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Abstract

In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field1

using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually2

required. These data correspond to integration of the parallel and perpendicular projection of the vector3

field along the integration lines and are called the longitudinal and transverse measurements, respectively.4

In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT5

methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that6

can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector7

fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal8

measurements without the need of explicitly evaluating the transverse measurements. To the best of our9

knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-10

harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example,11

in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the12

derivation of the electric field inverse problem and the numerical approximation of the line integrals.13

We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements14

with the help of two sparsity constraints that are constructed from the transverse measurements and15

the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not16

require mathematical modelling of the sources. By numerical simulations, we show that the pattern of17

the electric field can be correctly estimated using VT and the location of the source activity can be18

determined accurately from the reconstructed magnitudes of the field.19

Keywords: Vector tomography, electric field, Radon transform, line integral, inverse problem, sparsity

constraint

1. Introduction20

Vector fields such as gravitational and electromagnetic fields are fundamental objects of study in21

physics. Vector tomography (VT) is a framework that can be used to reconstruct such unknown vector22

fields using line integral measurements [52, 57]. The longitudinal line measurements are obtained by23

∗Corresponding author. Tel.: +49 251 8335127 Fax: +49 251 8332729
Email address: koulouri@uni-muenster.de (Alexandra Koulouri)

Preprint submitted to Journal of Computational Physics July 29, 2016

*Unmarked Revised Manuscript
Click here to view linked References



projecting the studied field on lines that trace the domain and then integrating the projected field along24

the lines. The transverse line measurements are acquired similarly but now the field components that are25

perpendicular to these lines are integrated. VT methods are attractive because they can be used with26

non-invasive measurement techniques (e.g. ultra-sound, [34, 31]) that can give a larger amount of data27

[18, 36] compared to the one-sensor one-measurement set-up [44].28

VT studies have been carried out both in theoretical level and applications, concentrating mainly29

on the reconstruction of smooth vector fields [57]. Theoretical analysis for the reconstruction of smooth30

velocity fields have been presented in [42, 43, 54, 33, 8, 39, 50, 59, 37, 29] using such methods as the31

inverse Radon transform [25], the inverse Fourier transform with central slice theorem [41, 13] and back32

projection (parallel beam tomography) [38, 53]. The VT framework has been used for the reconstruction33

of particle distributions [5], ion fields in plasma [17, 27, 3, 4], velocity fields in blood veins [33, 30, 57],34

magnetic field of the corona of the sun [37], Kerr effect in optical polarization tomography [26] and micro-35

structures in oceanographic tomography [50]. Both linear and non-linear iterative algorithms have been36

proposed for vector functions with appropriate smoothness [59, 41, 29, 48, 18, 36, 57].37

1.1. Unbounded domain38

The theoretical basis for reconstructing smooth vector fields that decay sufficiently rapidly to zero39

in the spatial domain was introduced in [42]. Based on Helmholtz’s theorem [2], vector fields can be40

decomposed as a sum of irrotational (curl-free) and solenoidal (divergence-free or source-free) components41

and it was first shown that, for a 2-dimensional field, the solenoidal component can be imaged with the42

help of longitudinal measurements [42]. It was subsequently shown that the transverse measurements43

were required in order to recover the remainder of the field [8].44

The problem was extended to three dimensions in [49] using the formalism of the 3-dimensional (3D)45

vector Radon transform. First, a generalization of the integral measurement was introduced. It was46

called the probe transform (or general product measurement) and it was formulated as an inner product47

between the Radon transform of a field and a unit-vector in a specific direction. It was also shown48

that three types of measurements were required for the recovery of a 3D field. In [57], the analysis was49

generalized to multidimensional cases.50

However, in most practical situations, it is difficult or even impossible to perform the transverse51

measurements (i.e. the probe transform in the transverse direction). For example in Doppler techniques52

[16] or in geophysics [43], this type of measurement is not physically realizable. In fact, the transverse53

measurements can be obtained only in very specific set-ups [8, 34].54

1.2. Bounded domain55

In practical applications, vector fields are defined in bounded domains where the field is not identically56

zero at the boundary. In fact, it is often the boundary that partially defines the field itself: for example,57

the homogeneous Neumann condition implies that the field can have only tangential component on the58
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boundary. The VT framework was extended to non-homogenous boundary conditions in [8, 46]. The field59

decomposition included an additional harmonic field component that satisfied the boundary conditions60

[8]. In 2D circular domains, it was found that the harmonic component is imaged equally in both61

the longitudinal and transverse measurements but it had half of its magnitude [8]. In [46], the results62

were generalized in 3D arbitrary shaped domains. In particular, it was shown that the longitudinal63

measurement can be used to image both the homogeneous solenoidal component and the part of the64

harmonic term that arises from the field component that is tangential to the boundary. Additionally,65

transverse measurement reconstructs the irrotational component and the harmonic part that arises from66

the field component that is normal to the boundary.67

1.3. Electric field with non-zero divergence68

There are theoretical studies in which arbitrary vector fields have been investigated [52]. However,69

to the best of our knowledge, there are no previous studies in which numerical reconstructions of non-70

zero divergence vector fields in a bounded domain have been carried out using only the longitudinal line71

measurements. This kind of vector fields are common in physics and can be, for example, gravitational or72

electromagnetic fields that are generated by unknown sources (and/or sinks) that are located inside the73

domain of interest. In this paper, the aim is to use VT to reconstruct such non-zero divergence vector74

fields. In particular, we employ VT for the reconstruction of low-frequency, time-harmonic electric fields75

in a convex bounded domain that includes a dipole source. Strategies to estimate such electric activity76

are of great interest especially in medical imaging modalities such as electroencephalography (EEG) in77

which the imaging problem is traditionally parametrisized using source spaces [23, 61]. The proposed VT78

modelling assumes the same physical conditions as the dipole source imaging problem i.e. the underlying79

electric field is irrotational. The existence of a dipole inside the domain implies that the field has a80

singularity. Previously, it has been shown that VT can be used also in such cases [15, 14].81

The use of VT rather than traditional inverse source approaches [22, 44] offers two advantages. First,82

the continuous VT problem for the recovery of the electric field using a set of line integrals is only a83

moderately ill-posed problem [41] whereas the inverse source problem is a severely ill-posed problem that84

cannot be solved from boundary measurements without a priori knowledge [1]. In practice, however,85

prior information is also required by the VT formulation (e.g. introduced as a penalty term) in order to86

obtain a stable solution since only a finite number of measurements is available for the reconstruction87

(incomplete data problem [41]). Second, the VT approach does not require an explicit mathematical88

model of the underlying sources. For example, in EEG source imaging there is an extensive literature on89

different mathematical models of neural sources [32, 31, 9, 28, 51, 44, 6].90

In the proposed VT approach, we use a set of line integrals that trace a conductive 2-dimensional91

domain and result in a linear system of equations. We show that the longitudinal measurements are deter-92

mined by the electric potentials on the domain boundary and by employing the vectorial Radon properties93

and the homogeneous Neumann boundary condition that the transverse measurements give information94
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on the underlying current sources. We describe in detail the theoretical background, the numerical ap-95

proximation of the line integrals and finally present the discretized electric field inverse problem which96

is solved with the help of the L1-norms of the transverse measurements and the discrete vector Laplace97

operator. The resulting non-linear minimization problem is solved using convex optimization. Finally,98

we show by numerical simulations that electric fields with non-zero divergence can be reconstructed in a99

bounded domain.100

2. Mathematical preliminaries101

In this section, we explain the notations and define the function spaces and the different Radon102

measurements. More general information on the Radon transform can be found from [25, 13].103

2.1. Distributions104

The theory of distributions (a.k.a. generalized functions) provides a powerful framework to describe105

the potentials and fields of the electromagnetic theory [56]. It allows one to calculate such physical106

quantities as point dipoles and electric fields with singularities and/or discontinuities which cannot be107

estimated using the classical calculus [56]. Therefore, in the following analysis we consider that the studied108

electromagnetic quantities belong to the space of distributions denoted by E ′(Rd;R2) in the unbounded109

domain R
2 and E ′(Rd; Ω) in Ω which is convex, open and bounded with smooth boundary ∂Ω [55]. Here,110

the index d denotes the dimension of the function i.e. d = 1 for scalars and d = 2 for vector valued111

functions which are denoted by f and f, respectively. Moreover, the values (or measures) of f are given112

by the scalar product 〈f, ϕ〉 where ϕ ∈ C∞
0 is a set of smooth, compactly supported (usually localized)113

test functions defined based on the properties of the electromagnetic problem [56]. Accordingly, in the114

current problem the Radon transforms will be interpreted in the sense of distributions [13, 46].115

2.2. Radon transform of a scalar function116

We denote by x ∈ R
2 a point, f : R2 → R a scalar function and L(l, ŝ⊥) := {x = (x, y) ∈ R

2 : x·ŝ⊥ = l}117

a line where l ∈ R is the signed distance of the line from the origin and ŝ⊥ = (cosφ, sinφ) is the unit118

normal vector of L (see, Figure 1 for details). The angle φ ∈ [0, 2π) is measured counter-clockwise from119

the positive x-axis. Similarly, we define ŝ = (− sinφ, cosφ) that is the unit vector parallel to the line L.120

The mapping defined by the line integral of f(x) along a line L is the two-dimensional Radon transform121

of f and is given by122

f̃ = R{f}(l, ŝ⊥) =
∫
x∈L

f(x) d�(x), (1)

where d�(x) is an increment of length along L [41] and R : E ′(R;R2) → D′(R× [0, 2π)) where D′ denotes

the space of symmetric distributions [55, 13]. If the position vector on L is described by x = lŝ⊥ + tŝ

where t ∈ R, then the line integral can be written as

f̃ =

∫
R

f(lŝ⊥ + tŝ) dt.

4



l

x

y

L(l, )

φ

Figure 1: The integration path L is defined with the help of the signed distance from the origin l and the unit normal vector
ŝ⊥. In addition, ŝ denotes the unit vector along L.

This equation implies that the integration is always performed in the direction of ŝ. Using the Dirac-delta123

function [13], the line integral can be expressed as the surface integral124

f̃ = R{f}(l, ŝ⊥) =
∫
R2

f(x)δ(l − x · ŝ⊥) dx. (2)

The corresponding scalar inverse Radon transform is125

f = R−1{f̃} =
1

4π
R#H ∂

∂l
f̃ , (3)

where R# is the adjoint operator of R, H ∂
∂l is the filtration part of the inverse transform and H denotes126

the Hilbert transform [13].127

Additionally, we will find useful the Radon transform of a directional derivative [13] along a unit128

vector ω̂129

R{ω̂ · ∇f} = ω̂ · ŝ⊥ ∂

∂l
R{f}, (4)

which is valid for f,∇f ∈ E ′ and R{ω̂ · ∇f} ∈ D′ because 〈R{ω̂ · ∇f}, ϕ〉 = 〈ω̂ · ŝ⊥ ∂
∂lR{f}, ϕ〉 ∀ϕ ∈ C∞

0130

[13].131
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2.3. Ω-Radon transform of a scalar function132

In real applications usually we consider that f : Ω → R where Ω is a simply connected domain, open133

and bounded with smooth boundary ∂Ω. The Ω-Radon transform is134

f̃Ω = RΩ{f}(l, ŝ⊥) =
∫
Ω

f(x) δ(l − x · ŝ⊥) dx. (5)

If f c ∈ E ′, defined on R
2, is such that f c = f on Ω, then Ω-Radon transform RΩ is the restriction of the135

Radon transform to functions on R
2 that identically vanish outside of Ω expressed as136

f̃Ω =

∫
R2

f c(x) v(h(x)) δ(l − x · ŝ⊥) dx = R{f cvΩ}(l, ŝ⊥). (6)

For simplicity, we write vΩ = v(h(x)). The indicator(Heaviside) function v : R → R is defined as137

v(s) =

⎧⎪⎨
⎪⎩
1, s > 0

0, s ≤ 0

(7)

where h(x) is a signed distance function satisfying138

h(x) =

⎧⎪⎨
⎪⎩
d(x, ∂Ω), x ∈ (Ω

⋃
∂Ω)

−d(x, ∂Ω), x ∈ R
2/(Ω

⋃
∂Ω)

(8)

where d(x, ∂Ω) := infy∈∂Ω d(x, y) is the shortest distance of the point x to the boundary ∂Ω. For the139

signed distance function, we have that ∇h(x) = −n̂(x) on a (piecewise) smooth boundary ∂Ω, where n̂140

is the outward unit normal vector [45].141

2.4. Ω-Radon transform of a vector function142

In the current analysis, we operate in a bounded convex domain Ω ⊂ R
2 on a vector function f =143

(fx, fy) : Ω → R
2. The vectorial Radon transform of vector f is the Radon transform of its elements [46],144

i.e.145

f̃Ω = (f̃Ωx, f̃Ωy) = RΩ{f}(l, ŝ⊥). (9)

As we will see in the next section, the inner product of the vectorial Radon transform with a unit vector146

yields to a scalar quantity which can be measured in some applications.147

2.5. Line integral data148

In 2-dimensional VT, two different types of line integral measurements are used to reconstruct vector149

fields. The first is the line integral150

I
‖
L(l, ŝ

⊥) =
∫
L

ŝ · f(x) d�(x) = ŝ · RΩ{f}(l, ŝ⊥), (10)
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which is the product of the vectorial Radon with the unit vector ŝ and called the longitudinal measurement151

[52]. The second line integral is called the transverse measurement [52] and it is defined as152

I⊥L (l, ŝ⊥) =
∫
L

ŝ⊥ · f(x) d�(x) = ŝ⊥ · RΩ{f}(l, ŝ⊥). (11)

The unit vectors ŝ = (sx, sy) and ŝ⊥ = (−sy, sx) are defined as in Section 2.2 and Figure 1.153

3. Theory154

3.1. Electric field with a current source in a bounded domain155

Let us consider a bounded convex domain Ω ⊂ R
2 with electrical conductivity σ(x), x ∈ Ω and an156

electric source with (primary) current density js : Ω → R
2. The electric source induces an electric field157

e : Ω → R
2. The total current density in the medium can be presented as a sum of the primary and158

secondary current [35], i.e.159

j(x) = js(x) + σ(x)e(x). (12)

For current signals with low frequencies, the quasi-static Maxwell equations can be used

∇× e(x) = 0 (13a)

∇× h(x) = j(x), (13b)

where h(x) is the magnetic field intensity. The divergence of equation (13b) gives

∇ · ∇ × h(x) = ∇ · j(x) (14a)

0 = ∇ · (js(x) + σ(x)e(x)) (14b)

∇ · σe(x) = −∇ · js(x), (14c)

which relates the electric field to the current source.160

Because the electric field is irrotational, Equation (13a), the field can be expressed as161

e(x) = −∇u (15)

where u is a scalar potential [23, 61]. In this paper, we consider that u is uniquely defined as the solution

of the Poisson equation with the following boundary conditions

∇ · σ∇u = ∇ · js(x) (16a)

∂u

∂n̂
= 0, on ∂Ω, (16b)∫

∂Ω

u dS = 0, (16c)
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where ∂Ω is the boundary and n̂ is the outward unit normal vector. The homogeneous Neumann condition162

(16b) implies that the electric field is tangential at the boundary, n̂ · e|∂Ω = 0, and the condition (16c)163

ensures that the solution is unique [40, 2].164

3.2. Line integrals through direct substitution165

In this vector tomography framework, we consider two types of line integral measurements of the166

electric field. If we directly evaluate the integrals (10) and (11) by substituting the electric field with the167

negative gradient of the scalar potential, first, the longitudinal integral measurements are168

I
‖
L(xa,xb)

=

∫
L(xa,xb)

e(x) · ŝ d�(x) =
∫
L(xa,xb)

−∇u · ŝ d�(x) = u(xa)− u(xb), (17)

where u(xa) and u(xb) are the electric potential values at the intersections of the line L and the boundary

∂Ω and ŝ = (sx, sy) is the unit vector as defined in Section 2.2 and Figure 1. Second, the transverse line

integral measurements are

I⊥L(xa,xb)
=

∫
L(xa,xb)

e(x) · ŝ⊥ d�(x) (18a)

=

∫
L(xa,xb)

−∇u · ŝ⊥ d�(x) (18b)

=

∫
L(xa,xb)

−
(
∂u

∂x
,
∂u

∂y

)
· (−sy, sx) d�(x) (18c)

=

∫
L(xa,xb)

(
∂u

∂x
sy − ∂u

∂y
sx

)
d�(x). (18d)

As it can be seen, the longitudinal integral measurements are directly determined by the boundary169

potentials; however, the transverse integral measurements in practice cannot be measured directly (or170

only under special circumstances [8, 34]). This turns out to be a problem because the full recovery of171

the electric field requires both types of integral measurements. In the Appendix, it is shown that only172

the harmonic component of the electric field can be reconstructed from the longitudinal line integrals,173

whereas the remaining irrotational part requires the transverse measurements. The transverse integral174

formulations nevertheless turn out to be useful since, as will be seen in the following section, they give175

information about the underlying current sources that generate the field.176

3.3. Transverse line integral through Ω-Radon transform177

In this section, we show that the transverse line integral measurement is related directly to the

underlying current source when the homogenous Neumann condition holds. We start by taking the Ω-

Radon transform of both sides of Equation (14c). For simplicity, we consider that the electric conductivity
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is constant.

∇ · σe(x) = −∇ · js(x) (19a)

σRΩ{∇ · e(x)} = −RΩ{∇ · js(x)}. (19b)

Similarly as in [46], we define the extension of ec in R
2 such that ec = e in Ω in order to utilize the Radon178

property (6) as follows179

RΩ{∇ · e} =

∫
R2

(∇ · ec) vΩδ(�− x · ŝ⊥)dx. (20)

Also, the divergence ∇ · ecvΩ equals to180

∇ · (ecvΩ) = (∇ · ec) vΩ + (∇h) · ec δ∂Ω, (21)

where δ∂Ω = δ(h(x)). From the gradient of the signed distance function and the boundary condition181

(16c), we get ∇h · e|∂Ω = −n̂ · e|∂Ω = ∂u
∂n̂ |∂Ω = 0. Now, we can re-write Equation (21)182

∇ · (ecvΩ) = (∇ · ec) vΩ. (22)

So, Equation (20) becomes183

RΩ{∇ · e} = R{∇ · (ecvΩ)} (23)

Using property (4), i.e. R{∇ · (ecvΩ)} = ŝ⊥ · ∂
∂lR{ecvΩ}, we finally have that184

RΩ{∇ · e} = ŝ⊥ · ∂

∂l
RΩ{e}. (24)

Similarly, under the assumption that the (extended) source function is zero outside the domain Ω, we185

obtain186

RΩ{∇ · js} = ŝ⊥ · ∂

∂l
RΩ{js}. (25)

Hence, Equation (19b) is re-writtten as187

ŝ⊥ · ∂

∂l
RΩ{e} = −ŝ⊥ · 1

σ

∂

∂l
RΩ{js}. (26)

Now, the inverse Radon transform (3) gives us

R−1{ŝ⊥ · ẽΩ} =
1

4π
R#H ∂

∂l
[̂s⊥ · RΩ{e}] (27a)

= − 1

4πσ
R#H ∂

∂l
[̂s⊥ · RΩ{js}] (27b)

= − 1

σ
R−1{ŝ⊥ · j̃s}. (27c)
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Therefore, we have that the transverse measurements are188

I⊥L = ŝ⊥ · RΩ{e} = −ŝ⊥ · 1
σ
RΩ{js}. (28)

In other words, we have shown that the transverse integral measurements give us information about189

the source activity inside the bounded domain.190

3.4. Dipole sources and transverse measurements191

In this paper, we consider focal source activity js(x) ∈ E ′(R2; Ω) and dipoles in particular which can192

be described with the help of Dirac delta functions as193

js(x) =

Ns∑
i=1

qiδ(x− xi), (29)

where qi is the dipole moment, xi the dipole source location and Ns the total number of dipole sources194

[60].195

Based on the theory of integral geometry for distributions [55], the values of the transverse integral196

I⊥ = − 1
σ ŝ

⊥ · RΩ{js}, when js(x) is given as above, can be estimated using the following scalar product197

〈ŝ⊥RΩ{js}, ϕ〉 ∀ ϕ(ŝ⊥, l) ∈ C2
c ((0, 2π] × U), ŝ⊥ = (cosφ, sinφ) with φ ∈ (0, 2π] and l ∈ U := {l =198

x · ŝ⊥ ∀ x ∈ Ω, φ ∈ (0, 2π]} (See Figure 1). This scalar product gives us199

〈ŝ⊥ · RΩ{js}, ϕ〉 ≡
∫
U

∫
φ

∫
Ω
ŝ⊥ · js(x) δ(l − x · ŝ⊥)ϕ(ŝ⊥, l) dx dφ dl

=
∫
φ

∫
Ω
ŝ⊥ · js(x)ϕ(ŝ⊥, x · ŝ⊥) dx dφ

=
∫
φ

∫
Ω
ŝ⊥

(∑Ns

i=1 qiδ(x− xi)
)
ϕ(ŝ⊥, x · ŝ⊥) dx dφ

=
∫
φ

∑Ns

i=1 ŝ
⊥ · qiϕ(ŝ⊥, xi · ŝ⊥) dφ

=
∑Ns

i=1

∫
k=xi ·̂s⊥

∫
φ
ŝ⊥ · qiϕ(ŝ⊥, k) dφ dk

=
∫ ∫

φ

∑Ns

i=1 ŝ
⊥ · qiδ(k − xi · ŝ⊥)ϕ(ŝ⊥, k) dφ dk

≡ 〈∑Ns

i=1 ŝ
⊥ · qiδ(k − xi · ŝ⊥), ϕ〉.

Therefore, we can write for the transverse measurement that200

I⊥ = − 1

σ
ŝ⊥ · RΩ{js} = − 1

σ

Ns∑
i=1

ŝ⊥ · qiδ(k − xi · ŝ⊥) (30)

This (30) implies that the transverse measurement is non-zero only when the line of integration passes201

through the source location and the line is not parallel to the dipole moment, such as the black line in202

Figure 2. In VT, we have a set of lines with different directions and only few of them meet these criteria.203

10



This knowledge that only few of the transverse measurements are non-zero is later used as a sparsity204

constraint in the electric field inverse problem.205

Figure 2: Electric field (arrows) that is generated by a dipole source (circle).Of the three shown lines of integration, the
gray one is parallel and the black one perpendicular to the orientation of the dipole. The transverse line integral along the
gray line is zero due to the dot-product in Equation (30), however the transverse integral along the black line is non-zero.
The transverse line integral along the dashed line is zero because the line does not pass through the source, and also the
longitudinal line integral is close to zero because the line is far from the dipole source.

3.5. Discrete observation model206

For the numerical evaluation, the domain is discretized and the electric field is represented as207

e(x) ≈ eN (x) =

N∑
i=1

eiφi(x), (31)

where c refers to the discretization level, φi(x) are the chosen basis functions, N is the number of208

basis functions and ei = (eix, eiy) contains the electric field components. In the following, we denote209

e = [e1x, e2x, · · · , eNx, e1y, e2y, · · · , eNy]
T as the vector representation of eN (x).210

The line integrals are evaluated along a set of straight lines which are formed by connecting pairs211

of points on the boundary ∂Ω. In practice, a finite number of points (or electrodes) are used for the212

measurements. If the number of electrodes is n, then the number of possible line integral measurements213

is m = n(n− 1)/2.214

We stack the longitudinal line measurements into a vector I‖ = [I
‖
1 , · · · , I‖m]T ∈ R

m and present the215

observations in a matrix form as216

I‖ = R‖e+ ε, (32)
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where R‖ ∈ R
m×2N is called the longitudinal ray matrix and it consists of the integration coefficients of217

the m longitudinal line integrals, and ε ∈ R
m is the measurement noise that is assumed to be random218

(Gaussian) white noise.219

For the transverse line measurements, a similar matrix can be formulated. This matrix is called the220

transverse ray matrix R⊥ ∈ R
m×2N and it consists of the integration coefficients of the m transverse line221

integrals. The numerical approximation of the ray matrices is described in detail in Section 4.1.222

3.6. Discrete electric field inverse problem223

For the estimation of the field, the VT methods require the values of both types of integrals for all224

possible lines. However, two difficulties arise. The first one is that the transverse integral measurements225

cannot be carried out using physical means. The second one is that in practice we have only a finite226

number of lines and measurements available (limited data problem). This means that there are areas in227

the domain that are not covered by any of the line integrals, thus no information can be retrieved from228

these areas.229

Here, we deal with these problems by using two penalty terms. We formulate the electric field inverse230

problem as a minimization problem as follows231

ê = min
e

{‖R‖e− I‖‖22 + α‖R⊥e‖1 + β‖We‖1}. (33)

The first term is the data fidelity term, the second term is the L1-norm of the transverse line integral232

measurements with a regularization parameter α > 0, and the third term is the L1-norm of the discretized233

vector Laplace operator with a regularization parameter β > 0. As discussed in Section 3.4, even though234

the transverse integrals cannot be measured directly, we can still say that only a small number of them are235

non-zero. Therefore, we employ this knowledge by formulating an L1-type sparsity prior that promotes236

such behaviour with the help of the transverse ray matrix R⊥.237

To alleviate the limited data problem, we utilize the weighted vector Laplace operator. Loosely238

speaking, the vector Laplace operator [19] relates the local field values to the average of the surrounding239

points and thus imposes “connectivity” between the neighboring points. The vector Laplace is also related240

to the current sources as241

∇2e = ∇(∇ · e)−∇× (∇× e) = ∇(∇ · e) = − 1

σ
∇(∇ · js). (34)

Because of this and the sparsity of the current sources, we use also here the L1-norm. Furthermore,242

because it is known that minimizing the L1-norm of the vector Laplace yields harmonic solutions that243

have their maxima on the boundary [10], we also use weighting factors in (33). The discrete weighted244

laplace (in 2D) is defined as W = w(Δ ⊗ I2×2). The weighted Laplace operator ensures connectiv-245

ity between neighbouring nodes (local smoothness) and reduction of the depth bias so that the maxi-246

mum magnitude of the electric field will be correctly localized inside the domain [24, 47, 10]. In our247
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implementation, we employ the symmetric/normalized discrete Laplace operator Δ which is given by248

Δ = IN×N − diag(H)−1/2H diag(H)−1/2, where IN×N is the identity matrix and the elements of matrix249

H are250

if i �= j Hij =

⎧⎪⎨
⎪⎩
− 1

dij
, if i and j are connected with a vertex

0 , otherwise

if i = j Hii = −∑
j Hij

(35)

where dij is the distance between nodes i and j. The weights wi are the diagonal elements of the so-called251

resolution matrix [47] estimated in a similar way as in [24]. This resolution matrix is in our case given252

by Γ = KT(KKT)−1K, where K = (DTD)−1DTR‖, and D ∈ R
m×n is the difference matrix for the253

potentials u such as I‖ = Du. The matrix Γ relates the minimum norm solution, eMNE, with the actual254

field eMNE = Γe [47].255

3.6.1. Uniqueness of the solution256

For a unique reconstruction of an arbitrary vector field in a two dimensional domain, both the longi-257

tudinal and transverse measurements are required. Numerically, this means that the null spaces of the258

longitudinal and transverse ray matrix do not coincide i.e. N (R‖) ∩N (R⊥) = ∅ where N (·) denotes the259

null space of a matrix.260

Now let us assume that we are reconstructing an irrotational field that is a sum of two terms e(x) =261

eb + e0, where eb = −∇ub is non-zero on the boundary and e0 = −∇u0 has vanishing boundary values.262

This means that R‖e0 = 0 and e0 ∈ N (R‖) where e0 ∈ R
2N is the vector representation of the field263

components. However, because N (R‖) ∩ N (R⊥) = ∅ we have that e0 /∈ N (R⊥) unless the field is trivial264

i.e. identically zero everywhere.265

Now, by considering sparsity of the transverse integral, we implicitly impose that component e0 = 0266

otherwise the equation R⊥e ≈ 0 cannot hold. Thus, our formulation does not allow reconstruction of267

field components with vanishing values on the boundary. Therefore, our solution can be considered as268

unique. In Section 5.1, we show through simulation the effect of the sparse transverse measurements on269

the solution.270

271

4. Numerical methods272

In this section, we describe how the numerical approximations of the line integrals and ray matrices273

were carried out and how the approach was tested with numerical experiments.274

4.1. Numerical approximation of ray matrices275

The domain Ω is divided into NE disjoint triangular elements, Ω = ∪NE
j=1Ωj with N nodes and the276

electric field is expressed in a vector form as e = [ex, ey]
T ∈ R

2N (as in Section 3.5). We use straight lines277
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as the integration paths. The same lines are used for both the longitudinal and transverse integrals. For278

the ith longitudinal measurement along the line Li, we can write279

I
‖
i =

∫
Li

e(x) · ŝi d�(x) =
NE∑
j=1

∫
ΔLij

e(x) · ŝi d�(x), (36)

where Li =
∑NE

j=1 ΔLij gives the line segmentation and ΔLij = Li

⋂
Ωj is the jth segment of Li (that280

is inside the element Ωj). Figure 3 illustrates these variables. Note that ΔLij �= ∅ only if the line Li281

passes through the element Ωj .282

Figure 3: Left: The computational domain is discretized into triangular elements, and the domain is traced with lines that
connect pairs of points at the boundary. One of these lines Li passes through the elements that are colored with gray.
Right: The line segment ΔLij is the intersection of the line Li and the triangular element Ωj . The coordinates of the points
on this line segment between Ai and Bi can be expressed as a linear combination of the coordinates of the corner points of

the triangle x
(1)
j , x

(2)
j and x

(3)
j .

4.1.1. Line segment in an element283

Let us first examine a line segment ΔLij �= ∅ that passes through an element Ωj that has corner284

points x
(1)
j , x

(2)
j and x

(3)
j as shown in Figure 3. A point on a line segment ΔLij has the position vector285

p ∈ R
2

286

p = xAi
j + (xBi

j − xAi
j )t = xAi

j +Δxij t, (37)

where xAi
j and xBi

j are the intersecting points between the line Li and the edges of element Ωj (see Figure287

3), Δxij = xBi
j − xAi

j and t ∈ [0, 1]. By changing variables, we obtain ŝi d�(x) = Δxijdt and the line288

integral in this element becomes289

I
‖
ij =

∫ 1

0

Δxij · e(p(t)) dt = ‖Δxij‖
∫ 1

0

ŝi · e(p(t)) dt, (38)

as Δxij = ‖Δxij‖ŝi where ‖.‖ denotes the length of the vector.290

The electric field values at the corner points of the element are e
(1)
j , e

(2)
j and e

(3)
j . We approximate291
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the field inside the element using the linear interpolation292

e(p(t)) = e
(1)
j +

[
e
(2)
j − e

(1)
j e

(3)
j − e

(1)
j

]
d = e

(1)
j +Kjd, (39)

where Kj = [e
(2)
j − e

(1)
j e

(3)
j − e

(1)
j ] ∈ R

2×2 and d ∈ R
2×1 are the interpolation coefficients (or bary-293

centric coordinates) [12]. For the estimation of d, we employ an iso-parametric mapping in which the294

position vector in the element and the field are represented by the same interpolation polynomial [58].295

In particular, a point x in Ωj has position vector296

x = x
(1)
j +

[
x
(2)
j − x

(1)
j x

(3)
j − x

(1)
j

]
d = x

(1)
j + Jjd (40)

where d = [d1 d2]
T with d1 ≥ 0, d2 ≥ 0 and d1 + d2 ≤ 1 and Jj = [x

(2)
j − x

(1)
j x

(3)
j − x

(1)
j ] ∈ R

2×2. Now297

d can by solved as298

d = J−1
j (x− x

(1)
j ). (41)

When we set x = p and combine Equations (37) and (41), we can estimate the interpolation coefficient299

on the line segment with respect to t300

d = J−1
j (xAi

j +Δxij t− x
(1)
j ). (42)

Now, this results in301

e(p(t)) = e
(1)
j +KjJ

−1
j (xAi

j +Δxij t− x
(1)
j ), (43)

and Equation (38) becomes302

I
‖
ij =‖Δxij‖

(
ŝi · e(1)j +

∫ 1

0

ŝi ·KjJ
−1
j (xAi

j +Δxij t− x
(1)
j ) dt

)

=‖Δxij‖ ŝi ·
(
e
(1)
j +KjJ

−1
j (

1

2
Δxij − x

(1)
j )

)
.

(44)

Finally when we write Kj explicitly and denote Cij = J−1
j ( 12Δxij − x

(1)
j ) = [c1, c2]

T ∈ R
2×1 we get303

I
‖
ij = ‖Δxij‖ ŝi ·

[
(1− c1 − c2)e

(1)
j + c1e

(2)
j + c2e

(3)
j

]
. (45)

We use Equation (45) to create a procedure for constructing the ray matrices.304

4.1.2. Construction of ray matrices305

The ray matrices are used to operate on the electric field in order to obtain the line integral measure-306

ments. We denote the relationship between the longitudinal measurements and the ray matrix operator307
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as follows308

I‖ = R‖e =
[
R‖

x R‖
y

]⎡⎣ ex

ey

⎤
⎦ . (46)

Data I‖ = [I1, · · · , Im]
T ∈ R

m contains all the longitudinal line measurements where m is the number309

of the line integrals that equals to m = n(n−1)
2 where n is the number of measurement electrodes on the310

boundary. Matrix R‖ ∈ R
m×2N is the longitudinal ray matrix operator and N is the number of nodes311

of the discretized domain. R‖ consists of R
‖
x ∈ R

m×N and R
‖
y ∈ R

m×N that contain the contributions312

of the integral coefficients of the x and y field components, respectively. The procedure that was used313

to construct the longitudinal ray matrix is shown in Table 1. A similar procedure can be carried out to314

construct the transverse ray matrix R⊥ by exchanging the vector ŝi with ŝ⊥i in the first step.315

Table 1: Procedure to construct the longitudinal ray matrix.

for i=1:m, go through all the integration lines
take line Li and determine the corresponding unit vector ŝi = (sx, sy) along the line.

for j=1:NE , go through all the elements

take element Ωj that has corner points x
(1)
j , x

(2)
j and x

(3)
j , where

j(1), j(2) and j(3) are the corresponding node indices.
if ΔLij = Li ∩ Ωj = ∅

go to the next element.
else

calculate Δxij and ‖Δxij‖.
calculate Jj and Cij = [c1, c2]

T.
update the following entries of the ith row of the ray matrix.

R‖(i, j(1)) = R‖(i, j(1)) + ‖Δxij‖sx(1− c1 − c2)

R‖(i, j(2)) = R‖(i, j(2)) + ‖Δxij‖sxc1
R‖(i, j(3)) = R‖(i, j(3)) + ‖Δxij‖sxc2
R‖(i, j(1) +N) = R‖(i, j(1) +N) + ‖Δxij‖sy(1− c1 − c2)

R‖(i, j(2) +N) = R‖(i, j(2) +N) + ‖Δxij‖syc1
R‖(i, j(3) +N) = R‖(i, j(3) +N) + ‖Δxij‖syc2

end
end

end

4.2. Numerical experiments316

In the experiments, we study electric fields generated by dipole sources in a bounded 2-dimensional317

circular domain with homogeneous electrical conductivity σ = 1 S/m. We note that the same methods318

can also be applied to any other convex domain. The domain contained n = 32 equally spaced electrodes319

around the boundary. Lines for the integration were formed by connecting all pairs of electrodes which320

resulted in total of m = 496 lines. Two computational meshes were used: the finer one consisted of321

N̄E = 9721 triangular elements linking N̄ = 3045 nodes, and the coarser one of NE = 1408 triangular322

elements with N = 760 nodes.323
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4.2.1. Simulated forward fields and integral data324

For the estimation of the longitudinal integral data and the forward electric field, the finer mesh was325

used. First, a single dipole source was selected and the corresponding scalar electric potential distribution326

ū ∈ R
N̄ was computed by solving the Poisson problem (16a) with boundary conditions (16c) and (16b)327

using finite element method (FEM) with linear nodal basis functions [61]. The dipole source function328

was numerically approximated using the mathematical dipole model [51]. The longitudinal integral329

observations were calculated by taking the differences of the potential values at the electrodes that locate330

at the ends of the integration lines. Gaussian white noise was added to the data using two signal-to-noise331

ratios, 40 dB and 20 dB. The signal-to-noise ratio (SNR) is given by332

SNR = 20 log10
‖I‖‖2
‖ε‖2 (47)

The forward field, given by ē = −∇ū, was estimated numerically by applying the linear gradient333

reconstruction approach [11]. The forward field ē ∈ R
2N̄ was then projected to the inverse mesh e =334

P ē, where P ∈ R
2N×2N̄ is a linear reduction mapping operator, in order to be able to compare the335

reconstructed field with the correct one.336

4.2.2. Electric field reconstructions337

The electric fields were reconstructed using the coarse mesh. First, the longitudinal and transverse338

ray matrices were constructed for the mesh by using the procedure described in Section 4.1. Then,339

the non-linear minimization problem (33) was solved using convex optimization techniques and more340

precisely CVX toolbox (SDP3 solver) [7, 21, 20]. The regularization parameters were kept constant in all341

experiments (α = 0.06 and β = 0.016 in our case). The β value was used to scale the coefficients of the342

discrete weighted Laplace operator (that promotes connectivity between neighbouring nodes) to match343

the average distance between the mesh nodes. The choice of α was carried out empirically, and it was344

found that α value has to be 3–4 times higher than β to ensure that the orientations of the field lines are345

estimated properly.346

4.2.3. Reconstruction error metrics347

For the evaluation of the reconstructions, we used two different measures. First, the average magnitude348

ratio (MR) between the reconstructed and the actual field was computed as follows349

MR =
1

N

N∑
i=1

√
ê2ix + ê2iy√
e2ix + e2iy

. (48)

The closer the MR is to one the better the fields match with respect to the magnitude.350

Second, the average cosine similarity (CS) was used to quantify the difference between the directions351
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of the reconstructed and the actual field352

CS =
1

N

N∑
i=1

cos(êi, ei) =
1

N

N∑
i=1

êixeix + êiyeiy√
ê2ix + ê2iy

√
e2ix + e2iy

. (49)

CS has a value between –1 and +1, and the closer the value is to one the better the directions of the353

fields match. Moreover, CS is close to zero when the reconstructed and the actual field are perpendicular354

to each other, and finally CS is close to –1 when the directions of the fields are opposite.355

5. Results and discussion356

5.1. Effect of L1-norm constraint of transverse measurements357

Figure 4 illustrates the benefit of using the L1 constraint of the transverse measurements. The first358

column shows the true magnitude of the electric field that is generated by a dipole source and the359

corresponding unit-length field lines with the location and orientation of the underlying dipole source360

(circle). The last two columns show the reconstructed electric field magnitude and field lines from361

noiseless boundary data with and without the L1 constraint, respectively.362

As we can see the magnitude distributions of the reconstructed fields have similar patterns as the363

true field; however, the orientations of the field lines show significant errors when the L1 constraint is364

omitted. The same can be seen from the magnitude ratio numbers which are quite similar, 0.88 with and365

0.75 without the constraint, and the cosine similarity numbers which decrease drastically from 0.90 to366

0.31 when the L1−norm is not used.367

The dipole can be viewed as a positive and an equivalent negative charge that are separated by a368

vanishingly small distance. The corresponding field lines point outwards from the positive and inwards369

from the negative end of the dipole. From the reconstructed field lines with the L1 constraint, it can be370

seen that the locations of the positive and the negative charge can be found but they are separated by371

a small non-zero distance. When the L1 constraint is not considered these locations cannot be found at372

all.373

The transverse measurements can be interpreted as fluxes across the integration lines. For an electric374

field generated by a dipole source, the total flux across most of the integration lines is zero as already375

discussed in Section 3.4 and Figure 2. The sparsity constraint of transverse measurements exactly ensures376

this. Consequently, it first forces the field lines to orientate similar to the field of closely separated positive377

and negative charge. Second, it forces that the flux across line integrals close to the boundary is zero378

(see for example dash line of integration in Figure 2) thus making the field tangential on the boundary.379

From the mathematical point of view, based on the analysis in Section 3.3, the sparsity constraint for380

the transverse measurements implies focal activity and homogeneous Neumann conditions. Of course381

these effects are limited by the discretization level of the domain, the numerical approximations of the382

line integrals, the number of measurements and the measurement noise as we shall see in the next Section.383

384
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Figure 4: The left column shows a test case from which the boundary data was extracted. The middle column shows the
reconstructed magnitude distribution and normalized electric field lines when the L1 sparsity of transverse measurements
was used (α = 0.06). The right column shows the corresponding reconstruction when this constraint was not used (α = 0).
It can be seen that by omitting the L1 sparsity the quality of the reconstruction is reduced, especially the directions of the
electric field lines exhibit significant errors.

5.2. Reconstructions in the presence of noise385

Figures 5–7 show the reconstruction results of the electric fields produced by a single dipole source386

which has radial orientation (Figure 5), tangential orientation (Figure 6) and is located in the centre387

of the domain (Figure 7). In the following Figures, the last two columns show the average electric388

field magnitude and field lines that are calculated over 10 reconstructions. The 10 reconstructions were389

computed using 10 different realizations of noisy boundary data with SNR=40 dB (second column) and390

SNR=20dB (third column).391

From the upper row of the figures (showing the field magnitude), we see that the locations where the392

reconstructed fields get their maximum value are very close to the correct locations (of the source) in all393

the test cases: in fact, the location is exactly the same in the test cases shown in Figures 5 and 6, and394

the location differences in Figure 7 correspond to the distance of a single node in the mesh.395

From the reconstructed field lines in the lower row of Figures 5 and 6, it can be seen that the locations396

of the positive and the negative charge are found correctly but that they are separated by a small non-zero397

distance. When the dipole source is in the centre of the domain, Figure 7, the locations of the positive398

and negative charge are not evident from the field lines.399
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Magnitude of the field
Test case

0 3.65 7.29

SNR = 40 dB

0 0.35 0.69

SNR = 20 dB

0 0.14 0.28

(Unit−length) field lines

0.84MR: 0.48
0.88CS: 0.53

Figure 5: First column: Top picture shows the magnitude of the electric field that is generated by a radial dipole source.
Bottom picture shows the corresponding unit length field lines and the location and orientation of the underlying dipole
source. Second column: Top picture shows the average electric field magnitude that is calculated over 10 reconstructions
and the circle shows the correct location of the underlying dipole source. The 10 reconstructions were computed using 10
different realizations of noisy boundary data with SNR=40dB. Bottom picture shows the corresponding unit-length electric
field lines. Third column: Top and bottom pictures show similarly the reconstructed electric field when SNR=20dB. The
average magnitude ratio (MR) and cosine similarity (CS) values are given under the reconstructions.

The maximum values of the reconstructed fields are lower by an order of magnitude when compared400

to the actual ones. However, in the low noise cases (SNR = 40 dB) in Figures 5 and 6, the magnitude401

ratio values are still very high which indicates that the magnitude errors are present only near the dipole402

sources and elsewhere the magnitudes are reconstructed accordingly. Similarly in the field orientations,403

there are differences merely close to the dipole sources, and especially for the low noise cases the CS404

values are high which indicates that the field orientations are correct in most parts of the domain. These405

reconstruction errors close to the source were expected because the dipole source causes a discontinuity406

in the field.407

By comparing the test cases, we can observe that the magnitude and orientation errors are larger408

when the dipole is deep in the domain than close to the boundary. We also see that the reconstruction409

accuracy decreases with increasing noise as expected.410

5.3. Multiple sources411

As we saw, the proposed approach gives stable estimates for both the magnitude and the orientation412

of the electric field when it is generated by a single focal source. It can be said that the same L1-penalty413
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Magnitude of the field
Test case

0 1.24 2.47

SNR = 40 dB

0 0.08 0.16

SNR = 20 dB

0 0.04 0.07

(Unit−length) field lines

0.85MR: 0.56
0.92CS: 0.65

Figure 6: First column: Top picture shows the magnitude of the electric field that is generated by a tangential dipole
source. Bottom picture shows the corresponding unit length electric field lines with the underlying dipole source. The other
columns show the electric field reconstructions as explained in Figure 5.

terms are also valid for multiple source cases, however, it seems that further information on the structure414

of the field is required for stable reconstructions. As an example, we show in Figure 8 a preliminary result415

of a two source case. As can be seen, the magnitude can still be recovered surprisingly well considering416

the limited amount of (measurement and prior) information available: for example, the locations of the417

sources can be determined based on the highest magnitude values. The field orientations, on the other418

hand, show more errors here than in the one source cases.419
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Figure 7: First column: Top picture shows the magnitude of the electric field that is generated by a dipole source in the
centre of the domain. Bottom picture shows the corresponding unit length electric field lines with the underlying dipole
source. The other columns show the electric field reconstructions as explained in Figure 5.
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Figure 8: First column: Top picture shows the magnitude of the electric field that is generated by two dipole sources. Bottom
picture shows the corresponding unit length electric field lines with the underlying dipole sources. The right column shows
the electric field reconstruction.
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6. Conclusions and future work420

This was a proof-of-concept study to characterize non-zero divergence vector fields in a bounded421

domain using the longitudinal measurements and appropriately chosen L1-penalty terms. To the best422

of our knowledge, this is the first time that numerical reconstructions have been presented under these423

conditions. This type of problem is of great interest due to its many applications, especially in the EEG424

source imaging. As a comparison to the widely used source imaging methods, we argue that the VT425

framework could be beneficial because it does not require an explicit mathematical model for the sources.426

We first showed that the longitudinal measurements are directly determined by the electric potentials427

at the boundary and the transverse measurements are related to the underlying current sources. We428

explained that even though the transverse measurements cannot normally be physically measured, they429

still can be utilized in the electric field inverse problem as a penalty term.430

Our numerical test cases included reconstructions of non-zero divergence electric fields generated by431

a focal source with varying direction and location. We showed that the pattern of the electric field432

magnitude could be reconstructed correctly using VT, even though there were errors near the dipole433

source. Nevertheless, for example, the correct location of the source activity could be determined based434

on the reconstructed field magnitudes. Also, the reconstructed field lines follow similar trajectories to the435

real ones with some deviations only near the dipole sources. These reconstruction errors were expected436

because the field is discontinuous at the dipole source.437

Therefore, we conclude that our approach is able to give stable estimates for single focal source cases,438

however, the recovery of a field generated by multiple sources requires further research. Nevertheless,439

we also note that our preliminary result for a two-source case was promising. In addition to multiple440

source cases, in the future we shall extend the proposed approach for 3-dimensional VT problems with441

non-homogeneous material properties.442
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Appendix: Electric field decomposition and line integrals570

According to Helmholtz decomposition [2], any vector field can be decomposed into a sum of irro-571

tational (curl-free) and solenoidal (divergence-free) component. When the field is zero on the domain572

boundary, the irrotational and solenoidal components are unique, and they can be recovered from the573

transverse and longitudinal measurements, respectively [8, 49]. However, when non-zero boundary condi-574

tions are present the decomposition is not unique anymore. For this case, however, a unique decomposition575
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can be found by adding a harmonic component which is both irrotational and solenoidal into the sum576

[8, 46].577

Let’s consider a similar electric field e : Ω → R
2 in a bounded domain as in Section 3. We set e|∂Ω �= 0578

and e · n̂|∂Ω = 0 on the boundary. The non-zero boundary conditions imply that the decomposition of579

the field is of the form580

e = eI + eS + eH, (50)

where eI, eS and eH are the irrotational, solenoidal and harmonic component, respectively. The following581

properties apply for the irrotational and solenoidal components ∇ · e = ∇ · eI, ∇ × e = ∇ × eS and the582

harmonic component satisfies both ∇ · eH = 0, ∇× eH = 0 and in addition also the boundary conditions.583

Under the quasi-static approximation, the electric field is irrotational. It follows that the irrotational584

component can be expressed using a scalar potential eI = −∇q and the solenoidal component vanishes585

eS = 0. Furthermore, we write the harmonic component as eH = −∇r +∇ × q where ∇× = ( ∂
∂y ,− ∂

∂x )586

corresponds to the 2-dimensional curl-operator. Now, ∇r = 0 due to the boundary conditions. Therefore,587

the decomposition gets the form588

e(x) = −∇q(x) +∇× p(x). (51)

The Radon transform of e(x) can be expressed using the Radon property (4) as589

ẽΩ = RΩ{e}(l, s⊥) = −ŝ⊥
∂

∂l
RΩ(q) + ŝ

∂

∂l
RΩ(p), (52)

where ŝ⊥ is the unit normal vector perpendicular and ŝ along the line L. Now, the longitudinal (10) and590

transverse (11) integral have the form591

I‖ = ŝ · RΩ{e}(l, s⊥) = ∂

∂l
RΩ(p) (53)

I⊥ = ŝ⊥ · RΩ{e}(l, s⊥) = ∂

∂l
RΩ(q). (54)

From these measurements, the electric field components can be solved as592

p = R−1{p̃} =
1

4π
R#H ∂

∂l
R{p} =

1

4π
R#HI‖ (55)

q = R−1{q̃} =
1

4π
R#H ∂

∂l
R{q} =

1

4π
R#HI⊥. (56)

Thus, both types of line integral measurements are needed for the full recovery of an electric field in a593

bounded domain with non-zero boundary conditions. I‖ is associated solely with the harmonic compo-594

nent, thus the boundary conditions, and I⊥ is needed to recover the irrotational component.595

29


