the dense training

cheme on a whole image ( Long et al., 2015 ), with the latter be-

ng problematic to apply for training large 3D CNNs on volumes of

igh resolution due to memory limitations. 

An appealing consequence of this scheme is that the sampling

f input segments provides a flexible and automatic way to bal-

nce the distribution of training samples from different segmenta-

ion classes which is an important issue that directly impacts the

egmentation accuracy. Specifically, we build the training batches

y extracting segments from the training images with 50% proba-

ility being centred on a foreground or background voxel, alleviat-

ng class-imbalance. Note that the predicted voxels V in a segment

o not have to be of the same class, something that occurs when

 segment is sampled from a region near class boundaries ( Fig. 3 ).

ence, the sampling rate of the proposed hybrid method adjusts

o the true distribution of the segmentation task’s classes. Specif-

cally, the smaller a labelled object, the more background voxels

ill be captured within segments centred on the foreground voxel.

mplicitly, this yields a balance between sensitivity and specificity

n the case of binary segmentation tasks. In multi-class problems,

he rate at which different classes are captured within a segment

entred on foreground reflects the real relative distribution of the

oreground classes, while adjusting their frequency relatively to the

ackground. 
.3. Building deeper networks 

Deeper networks have greater discriminative power due to

he additional non-linearities and better quality of local optima

 Choromanska et al., 2015 ). However, convolutions with 3D ker-

els are computationally expensive in comparison to the 2D vari-

nts, which hampers the addition of more layers. Additionally, 3D

rchitectures have a larger number of trainable parameters, with

ach layer adding C l C l−1 

∏ 

i = { x,y,z} κ(i ) 
l 

weights to the model. C l is

he number of FMs in layer l and κ{ x,y,z} 
l 

the size of its kernel in

he respective spatial dimension. Overall this makes the network

ncreasingly prone to over-fitting. 

In order to build a deeper 3D architecture, we adopt the sole

se of small 3 3 kernels that are faster to convolve with and con-

ain less weights. This design approach was previously found bene-

cial for classification of natural images ( Simonyan and Zisserman,

014 ) but its effect is even more drastic on 3D networks. When

ompared to common kernel choices of 5 3 ( Zikic et al., 2014; Ur-

an et al., 2014; Prasoon et al., 2013 ) and in our baseline CNN, the

maller 3 3 kernels reduce the element-wise multiplications by a

actor of approximately 5 3 /3 3 ≈ 4.6 while reducing the number

f trainable parameters by the same factor. Thus deeper network

ariants that are implicitly regularised and more efficient can be

esigned by simply replacing each layer of common architectures

ith more layers that use smaller kernels ( Fig. 4 ). 

However, deeper networks are more difficult to train. It has

een shown that the forward (neuron activations) and backwards

gradients) propagated signal may explode or vanish if care is not

iven to retain its variance ( Glorot and Bengio, 2010 ). This oc-

urs because at every successive layer l , the variance of the signal

s multiplied by n in 
l 

· v ar(W l ) , where n in 
l 

= C l−1 

∏ 

i = { x,y,z} κ(i ) 
l 

is the

umber of weights through which a neuron of layer l is connected

o its input and var ( W l ) is the variance of the layer’s weights. To

etter preserve the signal in the initial training stage we adopt

 scheme recently derived for ReLu-based networks by He et al.

2015) and initialize the kernel weights of our system by sampling

rom the normal distribution N (0 , 

√ 

2 /n in 
l 
) . 

A phenomenon of similar nature that hinders the network’s

erformance is the “internal covariate shift” ( Ioffe and Szegedy,

015 ). It occurs throughout training, because the weight updates

o deeper layers result in a continuously changing distribution of

ignal at higher layers, which hinders the convergence of their

eights. Specifically, at training iteration t the weight updates

ay cause deviation ε l, t to the variance of the weights. At the

ext iteration the signal will be amplified by n in 
l 

· v ar(W l,t+1 ) =
 

in 
l 

· (v ar(W l,t ) + εl,t ) . Thus before influencing the signal, any de-

iation ε l, t is amplified by n in 
l 

which is exponential in the number

f dimensions. For this reason the problem affects training of 3D

NNs more severely than conventional 2D systems. For countering

t, we adopt the recently proposed Batch Normalisation (BN) tech-

ique to all hidden layers ( Ioffe and Szegedy, 2015 ), which allows
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Fig. 5. Multi-scale 3D CNN with two convolutional pathways. The kernels of the two pathways are here of size 5 3 (for illustration only to reduce the number of layers in 

the figure). The neurons of the last layers of the two pathways thus have receptive fields of size 17 3 voxels. The inputs of the two pathways are centred at the same image 

location, but the second segment is extracted from a down-sampled version of the image by a factor of 3. The second pathway processes context in an actual area of size 

51 3 voxels. DeepMedic , our proposed 11-layers architecture, results by replacing each layer of the depicted pathways with two that use 3 3 kernels (see Section 2.3 ). Number 

of FMs and their size depicted as ( Number × Size ). 
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normalization of the FM activations at every optimization step in

order to better preserve the signal. 

2.4. Multi-scale processing via parallel convolutional pathways 

The segmentation of each voxel is performed by taking into ac-

count the contextual information that is captured by the receptive

field of the CNN when it is centred on the voxel. The spatial con-

text is providing important information for being able to discrim-

inate voxels that otherwise appear very similar when considering

only local appearance. From Eq. (1) follows that an increase of the

CNN’s receptive field requires bigger kernels or more convolutional

layers, which increases computation and memory requirements. An

alternative would be the use of pooling ( LeCun et al., 1998 ), which

however leads to loss of the exact position of the segmented voxel

and thus can negatively impact accuracy. 

In order to incorporate both local and larger contextual infor-

mation into our 3D CNN, we add a second pathway that operates

on down-sampled images. Thus, our dual pathway 3D CNN simul-

taneously processes the input image at multiple scales ( Fig. 5 ).

Higher level features such as the location within the brain are

learned in the second pathway, while the detailed local appear-

ance of structures is captured in the first. As the two pathways

are decoupled in this architecture, arbitrarily large context can be

processed by the second pathway by simply adjusting the down-

sampling factor F D . The size of the pathways can be independently

adjusted according to the computational capacity and the task at

hand, which may require relatively more or less filters focused on

the down-sampled context. 

To preserve the capability of dense inference, spatial correspon-

dence of the activations in the FMs of the last convolutional lay-

ers of the two pathways, L 1 and L 2, should be ensured. In net-

works where only unary kernel strides are used, such as the pro-

posed architecture, this requires that for every F D shifts of the

receptive field ϕ L 1 over the normal resolution input, only one

shift is performed by ϕ L 2 over the down-sampled input. Hence

it is required that the dimensions of the FMs in L 2 are δ
{ x,y,z} 
L 2 =

� δ{ x,y,z} 
L 1 /F D 	 . From Eq. (2) , the size of the input to the second path-

way is δ
{ x,y,z} 
in 2 

= ϕ 

{ x,y,z} 
L 2 

+ δ
{ x,y,z} 
L 2 − 1 and similar is the relation be-

tween δin 1 and δL 1 . These establish the relation between the re-

quired dimensions of the input segments from the two resolutions,

which can then be extracted centred on the same image location.

The FMs of L 2 are up-sampled to match the dimensions of L 1’s

FMs and are then concatenated together. We add two more hid-
en layers for combining the multi-scale features before the final

lassification, as shown in Fig. 5 . Integration of the multi-scale par-

llel pathways in architectures with non-unary strides is discussed

n Appendix A . 

Combining multi-scale features has been found beneficial in

ther recent works ( Long et al., 2015; Ronneberger et al., 2015 ),

n which whole 2D images are processed in the network by ap-

lying a few number of convolutions and then down-sampling the

Ms for further processing at various scales. Our decoupled path-

ays allow arbitrarily large context to be provided while avoiding

he need to load large parts of the 3D volume into memory. Ad-

itionally, our architecture extracts features completely indepen-

ently from the multiple resolutions. This way, the features learned

y the first pathway retain finest details, as they are not involved

n processing low resolution context. 

.5. 3D Fully connected CRF for structured prediction 

Because neighbouring voxels share substantial spatial context,

he soft segmentation maps produced by the CNN tend to be

mooth, even though neighbourhood dependencies are not mod-

lled directly. However, local minima in training and noise in

he input images can still result in some spurious outputs, with

mall isolated regions or holes in the predictions. We employ a

ully connected CRF ( Krähenbühl and Koltun, 2011 ) as a post-

rocessing step to achieve more structured predictions. As we de-

cribe below, this CRF is capable of modelling arbitrarily large

oxel-neighbourhoods but is also computationally efficient, making

t ideal for processing 3D multi-modal medical scans. 

For an input image I and the label configuration (segmentation)

 , the Gibbs energy in a CRF model is given by 

(z ) = 

∑ 

i 

ψ u (z i ) + 

∑ 

i j,i 
 = j 
ψ p (z i , z j ) . (5)

The unary potential is the negative log-likelihood ψ u (z i ) =
logP (z i | I ) , where in our case P ( z i | I ) is the CNN’s output for voxel

 . In a fully connected CRF, the pairwise potential is of form

 p (z i , z j ) = μ(z i , z j ) k ( f i , f j ) between any pair of voxels, regardless

f their spatial distance. The Pott’s Model is commonly used as the

abel compatibility function, giving μ(z i , z j ) = [ z i 
 = z j ] . The corre-

ponding energy penalty is given by the function k , which is de-

ned over an arbitrary feature space, with f i , f j being the feature

ectors of the pair of voxels. Krähenbühl and Koltun (2011) ob-

erved that if the penalty function is defined as a linear com-

ination of Gaussian kernels, k ( f i , f j ) = 

∑ M 

m =1 w 

(m ) k (m ) ( f i , f j ) , the
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2 Dense training on a whole volume was inapplicable in these experimental set- 

tings due to memory limitations but was previously shown to give similar results 

as training on uniformly sampled patches ( Long et al., 2015 ). 
odel lends itself for very efficient inference with mean field

pproximation, after expressing message passing as convolutions

ith the Gaussian kernels in the space of the feature vectors f i , f j . 

We extended the work of the original authors and implemented

 3D version of the CRF for processing multi-modal scans. We

ake use of two Gaussian kernels, which operate in the fea-

ure space defined by the voxel coordinates p i,d and the inten-

ities of the c th modality-channel I i,c for voxel i . The smooth-

ess kernel, k (1) ( f i , f j ) = exp (− ∑ 

d= { x,y,z} 
| p i,d −p j,d | 2 

2 σ2 
α,d 

) , is defined by a di-

gonal covariance matrix with elements the configurable param-

ters σα,d , one for each axis. These parameters express the size

nd shape of neighbourhoods that homogeneous labels are encour-

ged. Similarly, the appearance kernel is defined by the equation

 

(2) ( f i , f j ) = exp (− ∑ 

d= { x,y,z} 
| p i,d −p j,d | 2 

2 σ2 
β,d 

−∑ C 
c=1 

| I i,c −I j,c | 2 
2 σ2 

γ ,c 

) . The additional pa-

ameters σγ ,c can be interpreted as how strongly to enforce ho-

ogeneous appearance in the C input channels, when voxels in an

rea spatially defined by σβ ,d are identically labelled. Finally, the

onfigurable weights w 

(1) , w 

(2) define the relative strength of the

wo factors. 

. Analysis of network architecture 

In this section we present a series of experiments in order to

nalyze the impact of each of the main contributions and to justify

he choices made in the design of the proposed 11-layers, multi-

cale 3D CNN architecture, referred to as the DeepMedic . Starting

rom the CNN baseline as discussed in Section 2.1 , we first explore

he benefit of our proposed dense training scheme (cf. Section 2.2 ),

hen investigate the use of deeper models (cf. Section 2.3 ) and

hen evaluate the influence of the multi-scale dual pathway (cf.

ection 2.4 ). Finally, we compare our method with corresponding

D variants to assess the benefit of processing 3D context. 

.1. Experimental setting 

The following experiments are conducted using the TBI dataset

ith 61 multi-channel MRIs which is described in more detail later

n Section 4.1 . Here, the images are randomly split into a valida-

ion and training set, with 15 and 46 images each. The same sets

re used in all analyses. To monitor the progress of segmentation

ccuracy during training, we extract 10k random patches at regu-

ar intervals, with equal numbers extracted from each of the vali-

ation images. The patches are uniformly sampled from the brain

egion in order to approximate the true distribution of lesions and

ealthy tissue. Full segmentation of the validation datasets is per-

ormed every five epochs and the mean Dice similarity coefficient

DSC) is determined. Details on the configuration of the networks

re provided in Appendix B . 

.2. Effect of dense training on image segments 

We compare our proposed dense training method with two

ther commonly used training schemes on the 5-layers baseline

NN (see Fig. 2 ). The first common scheme trains on 17 3 patches

xtracted uniformly from the brain region, and the second scheme

amples patches equally from the lesion and background class.

e refer to these schemes as P uni and P eq . The results shown in

ig. 6 show a correlation of sensitivity and specificity with the

ercentage of training samples that come from the lesion class.

 eq performs poorly because of over-segmentation (high sensitiv-

ty, low specificity). P uni has better classification on the background

lass (high specificity), which leads to high mean voxel-wise accu-

acy since the majority corresponds to background, but not partic-

larly high DSC scores due to under-segmentation (low sensitivity).
To evaluate our dense training scheme, we train multiple mod-

ls with varying sized image segments, equally sampled from le-

ions and background. The tested sizes of the segments go from

9 3 upwards to 29 3 . The models are referred to as “S- d ”, where d

s the side length of the cubic segments. For fair comparison, the

atch sizes in all the experiments are adjusted to have a similar

emory footprint and lead to similar training times as compared

o training on P uni and P eq . 
2 We observe a great performance in-

rease for model S-19 over P eq . We account this partly to the effi-

ient increase of the effective batch size ( B · V in Eq. (4) ), but also

o the altered distribution of training samples. As we increase the

ize of the training segments further, we quickly reach a balance

etween the sensitivity of P eq and the specificity of P uni , which re-

ults in improved segmentation as expressed by the DSC. 

The segment size is a hyper-parameter in our model. We ob-

erve that the increase in performance with increasing segment

ize quickly levels off, and similar performance is obtained for a

ide range of segment sizes, which allows for easy configuration.

or the remaining experiments, all models were trained on seg-

ents of size 25 3 . 

.3. Effect of deeper networks 

The 5-layers baseline CNN ( Fig. 2 ), here referred to as the “Shal-

ow” model, is extended to 9-layers by replacing each convolu-

ional layer that uses 5 3 kernels with two layers that use 3 3 ker-

els ( Fig. 4 ). This model is referred to as “Deep”. Training the latter,

owever, utterly fails with the model making only predictions cor-

esponding to the background class. This problem is related to the

hallenge of preserving the signal as it propagates through deep

etworks and its variance gets multiplied with the variance of the

eights, as previously discussed in Section 2.3 . One of the causes

s that the weights of both models have been initialized with the

ommonly used scheme of sampling from the normal distribution

 (0 , 0 . 01) (cf. Krizhevsky et al., 2012 ). In comparison, the initial-

zation scheme by He et al. (2015) , derived for preserving the sig-

al in the initial stage of training, results in higher values and

vercomes this problem. Further preservation of the signal is ob-

ained by employing Batch Normalization. This results in an en-

anced 9-layers model which we refer to as “Deep + ”, and using

he same enhancements on the Shallow model yields “Shallow + ”.

he significant performance improvement of Deep + over Shallow + ,
s shown in Fig. 7 , is the result of the greater representational

ower of the deeper network. The two models need similar com-

utational times, which highlights the benefits of utilizing small

ernels in the design of 3D CNNs. Although the deeper model re-

uires more sequential (layer by layer) computations on the GPU,

hose are faster due to the smaller kernel size. 

.4. Effect of the multi-scale dual pathway 

The final version of the proposed network architecture, referred

o as “DeepMedic”, is built by extending the Deep + model with

 second convolutional pathway that is identical to the first one.

wo hidden layers are added for combining the multi-scale fea-

ures before the classification layer, resulting in a deep network

f 11-layers (cf. Fig. 5 ). The input segments to the second path-

ay are extracted from the images down-sampled by a factor of

hree. Thus, the network is capable of capturing context in a 51 3 

rea of the original image through the 17 3 receptive field of the

ower-resolution pathway, while only doubling the computational
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Fig. 6. Comparison of the commonly used methods for training on patches uniformly sampled from the brain region (P uni ) and equally sampled from lesion and background 

(P eq ) against our proposed scheme (S- d ) on cubic segments of side length d , also equally sampled from lesion and background. We varied d to observe its effect. From left to 

right: percentage of training samples extracted from the lesion class, mean accuracy, sensitivity, specificity calculated on uniformly sampled validation patches and, finally, 

mean DSC of the segmentation of the validation datasets. Progress throughout training is plotted. Because lesions are small, P uni achieves very high voxel-wise accuracy by 

being very specific but not sensitive, with the opposite being the case for P eq . Our method achieves an effective balance between the two, resulting in better segmentation 

as reflected by higher DSC. 

Fig. 7. Mean accuracy over validation samples and DSC for the segmentations of 

the validation images, as obtained from the “Shallow” baseline and “Deep” variant 

with smaller kernels. Training of the plain deeper model fails (cf. Section 3.3 ). This 

is overcome by adopting the initialization scheme of He et al. (2015) , which further 

combined with Batch Normalization leads to the enhanced ( + ) variants. Deep + per- 

forms significantly better than Shallow + with similar computation time, thanks to 

the use of small kernels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Mean accuracy over validation samples and DSC for the segmentation of 

the validation images, as obtained by a single-scale model (Deep + ) and our dual 

pathway architecture (DeepMedic). We also trained a single-scale model with larger 

capacity (BigDeep + ), similar to the capacity of DeepMedic. DeepMedic yields best 

performance by capturing greater context, while BigDeep + seems to suffer from 

over-fitting. 
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and memory requirements over the single pathway CNN. In com-

parison, the most recent 2D CNN systems proposed for lesion seg-

mentation ( Havaei et al., 2015; Pereira et al., 2015 ) have a receptive

field limited to 33 2 voxels. 

Fig. 8 shows the improvement DeepMedic achieves over the

single pathway model Deep + . In Fig. 9 we show two representa-

tive visual examples of this improvement when using the multi-

scale CNN. Finally, we confirm that the performance increase can

be accounted to the additional context and not the additional ca-

pacity of DeepMedic. To this end, we build a big single-scale model

by doubling the FMs at each of the 9-layers of Deep + and adding

two hidden layers. This 11-layers deep and wide model, referred to

as “BigDeep + ”, has the same number of parameters as DeepMedic.

The performance of the model is not improved, while showing

signs of over-fitting. 

3.5. Processing 3D in comparison to 2D context 

Acquired brain MRI scans are often anisotropic. Such is the case

for most sequences in our TBI dataset, which have been acquired

with lower axial resolution, except for the isotropic MPRAGE. We

perform a series of experiments to investigate the behaviour of 2D
etworks and assess the benefit of processing 3D context in this

etting. 

DeepMedic can be converted to 2D by setting the third dimen-

ion of each kernel to one. This way only information from the

urrounding context on the axial plane influences the classification

f each voxel. If 2D segments are given as input, the dimension-

lity of the feature maps decreases and so does the memory re-

uired. This allows developing 2D variants with increased width,

epth and size of training batch with similar requirements as the

D version, which are valid candidates for model selection in prac-

ical scenarios. We assess various configurations and present some

epresentatives in Table B.1 (bottom) along with their performance.

est segmentation among investigated 2D variants is achieved by a

9-layers, multi-scale network, reaching 61.5% average DSC on the

alidation fold. The decline from the 66.6% DSC achieved by the

D version of DeepMedic indicates the importance of processing

D context even in settings where most acquired sequences have

ow resolution along a certain axis. 

. Evaluation on clinical data 

The proposed system consisting of the DeepMedic CNN archi-

ecture, optionally coupled with a fully connected CRF, is evaluated
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Fig. 9. (Rows) Two cases from the severe TBI dataset, showing representative improvements when using the multi-scale CNN approach. (Columns) From left to right: the 

MRI FLAIR sequence with the manually labelled lesions, predicted soft segmentation map obtained from a single-scale model (Deep + ) and the prediction of the multi-scale 

DeepMedic model. The incorporation of greater context enables DeepMedic to identify when it processes an area within larger lesions (top). Spurious false positives are 

significantly reduced across the image on the bottom. 

o  

d  

a  

s

4

4

 

a  

b  

T  

E  

m  

w  

u  

a

5  

A  

s  

t  

f  

a  

w  

s  

w  

i  

a  

W  

c  

m  

t  

o  

w  

1  

t  

c  

n  

i  

t

4

 

t  

p  

a  

w  

t  

r  

s  
n three lesion segmentation tasks including challenging clinical

ata from patients with traumatic brain injuries, brain tumours,

nd ischemic stroke. Quantitative evaluation and comparisons with

tate-of-the-art are reported for each of the tasks. 

.1. Traumatic brain injuries 

.1.1. Material and pre-processing 

Sixty-six patients with moderate-to-severe TBI who required

dmission to the Neurosciences Critical Care Unit at Adden-

rooke’s Hospital, Cambridge, UK, underwent imaging using a 3-

esla Siemens Magnetom TIM Trio within the first week of injury.

thical approval was obtained from the Local Research Ethics Com-

ittee (LREC 97/290) and written assent via consultee agreement

as obtained for all patients. The structural MRI sequences that are

sed in this work are isotropic MPRAGE (1 mm × 1 mm × 1 mm) ,

xial FLAIR, T2 and Proton Density (PD) (0.7 mm × 0.7 mm ×
 mm), and Gradient-Echo (GE) (0.86 mm × 0.86 mm × 5 mm).

ll visible lesions were manually annotated on the FLAIR and GE

equences with separate labelling for each lesion type. In nine pa-

ients the presence of hyperintense white matter lesions that were

elt to be chronic in nature were also annotated. Artifacts, for ex-

mple, signal loss secondary to intraparenchymal pressure probes,

ere also noted. For the purpose of this study we focus on binary

egmentation of all abnormalities within the brain tissue. Thus,
e merged all classes that correspond to intra-cerebral abnormal-

ties into a single “lesion” label. Extra-cerebral pathologies such

s epidural and subdural hematoma were treated as background.

e excluded two datasets because of corrupted FLAIR images, two

ases because no lesions were found and one case because of a

ajor scanning artifact corrupting the images. This results in a to-

al of 61 cases used for quantitative evaluation. Brain masks were

btained using the ROBEX tool ( Iglesias et al., 2011 ). All images

ere resampled to an isotropic 1 mm 

3 resolution, with dimensions

93 × 229 × 193 and affinely registered ( Studholme et al., 1999 )

o MNI space using the atlas by Grabner et al. (2006) . No bias field

orrection was used as preliminary results showed that this can

egatively affect lesion appearance. Image intensities were normal-

zed to have zero-mean and unit variance, as it has been reported

hat this improves CNN results ( Jarrett et al., 2009 ). 

.1.2. Experimental setting 

Network configuration and training: The network architec-

ure corresponds to the one described in Section 3.4 , i.e. a dual-

athway, 11-layers deep CNN. The training data is augmented by

dding images reflected along the sagittal axis. To make the net-

ork invariant to absolute intensities we also shift the intensi-

ies of each MR channel c of every training segment by i c = r c σc .

 c is sampled for every segment from N (0 , 0 . 1) and σ c is the

tandard deviation of intensities under the brain mask in the
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Table 1 

Performance of DeepMedic and an ensemble of three networks on the TBI database. For comparison, we 

provide results for a Random Forest baseline. Values correspond to the mean (and standard deviation). 

Numbers in bold indicate significant improvement by the CRF post-processing, according to a two-sided, 

paired t -test on the DSC metric ( ∗ p < 5 · 10 −2 , ∗∗ p < 10 −4 ). 

DSC Precision Sensitivity ASSD Haussdorf 

R. Forest 51 .1(20.0) 50 .1(24.4) 60 .1(15.8) 8 .29(6.76) 64 .17(15.98) 

R. Forest+CRF 54 .8(18.5) ∗∗ 58 .6(23.1) 56 .9(17.4) 6 .71(5.01) 59 .45(15.52) 

DeepMedic 62 .3(16.4) 65 .3(18.8) 64 .4(16.3) 4 .24(2.64) 56 .50(15.88) 

DeepMedic+CRF 63 .0(16.3) ∗∗ 67 .7(18.2) 63 .2(16.7) 4 .02(2.54) 55 .68(15.93) 

Ensemble 64 .2(16.2) 67 .7(18.3) 65 .3(16.3) 3 .88(2.33) 54 .38(15.45) 

Ensemble+CRF 64 .5(16.3) ∗ 69 .8(17.8) 63 .9(16.7) 3 .72(2.29) 52 .38(16.03) 
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3 For interpretation of the results note that, to the best of our knowledge, cases 

where the “enhancing tumour” class is not present in the manual segmentation are 

considered as zeros for the calculation of average performance by the evaluation 

platform, lowering the upper bound for this class. 
corresponding image. The network is regularised using dropout

( Hinton et al., 2012 ) with a rate of 2% on all convolutional lay-

ers, which is in addition to a 50% rate used on the last two layers.

The network is evaluated with 5-fold cross-validation on the 61

subjects. 

CRF configuration: The parameters of the fully connected CRF

are determined in a configuration experiment using random-search

and 15 randomly selected subjects from the TBI database with pre-

dictions from a preliminary version of the corresponding model.

The 15 subjects are reshuffled into the 5-folds used for subsequent

evaluation. 

Random forest baseline: We have done our best to set up

a competitive baseline for comparison. We employ a context-

sensitive Random Forest, similar to the model presented by Zikic

et al. (2012) for brain tumours except that we apply the forest to

the MR images without additional tissue specific priors. We train

a forest with 50 trees and maximum depth of 30. Larger size did

not improve results. Training data points are approximately equally

sampled from lesion and background classes, with the optimal bal-

ance empirically chosen. Two hundred randomized cross-channel

box features are evaluated at each split node with maximum off-

sets and box sizes of 20mm. The same folds of training and test

sets are used as for our CNN approach. 

4.1.3. Results 

Table 1 summarizes the results on TBI. Our CNN significantly

outperforms the Random Forest baseline, while the relatively over-

all low DSC values indicate the difficulty of the task. Due to ran-

domness during training the local minima where a network con-

verges are different between training sessions and some errors

they produce differ ( Choromanska et al., 2015 ). To clear the un-

biased errors of the network we form an ensemble of three sim-

ilar networks, aggregating their output by averaging. This ensem-

ble yields better performance in all metrics but also allows us to

investigate the behaviour of our network focusing only on the bi-

ased errors. Fig. 10 shows the DSC obtained by the ensemble on

each subject in relation to the manually segmented and predicted

lesion volume. The network is capable of segmenting cases with

very small lesions, although, performance is less robust in these

cases as even small errors have large influence on the DSC metric.

Investigation of the predicted lesion volume, which is an impor-

tant biomarker for prognostication, shows that the network is nei-

ther biased towards the lesion nor background class, with promis-

ing results even on cases with very small lesions. Furthermore, we

separately evaluate the influence of the post-processing with the

fully connected CRF. As shown in Table 1 , the CRF yields improve-

ments over all classifiers. Effects are more prominent when the

performance of the primary segmenter degrades, which shows the

robustness of this regulariser. Fig. 11 shows three representative

cases. 
.2. Brain tumour segmentation 

.2.1. Material and pre-processing 

For brain tumours, we evaluate our system on the data from the

015 Brain Tumour Segmentation Challenge (BRATS) ( Menze et al.,

015 ). The training set consists of 220 cases with high grade (HG)

nd 54 cases with low grade (LG) glioma for which corresponding

eference segmentations are provided. The segmentations include

he following tumour tissue classes: 1) necrotic core, 2) oedema,

) non-enhancing and 4) enhancing core. The test set consists of

10 cases of both HG and LG but the grade is not revealed. Ref-

rence segmentations for the test set are hidden and evaluation is

arried out via an online system. For evaluation, the four predicted

abels are merged into different sets of whole tumour (all four

lasses), the core (classes 1,3,4), and the enhancing tumour (class

). 3 For each subject, four MRI sequences are available, FLAIR, T1,

1-contrast and T2. The datasets are pre-processed by the organiz-

rs and provided as skull-stripped, registered to a common space

nd resampled to isotropic 1 mm 

3 resolution. Dimensions of each

olume are 240 × 240 × 155. We add minimal pre-processing of

ormalizing the brain-tissue intensities of each sequence to have

ero-mean and unit variance. 

.2.2. Experimental setting 

Network configuration and training: We modify the

eepMedic architecture to handle multi-class problems by ex-

ending the classification layer to five feature maps (four tumour

lasses plus background). The rest of the configuration remains

nchanged. We enrich the dataset with sagittal reflections. Oppo-

ite to the experiments on TBI, we do not employ the intensity

erturbation and dropout on convolutional layers, because the

etwork should not require as much regularisation with this large

atabase. The network is trained on image segments extracted

ith equal probability centred on the whole tumour and healthy

issue. The distribution of the classes captured by our training

cheme is provided in Appendix C . 

To examine our network’s behaviour, we first evaluate it on the

raining data of the challenge. For this, we run a 5-fold cross vali-

ation where each fold contains both HG and LG images. We then

etrain the network using all training images, before applying it on

he test data. 

CRF configuration: For the multi-class problem it is challeng-

ng to find a global set of parameters for the CRF which can con-

istently improve the segmentation of all classes. So instead we

erge the four predicted probability maps into a single “whole

umour” map for CRF post-processing. The CRF then only refines

he boundaries between tumour and background and additionally
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Fig. 10. (Top) DSC achieved by our ensemble of three networks on each of the 61 TBI datasets. (Bottom) Manually segmented (black) and predicted lesion volumes (red). 

Note here the logarithmic scale. Continuous lines represent mean values. The outlying subject 12 presents small TBI lesions, which are successfully segmented, but also 

vascular ischemia. Because it is the only case in the database with the latter pathology, the networks fail to segment it as such lesion was not seen during training. (For 

interpretation of the references to colour, the reader is referred to the web version of this article.) 

Fig. 11. Three examples from the application of our system on the TBI database. It is capable of precise segmentation of both small and large lesions. Second row depicts one 

of the common mistakes observed. A contusion near the edge of the brain is under-segmented, possibly mistaken for background. Bottom row shows one of the worst cases, 

representative of the challenges in segmenting TBI. Post-surgical sub-dural debris is mistakenly captured by the brain mask. The network partly segments the abnormality, 

which is not a celebral lesion of interest. 

r  

T  

L  

5

4

 

C  
emoves isolated false positives. Similarly to the experiments on

BI, the CRF is configured on a random subset of 44 HG and 18

G training images, which are then reshuffled into the subsequent
-fold cross validation. d  

m  

a  
.2.3. Results 

Quantitative results from the application of the DeepMedic, the

RF and an ensemble of three similar networks on the training

ata are presented in Table 2 . The latter two offer an improve-

ent, albeit fairly small since the performance of DeepMedic is

lready rather high in this task. Also shown are results from previ-
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Table 2 

Average performance of our system on the training data of BRATS 2015 as computed on the online evaluation 

platform and comparison to other submissions visible at the time of manuscript submission. Presenting only 

teams that submitted more than half of the 274 cases. Numbers in bold indicate significant improvement by the 

CRF, according to a two-sided, paired t -test on the DSC metric ( ∗ p < 5 · 10 −2 , ∗∗ p < 10 −3 ). 

DSC Precision Sensitivity 

Whole Core Enh. Whole Core Enh. Whole Core Enh. Cases 

Ensemble+CRF 90 .1 ∗ 75 .4 72 .8 ∗ 91 .9 85 .7 75 .5 89 .1 71 .7 74 .4 274 

Ensemble 90 .0 75 .5 72 .8 90 .3 85 .5 75 .4 90 .4 71 .9 74 .3 274 

DeepMedic+CRF 89 .8 ∗∗ 75 .0 72 .1 ∗ 91 .5 84 .4 75 .9 89 .1 72 .1 72 .5 274 

DeepMedic 89 .7 75 .0 72 .0 89 .7 84 .2 75 .6 90 .5 72 .3 72 .5 274 

bakas1 88 77 68 90 84 68 89 76 75 186 

peres1 87 73 68 89 74 72 86 77 70 274 

anon1 84 67 55 90 76 59 82 68 61 274 

thirs1 80 66 58 84 71 53 79 66 74 267 

peyrj 80 60 57 87 79 59 77 53 60 274 

Fig. 12. Examples of DeepMedic’s segmentation from its evaluation on the training datasets of BRATS 2015. cyan: necrotic core, green: oedema, orange: non-enhancing 

core, red: enhancing core. (top and middle) Satisfying segmentation of the tumour, regardless motion artefacts in certain sequences. (bottom) One of the worst cases of 

over-segmentation observed. False segmentation of FLAIR hyper-intensities as oedema constitutes the most common error of DeepMedic. (For interpretation of the references 

to colour, the reader is referred to the web version of this article.) 
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ous works, as reported on the online evaluation platform. Various

settings may vary among submissions, such as the pre-processing

pipeline or the number of folds used for cross-validation. Still it

appears that our system performs favourably compared to previ-

ous state-of-the-art, including the semi-automatic system of Bakas

et al. (2015) (bakas1) who won the latest challenge and the

method of Pereira et al. (2015) (peres1), which is based on grade-

specific 2D CNNs and requires visual inspection of the tumour and

identification of the grade by the user prior to segmentation. Ex-

amples of segmentations obtained with our method are shown in

Fig. 12 . DeepMedic behaves very well in preserving the hierarchi-

cal structure of the tumour, which we account to the large context

processed by our multi-scale network. 

Table 3 shows the results of our method on the BRATS test data.
Results of other submissions are not accessible. The decrease in t  
erformance is possibly due to the inclusion of test images that

ary significantly from the training data, such as cases acquired

n clinical centres that did not provide any of the training images,

omething that was confirmed by the organisers. Note that per-

ormance gains obtained with the CRF are larger in this case. This

ndicates not only that its configuration has not overfitted to the

raining database but also that the CRF is robust to factors of varia-

ion between acquisition sites, which complements nicely the more

ensitive CNN. 

.3. Ischemic stroke lesion segmentation 

.3.1. Material and pre-processing 

We participated in the 2015 Ischemic Stroke Lesion Segmenta-

ion (ISLES) challenge, where our system achieved the best results
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Table 3 

Average performance of our system on the 110 test cases of BRATS 2015, as computed on the online 

evaluation platform. Numbers in bold indicate significant improvement by the CRF, according to a 

two-sided, paired t -test on the DSC metric ( ∗ p < 5 · 10 −2 , ∗∗ p < 10 −3 ). The decrease of the mean DSC 

by the CRF and the ensemble for the “Core” class was not found significant. 

DSC Precision Sensitivity 

Whole Core Enh. Whole Core Enh. Whole Core Enh. 

DeepMedic 83 .6 67 .4 62 .9 82 .3 84 .6 64 .0 88 .5 61 .6 65 .6 

DeepMedic+CRF 84 .7 ∗∗ 67 .0 62 .9 85 .0 84 .8 63 .4 87 .6 60 .7 66 .2 

Ensemble 84 .5 66 .7 63 .3 83 .3 86 .1 63 .2 88 .9 59 .9 67 .3 

Ensemble+CRF 84 .9 ∗∗ 66 .7 63 .4 ∗ 85 .3 86 .1 63 .4 87 .7 60 .0 67 .4 

Table 4 

Performance of our system on the training data of the ISLES-SISS 2015 competition. Values correspond 

to the mean (and standard deviation). Numbers in bold indicate significant improvement by the CRF, 

according to a two-sided, paired t -test on the DSC metric ( p < 10 −2 ). 

DSC Precision Sensitivity ASSD Haussdorf 

DeepMedic 64(23) 68(24) 65(23) 6 .99(9.91) 73 .32(26.03) 

DeepMedic+CRF 66(24) 77(24) 63(25) 5 .00(10.33 ) 55 .93(28.55) 
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mong all participants on sub-acute ischemic stroke lesions ( Maier

t al., 2017 ). In the training phase of the challenge, 28 datasets

ave been made available, along with manual segmentations. Each

ataset included T1, T1-contrast, FLAIR and DWI sequences. All im-

ges were provided as skull-stripped and resampled to isotropic

 mm 

3 voxel resolution. Each volume is of size 230 × 230 × 154.

n the testing stage, teams were provided with 36 datasets for eval-

ation. The test data were acquired in two clinical centres, with

ne of them being the same that provided all training images. Cor-

esponding expert segmentations were hidden and results had to

e submitted to an online evaluation platform. Similar to BRATS,

he only pre-processing that we applied is the normalization of

ach image to the zero-mean and unit variance. 

.3.2. Experimental setting 

Network configuration and training: The configuration of the

etwork employed is described in Kamnitsas et al. (2015) . The

ain difference with the configuration used for TBI and tumors

s employed above is the relatively smaller number of FMs in the

ow-resolution pathway. This choice should not significantly influ-

nce accuracy on the generally small SISS lesions but it allowed us

o lower the computational cost. 

Similar to the other experiments, we evaluate our network with

 5-fold cross validation on the training datasets. We use data aug-

entation with sagittal reflections. For the testing phase of the

hallenge, we trained an ensemble of three networks on all train-

ng cases and aggregate their predictions by averaging. 

CRF configuration: The parameters of the CRF were configured

ia a random search on the whole training dataset. 

.3.3. Results 

The performance of our system on the training data is shown

n Table 4 . Significant improvement is achieved by the structural

egularisation offered by the CRF, although it could be partially ac-

ounted for by overfitting the training data during the CRF’s con-

guration. Examples for visual inspection are shown in Fig. 13 . 

For the testing phase of the challenge we formed an ensem-

le of three networks, coupled with the fully connected CRF. Our

ubmission ranked first, indicating superior performance on this

hallenging task among 14 submissions. Table 5 shows our re-

ults, along with the other two top entries ( Feng et al., 2015;

alme et al., 2015 ). Among the other participating methods was

he CNN of Havaei et al. (2015) with 3 layers of 2D convolutions.

hat method performed less well on this challenging task ( Maier

t al., 2017 ). This points out the advantage offered by 3D context,
he large field of view of DeepMedic thanks to multi-scale pro-

essing and the representational power of deeper networks. It is

mportant to note the decrease of performance in comparison to

he training set. All methods performed worse on the data com-

ng from the second clinical centre, including the method of Feng

t al. (2015) that is not machine-learning based. This highlights a

eneral difficulty with current approaches when applied on multi-

entre data. 

.4. Implementation details 

Our CNN is implemented using the Theano library ( Bastien

t al., 2012 ). Each training session requires approximately one day

n an NVIDIA GTX Titan X GPU using cuDNN v5.0. The efficient ar-

hitecture of DeepMedic also allows models to be trained on GPUs

ith only 3GB of memory. Note that although dimensions of the

olumes in the processed databases do not allow dense training

n whole volumes for this size of network, dense inference on a

hole volume is still possible, as it requires only a forward-pass

nd thus less memory. In this fashion segmentation of a volume

akes less than 30 s but requires 12 GB of GPU memory. Tiling the

olume into multiple segments of size 35 3 allows inference on 3

B GPUs in less than three minutes. 

Our 3D fully connected CRF is implemented by extending the

riginal source code by Krähenbühl and Koltun (2011) . A CPU im-

lementation is fast, capable of processing a five-channel brain

can in under three minutes. Further speed-up could be achieved

ith a GPU implementation, but was not found necessary in the

cope of this work. 

. Discussion and conclusion 

We have presented DeepMedic, a 3D CNN architecture for auto-

atic lesion segmentation that surpasses state-of-the-art on chal-

enging data. The proposed novel training scheme is not only com-

utationally efficient but also offers an adaptive way of partially

lleviating the inherent class-imbalance of segmentation problems.

e analysed the benefits of using small convolutional kernels in

D CNNs, which allowed us to develop a deeper and thus more

iscriminative network, without increasing the computational cost

nd number of trainable parameters. We discussed the challenges

f training deep neural networks and the adopted solutions from

he latest advances in deep learning. Furthermore, we proposed

n efficient solution for processing large image context by the

se of parallel convolutional pathways for multi-scale processing,
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Fig. 13. Examples of segmentations performed by our system on the training datasets of (SISS) ISLES 2015. (top and middle) The system is capable of satisfying segmentation 

of both large and smaller lesions. (bottom) Common mistakes are performed due to the challenge of differentiating stroke lesions from White Matter lesions. 

Table 5 

Our ensemble of three networks, coupled with the fully connected CRF obtained overall best perfor- 

mance among all participants in the testing stage of the ISLES-SISS 2015 challenge. Shown is the per- 

formance of our pipeline along with the second and third entries. Values correspond to the mean (and 

standard deviation). 

DSC Precision Sensitivity ASSD Haussdorf 

kamnk1(ours) 59(31) 68(33) 60(27) 7 .87(12.63) 39 .61(30.68) 

fengc1 55(30) 64(31) 57(33) 8 .13(15.15) 25 .02(22.02) 

halmh1 47(32) 47(34) 56(33) 14 .61(20.17) 46 .26(34.81) 
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alleviating one of the main computational limitations of previous

3D CNNs. Finally, we presented the first application of a 3D fully

connected CRF on medical data, employed as a post-processing

step to refine the network’s output, a method that has also been

shown promising for processing 2D natural images ( Chen et al.,

2014 ). The design of the proposed system is well suited for pro-

cessing medical volumes thanks to its generic 3D nature. The capa-

bilities of DeepMedic and the employed CRF for capturing 3D pat-

terns exceed those of 2D networks and locally connected random

fields, models that have been commonly used in previous work. At

the same time, our system is very efficient at inference time, which

allows its adoption in a variety of research and clinical settings. 

The generic nature of our system allows its straightforward

application for different lesion segmentation tasks without major

adaptations. To the best of our knowledge, our system achieved the

highest reported accuracy on a cohort of patients with severe TBI.

As a comparison, we improved over the reported performance of

the pipeline in Rao et al. (2014) . Important to note is that the lat-

ter work focused only on segmentation of contusions, while our

system has been shown capable of segmenting even small and

diffused pathologies. Additionally, our pipeline achieved state-of-
he-art performance on both public benchmarks of brain tumours

BRATS 2015) and stroke lesions (SISS ISLES 2015). We believe per-

ormance can be further improved with task- and data-specific ad-

ustments, for instance in the pre-processing, but our results show

he potential of this generically designed segmentation system. 

When applying our pipeline to new tasks, a laborious process is

he reconfiguration of the CRF. The model improved our system’s

erformance with statistical significance in all investigated tasks,

ost profoundly when the performance of the underlying classi-

er degrades, proving its flexibility and robustness. Finding opti-

al parameters for each task, however, can be challenging. This

ecame most obvious on the task of multi-class tumour segmen-

ation. Because the tumour’s substructures vary significantly in ap-

earance, finding a global set of parameters that yields improve-

ents on all classes proved difficult. Instead, we applied the CRF

n a binary fashion. This CRF model can be configured with a sep-

rate set of parameters for each class. However the larger param-

ter space would complicate its configuration further. Recent work

rom Zheng et al. (2015) showed that this particular CRF can be

asted as a neural network and its parameters can be learned with

egular gradient descent. Training it in an end-to-end fashion on
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Fig. 14. (First row) GE scan and DeepMedic’s segmentation. (Second row) FMs of earlier and (third row) deeper layers of the first convolutional pathway. (Fourth row) 

Features learnt in the low-resolution pathway. (Last row) FMs of the two last hidden layers, which combine multi-resolution features towards the final segmentation. 
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op of a neural network would alleviate the discussed problems.

his will be explored as part of future work. 

The discriminative power of the learned features is indicated

y the success of recent CNN-based systems in matching hu-

an performance in domains where it was previously considered

oo ambitious ( He et al., 2015; Silver et al., 2016 ). Analysis of

he automatically extracted information could potentially provide

ovel insights and facilitate research on pathologies for which lit-

le prior knowledge is currently available. In an attempt to illus-

rate this, we explore what patterns have been learned automat-

cally for the lesion segmentation tasks. We visualize the activa-

ions of DeepMedic’s FMs when processing a subject from our TBI

atabase. Many appearing patterns are difficult to interpret, espe-

ially in deeper layers. In Fig. 14 we provide some examples that

ave an intuitive explanation. One of the most interesting findings

s that the network learns to identify the ventricles, CSF, white and
rey matter. This reveals that differentiation of tissue type is bene-

cial for lesion segmentation. This is in line with findings in the

iterature, where segmentation performance of traditional classi-

ers was significantly improved by incorporation of tissue priors

 Van Leemput et al., 1999; Zikic et al., 2012 ). It is intuitive that dif-

erent types of lesions affect different parts of the brain depending

n the underlying mechanisms of the pathology. A rigorous analy-

is of spatial cues extracted by the network may reveal correlations

hat are not well defined yet. 

Similarly intriguing is the information extracted in the low-

esolution pathway. As they process greater context, these neurons

ain additional localization capabilities. The activations of certain

Ms form fields in the surrounding areas of the brain. These pat-

erns are preserved in the deepest hidden layers, which indicates

hey are beneficial for the final segmentation (see two last rows

f Fig. 14 ). We believe these cues provide a spatial bias to the



76 K. Kamnitsas et al. / Medical Image Analysis 36 (2017) 61–78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

F  

s  

g  

d

A

 

t  

d  

r  

e  

l  

a  

l

a  

c  

f  

b  

s  

↓  

d  

o  

p  

e

A

 

s  

S  

i  

2  

a  

w  

p  

1  

S  

s  

t  

i  

t  

t  

t  

n  

i  

w  

i  

p  

d

 

p  

d  

j  

s  

s  

t  

2  

v  

m  

h  

t  

w  

p  

t

system, for instance that large TBI contusions tend to occur to-

wards the front and sides of the brain (see Fig. 1 c). Furthermore,

the interaction of the multi-resolution features can be observed

in FMs of the hidden layer that follows the concatenation of the

pathways. The network learns to weight the output of the two

pathways, preserving low resolution in certain parts and show fine

details in others (bottom row of Fig. 14 , first three FMs). Our as-

sumption is that the low-resolution pathway provides a rough lo-

calization of large pathologies and brain areas that are challenging

to segment, which reserves the rest of the network’s capacity for

learning detailed patterns associated with the detection of smaller

lesions, fine structures and ambiguous areas. 

The findings of the above exploration lead us to believe that

great potential lies into fusing the discriminative power of the

“deep black box” with the knowledge acquired over years of tar-

geted biomedical research. Clinical knowledge is available for cer-

tain pathologies, such as spatial priors for white matter lesions.

Previously engineered models have been proven effective in tack-

ling fundamental imaging problems, such as brain extraction, tis-

sue segmentation and bias field correction. We show that a net-

work is capable of automatically extracting some of this informa-

tion. It would be interesting, however, to investigate structured

ways for incorporating such existing information as priors into the

network’s feature space, which should simplify the optimization

problem while letting a specialist guide the network towards an

optimal solution. 

Although neural networks seem promising for medical image

analysis, making the inference process more interpretable is re-

quired. This would allow understanding when the network fails, an

important aspect in biomedical applications. Although the output

is bounded in the [0, 1] range and commonly referred to as prob-

ability for convenience, it is not a true probability in a Bayesian

sense. Research towards Bayesian networks aims to alleviate this

limitation. An example is the recent work of Gal and Ghahramani

(2015) who show that model confidence can be estimated via sam-

pling the dropout mask. 

A general point should be made about the performance drop

observed when our system is applied on test datasets of BRATS

and ISLES in comparison to its cross-validated performance on

the training data. In both cases, subsets of the test images were

acquired in clinical centres different from the ones of training

datasets. Differences in scanner type and acquisition protocols have

significant impact on the appearance of the images. The issue of

multi-centre data heterogeneity is considered a major bottleneck

for enabling large-scale imaging studies. This is not specific to our

approach, but a general problem in medical image analysis. One

possible way of making the CNN invariant to the data heterogene-

ity is to learn a generative model for the data acquisition process,

and use this model in the data augmentation step. This is a direc-

tion we explore as part of future work. 

In order to facilitate further research in this area and to provide

a baseline for future evaluations, we make the source code of the

entire system publicly available. 
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ppendix A. Additional details on multi-scale processing 

The integration of multi-scale parallel pathways in architectures

hat use solely unary kernel strides, such as the proposed, was

escribed in Section 2.4 . The required up-sampling of the low-

esolution features was performed with simple repetition in our

xperiments. This was found sufficient, with the following hidden

ayers learning to combine the multi-scale features. In the case of

rchitectures with strides greater than unary, the last convolutional

ayers of the two pathways, L 1 and L 2, have receptive fields ϕ L 1 

nd ϕ L 2 with strides τL 1 and τL 2 respectively. To preserve spatial

orrespondence of the multi-scale features and enable the network

or dense inference, the dimensions of the input segments should

e chosen such that the FMs in L 2 can be brought to the dimen-

ions of the FMs in L 1 after sequential resampling by ↑ τL 2 , ↑ F D ,

 τL 1 or equivalent combinations. Here ↑ and ↓ represent up- and

own-sampling by the given factor. Because they are more reliant

n these operations, utilization of more elaborate, learnt upsam-

ling schemes ( Long et al., 2015; Ronneberger et al., 2015; Noh

t al., 2015 ) should be beneficial in such networks. 

ppendix B. Additional details on network configurations 

3D Networks: The main description of our system is pre-

ented in Section 2 . All models discussed in this work outside

ection 3.5 are fully 3D CNNs. Their architectures are presented

n Table B.1 (top). They all use the PReLu non-linearity ( He et al.,

015 ). They are trained using the RMSProp optimizer ( Tieleman

nd Hinton, 2012 ) and Nesterov momentum ( Sutskever et al., 2013 )

ith value m = 0 . 6 . L 1 = 10 −6 and L 2 = 10 −4 regularisation is ap-

lied. We train the networks with dense-training on batches of

0 segments, each of size 25 3 . Exceptions are the experiments in

ection 3.2 , where the batch sizes were adjusted along with the

egment sizes, to achieve similar memory footprint and training

ime per batch. The weights of our shallow, 5-layers networks are

nitialized by sampling from a normal distribution N (0 , 0 . 01) and

heir initial learning rate is set to a = 10 −4 . Deeper models (and

he “Shallow+” model in Section 3.3 ) use the weight initialisa-

ion scheme of He et al. (2015) . The scheme increases the sig-

al’s variance in our settings, which leads to RMSProm decreas-

ng the effective learning rate. To counter this, we accompany it

ith an increased initial learning rate a = 10 −3 . Throughout train-

ng, the learning rate of all models is halved whenever convergence

lateaus. Dropout with 50% rate is employed on the two last hid-

en layers of 11-layers deep models. 

2D Networks: Table B.1 (bottom) presents representative exam-

les of 2D configurations that were employed for the experiments

iscussed in Section 3.5 . Width, depth and batch size were ad-

usted so that total required memory was similar to the 3D ver-

ion of DeepMedic. Wider or deeper variants than the ones pre-

ented did not show greater performance. A possible reason is that

his number of filters is enough for the extraction of the limited

D information and that the field of view of the deep multi-scale

ariant is already sufficient for the application. The presented 2D

odels were regularised with L 1 = 10 −8 and L 2 = 10 −6 since they

ave less parameters than the 3D variants. All but Dm2dPatch were

rained with momentum m = 0 . 6 and initial learning rate a = 10 −3 ,

hile the rest with m = 0 . 9 and a = 10 −2 as this setting increased

erformance. The rest of the hyper parameters are the same as for

he 3D DeepMedic. 

http://dx.doi.org/10.13039/501100000266
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Table B.1 

Network architectures investigated in Section 3 and final validation accuracy achieved in the corresponding ex- 

periments. (top half) 3D and (lower half) 2D architectures. Columns from left to right: model’s name, number of 

parallel identical pathways and number of feature maps at each of their convolutional layers, number of feature 

maps at each hidden layer that follows the concatenation of the pathways, dimensions of input segment to the 

normal and low resolution pathways, batch size and, finally, average DSC achieved on the validation fold. Further 

configuration details provided in Appendix B . 

3D Networks #Pathways: FMs/Layer FMs/Hidd. Seg.Norm. Seg.Low B.S. DSC(%) 

Shallow(+) 1: 30 ,40,40,50 – 25x25x25 – 10 60 .2(61.7) 

Deep(+) 1: 30 ,30,40,40,40,40,50,50 – 25x25x25 – 10 00 .0(64.9) 

BigDeep+ 1: 60 ,60,80,80,80,80,100,100 150 ,150 25x25x25 – 10 65 .2 

DeepMedic 2: 30 ,30,40,40,40,40,50,50 150 ,150 25x25x25 19x19x19 10 66 .6 

2D Networks #Pathways: FMs/Layer FMs/Hidd. Seg.Norm. Seg.Low B.S. DSC(%) 

Dm2dPatch ∗ 2: 30 ,30,40,40,40,40,50,50 150 ,150 17x17x1 17x17x1 540 58 .8 

Dm2dSeg 2: 30 ,30,40,40,40,40,50,50 150 ,150 25x25x1 19x19x1 250 60 .9 

Wider2dSeg 2: 60 ,60,80,80,80,80,100,100 200 ,200 25x25x1 19x19x1 100 61 .3 

Deeper2dSeg 2: 16 layers, linearly 30 to 50 150 ,150 41x41x1 35x35x1 100 61 .5 

Large2dSeg 2: 12 layers, linearly 45 to 80 200 ,200 33x33x1 27x27x1 100 61 .3 

∗Sampling was manually calibrated to achieve similar class balance as models that are trained on image segments. 

Model underperformed otherwise. 
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ppendix C. Distribution of tumour classes captured in 

raining 

Table C.1 

Table C.1 

Real distribution of the classes in the training data of BRATS 2015, along 

with the distribution captured by our proposed training scheme, when 

segments of size 25 3 are extracted centred on the tumour and healthy tis- 

sue with equal probability. Relative distribution of the foreground classes 

is closely preserved and the imbalance in comparison to the healthy tissue 

is automatically alleviated. 

Healthy Necrosis Oedema Non-Enh. Enh.Core 

Real 92 .42 0 .43 4 .87 1 .02 1 .27 

Captured 58 .65 2 .48 24 .98 6 .40 7 .48 
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