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The ion-ion interactions become exponentially screened for ions confined in ultra-

narrow metallic pores. To study the phase behaviour of an assembly of such ions,

called a superionic liquid, we develop a statistical theory formulated on bipartite

lattices, which allows an analytical solution within the Bethe-lattice approach. Our

solution predicts the existence of ordered and disordered phases in which ions form

a crystal-like structure and a homogeneous mixture, respectively. The transition

between these two phases can potentially be first or second order, depending on

the ion diameter, degree of confinement and pore ionophobicity. We supplement

our analytical results by three-dimensional off-lattice Monte Carlo simulations of an

ionic liquid in slit nanopores. The simulations predict formation of ionic clusters

and ordered snake-like patterns, leading to characteristic close-standing peaks in the

cation-cation and anion-anion radial distribution functions.
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I. INTRODUCTION

The rejuvenation of interest to fundamental mechanisms of energy storage in electric

double-layer capacitors (also called supercapacitors) has been boosted by the development

of novel materials for nanostructured electrodes1–9 and by a booming research in room

temperature ionic liquids.10–14 This progress in material science has been accompanied by

detailed investigations of performances of such systems. In particular, pioneering experi-

mental studies15–18 have demonstrated that using electrodes with ultranarrow pores, able to

accommodate about one layer (or row) of ions, leads to a substantial increase of the surface-

specific capacitance. This ‘anomalous’ increase of capacitance for subnanometer pores can

be explained by a superionic state emerging in such metal-like pores: The ion-ion interac-

tions become exponentially screened, and this allows an easier packing of ions of the same

type. An improved mean-field model has been developed that shows that the superionic

state leads ultimately to higher capacitances for narrower pores.19 Many aspects of this

theory have later been verified by computer simulations.20–24

Subsequent works have focused on voltage-dependent capacitances,20,23,25 optimization of

energy storage25–28 and dynamics of charging.29–33 Surprisingly, however, the structure and

phase behaviour of an ionic liquid in nanoconfinement have received much less attention so

far, and we know only about a voltage-induced phase transition between dilute and dense

phases predicted by theory19,34 or seen in simulations.24,35,36 On the other hand, for flat

electrodes there is experimental evidence37–40 of hysteretic behaviour of capacitance, whose

origin is not yet clear, while simulations41,42 suggest a structural transition between ordered

and disordered states in the interfacial region of an ionic liquid at flat electrodes. We

shall demonstrate in this work that the ordered state should also exist in nano-confinement,

show a possibility of a phase transition to a homogeneous mixture of ions (preferable for fast

charging), and elaborate on the structure of ionic liquids in narrow slit pores. We restrict our

considerations to non-polarized pores, setting the basis for the study of voltage-dependent

behaviour, which we defer to future works, however.

Analytically tractable models are among the most precious assets in physics, as they

often allow to trace system properties exactly such that new physical insights can be more

easily developed.43 In the context of ionic liquids and supercapacitors, examples include a

lattice model for dense ionic liquids;44 a one-dimensional Coulomb lattice capacitor;45–47 one-
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(a) (b)

FIG. 1. Schematic of the Cayley tree with coordination numbers q = 3 (a) and q = 4 (b) and

N = 3 generations emanating from the central (or root) site denoted by ‘O’. The bond length

between the nodes of the Caylee tree is the same and appears different for aesthetic reasons only.

We shall use the Cayley tree to obtain an analytical solution for a lattice model of an ionic liquid

in slit nanopores.

dimensional Ising,48 Blume-Emery-Griffiths49,50 and harmonic oscillator51 models adapted

for single-file pores; and the already mentioned continuous mean-field model for ultrathin

slit pores.19,34

In this work we introduce a lattice model for a superionic liquid, i.e. an ionic liquid in

the superionic state, in slit nanoconfinement. Our model can be directly mapped onto the

standard Blume-Emery-Griffiths or Blume-Capel models (Appendix A), and is solved here

using the Bethe-lattice approach for bipartite lattices with coordination numbers (numbers

of the nearest neighbours) q = 3 and q = 4 (Section II and Appendix C, respectively). By

definition, the Bethe lattice represents a deep interior of the so-called Cayley tree (a structure

consisting of q branches emanating from a central or root site and having N generations,

see Figure 1), discarding the effects of the boundary sites and thus describing system’s bulk

properties. It is important to note that as any other tree graph the Bethe lattice can be

partitioned into two sublattices only.52 For lattices that can partition into a larger number

of sublattices (e.g. triangular lattice, which is tripartite), the Bethe lattice approach is not
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applicable and one has to resort to other approximations.53

Although the Bethe lattice approach is unlikely to predict correct critical exponents, it has

proven to give qualitatively and quantitatively accurate predictions for the location and order

of phase transitions. Examples of this are numerous and include athermal lattice gases,54,55

modulated phases of the Ising model with competing interactions,56–58 Potts models,59 lattice

models of glassy systems60,61 and localisation transitions.62 Thus, there is a good reason to

believe that the Bethe-lattice approach used here will describe correctly the phase behaviour

of ions in slit nanoconfinement.

We supplement our analytical results by three dimensional off-lattice Monte Carlo simu-

lations of an ionic liquid in ultranarrow slit pores.20 Our simulations unravel further details

in the system behaviour and reveal the structure that the ionic liquid adopts in such a strong

nanoconfinement (Section III).

Finally, we will conclude and critically discuss our results in Section IV.

II. LATTICE MODEL OF A SUPERIONIC LIQUID

We consider an ionic liquid (IL) confined in a slit metallic nanopore so narrow that only

one IL layer can fit in it. We assume that the ions reside on the symmetry plane of this pore

and consider a 2D lattice occupied by cations (+), anions (-) or voids. The occupation of

site i can be described by a pair of Boolean variables

(ni, mi) =



















(1, 0), site i is occupied by ‘+’ particle,

(0, 1), site i is occupied by ‘−’ particle,

(0, 0), site i is empty,

where the case (1, 1) is excluded because the ions cannot occupy the same site due to hard

core interactions.

The partition function of this system in thermal equilibrium is given by

Z =
∏

i

∑

(ni,mi)

exp[−βH], (1)

where β = 1/kBT is the reciprocal temperature measured in units of the Boltzmann constant

kB, and the Hamiltonian is given by

H =
∑

〈ij〉

[

I++ninj + I−−mimj − I+−(nimj + njmi)
]

−
∑

i

[

µ
(0)
+ ni + µ

(0)
− mi

]

. (2)
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The summation in (2) extends over all pairs of nearest-neighbouring sites 〈ij〉 and Iαβ > 0

denote the strengths of the respective interactions, where α, β = {+,−}. Since the inter-

ionic Coulomb potential is exponentially screened in narrow metallic pores,19 we have taken

into account only nearest-neighbour interactions in this work, but we note that it would be

interesting to study the effects due to the next-to-nearest (or higher) neighbour interactions

too. The electrochemical potentials of cations and anions (in infinite dilution) are

µ
(0)
± = ±eV + w±, (3)

where V is the electrostatic potential of the pore walls measured with respect to the IL bulk

and w± are energies of transfer of ± ions from the pore interior into the bulk. In general case

w+ 6= w−. We note that w± include the ion-pore wall interactions due to the image forces

(see Section IIIA and Eq. (34)), and that they are here defined such that a large positive

w± corresponds to a cationo/aniono-philic pore.63

Throughout the paper we assume that the coupling constants, Iαβ , do not depend on

the occupation numbers (ni, mi); we shall make a similar assumption in our Monte Carlo

simulations as well, where we assume that the pore width does not change as the ions enter

the pore (see Section III). It is clear however that intrusion of sufficiently large ions into

a narrow pore can create stresses on the pore and potentially expand it.64–67 This may

particularly occur as a response to the applied voltage (not studied in the present work,

however). Such ‘unwanted electroactuation’ is detrimental to supercapacitors, which should

ideally function without any mechanical stress,66 and deserves further studies. However,

incorporation of such stresses into the present model would lead to serious complications,

and the problem would become analytically untreatable. We shall therefore neglect such

effects in our present work, and note that swelling/contraction of pores is typically of the

order of a few percents,66 and it seems reasonable to expect that it will have only a minor

effect on our results.

The model defined by Eq. (2) can be mapped onto the Blume-Emery-Griffiths model,

which has been intensively studied by a large variety of methods. We discuss this mapping

in Appendix A. In the next subsection, we solve our model for V = 0 and w+ = w− using

the Bethe-lattice approximation. The readers not interested in the details of our analytical

approach can switch directly to subsection IIB, where we discuss the results and physical

implications of our solution.
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A. Bethe-lattice solution

Let us consider a Cayley tree (see Figure 1) with the coordination number q; that is,

a central, root site with q branches emanating from it and having each N generations of

sites. The partition function of our model of an ionic liquid on such a Cayley tree can be

represented as

ZN = ZN(0) + ZN(+) + ZN(−), (4)

where ZN(0) is an auxiliary partition function of a Cayley tree with a vacant central site,

while ZN(+) and ZN(−) are auxiliary constrained partition functions of the model with

the root site occupied by a particle ’+’ or occupied by a particle ’–’, respectively. In what

follows, we will derive general recursion relations obeyed by these auxiliary functions and

then turn to the Bethe-lattice solutions of these recursions.

The Cayley tree can be cut apart at the central site into q identical branches. Therefore,

we have

ZN(0) = gqN(0), ZN(+) = z+g
q
N(+), ZN(−) = z−g

q
N(−), (5)

where z± = exp βw± and gN(0) and gN(±) are the partition functions of one branch with

initial vacant cite and the branches with initial sites occupied by particle ‘+’ or ‘−’ respec-

tively. Each branch consists of q − 1 identical sub branches. Therefore, we can write the

following recursion relations for gN ’s:

gN(0) = gq−1
N−1(0) + z+g

q−1
N−1(+) + z−g

q−1
N−1(−),

gN(+) = gq−1
N (0) + z+e

−βI+gq−1
N−1(+) + z−e

βI+−gq−1
N−1(−),

gN(−) = gq−1
N (0) + z+e

βI+−gq−1
N−1(+) + z−e

−βI
−gq−1

N−1(−). (6)

Next, introducing new variables :

xN =
gN(+)

gN(0)
, and yN =

gN(−)

gN(0)
(7)

we obtain a system of two coupled recursion relations :

xN =
1 + z+e

−βI+xq−1
N−1 + z−e

βI+−yq−1
N−1

1 + z+x
q−1
N−1 + z−y

q−1
N−1

yN =
1 + z+e

βI+−xq−1
N−1 + z−e

−βI
−yq−1

N−1

1 + z+x
q−1
N−1 + z−y

q−1
N−1

(8)
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Mean densities of particles ‘+’ or ‘−’ on the central site of the Cayley tree can then be

straightforwardly expressed via the variables xN and yN as

ρ0,+ =
z+x

q
N

1 + z+x
q
N + z−y

q
N

, ρ0,− =
z−y

q
N

1 + z+x
q
N + z−y

q
N

. (9)

We turn next to the behavior in the interior part of the Cayley tree and the limit N → ∞,

i.e., on the Bethe lattice, for which all sites are equivalent and hence, all {xN , yN} should

converge to a fixed point or cycle solutions {x, y}. We start with the calculation of the

free energy, which contains some subtleties, since the effect of the boundary sites has to be

correctly excluded (see, e.g., discussion in Ref. 68). To this end, we use here the following

procedure elaborated for generalized recursive lattices69. Substituting (5) into (4) and taking

into account (7) we have

ZN = gqN(0) (1 + z+x
q
N + z−y

q
N) , (10)

so that the free energy of N -generation Cayley tree can be cast into the form

−βFN = lnZN = q ln gN(0) + ln (1 + z+x
q
N + z−y

q
N) . (11)

Next, for gN(0) we use first relation of (6), which gives, together with the definitions in (7) :

−βFN = q(q − 1) ln gN−1(0) + q ln
(

1 + z+x
q−1
N−1 + z−y

q−1
N−1

)

+ ln (1 + z+x
q
N + z−y

q
N) (12)

Rewriting the latter expression as

−βFN = −(q − 1)βFN−1 − (q − 1) ln
(

1 + z+x
q
N−1 + z−y

q
N−1

)

+

q ln
(

1 + z+x
q−1
N−1 + z−y

q−1
N−1

)

+ ln (1 + z+x
q
N + z−y

q
N) , (13)

and repeating this procedure n times, we arrive at the following recursion relation obeyed

by the free energy :

−βFN = −(q − 1)nβFN−n − βFNn (14)

where the last term is the free energy of the n-generation Cayley tree

− βFNn = q
n

∑

k=1

(q − 1)k−1 ln
(

1 + z+x
q−1
N−k + z−y

q−1
N−k

)

− (q − 1)n ln
(

1 + z+x
q
N−n + z−y

q
N−n

)

+ ln (1 + z+x
q
N + z−y

q
N) (15)
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Further on, in the limit N → ∞ all xN−k ≡ x and yN−k ≡ y, so that

−βFn = lim
N→∞

(−βFNn) = q
(q − 1)n − 1

q − 2
ln
(

1 + z+x
q−1 + z−y

q−1
)

−

((g − 1)n − 1) ln (1 + z+x
q + z−y

q) (16)

To obtain the free energy per site, one should divide the latter expression by the number

of bulk sites Ns, comprising the Bethe lattice, in n-generation Cayley tree. According to

Gujrati68, Ns is simply related to the number of bonds Nb via the homogeneity assumption

Nb/Ns = q/2, and in n-generation Cayley tree we have

Nb = q
(q − 1)n − 1

q − 2
, (17)

and hence,

−βf = −βFn

Ns

=
q

2
ln
(

1 + z+x
q−1 + z−y

q−1
)

− q − 2

2
ln (1 + z+x

q + z−y
q) . (18)

We note that similar calculations for the Ising model lead to the free energy which is

equivalent to the free energy obtained by the integration of the equation of state.43

We focus now on the Bethe lattices with the coordination numbers q = 3 and q = 4 in the

completely symmetric case when I+ = I− = I+− = I and w+ = w− (that is z+ = z−) which

is appropriate to the model of ionic liquids in non-polarised confinement (more precisely, for

potential of zero charge) and for ions of the same size and with the same interaction with

the pore walls. In this symmetric case, the original Blume-Emery-Griffiths model reduces

to a simpler Blume-Capel model in a magnetic field (see Appendix A for more details).

We present below a detailed derivation of the results for the lattice with the coordination

number q = 3, while the analogous derivation for the case q = 4, which shows the same

qualitative behavior, is discussed in Appendix C.

1. Solution for the Bethe lattice with coordination number q = 3

For q = 3 our recursion relations in (8) take the form

xN = ϕ(xN−1, yN−1)

yN = ϕ(yN−1, xN−1) (19)

with

ϕ(x, y) =
1 + z(e−βIx2 + eβIy2)

1 + z(x2 + y2)
. (20)
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We note that, generally speaking, the recursion scheme presented above has been already

studied in the past. However, all the previous analysis was focused solely on the case of the

ferromagnetic Blume-Capel (BC) model. It is not clear a priori if the results of this analysis

will still hold for our case (I > 0) which corresponds to the antiferromagnetic BC model.

Hence, we find it expedient to derive the explicit solution here.

To get a hint on the behavior of xN and yN , we first generate several consecutive terms

for xN and yN by merely iterating (19). These terms, as functions of βw, are depicted in

Figure 2. As one may readily observe, for small βI there is only one symmetrical solution

for which all xN and yN converge to some N -independent curves x and y. However, as βI

exceeds some critical value, one observes an apparent symmetry breaking so that xN (and

yN) with N odd and even converge to different N -independent functions. This means that

for sufficiently large βI the recursion scheme in (19) has cycle solutions with period 2. This

is a direct consequence of the bipartite nature of the Bethe lattice. Physically, it means

that for such βI the system looses its homogeneity and spontaneously partitions into two

subsystems with the behavior of the observables on these sub lattices being different from

each other. For homogeneous regular lattices, it means that the systems partitions into two

sub lattices shifted with respect to each other by one lattice spacing. For the Bethe lattice it

means that it partitions into sublattices composed of layers with with even and odd number

N (see Figures 1 and 3).

To take into account this partitioning into two sublattices, we recall the classical analysis

by Runnels54 of the phase diagram of a single-species mixture of identical hard molecules on

the Bethe lattice, and rewrite relations (19) in the thermodynamical limit N → ∞ in the

form:

xA = ϕ(xB, yB)

yA = ϕ(yB, xB) (21)

and

xB = ϕ(xA, yA)

yB = ϕ(yA, xA) (22)

where xA and yA (xB and yB) denote variables describing sublattice A (B), respectively.

Once we stipulate that our central site is in sublattice A, we can write densities of ’+’s and
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FIG. 2. Spontaneous breaking of symmetry between sub-lattices. Thick lines show the limiting

solutions (N → ∞) of the recursion relations (19), x and y. Thin dash lines denote the first

few terms in the recursion, xN and yN , for N = 1, 2, · · · , which were obtained by starting from

x0 = 1 and y0 = 0 (not shown) in all cases; these lines approach the corresponding solid lines as

N increases. The top row shows x and xN , and the bottom row y and yN , as functions of the

resolvation energy βw for (a) βI = 0.1, (b) βI = 1 and (c) βI = 2. (a) (xN , yN ) converge to

a single solution (x, y) for any βw. (b) A single solution exists only for βw < (βw)tr ≈ −1. It

becomes unstable above (βw)tr, where there are additionally two solutions for which x2N (dash

orange lines) and x2N+1 (dash blue lines) converge to different values as N → ∞, and similarly

y2N and y2N+1. These limiting solutions are shown by thick red lines. They describe spontaneous

breaking of symmetry between two sub-lattices, so that the sub-lattices with odd and even N have

different ion densities in equilibrium, determined by these two solutions (note that xN and yN are

related to the ion densities by Eq. (23)). Physically it means that for βw > (βw)tr the system

is in the ordered, symmetry broken state, in which the ion densities on different sub-lattices are

different, reminiscent of a crystalline structure (cf. Figure 3). Below (βw)tr and in case (a), the

system is in a homogeneous state characterized by the same average ion density on all sites. The

transition between these two states is second order, as discussed in the text (cf. also Figure 4a).

(c) The same as (b) but the transition is discontinuous (first order). This is because each solution is

multivalued close to (βw)tr ≈ −3, manifesting metastable states (see the upper and lower branches

of the red curves close to (βw)tr, cf. also Figure 4b).
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(a) (b)

FIG. 3. Schematic of completely ordered states corresponding to the infinite resolvation energies,

βw → ∞. (a) A fragment of the Bethe lattice with the coordination number q = 3 where cations

(orange) and anions (blue) occupy alternating layers of odd and even generations, N , of the Cayley

tree, respectively. (b) The corresponding fragment of the honeycomb lattice with q = 3. Cations

and anions occupy sub-lattices shifted by one lattice spacing with respect to each other. The

properties of a system defined on a honeycomb lattice are described well by the Bethe-lattice

approach with q = 3 (see e.g. Ref. 70). Our Bethe-lattice solution reveals the existence of an

ordered state, the extreme case of which is shown in panel (a).

’–’s defined in (9) as

ρA+ =
zx3

B

1 + z(x3
B + y3B)

, ρA− =
zy3B

1 + z(x3
B + y3B)

(23)

In turn, if we stipulate that the central site belongs to the sublattice B, the expressions

for the densities in this case can be obtained from (23) by a mere interchange of sub- and

superscripts A and B.

To describe ordering on sub-lattices, we introduce

ρ̄A = (ρA+ + ρA−), δρA = (ρA+ − ρA−). (24)

Evidently, the difference δρA between the density of particles ’+’ and the density of particles

’–’ is the order parameter, while ρ̄A is the total density of all particles on the sub-lattice A.

Substituting equation (22) into (21) we have, formally,

xA = ϕ(ϕ(xA, yA), ϕ(yA, xA))

yA = ϕ(ϕ(yA, xA), ϕ(xA, yA)) (25)
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FIG. 4. Locating phase transition points. Solution of f1(u, βw) = 0 (Eq. (27), black line) and

f4(u, βw) = 0 (Eq. (28), red line) for (a) βI = 1 and (b) βI = 2. Functions f1 and f4 describe

extrema of the free energy. The lower branches of the f4 = 0 curve (dash red lines) correspond

to a decrease of u = (xA + yA)/2 with increasing βw and are unstable. Panel (a) corresponds

to a second order phase transition (see also Figure 2a). Here the f1 = 0 solution describing the

disordered phase (black line) intersects with the upper branch of the f4 = 0 solution describing

the ordered phase (red line), giving a critical point at (βw)c = −1.0046 for βI = 1 (filled square

in panel (a)). With increasing βI the intersection point slides down on the upper branch of the

f4 = 0 solution (black line) passing an extremum δw/δu = 0 corresponding to a tricritical point;

this happens at (βI)tc ≈ 1.8 and (βw)tc ≈ −2.61 (not shown in this plot, but see Eqs. (32) and

Figure 5). Panel (b) shows the case βI = 2 > (βI)tc and hence corresponds to a first order phase

transition (see also Figure 2c). The transition is determined by the equality of the free energies

calculated along the solutions f1 = 0 and f4 = 0. These points are denoted by open squares in

panel (b). For the whole phase diagram see Figure 5.

Note that these equations can be also obtained from (19) by iterating these equations twice

to involve the numbers of generations N having the same parity (see, e.g., the discussion in

Ref. 54) and than taking the limits xN → xA and yN → yA .
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It is convenient to introduce

u =
xA + yA

2
and v =

xA − yA
2

. (26)

These variables are related to the total ion density, ρ̄, and the order parameter, δρ, as given

by Eqs. (24) and (B1). The order parameter describes the excess of one sort of ions on one

of the two sublattices, and hence v = 0, implying δρ = 0 (see Eq. (B1)), corresponds to the

homogeneous (or disordered) state of ions.

Now, using Eqs. (25) and (20), it can be shown that there are two stable thermodynamic

phases (there are in total four functions extremizing the free energy, but only two of them

lead to physically correct solutions, see Appendix B for details):

1. Disordered phase described by v = 0, with u satisfying

f1(u, z, I) ≡ u− 1 + 2u3z (1− cosh(βI)) = 0. (27)

2. Ordered phase described by v 6= 0, with u and v satisfying

f4(u, z, I) ≡ 1− cosh(βI)− 4uz sinh(βI) (u− cosh(βI)) = 0, (28a)

4uz sinh(βI) = 1 + 2z
(

u2 + v2
)

. (28b)

Thus, equations (27) and (28) describe extrema of the free energy and hence determine the

transitions between these two phases. This is illustrated in Figure 4 for βI = 1 and βI = 2.

For βI = 1 (Figure 4a), the intersection of the solution of f1(u, z, I) = 0 with the upper

branch of the solution of f4(u, z, I) = 0 corresponds to a critical point71 (see also Figure 2a).

A line of critical points can thus be calculated from the system of equations

f1(u, z, I) = 0,

f4(u, z, I) = 0. (29)

This leads to an implicit equation for the critical temperature (βI)c

zc = exp(βw)c =
(−2 sinh((βI)c) + cosh((βI)c)− 1)2

8 sinh2((βI)c)(2 sinh((βI)c)− cosh((βI)c))
(30)

The solution of this equation is shown by a solid line in Figure 5. Note that as z → ∞
(strongly ionophilic pores), βI approaches a constant value (βI)threshold = ln(

√
3), which
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implies that a transition into the ordered phase can only take place for βI above this thresh-

old value. We also note parenthetically that it can be calculated for arbitrary coordination

number q of the Bethe lattice and is given by (βI)threshold = ln(
√

q/(q − 2)), see Refs. 71

and 72. Consequently, (βI)threshold is a monotonically decreasing function of q, meaning

that for bipartite lattices with a larger coordination number, the transition into the ordered

phase will occur at lower values of the resolvation energy w, at a given βI, and at lower

values of βI, for a given z = exp(βw).

Visually comparing the behavior of the recursions xN and yN for two different values of

βI, presented in Figure 2, one may notice that for βI = 2 the recursion (19) converges to

the limiting solutions x and y more abruptly than it happens for βI = 1. Moreover, one sees

that in the former case the solutions depicted by the red line become multivalued, which

signals that the transitions to the ordered phase may have a different order. Indeed, for the

former case we have a first order transition with a discontinuous behavior of the density,

while in the latter case the transition is continuous, with a jump in the compressibility. This

implies in turn that the line of critical points terminates at a tricritical point ((β|I|)tc, ztc).
According to Ref. 71 this tricritical point is given by

δz

δu

∣

∣

∣

∣

v=0

=
∂z

∂u

∣

∣

∣

∣

v=0

+
∂z

∂v2
∂v2

∂u

∣

∣

∣

∣

v=0

= 0 (31)

Formally it corresponds to the condition that the solutions of equations f1(u, z, I) = 0 and

f4(u, z, I) = 0 intersect each other exactly at the extremum of f4(u, z, I), see Figure 4; this

means

f1(u, z, I) = 0,

f4(u, z, I) = 0, (32)

∂f4(u, z, I)

∂u
= 0.

The solution of Eqs. (32) is (β|I|)tc ≈ 1.8 and ztc ≈ 0.07 (corresponding to βwtc = ln ztc ≈
−2.61), and is shown by a filled circle in Figure 5. The value of u at the tricritical point is

u ≈ 1.56 giving ρ̄ = 0.359 (see Eqs. (B1)).

The line of the first order phase transitions for z < ztc (or equivalently for βw < βwtc)

can be found in the usual fashion by matching the free energies calculated for disordered

and ordered phases. This is shown in Figure 4b where the values of βw and u at a transition

are depicted by open squares.
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Finally, it is interesting to note that for lattices that can partition into a larger number

of sub-lattices (for instance a triangular lattice, which is tripartite), the behavior of the

Blume-Capel model (see Appendix A) is more intricate. In particular, in the ordered state

the system partitions into three sub-lattices, two of which are ordered and predominantly

occupied by ions of one type, with the third sub-lattice remaining in the ‘disordered’ state

(i.e. the order parameter is zero, see Ref. 53 and references therein). As mentioned in the

introduction, this behaviour cannot be captured by the Bethe-lattice approach and will not

be discussed in the present work.

B. Bethe-lattice results

We first briefly summarize the previous subsection. Our analytical solution reveals two

stable thermodynamic phases: An ordered phase, where cations and anions mainly reside

on different sub lattices, forming a crystal-like structure; and a homogeneous or disordered

phase in which ions and voids form a homogeneous mixture. We were able to determine

the location of a phase transition between these two phases and to identify its order for

coordination numbers (numbers of the nearest neighbours) q = 3 and q = 4. This is

summarized in Figure 5 in the form of a phase diagram in the (βw, βI) plane, where w = w±

is ion’s resolvation energy (defined here as an energy of transfer of an ion from the pore into

the bulk of a supercapacitor63); and I is the pore-width dependent strength of the screened

ion-ion interactions. In this figure, the dash line corresponds to a first order and the solid line

denotes a second order phase transition. These two types of transitions meet at a tricritical

point, ((βw)tc, (βI)tc), denoted by filled circles in Figure 5.

The orders of these phase transitions are directly related to the behaviours of the order

parameter, δρ, and total ion density, ρ̄, at the transition (see Eq. (24) for definition and note

that we skip the sublattice index A due to the A ↔ B symmetry). Both quantities vanish for

strongly ionophobic pores (large negative βw) and increase to unity when the ionophilicity

increases (large positive βw), i.e. the ion density increases and the system becomes more

ordered for increasing βw. As usual, however, for a second order phase transition, the order

parameter is a continuous function of βw with a cusp at a transition, while it exhibits a

finite jump in the case of the first order transitions observed for βI above the tricritical

point (βI)tc (solid and dash lines in Figure 6a, respectively). The behaviour of the total ion
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FIG. 5. Phase diagram of a superionic liquid in a non-polarised nanoconfinement obtained by

the Bethe-lattice approximation. The diagram is plotted in the (βI, βw) plane, where I is the

pore-width dependent interaction strength (cf. Figure 8) and w = w± the ion’s resolvation energy,

defining the ionophobicity of pores and determining their occupation by ions at zero voltage. The

disordered phase is a homogeneous mixture of ions of two types and voids, and the ordered phase

means that the ions of one type predominantly occupy one of the ‘sub lattices’ (i.e. ions form

a crystal-like structure, see Figure 3, cf. Figure 10d). The upper (lower) lines correspond to

coordination number q = 3 (q = 4), saying how many nearest neighbours has an ion. The solid

lines show second order and dash lines first order phase transitions. These lines meet at tricritical

points ((βw)tc ≈ −2.61 and (β|I|)tc ≈ 1.8 for q = 3, and (βw)tc ≈ −2.07 and (β|I|)tc ≈ 1.09 for

q = 4) depicted by filled circles. Thin dash horizontal lines indicates the value of βI below which

the ordered phase does not exist ((βI) = 1/2 ln(3) for q = 3 and (βI) = 1/2 ln(2) for q = 4, see

text). Filled and open squares denote the values of βI and βw considered in Figures 4a and b,

respectively. Thin blue lines show the lines I = −2w/q which describe the first order transitions

in the limit w → ∞ (see Section IV).
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FIG. 6. (a) Order parameter, δρ, and (b) total ion density, ρ̄, for the coordination number q =

3 as functions of resolvation energy βw obtained within the Bethe-lattice approach. The solid

lines are calculated for the ion-ion interaction strength βI = 1, at which we observe a second

order (continuous) phase transition between the ordered and disordered states. In this case both

quantities are continuous but exhibit a cusp at the transition. The dash lines are for βI = 2 at

which the transition is first order. Here δρ and ρ exhibit a finite jump at the transition. For the

complete phase diagram see Figure 5.
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FIG. 7. Analog of compressibility defined as κT = (1/ρ̄2)∂ρ̄/∂w is plotted as a function of re-

solvation energy βw obtained within the Bethe-lattice approach. (a) In the case of second order

phase transitions, κT experiences a finite jump at the transition. (b) For first order transitions, κT

behaves discontinuously as well, but there is a spike at the transition due to the jump in the total

ion density (the dash line in Figure 6b), which is however not shown here for clarity. The values

of the strength of the ion-ion interaction are βI = 1 in (a) and βI = 2 in (b). For the plots of the

total ion density (ρ̄) see Figure 6b, and Figure 5 for the complete phase diagram.
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density (ρ̄) is similar and is shown in Figure 6b for completeness.

Interestingly, Figure 6 (dash lines) shows a very steep decrease of the density and order

parameter at the first order transition. This suggest a small metastability window and hints

that the transition may be only weakly first order. Further research is needed to resolve this

issue, however.

An important signature of any phase transition is an analog of compressibility, defined

here as κT = (1/ρ̄2)∂ρ̄
/

∂w. Although it is not clear whether this quantity can be di-

rectly extracted from experiments, we present its analysis because it provides additional

information about our phase transitions. For the second order transitions, occurring for

(βI)threshold < (βI) < (βI)tc, κT shows a finite jump at the transition (Figure 7a). Above

the trictirical point, the transition is a first order and there is a spike in κT at the transition

(not shown) due to the jump in the total ion density (the dash line in Figure 6b), while the

discontinuity in κT becomes very large (Figure 7b).

Taking a few kBT as a typical value of βI for room-temperature ionic liquids (cf. Fig-

ure 8) and assuming conventional ionophilic pores, corresponding to positive w, we deduce

from Figure 5 that our superionic liquid must be in the ordered state under normal condi-

tions. This is consistent with recent molecular dynamics simulations showing a crystal-like

structure of ions in narrow slit pores at no applied voltage.31 We shall look at the structure

of an ionic liquid in slit nanopores in a slightly more detail in the next section, where we

discuss the results of our three-dimensional off-lattice Monte Carlo simulations.

III. OFF-LATTICE MONTE CARLO SIMULATIONS

In addition to the analytical results based on the Bethe-lattice approach, we present

the results of grand canonical off-lattice Monte Carlo simulations of an ionic liquid in a

slit nanopore. Before we proceed, it is necessary to emphasise the following. Firstly, in

the Bethe-lattice approach the dimensionality of the system does not appear explicitly but

enters the model only via a coordination number q (note that q can be the same in different

dimensions, or different for different structures in the same dimension). In simulations we

consider a three-dimensional system, but restrict the ions to live inside slit-shaped ultra-

narrow pores, which shall effectively reduce the coordination number as compared to the

bulk. Secondly, formulating the model on a lattice, we implicitly imposed the structure
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which the ionic liquid attains in the ordered or disordered state. For off-lattice systems,

the properties of the these phases are a priori unknown and the purpose of our Monte

Carlo simulations is to understand the structure of an ionic liquid in such a strong nano-

confinement.

A. Simulation method

Ionic liquid molecules were modelled as charged hard spheres and a pore was constructed

from two parallel metal hard walls placed distance L apart. For the ion-ion interaction

potential we take

vαβ(z1, z2, r) =
4qαqβ
εpL

∞
∑

n=1

K0(πnr/L) sin(πnz1/L) sin(πnz2/L). (33)

where qα and qβ are ion charges, r the lateral distance between the ions, z1 and z2 ∈ [0, L]

are their positions perpendicular to the pore walls, and εp the dielectric constant inside the

nanopore. In what follows we take a constant, pore-width independent εp = 2.42, but we

note that εp can in principle depend on L and this may have a profound effect on the system

behaviour,73 particularly on the dependence of the coupling constant of our lattice model,

βI, on the slit width (cf. Figure 8).

Interaction potential (33) follows from the exact solution of the electrostatic problem of a

point charge confined between metal walls19 and determines the coupling constants I± which

thus depend on the pore width and ion diameter. Figure 8 shows βI = β|I±| as a function

of pore width for ions located on the central symmetry plane at the closest contact. This

figure suggests that in realistic systems only a first order (discontinuous) phase transition

can potentially be observed. Indeed, as shown by our Bethe-lattice approach, continuous

(second-order) transitions may take place only at low values of βI (see Figure 5), which do

not seem to be typical for ionic liquids in nanopores. Continuous transitions, however, can

not in general be ruled out for other systems.

Ion-pore wall potential due to the charge–image-charge interactions are (for monovalent

ions)19

Eself(z) = − e2

εpL

∫ ∞

0

[

1

2
− sinh(k(1− z/L)) sinh(kz/L)

sinh(k)

]

dk, (34)

where z is the position across the pore and e the elementary charge. These interactions are

defined as the difference between the electrostatic self energy of a point charge inside and
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FIG. 8. Relation between the pore width and the coupling constant βI = βI++ = βI−− = −βI+−

of the Hamiltonian (2). Interaction potential (33) at the closest contact for ions located on the

symmetry plane of the pore has been used to calculate βI.

outside of a pore. It does not depend on ion densities and the sign of the charge, and it is

negative for 0 ≤ z ≤ L promoting ions to enter a pore.

In simulations, similarly as in the lattice model, the resolvation energy of ions (wsim =

wsim
± ) controls the ion density in the pore. In the lattice model, the resolvation energy63 w

(see Eq. (3)) contains the ion–pore-wall interactions due to the image-forces. This means

that the two are related by wsim = w+Eself(z = L/2), assuming that ions position themselves

on the symmetry plane of the pore. For instance, for a 0.55nm wide pore the shift in the

resolvation energy is Eself(L/2) ≈ −25kBT .

Potentials (33) and (34) have been implemented in Towhee simulation package74,75 and

grand canonical Monte Carlo simulations have been performed using the standard trans-

lational move, Widom insertion/deletion move76 and molecule-type swap move.20 Periodic

boundary conditions were applied in the lateral (x and y) directions. A single simulation

consisted of in total 5× 106 − 107 steps in equilibration runs and 2× 107 − 5 × 107 in pro-

duction runs. For dense systems we performed a second round of simulations starting from

the saved molecular configurations obtained in the previous runs.

B. Monte Carlo results

It is not easy to identify the order parameter (δρ) from our Monte Carlo simulations,

and we show therefore the total ion density as a function of the resolvation energy wsim, the
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FIG. 9. Total ion density in a slit pore as a function of the resolvation energy w (here negative

of ionophobicity) obtained from Monte Carlo simulations. Ion diameter d = 0.5nm, pore width

L = 0.55nm, and temperature 333K. The arrows point out the values of w shown in Figure 10.

The resolvation energy in the simulations is related to the resolvation energy of the lattice model

by wsim = w+Eself(L/2) ≈ w−25kBT . This is because w contains the ion-pore interaction energy

(34), due to the ion self-energy, which was not included in wsim.

negative of which is called ionophophicity63 (see Figure 9). Although the density exhibits

a similar behaviour as predicted by the theory, the transition between the dilute and dense

states (or ionophobic and ionophilic, or disordered and ‘ordered’ or ‘crystalline’) occurs

rather smoothly, and we have not found sufficiently strong arguments to identify a phase

transition. It is possible that this is due to the absence of true long-range order in two

dimensional ‘solids’ (note however that our system is only quasi two-dimensional), so that

the ionic liquid transforms smoothly into the locally ordered state, but remains fluidic on a

larger scale, as the pore ionophilicity increases (see also below). On the other hand, phase

transitions are associated with singularities in the free energy which are not easy to capture

in simulations.42

Figure 10 shows the cation-anion radial distribution functions (g+−) for three values of the

resolvation energy wsim. The first peak in all cases is at r ≈ d± = 5Å and suggests formation

of ion pairs.77 The system exhibits a short-range order in a dense state (small −wsim) that

extends to about 30Å, but its magnitude decreases with decreasing wsim, as one may expect

(compare Figure 10a-b). For a dilute state, corresponding to a weak ionophobicity, the

cation-cation RDF shows a behaviour typical for liquids.

The cation-cation (and anion-anion) RDFs show unusual two peaks (dash red lines in
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FIG. 10. Unnormalized in-plane radial distribution functions (RDFs) gαβ for (a) wsim = −15kBT ,

(b) wsim = −25.8kBT and (c) wsim = −26.7kBT . These values are shown by arrows in Figure 9.

The solid and dash lines show cation-anion and cation-cation RDFs, respectively. The anion-

anion RDFs coincide with the cation-cation RDFs and are not shown. The inset in (a) shows

a snapshot from our Monte Carlo simulations and demonstrates the origin of two peaks in the

cation-cation (and anion-anion) RDFs: The first peak denoted by (1) comes from the cations from

the same ‘cationic snake’, while the second peak denoted by (2) originates from the cations from

the neighboring snakes. Temperature is 333K, ion diameter 0.5nm, and pore width 0.55nm. The

lower plots (d-f) show the corresponding snapshots from the Monte Carlo simulations.

Figures 10a-c), instead of the standard single peak located between the subsequent peaks in

g+−. These peaks in g++ can be related to the formation of ion ‘snakes’ of the same sign; these

snakes result, in fact, from the cation-anion chains which are shifted with respect to each

other such that the cations and anions form separate snakes (see Figures 10d-f). The first

peak in g++ is likely due to the in-snake neighboring cations and is located at r ≈ 7.4Å & d

(d = d± is the ion diameter). The second peak is at r ≈ 10.4Å ≈ 2d and comes from

the cations from two different cation-snakes separated by an anion snake (see the inset in

Figure 10a). Remarkably, this two-peak behaviour survives also at low densities, although

it is less pronounced (Figure 10c). A similar snake-like structure has been obtained within

a continuous mean-field theory for molten salts confined between electrodes of different
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polarity.78

Figures 10d-f show the snapshots from the Monte Carlo simulations. Interestingly, as the

resolvation energy decreases and the pore becomes less occupied by ions, first clusters of

voids appear in the system which take up more and more space until they occupy most of

the space and we see small mostly neutral clusters of an ionic liquid (compare Figures 10e

and f). A similar clusterisation has also been observed for ionic liquids in the bulk79,80. It

is difficult to estimate the life-time of these clusters from our Monte Carlo simulations, but

they seem to be relatively stable and appear in all snapshots we have looked at. Such a

clusterisation may have important implications for charging kinetics and deserves a separate

study.

IV. CONCLUSIONS AND DISCUSSION

We have studied the phase behaviour and structure of ionic liquids confined in non-

polarised narrow slit pores with conducting walls. In such a confinement, the interactions

between the ions are effectively screened out, and we have used this fact to formulate and

solve a lattice model of such a superionic liquid, taking into account the nearest neighbour

interactions only, and resorting to the Bethe-lattice approach for bipartite lattices with the

number of nearest neighbours q = 3 and q = 4. This approach has been extensively used in

different contexts and for various lattice models, and has shown to reproduce well the phase

behavior, including the order of phase transitions, and to give a reasonable estimate for the

location of phase transitions. We supplemented these analytical results by off-lattice Monte

Carlo simulations of an ionic liquid in slit narrow pores.

Within the Bethe-lattice approach, we calculated the complete phase diagram of a supe-

rionic liquid in the (βI, βw) plane (Figure 5), where β is the reciprocal temperature, I is

the (pore-width dependent) strength of the ion-ion interactions and w the ion’s resolvation

energy determining the affinity of ions towards pores. The phase diagram consists of a dis-

ordered phase, in which one has a homogeneous mixture of ions of two types and voids, and

an ordered phase, in which ions of one type occupy predominantly one of the sub-lattices.

These two phases are separated by a demarcation line which approaches a finite asymptotic

value (βI)threshold as the resolvation energy βw → +∞ (implying strongly ionophilic pores).

No phase transition takes place for βI < (βI)threshold and the system is in the disordered
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state. For βI between (βI)threshold and (β|I|)tc, we observe a line of critical points (second

order transitions) terminating at the tricritical point (βI)tc. It is possible, however, that

fluctuations (and long-range interactions) can shift this transition upwards and make it first

order.81 For a second order transition, the total ion density and the order parameter vary

continuously across the transition; both quantities show a cusp and the quantity analogous

to compressibility exhibit a finite jump at the transition (Figures 6 and 7a, respectively).

The first order transition is predicted for βI above (β|I|)tc. In this case, there is a finite

jump in the total ion density, order parameter and compressibility (Figures 6 and 7b), and

the compressibility shows additionally a spike at the transition.

An important observation is that by increasing the coordination number (q), the line of

phase transitions between the disordered and ordered phases shifts down left, and the value

of (βI)threshold = ln
√

q/(q − 2), below which no transition occurs, decreases with increasing

q. This implies that systems with larger coordination numbers enter into the disordered

state at lower values of βI and βw, and thus at higher temperatures (at fixed I and w).

This is understandable because higher energies are required to break cation-anion ‘bonds’ in

the ordered state, as compared to a system with fewer such bonds, whose number increases

with increasing the coordination number q.

We have realised that in realistic ionic liquids in slit nanopores, the interaction strength

(βI) is typically of the order of a few kBT or more (Figure 8). Since the tricritical points

are at rather low values of βI ((βI)tc ≈ 1.8 for q = 3 and (βI)tc ≈ 1.09 for q = 4), it

seems unlikely to observe continuous transitions between the ordered and disordered states

in confined ionic liquids. We may however expect to see the first order transitions, which

are characterised by the discontinuity of the density at the transition, and can potentially

be seen experimentally by changing temperature or pore width. Interestingly, recent exper-

imental82,83 and theoretical50 studies suggest that ionophobicity of pores can be effectively

controlled by using solvent. This means that such phase transitions can potentially be

observed as a function of the solvent concentration.

Surprisingly at the first glance, our theory predicts that the transition into the disordered

phase happens at negative values of the resolvation energy63 w (see Eq. (3)), which also

means that a transformation from ionophilic to ionophobic occurs at w < 0 (unlike in

simulations where it is at w ≈ 0, see Figure 9). This result can be understood as follows.

For a strongly ordered phase, sub-latticing implies that each ion faces only ions of the
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opposite sign (see Figure 3), and we can easily estimate the chemical potential µordered ≈
−Iq/2 − w. For the disordered phase and low values of w we have µdisordered ≈ 0, and we

thus find that the (first order) transition occurs at wtransition ≈ −Iq/2. This estimate agrees

remarkably well with the exact result (Figure 5). However, our simulations show that ions

have both cations and anions as their neighbours (see Figure 10d-e), and this shall decrease

the contribution from the ion-ion interactions (the first term in µordered) and thus increase

wtransition. Additionally, next to nearest (and higher order) neighbour interactions, neglected

in our lattice model, will reduce the value of wtransition further, and may potentially bring it

closer to zero (as seen in simulations). It would thus be very interesting to study the effects

of such long-ranged interactions on the location, order and existence of the phase transitions

predicted here by the Bethe-lattice approach.

Our Monte Carlo simulations support the Bethe-lattice results in that they (i) demon-

strate an abrupt drop in the ion density with an increase of ionophobicity (compare Fig-

ures 6b and 9); and (ii) for a dense state they show the existence of two ‘sub-lattices’ of

anions and cations and in-plane crystal-like (albeit short range) ordering of ions (Figure 10).

However, due to the finite size of a simulation box and limited computational resources, it

has not been possible to reproduce the full ‘phase diagram’ or even find sufficiently strong

arguments to identify a true phase transition. Further work is therefore required to verify

the predictions of our lattice model.

Interestingly, however, the simulations reveal the formation of ordered ionic liquid clus-

ters, separated by voids, in the region on the phase diagram where the lattice model predicts

the ordered phase. Such a clusterization might be a sign of the onset of a phase separation

between the dense (ordered) and dilute (homogeneous or disordered) phases, and may have

important consequences for charging dynamics. Finally, our Monte Carlo simulations suggest

formation of ionic ‘snakes’ which lead to unusual two peaks located in close proximity of each

other in the cation-cation and anion-anion radial distribution functions (Figures 10d-f). It

would be very interesting to verify these findings experimentally, e.g. by neutron diffraction

on ions using isotopic substitution (provided of course that a large contrast with electrodes

can be achieved), and thus to shed new lights on the structure and phase behaviour of ionic

liquids in such strong nanoconfinements.
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Appendix A: Mapping to the classical spin S = 1 model

Since the hard-core interaction excludes the state (ni, mi) = (1, 1) for the same site, there

is a well-known connection between the present model and the three-state lattice gas model84

or, equivalently, a special Blume-Emery-Griffiths (BEG) spin S = 1 model85. The mapping

to the BEG model is accomplished as follows. We assign, in a usual fashion, to each site a

three-state variable Si, such that

Si =























+1, site i is occupied by ‘+’ particle,

−1, site i is occupied by ‘−’ particle,

0, site i is empty.

(A1)

Then, the occupation numbers ni and mi may be straightforwardly rewritten in terms of Si

as

ni = (Si + S2
i )/2 mi = (−Si + S2

i )/2 (A2)

so that the Hamiltonian becomes

H = −J
∑

〈ij〉

SiSj −K
∑

〈ij〉

S2
i S

2
j − C

∑

〈ij〉

(SiS
2
j + SjS

2
j )− h

∑

i

Si +∆
∑

i

S2
i , (A3)

where

J = −(I++ + I−− + 2I+−)

4
, K = −(I++ + I−− − 2I+−)

4
, C = −(I++ − I−−)

4
,

h =
µ
(0)
+ − µ

(0)
−

2
, ∆ = −µ

(0)
+ + µ

(0)
−

2
. (A4)

As one can readily notice, J < 0, since all interactions strengths I are positive in our case.

Note that such model with J < 0 was already applied to describe crystallization and the

order-disorder transition in a binary alloy within a mean-field approximation86.

In case of equal interaction strengths between the like species, i.e., when I++ = I−−, the

constant C in (A3) becomes equal to zero, C = 0, so that the model reduces to a well-studied

version of the original BEG model. It was treated by a wide variety of approaches (see,

e.g., Ref. 87 and references therein) and has a rich phase diagram including paramagnetic,

ferromagnetic, quadrupolar phases, and multicritical points, depending on the ratio of K/J .

Note that the ferromagnetic case J > 0 was mainly studied for bipartite lattices since in the

absence of an external field (h = 0) one can map the antiferromagnetic case J < 0 onto the
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ferromagnetic case by merely redefining the spin directions on one of the sublattices. Note

that in ionic liquids ions are single charged in the vast majority of cases. Therefore, the

choice I++ = I−− is absolutely “natural”, given that the ionic valencies are equal.

Physically, for the systems with Coulomb interactions, when I++ = I−−, assuming also

that the ions of both types have approximately the same size, one should expect that

I++ = I−− = I+− = I. This leads to K = C = 0, and thereby to the so-called spin-1

Blume-Capel (BC) model in a magnetic field. This model was originally invented to describe

magnetic systems88,89 and has been subsequently applied to a large variety of physical prob-

lems (see, e.g., Ref. 90 and references therein). The original mean-field treatments88,89 were

continued91,92 and completed by various analytical and numerical studies of two-dimensional

and tree-dimensional BC models93–115. We note that already a mean-field analysis presented

in the seminal works88,89 showed that the BC spin-1 model exhibits a second-order phase

transition line separating a disordered phase from an ordered one, and changing at a tricrit-

ical point into the line of the first-order phase transitions for sufficiently large values of ∆.

The phase diagram, location of the tricritical point, as well as values of the critical expo-

nents were quantitatively analysed within high-93–95, and low-temperature series expansion

methods95, different effective theories96–98, variational approximations99, mean-field renor-

malization group (RG)100, Kadanoffs lower-bound RG transformations101, nonperturbative

RG schemes102, various Monte-Carlo methods103–112 , constant-coupling approximation113,

transfer matrix finite-size scaling114, lowest approximation of cluster variation method115,

and pair approximations for the free energy110.

We note finally that the BC model has also been studied using the Bethe lattice ap-

proximation. The first exact results for the BC model on the Bethe lattice with a general

coordination number q were obtained within the BEG model71,72,116,117. Analysing fixed

points of exact recurrent equations, the specific features of the transition between the para-

magnetic and the nferromagnetic phases, as well as the existence of the tricritical point were

investigated. As was noted in Ref. 118, these studies did not take into account a bipar-

tite nature of the Bethe lattice. Recursion relations for the bipartite lattices in addition to

fixed points have also cycles, associated with different thermodynamical phases. Correlation

functions for the BEG model on Bethe lattice were obtained in Refs. 119 and 120. Numeri-

cal analysis of fixed points and cycles solutions of exact recursion relations were performed

in Refs. 121 and 122. For the case of Blume-Capel model such investigations also were
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performed123.

Appendix B: Bethe lattice solution for coordination number q = 3 (details)

Using variables u and v, Eq. (26), the total ion density and the order parameter on one

of the sublattices, Eq. (24), can be put in the form:

ρ̄A =
2uz(u2 + 3v2)

1 + 2uz(u2 + 3v2)
, δρA =

2vz(3u2 + v2)

1 + 2uz(u2 + 3v2)
(B1)

From (25) and (20), we find that u and v obey the following system of two coupled nonlinear

equations:

u = cosh(βI) +
(F + 1)2(1− cosh(βI))

16u2z2 sinh2(βI) (F − 2u2z) + 2z(F cosh(βI) + 1)2 + (F + 1)2
;

v =
16uvz2 sinh2(βI)(F cosh(βI) + 1)

16u2z2 sinh2(βI) (F − 2u2z) + 2z(F cosh(βI) + 1)2 + (F + 1)2
, (B2)

where

F = 2z(u2 + v2) . (B3)

This system of equation has two sets of solutions: (a) v = 0, corresponding to the homoge-

neous case with xA = yA = xB = yB and (b) v 6= 0, in which case the symmetry between

the two sub lattices is broken.

In the case (a), the variable u obeys the following non-linear equation

f1(u, z, I)f2(u, z, I) = 0, (B4)

with

f1(u, z, I) = u− 1 + 2u3z (1− cosh(βI)) (B5)

Equation f1 = 0, which is cubic in u, has a single real solution, which is depicted in Figures 2

and 4 by a solid black curve. This solution can also be obtained from the first equation in

(21) by setting xB = yB = xA = yA. It describes a disordered phase, where we have the same

densities of ’+’ particles and ’–’ particles on each of the sublattices, and in consequence - in

the whole system. In this case one evidently has that δρA = δρB = 0 and ρ̄A = ρ̄B = ρ̄.

Next, the function f2(u, z, I) is given explicitly by

f2(u, z, I) = 1 + 2(u− 1)uz + 2z cosh(βI)(1 + u+ 2u2z cosh(βI)) (B6)
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and describes the situation when xA = yA 6= xB = yB. Equation f2(u, z, I) = 0 has no real

solutions, which means that thermodynamical phases with xA = yA 6= xB = yB do not exist.

In the case (b), i.e., for v 6= 0, we can express v through the variable u from the second

equation in (B2), to get the following closed-form non-linear equation

f3(u, z, I)f4(u, z, I)f5(u, z, I) = 0 (B7)

where

f3(u, z, I) = 1− cosh(βI) + 4uz sinh(βI)(u− cosh(βI)) (B8)

describes the situation with the broken symmetry, that is, xA = xB 6= yA = yB with

1 + F + 4uz sinh(βI) = 0 (B9)

Real solutions for xA, yA are obtained in the case I < 0, corresponding to ferromagnetic

(J > 0) BC model. Solutions of the latter equations are shown by red line in Figure 2. This

solution can be also obtained from (21) by setting xB = xA and yB = yA. Next, we have

f4(u, z, I) = 1− cosh(βI)− 4uz sinh(βI)(u− cosh(βI)) , (B10)

which describes the case xA = yB 6= xB = yA with

1 + F − 4uz sinh(βI) = 0. (B11)

Real solutions for xA and yA are obtained in the case I > 0, which now corresponds to

antiferromagnetic (J < 0) BC model. Note that (B8) and (B9) transform into (B10) and

(B11) (and vice versa) upon the change of the sign, i.e., I → −I. It was expected for

bipartite lattices that for h = 0 results for the ferromagnetic model correspond to the

results of the antiferromagnetic model upon the reversal of the sign of the interactions,

J → −J116,121. However, explicit solution for the antiferromagnetic model can be extracted

using the equations for the sublattices, as we have shown. Real solutions for xA and yA

are depicted by the red line Figure 2. These real solutions describe the ordered phase,

where we have the same densities of ’+’ particles on the sublattice A, and of ’–’ particles on

the sublattice B (and vice versa). Densities ρ+ and ρ− in the whole system are the same.

Therefore, in this case we have δρA = −δρB and ρ̄A = ρ̄B = ρ̄.
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Finally, the function f5(u, z, I) describes the case xA 6= yA 6= xB 6= yB and is defined

explicitly by

f5(u, z, I)=−16u4z4 sinh4(2βI)− 128u2z3 sinh4(βI) cosh(βI)
(

cosh2(βI) + u2
)

−

16u2z2 sinh2(βI)
(

(cosh(βI)−1)2
(

cosh2(βI)−2u cosh(βI)−u2
)

+4 sinh2(βI)
)

+

16uz sinh2(βI)(cosh(βI)− 1)2 − (cosh(βI)− 1)4 (B12)

Equation f5 = 0 does not have any real solution for x and y.

Appendix C: Bethe lattice solution for coordination number q = 4

For coordination number q = 4, the disordered phase is described by the equations

v = 0 (C1)

f1(u, z, I) = 1 + 2u3z cosh(βI)− u
(

2u3z + 1
)

= 0, (C2)

while for the ordered phase we have

2uz
(

u2 + 3v2
)

(sinh(βI)− 3u) + u
(

16u2z sinh(βI)− 3
)

= 0 (C3)

f4(u, z, I) = (cosh(βI)− u)
(

3− 16u3z sinh(βI)
)

− (u− 1)(sinh(βI)− 3) = 0, (C4)

From these equations we obtain for the second order phase transitions:

zc =
(−3 sinh((βI)c) + cosh((βI)c)− 1)3

54 sinh((βI)c)3(cosh((βI)c)− 3 sinh((βI)c))
, (C5)

which are depicted by a solid line in Figure 5. The order parameter δρ as well as density of

all ’+’ and ’–’ particles ρ̄ are shown in Figure 11.

It is important to note that we observe essentially the same qualitative behavior of the

pertinent parameters as in the case of the Bethe lattice with the coordination number q = 3.

This suggest that our conclusions are likely generic and are expected to be valid for an

arbitrary coordination number of the embedding lattice.
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FIG. 11. (a) The order parameter, δρ, and (b) the total ion density, ρ̄, as a function of resolvation

energy βw. The results are obtained by the Bethe-lattice approach for coordination number q = 4.

Solid lines show δρ and ρ̄ for a second order transition (βI = 0.7) and the dash lines for a first

order transition (βI = 1.2).
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32 C. Péan, C. Merlet, B. Rotenberg, P. A. Madden, P.-L. Taberna, B. Daffos, M. Salanne, and

P. Simon, ACS Nano 8, ACS Nano (2014).

33 Y. He, J. Huang, B. G. Sumpter, A. A. Kornyshev, and R. Qiao, J. Phys. Chem. Lett. 6, 22

(2015).

34 A. A. Lee, D. Vella, A. Goriely, and S. Kondrat, Phys. Rev. X 6, 021034 (2016).

35 K. Kiyohara, T. Sugino, and K. Asaka, J. Chem. Phys. 134, 154710 (2011).



33

36 J. Vatamanu, M. Vatamanu, and D. Bedrov, ACS nano 9, 5999 (2015).

37 V. Lockett, R. Sedev, J. Ralston, M. Horne, and T. Rodopoulos, J. Phys. Chem. C 112, 7486

(2008).

38 W. Zhou, S. Inoue, T. Iwahashi, K. Kanai, K. Seki, T. Miyamae, D. Kim, Y. Katayama, and

Y. Ouchi, Electrochem. Comm. 12, 672 (2010).
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