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We present a simple yet accurate numerical approach to compute the free energy of binding of
multivalent objects on a receptor-coated surface. The method correctly accounts for the fact that
one ligand can bind to at most one receptor. The numerical approach is based on a saddle-point
approximation to the computation of a complex residue. We compare our theory with the power-
ful Valence-Limited Interaction Theory (VLIT) [P. Varilly et al., J. Chem. Phys. 137, 094108
(2012); S. Angioletti-Uberti et al., ibid. 138, 021102 (2013)] and find excellent agreement in the
regime where that theory is expected to work. However, the present approach even works for
low receptor/ligand densities, where VLIT breaks down. C 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4948257]

I. INTRODUCTION

Multivalent particles are microscopic entities that can
bind to multiple “receptors” via flexible ligands. For example,
a multivalent particle can bind to receptors placed on a
membrane (e.g., a cell wall) or a hard surface (e.g., a sensor).1–4

The particle might be an oligomeric protein complex, a star
polymer, a virus, or a functionalised nano-colloid.

When the particle diffuses over the surface, it samples
different local arrangements and concentrations of receptors.
The binding free energy of the particle depends on an average
over the bound-state partition function in each locality. In
general, computing this partition function is non-trivial as
it requires knowledge of the configurational entropy of the
ligands for all possible local binding arrangements.5

To simplify matters, we consider a model where the
ligands are modelled as non-self-avoiding polymers on a
lattice, although the approach will also work off-lattice. We
derive a simple yet exact expression for the binding free
energy of a multivalent particle, incorporating an analytical
average over every possible local receptor configuration. To
calculate the free energy in practice, we employ a saddle-point
approximation.

In what follows, we consider a multivalent object at
height h above a surface, represented in this example as
a two-dimensional lattice, although in general the receptors
need not be restricted to a plane.

For a fixed position h, the ligands on the object are able
to access NA surface sites. We assume that the receptors
are distributed randomly over the NA surface lattice sites;
the probability that NR of the surface sites are receptors is
defined as P(NR). The distribution P(NR) can take any form.
The receptors are also assumed to be immobile, as binding
sites embedded in the surface; however, our approach can be
generalised to account for oligomeric or polymeric receptors.

a)Electronic mail: nicholas.b.tito@gmail.com

The probability that a ligand binds to a receptor site j
depends on the partition function qj, the Boltzmann-weighted
sum of all conformations of a ligand that bind to site j. We
define f j, the free energy of binding to receptor j through
qj ≡ e−β f j. Importantly, no two ligands can bind to the same
receptor; this condition is enforced strictly in our approach.

II. MODEL

We now show how to calculate the average binding free
energy of the multivalent object at distance h from the surface.
We start by considering the situation where NR receptors are
within the range that can be reached by the NL ligands. Of
course, these receptors can be distributed in many different
ways over the NA accessible surface sites. Initially, we will
consider only one specific realisation. Subsequently, we will
average over all possible receptor distributions.

Let us first consider the case that λ out of the NL ligands
are bound to the receptors. Clearly, λ ≤ NL and λ ≤ NR.
We can consider the partition function Qb that accounts for
all possible ways to bind the λ ligands to the accessible
receptors,

Qb(NR, λ) =


{λ}NR

qjqk, j . . . qλ, j,k .... (1)

The summation is over all possible subsets of λ receptor sites
out of the available NR.

The number of possible ligand-receptor combinations
(i.e., the number of terms in Eq. (1)) can be extremely large
even for moderate NR and λ. In order to calculate Qb, we
employ the residue theorem of complex functions. To begin,
we define the auxiliary function

Z(z) =
NR
j=1

�
1 + zqj

�
, (2)
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where z is a complex variable. This function is a polynomial
in z. The coefficient on the zλ term is precisely Qb(NR, λ);
it is the sum of

(
NR
λ

)
products of the qj’s. Qb(NR, λ) can be

calculated using the residue theorem,

Qb(NR, λ) = 1
2πi


Z(z)
zλ+1 dz , (3)

where the contour is around z = 0. This exactly yields Eq. (1),
including the fact that a receptor can only bind a single ligand
in a given configuration. To estimate the integral in Eq. (3),
we employ the saddle-point approximation,

Qb(NR, λ) ≈ 1
2πi

e− f (z0)


2π
f ′′(z0) ,

where z0 is the (real) value of z at the location of the saddle
point of Z(z). From Eq. (3), it follows that f (z) is given
by f (z) = (λ + 1) ln z −NR

j=1 ln
�
1 + zqj

�
. The saddle point of

Z(z)/zλ+1 corresponds to the maximum of f (z) along the
real axis. The location of this maximum (z0) can be easily
computed numerically, allowing one to obtain Qb(NR, λ).

This complex residue approach works well for most cases,
even when λ and NR are small (provided NR is greater than
approximately 5). There are, however, a few special cases
where the residue approach does not work. However, these
are typically the cases where the bound-state partition function
can easily be computed exactly as follows:

1. When λ = 1 we can immediately write Qb(NR, λ = 1)
=

NR
j=1 qj.

2. When λ = NR, we can immediately write Qb(NR, λ
= NR) =NR

j=1 qj.
3. When λ = NR − 1, the function f (z) exhibits no extremum.

However, since this corresponds to the case where all recep-
tors but one are bound, it is straightforward to compute
Qb(NR, λ = NR − 1) = Qb(NR, λ = NR) ×

(NR
j=1

1
q j

)
.

When some of the qj are large, the saddle-point of f (z) moves
close to zero and the second derivative becomes extremely
large. This can cause numerical errors. Dividing all qj by
the maximum weight qmax eliminates this problem. This has
the effect of keeping the largest weights in the partition
function near one. The factor qλ

max is then re-incorporated into
Qb(NR, λ) afterwards.

Having found Qb(NR, λ), it is straightforward to write
down the partition function taking the (NL − λ) unbound
ligands into account. The contribution of the unbound ligands
is Qub(λ) = qNL−λ

ub , where qub is the partition function for a
single unbound ligand. The complete partition function for λ
out of NL ligands binding to λ out of NR receptors is

Q(NR, λ) =
(

NL

λ

)
λ!Qb(NR, λ)Qub(λ). (4)

The combinatorial factor in this equation requires an
explanation. We consider the situation where λ out of NL

ligands bind to λ out of NR receptors. There are
(
NR
λ

)
ways

of choosing λ out of NR receptors. Similarly, there are
(
NL
λ

)
ways to choose λ ligands out of NL. However, the total
number of distinct ligand-receptor connections is not simply
the product of these two binomial factors. The reason is that

for a given choice of λ receptors and λ ligands, there are still
λ! ways to make the ligand-receptor connections. We take this
into account in the combinatorial factor in Eq. (4), where we
have multiplied

(
NL
λ

)
by λ!.

Next, we consider the fact that the NR receptors can be
distributed over the NA accessible sites. The bound partition
function averaged over all distinct ways of connecting λ
ligands to λ surface sites (out of the available NA) is
Qb(NA, λ)/

(
NA
λ

)
. This effective partition function is now

the binding weight for each of the
(
NR
λ

)
ways of binding λ

ligands to NR receptors. Therefore,

Q̄(NR, λ) =
(

NR

λ

) (
NL

λ

)
λ!Qub(λ)Qb(NA, λ)(

NA
λ

) .

Finally, we average over the probability distribution P(NR)
for observing NR receptors and sum over the possible number
of bonds λ that varies between 0 and min(NA,NL). This leads
to

βF̄ = − ln



min(NA,NL)
λ=0



(
NL

λ

)
λ!Qub(λ)

× Qb(NA, λ)(
NA
λ

) *.
,

NA
NR=λ

(
NR

λ

)
P(NR)+/

-





, (5)

which is an exact average over all possible receptor
configurations.

III. RESULTS

To test our model, we compute multivalent free energies of
binding for two cases. In the first, we consider a nanoparticle
coated with mobile ligands, able to bind to a surface with
different concentrations of receptors. The second case consists
of a particularly simple geometry of NL ligands grafted to
fixed points on a plane, or “slab” that can bind to NR = NL

receptors on the surface. Every ligand has exactly one receptor
binding partner, and we can compute the binding free energy
analytically. In both cases, we compare to an existing theory
of multivalent interactions: the “valence-limited interaction
theory” (VLIT).5,6 A derivation of VLIT for our purposes is
given in the supplementary material.7

A. Multivalent nanoparticle with mobile ligands

First, we consider a solid ligand-coated nanoparticle
adjacent to a surface. The ligands are assumed to be mobile
on the particle surface and chemically identical. The surface,
particle core, and ligands are all contained within a three-
dimensional simple cubic lattice.

The ligands are represented as non-self-avoiding lattice
walks of Npoly steps, beginning anywhere on the particle
surface. The weight for a ligand-receptor bond at j is given by
qj = q′je

−βϵ, where q′j is the number of walks that terminate
at j, and the ligand-receptor bond energy ϵ is set to be the
same for all receptors. The quantities q′j for each surface site
are calculated using lattice moment propagation. The partition
function qub per unbound ligand is defined to be the number
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of non-self-avoiding walks beginning on the particle surface
and ending anywhere in the system.

Each qj as well as qub depend on the vertical position
h (in lattice units) of the multivalent particle relative to the
receptor surface at h = 1. The particle itself is represented
as a coarse-grained impenetrable sphere in the lattice, with
radius r , and center located at (x, y,h). Impenetrability
is enforced by preventing any ligand segments from
entering lattice sites with coordinates (x ′, y ′,h′) satisfying
(x − x ′)2 + (y − y ′)2 + (h − h′)2 ≤ r2. The receptor surface at
h = 1 is also impenetrable.

When the particle is at distance h from the surface,
there are NA sites available to the ligands; this also depends
on the choice of ligand length Npoly. Receptors are placed
randomly among the surface sites, and the number NR

placed is chosen from the binomial distribution P(NR)
=

(
NA
NR

)
φ
NR
R (1 − φR)NA−NR, where φR is the probability that

a site is a receptor.
Our model contains an analytical average over all

possible receptor configurations following P(NR). To calculate
the equivalent average free energy of binding in VLIT,
we average over many explicit receptor configurations by
βF̄VLIT(h) = − ln

�(1/N)n e−βFn(h)�. Here, Fn(h) is the free
energy calculated by VLIT (see the supplementary material7)
for receptor configuration n.

We can now directly compare our model results,
obtained by Eq. (5), to results from VLIT averaged over
different receptor configurations. This comparison is given
in Figure 1. Results are presented as a free energy change
∆F(h) = F(h) − F◦ upon surface binding relative to when the
particle is infinitely far from the surface. The reference state
free energy is given by

βF◦ = −NL ln q◦, (6)

where q◦ is the partition function for a single ligand in the
reference state.

FIG. 1. Free energy upon binding β∆F̄ as a function of h for φR

= 0.01,0.2,0.4,0.6,0.8, and 1.0 (red to violet). Points are VLIT results, and
lines connect results from our theory (Eq. (5)). Fixed parameters are NL = 20,
βϵ =−3.5, particle radius r = 2, and Npoly= 20 segments per ligand. Aver-
age number of receptors at h = 4 for each dataset, equal to NA(h)φR, is
9.2,184,368,552,736, and 920.

Results from our model are compared to VLIT averaged
over 800 receptor configurations. For both low and high values
of receptor concentration, even when the number of receptors
is less than the number of ligands on the particle, our model
is in nearly perfect agreement with VLIT. This consistency
is encouraging, since for mobile receptors (and/or ligands),
VLIT has been proven to become exact when the number of
ligands plus receptors grows large.8

B. Multivalent slab with diffuse ligands

Next, we consider the case where the density of ligands
and receptors is so low that one ligand can bind with at most
one receptor. This case would correspond to the situation
where two surfaces with a low degree of functionalisation
interact. In practice, the ligands and receptors would be
distributed randomly over the surface. However, to facilitate
comparison with analytical theory, we will consider the
(trivial) case that each receptor and ligand are directly opposite
to each other.

Hence, we consider a model where NL ligands are grafted
to fixed positions on a slab. The slab is placed at vertical
position h, and a surface is located at h = 1. A receptor is
placed on the surface directly opposite to the tether point of
each ligand on the slab. The ligands are spaced sufficiently
far apart so that each may only bind to the receptor opposite
to it. Thus, each ligand is distinct, but has the same binding
statistics. As mentioned above: this simplification facilitates
comparison with theory, but the numerical method could deal
with arbitrary locations of the receptors. This will be discussed
shortly.

The ligands are represented by non-self-avoiding walks
as in the previous example; however, the partition function
q = q′e−βϵ is now the same for each receptor-bound ligand.
The partition function for an unbound ligand, qub, is the
number of walks starting at the ligand tether point and ending
anywhere in the lattice.

Since we have assumed that q and qub are the same
for every ligand, we can immediately write an analytical
expression for the binding free energy of the slab per ligand:
βF(h)∗/NL = − ln (q + qub). We now compare the predictions
of our model with this analytical result.

Because the number and arrangement of receptors is fixed
in this case, we can calculate the binding free energy from our
model by simply summing Eq. (4) over all possible values of
bound ligands λ and taking the natural logarithm,

βF(h) = − ln *
,

NR
λ=0

Qb(NR, λ)Qub(λ)+
-
. (7)

The combinatorial factors
(
NL
λ

)
and λ! are not present in this

case, as each ligand is distinct. The change in free energy
upon binding, ∆F(h), is calculated relative to the reference
state free energy F◦ when the slab is infinitely far from the
surface (Eq. (6)).

Figure 2 plots values of β∆F(h)/NL for several choices
of h, using NL = NR = 20, βϵ = −7, and Npoly = 20 as an
example. Results from the VLIT theory (see the supplementary
material7) are also given.
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FIG. 2. Free energy change per ligand upon slab binding, β∆F/NL, as a
function of slab position h. Red points are results from our theory (Eq. (7));
blue points are those from VLIT; and the black dashed line connects values
of the true free energy β∆F(h)∗/NL computed at integer values of h.

We see that our model agrees almost exactly with the
analytical result β∆F(h)∗/NL. Not surprisingly, the VLIT
theory does not correctly capture the binding free energy in
this particular case; this is because VLIT assumes that the
probability for any ligand to be unbound is uncorrelated to
the probability of a receptor to be unbound. However, when
one ligand can only bind one receptor and vice-versa, these
probabilities are perfectly correlated, as the two must be bound
or unbound at the same time.

Lack of correlation between unbound ligands and
receptors is not assumed in our present approach. It therefore
applies to the very relevant case where ligands and receptors
both have one binding partner only.

Importantly, our theory can also be applied to non-
trivial cases where each ligand has different receptor binding
statistics. This may be because each ligand is chemically
different, or because they are oriented differently with respect
to the surface receptors. The unique receptor binding weight qj

for each ligand is inserted into the auxiliary function, Eq. (2),
yielding the bound-state free energy via Eq. (7).

IV. CONCLUSIONS

We have developed a simple approach for computing the
binding free energy of a multivalent object on a receptor-
coated surface. Using complex residue integration aided
by a saddle-point approximation to calculate the bound-
state partition function of the multivalent particle yields
results that are in nearly exact quantitative agreement
with a previously developed valence-limited interaction
theory (VLIT) for multivalent interactions, while also
incorporating an analytic average over all local receptor
configurations.

Our theory also extends beyond VLIT by providing an
accurate multivalent free energy for the case where ligands
and receptors have only one binding partner each, even if
each ligand-receptor interaction is chemically distinct. This
scenario is a specific but non-trivial one, important for a wide
range of emerging applications such as interactions between
viruses and cell surfaces, as well as nanomedicine.9

To summarise, the following are the scenarios to which
our theory can be immediately applied:

• Identical ligands all competing for binding to identical
or different receptors.

• Identical or different ligands, spaced far apart so that
each independently interacts with one receptor. (The
receptors may be identical or different.)

Here, “difference” can arise from variation in spatial
orientation or chemical construction, both of which affect
the ligand-receptor binding weight qj. In upcoming work, we
anticipate extending the theory so that it deals with different
ligands competing for binding to different receptors.

The theory presented here holds promise as an easy route
to calculating binding free energies, so that large ranges of
parameter space may be sampled. It may also serve as a
reference point for more detailed simulations of multivalent
interactions.
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