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Abstract—Data aggregation techniques exploit spatial and tem-
poral correlations among data and aggregate data into a smaller
volume as a means to optimize usage of limited network resources
including energy. There is a trade-off among the Quality of
Information (QoI) requirement and energy consumption for com-
putation and communication. We formulate the energy-efficient
data aggregation problem as a non-linear optimization problem
to optimize the trade-off and control the degree of information
reduction at each node subject to given QoI requirement. Using
the theory of duality optimization, we prove that under a set of
reasonable cost assumptions, the optimal solution can be obtained
despite non-convexity of the problem. Moreover, we propose a
distributed, iterative algorithm that will converge to the optimal
solution. Extensive numerical results are presented to confirm
the validity of the proposed solution approach.

I. INTRODUCTION

The rapid growth of smart environments equipped with
various types of sensors generates enormous amount of
data. Such data must be gathered, transferred and processed
to produce useful/meaningful information for end user(s).
Considering the practical network constraints such as
bandwidth or energy limitations and taking into account
the high level of correlation among data generated in these
environments, transferring the huge volume of generated data
from many sources through the communication infrastructure
is very inefficient, if not infeasible. Since data transmission
is the main cause of energy consumption in such networks,
the idea of conserving energy by reducing the amount of data
transmissions has caught the attention of many researchers.

Data aggregation is defined as the process of gathering data
from multiple sources (e.g., sensors), routing through multiple
hops and processing (i.e., fusing, averaging or compressing)
data in order to eliminate redundant transmission and provide
fused/aggregated information to the end user(s) [1], [2]. An
early work on energy efficient data aggregation developed
a data centric-routing scheme called directed diffusion [3].
If the attributes of data generated by the sources match the
interest of the sink, a gradient specifying the data rate and
the direction of send is set up to identify the data generated
by the sensor nodes. Directed diffusion eliminates the number
of redundant transmissions by selecting only the useful data
for transmission. Therefore, it can conserve a huge amount
of energy. Moreover, cluster-based data aggregation protocols
such as LEACH [4] and CLUDDA [5] have shown the
effectiveness of this idea in prolonging network lifetime.
Reviews of data aggregation techniques can be found in [1],
[2], [6].
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The common assumption among most of the data
aggregation work is that the energy required to process
data is less than the energy required to send it. Therefore,
it is beneficial to perform computation to reduce the data
volume for transmission. Very little attention has been paid
to computational energy cost while data aggregation is
applied in the network [7]. However, Barr and Asanovic [8]
investigated energy saving by lossless data compression and
showed that with several typical compression tools, there is
a net energy increase when compression is applied before
transmission. Moreover, they discussed that the choice of
how and whether to compress is not obvious and depends on
hardware characteristics as well as software factors.

As for computational energy cost, Gallucio et. al. [7]
studied the conditions under which aggregation is preferable.
Eswaran et. al. [9] applied the network utility maximum
(NUM) framework to determine the optimal compression and
fusion factors for data aggregation as well as the optimal
locations for performing data processing. With the goal
of minimizing energy consumption in the network, [10]
proposed a heuristic approach for determining the degree of
data aggregation at each individual node. Similarly, Sharma
et. al. [11] introduced a distributed approximate solution that
makes joint compression and transmission decision.

In common with prior work such as [11], [10] and [9], we
consider computational cost to obtain optimal aggregation
decisions. But we propose a novel distributed solution that
efficiently achieves the optimal solution, drawing upon key
results in [12]. Moreover, a common assumption in the
existing NUM work such as [9] is the concavity of the utility
functions, which may not be valid [12]. In contrast, we
formulate and solve our problem as a nonconvex optimization
problem.

While data aggregation helps optimize the usage of network
resources, it is also very important to consider how such
aggregation affects the quality of information (QoI) required
by end user(s). Data aggregation can cause QoI to deteriorate
[13]. The degree to which a system can aggregate information
is one of the main determining factors of QoI [14]. Despite
the development of several data aggregation protocols that
ensure desired Quality of Service, energy efficient data
aggregation that guarantees desired QoI has not been well
studied. For this reason, we investigate here the trade-off
among communication and computation energy costs as well
as the QoI requirement in order to determine the optimal
degree of data reduction (rate) at each node in the network.

Summary of contribution: We study a class of multi-hop
wireless networks where nodes are logically arranged as a
tree and every node processes and aggregates data received
from its children nodes. The aggregated data is transferred
and further processed toward the root node. We formulate



the problem of energy-efficient data aggregation with QoI
constraint as a nonconvex optimization problem. We define
the optimal data reduction rate as the degree to which data
can be efficiently reduced while guaranteeing the required
QoI for the end user. The proposed problem is intrinsically
a nonconvex problem, which is hard to solve in general.
However, for a set of reasonable energy cost structures, we
can find the optimal solution by transforming the original
problem to an equivalent one. By utilizing and analysing the
KKT conditions, we prove that the nonconvex optimization
problem can be solved exactly as the associated optimal
duality gap is shown to be zero.

As a second contribution of this paper, we devise a
distributed algorithm based on gradient descent, and show
that the method can achieve the optimal solution efficiently.
We evaluate our proposed method under different parameter
settings and illustrate the performance of our proposed
method through extensive simulations.

The rest of the paper is organized as follows. We formulate
the problem and define our network topology and assumptions
in section II. In section III, we introduce our solution approach
and discuss the optimality of the proposed solution. We present
a distributed algorithm that can achieve the optimal solution
in section IV and discuss the performance of the proposed
framework through extensive simulations in section V .

II. PROBLEM FORMULATION

Data generated in sensor networks often has some degree of
redundancy due to spatial and temporal correlations among in-
formation observed or collected by various sensors. Therefore,
it is possible to aggregate data as a means to optimize utiliza-
tion of limited network resources. Considering energy as a
critical resource in networks such as wireless sensor networks
(WSNs), it may be desirable to reduce energy consumption for
transmission and reception by aggregating the huge amount
of data into a smaller volume. However, the greater the
degree of data aggregation, the higher the amount of energy
consumed for computation. Therefore, a trade-off exists among
the amount of energy that each node spends on data reception,
transmission and computation. We define the ratio of the
volume of aggregated data to that of all incoming data at each
node as the data reduction rate denoted by δ, 0 ≤ δ ≤ 1 . The
reduction rate is the degree by which a node can aggregate its
received data effectively, and is a determining factor for QoI.

A. Assumptions
We assume that a data aggregation tree is formed among

all involved nodes in the network after the user requests
information from the network. The root node, r, of the tree is
responsible for delivering the required information to the end
user. Without loss of generality, it is assumed that only leaf
nodes generate data and each of the other nodes in the tree
receives data from its children nodes, processes and forwards
aggregated data to its parent node.

Let the total energy consumption of node i denoted by Fi
consist of energy spent in receiving eiR, computing eiC and
transmitting eiT as follows:

Fi = eiR + eiC + eiT , (1)
where eiR = εiRyi, (2)

eiT = εiT yiδi, (3)

eiC = εiCyili(δi), (4)
and εiR, εiC and εiT are the energy consumed in receiving,
processing and transmitting one unit of data at node i,

respectively. For the leaf nodes, εiR denotes the energy
cost for observing or sensing or creating one unit of data.
Since the greater the degree of data aggregation (i.e., the
smaller amount of aggregated data produced after processing),
the higher the energy consumption for computation, li(δi)
is a scaling function to capture this characteristics of the
computation energy consumption eiC . We assume that li(δi)
is a decreasing differentiable function of the reduction rate.
Let li(δi) be defined as follow:

li(δi) =
1

δi
− 1, (5)

where δi > 0. Given (1) to (4), we define fi(δi) as the total
energy consumed by node i for one unit of receiving data:

fi(δi) = εiR + εiC li(δi) + εiT δi. (6)
Since it is assumed that only leaf nodes generate data, the
total amount of data recieved by node i is

yi =
∑
j∈Ci

δjyj i = 1 . . . N , (7)

where Ci denotes the set of children nodes of node i. yi is
assumed to be a constant value if i is a leaf node. Moreover,
we assumed that the QoI delivered to the end user is a
function of data reduction rate and received data associated
with the root node which is responsible for delivering
information to the end user, as denoted by qr(δr, yr).

B. Objective
We aim to minimize the total energy consumed by the

network while meeting the QoI constraint for the user. We
formulate the problem as follows:

min
δ

N∑
i=1

Fi(δi, yi)

s.t. qr(δr, yr) ≥ γ
,

where N is the total number of nodes in the data aggregation
tree. Fi(δi, yi) is the cost function of node i, which is a
function of the total volume of input data yi received from
its children nodes and its data reduction rate δi. δ is a vector
of reduction rates for all nodes. qr(δr, yr) specifies the QoI
function. Since the root node, r, is responsible for delivering
the required information to the end user, the QoI constraint
is associated only with the root node. γ indicates the QoI re-
quirement threshold specified by the end user. Even though the
problem has only a single QoI constraint associated with the
root node, the data reduction rate must be chosen optimally at
every node so that the total energy consumption is minimised
while the QoI constraint for the end user can be satisfied.

Let the amount of data required by the end user be the QoI
requirement. i.e., qr(δr, yr) = yrδr. Therefore, the optimiza-
tion problem is given by:

min
δ

N∑
i=1

Fi(δi, yi)

s.t. yrδr ≥ γ
. (8)

III. SOLUTION APPROACH

From equations (1)-(8), we see that the optimization prob-
lem in (8) is intrinsically a nonconvex problem. In general,
there are no known simple necessary and sufficient conditions
for determining global/local optima for nonconvex optimiza-
tion problems. However, by analysing the conditions of the
network and parameter settings, it is possible to transform
(8) into an equivalent problem such that the global optimal
solution to the problem can be obtained effectively.

Let K be the set of all leaf nodes and h(k) denote the
depth of node k in the aggregation tree. Assume that the
root node r is located at level 0 and its depth is 0. Let



τk = (nk,h(k), nk,h(k)−1, . . . , nk,1, nk,0) denote the unique
path from node nk,h(k) to nk,0 where by definition nk,0 , 0

(i.e., the root) and nk,h(k) , k (i.e., the node itself). Then,
nk,i is the node at the ith hop from the root in the unique path
τk. Using this notation, we introduce the following Theorem
which demonstrates how the problem of the total energy con-
sumption over all the nodes can be converted into an equivalent
problem by considering the total energy consumption over
each unique path from each leaf node to the root.

Theorem 1. The optimization problem in (8) is equivalent to
the problem (9)

min
δ

∑
k∈K

yk
(
fk(δk) +

h(k)−1∑
i=0

fk,i(δk,i)

h(k)∏
m=i+1

δk,m
)

s.t.
∑
k∈K

yk
( h(k)∏
i=0

δk,i
)
≥ γ

, (9)

where yk denotes the amount of data generated by each leaf
node k. δk,i and fk,i are the reduction rate and the total energy
consumption for a unit of data corresponding to ith node in
the unique path from the root to leaf k, respectively.

Proof. According to the assumptions for energy consumption
in (1)-(4), the total energy consumption of each node i is
directly proportional to the total volume of data yi received
from all its children where the proportionality constant is given
by fi(δi) in (6). Since the data received at each node is the sum
of all output data from its children (7), the linear relationship
reveals that the total energy consumption at each node i is
equal to the sum of energy spent on each of the data streams
received from different children nodes. As only leaf nodes are
assumed to generate data, we can reformulate the problem
in (8) over all nodes in the network as one based on data
generated at each leaf node. �

Despite the different representation, (9) still represents a
nonconvex optimization problem. The Karush-Kuhn-Tucker
(KKT) conditions are necessary conditions for the global
optimal solution to the nonlinear primal problem in (9) (e.g.,
see [15]). By analysing the KKT conditions for the dual
problem associated with (9), we prove in the following that
the primal and dual problem have zero duality gap.

Let d(λ) be the Lagrangian dual function of (9) where λ is
the Lagrangian multiplier (price) associated with the QoI con-
straint in (9). Then, the dual optimization problem is given by:

max
λ

d(λ) = L(δ∗, λ) , (10)

where L(δ, λ) is the Lagrange function given by

L(δ, λ) =
∑
k∈K

yk
(
fk(δk) +

h(k)−1∑
i=0

fk,i(δk,i)

h(k)∏
m=i+1

δk,m
)

−λ
(∑
k∈K

yk(

h(k)∏
i=0

δk,i) + γ
)
. (11)

and δ∗ is obtained from
δ∗ = argmin L(δ, λ) . (12)

Let δ∗ and λ∗ be any primal and dual optimal solution. The
KKT conditions stem from the fact that the gradient of the La-
grangian function must be zero [16]. That is: ∇L(δ∗, λ∗) = 0.
We consider the stationary condition for two different types
of nodes namely, the root (node 0) and any other node j (i.e.,
j can be a leaf or an intermediate node) in the aggregation

tree. As shown in the Appendix, the optimal data reduction
rates δ0 and δj for these node types are obtained as follows:

δ0(λ) =

√
ε0C

ε0T − λ
. (13)

δj(λ) =

√
εjC

εjT +
∑h(j)−1

i=0 (fj,i(δj,i)∆j,i)− λ(∆j)
, (14)

where ∆j,i =
∏h(j)−1
m=i+1 δj,m and ∆j =

∏h(j)−1
m=0 δj,m. Note

that feasibility and satisfaction of constraints on δ are dis-
cussed in Section IV-C.

Equations (13) and (14) are called the price-based solution
functions for the problem (9), because they are expressed as
the function of the Lagrangian multiplier (price) λ. Equations
(13) and (14) are for the specific cost function (6). For a
general cost function which is decreasing and differentiable,
δ can be uniquely determined from f ′(δ). By applying results
in [12], we have the following Theorem.

Theorem 2. The strong duality property holds for the primal
and the dual problem in (9)-(10). Furthermore, an iterative
algorithm exists to obtain the optimal solution for both prob-
lems.

Proof. Observe from (13) and (14) that the optimal data
reduction rates for all nodes in the aggregation tree are
continuous functions of the price variable λ in the feasible
range, including the optimal value of λ∗. Based on Theorem
1 in [12], this continuity property guarantees that the duality
gap for (9) and (10) is zero and that the optimal solutions
for the primal-dual problems can be obtained by an iterative
method. �

IV. DISTRIBUTED SOLUTION FRAMEWORK

Given that the dual problem in (10) is a linear function of
λ (see eq.11), it is possible to utilize the gradient methods to
solve the dual problem.

The gradient descent method is a popular technique to find
local optima. At each step of the iteration, the search continues
in the negative direction of the gradient of the function. The
gradient descent recursion for solving (10) is given by:

λ(t+1) = λ(t) − α(
∂L(δ∗(λ), λ)

∂λ
) , (15)

where t is the iteration index and α ≥ 0 is the step size.
Since all price-based solution functions, namely (13) and

(14), associated with problem (9) are continuous over λ’s
domain, one can devise an iterative algorithm based on (15)
that will converge to the global optimal solution, as suggested
by Theorem 2.

A. Distributed Algorithm
Due to the complex relationships among nodes, imposed

by the tree structure and the result in (7), the problem (9) and
its corresponding Lagrangian function (11) cannot be easily
separated to develop a distributed solution. However, a careful
observation of the price-based solution functions in (13) and
(14) reveals that the optimal data reduction at a node (say node
i) only depends on the optimal reduction rates of all ancestors
of node i in the aggregation tree and the optimal price value
λ∗. That is, if a node knows just the solutions associated with
its ancestors and the optimal price value λ∗, it can calculate its
δ. We exploit this critical observation to devise our distributed
solution. Algorithm1 presents the pseudocode of the proposed
technique. Steps for the Phase1 and Phase2 operations of the



Algorithm 1 are presented as Algorithm 2 and Algorithm 3
respectively. Note that t denotes the iteration index. An initial
value λ0 is considered as an input to the Algorithm 1.

Algorithm 1 Iterative Distributed Algorithm

Input: Initial value for price value λ.
Output: The optimal reduction rates associated with all
nodes and the optimal price value.

1: t← 0;
2: λ(t) ← λ0;
3: Repeat:
4: Phase1(Node_id): Nodes calculate δ(λ(t)) based on (13)

and (14);
5: Phase2(Node_id):Nodes calculate their QoI contributions

based on (7);
6: New price is updated based on (15) by the root and sent

to all children;
7: Until convergence;

B. Information Exchange
Although each node needs all price-based solutions of its

ancestors and the price value to calculate its reduction rate,
each node can receive the required information just from its
parent. Moreover, it is also possible to reduce the number of
messages exchanged among nodes as follows:

The denominator of δj(λ) in (14) is :

uj = εjT +

h(j)−1∑
i=0

(fj,i(δj,i)

h(j)−1∏
m=i+1

δj,m)− λ(

h(j)−1∏
m=0

δj,m) , (16)

εjT is a node parameter and it is known to node j. Let wj :=

λ
∏h(j)−1
m=0 δj,m and sj :=

∑h(j)−1
i=0 (fj,i(δj,i)

∏h(j)−1
m=i+1 δj,m)

which only involve the compression parameters higher up in
the tree; hence these can be computed by the parent of node j;
and that parent node only needs to send these two parameters
to all its children. Note that λ(t) is the price value calculated

Algorithm 2 Distributed computation of priced-based function

Input: nk,i . Node Id.
Output: The reduction rate associated with node nk,i.

1: if nk,i = 0 then . n is the root.
2: sk,i ← 0;
3: wk,i ← λ(t)

4: else
5: δk,i ←

√
εiC

εiT+sk,i−wk,i
;

6: if nk,i 6∈ K then . n is an intermediate node.
7: sk,i+1 ← sk,iδk,i + fk,i(δk,i);
8: pk,i+1 ← pk,iδk,i;
9: PHASE1(nk,i+1)

10: else
11: PHASE2(nk,i);

at tth round of the algorithm. After calculating δj(λ) for all
j ∈ N , it is necessary to update λ and check if the algorithm
has converged. In order to update λ, ∂L(δ,λ)

∂λ which is in fact
the constraint of the problem (9) must be determined first.
The algorithm converges to the optimal when ∂L(δ,λ)

∂λ = 0.
That is, the constraint becomes active.

Algorithm 3 presents the steps for calculating ∂L(δ,λ)
∂λ and

updating the price value λ. As shown in Algorithm 3, each

node calculates its contribution to the QoI constraint. By the
time the root receives information from its children, it can
calculate the new λ based on (15) and check whether the
algorithm has converged. If so, the root node will not send
an updated message and after a certain amount of time, all
nodes will finalize their values of δ as optimal. Otherwise,
the root will send a message containing the updated value of
λ (i.e., s0, w0) to its children.

Algorithm 3 Distributed computation of QoI and the price

Input: nk,i . Node Id.
Output: The updated price value.

1: if nk,i ∈ K then
2: qi ← ykδk;
3: send qi to parent-of-k;
4: PHASE2(parent-of-k);
5: if nk,i /∈ K then
6: if receive-all-qj-from-children then
7: yi ←

∑
j∈Ci

qj
8: else
9: Wait-until-receive-qj-from-all-children;

10: qi ← yiδi;
11: send qi to parent-of-i;
12: PHASE2(parent-of-i);
13: if nk,i = 0 then
14: λ(t+1) ← λ(t) − α(∂L(δ,λ)∂λ );
15: t← t+ 1;
16: if !algorithm-converge then
17: PHASE1(nk,i)
18: else
19: return ;

C. Solution Feasibility
Consider the constraint in the problem (9). That is:∑

k∈K

yk
( h(k)∏
i=0

δk,i
)
≥ γ .

By assumption, 0 <
∏h(k)
i=0 δk,i ≤ 1, ∀k ∈ K. Therefore, if∑

k∈K yk ≤ γ, it does not exist a feasible solution to the
problem (9). That means that a feasible solution can exist
only if the total amount of data generated in the network is
greater than or equal to the QoI requirement.

Moreover, by definition we have 0 < δi ≤ 1. Therefore,
if δi, ∀i ∈ N determined during iterations of Algorithm
2 is outside of this box constraint (i.e., δ∗i (λ∗) < 0 or
δ∗i (λ∗) > 1), we map the solution to the upper bound of data
reduction rate value (i.e., δ∗i (λ∗) 7→ 1). The intuition behind
this is explained as follow.

As an example, consider (19) and (22). Therefore, we have:

εT −
εC
δ20

= λ .

Note that f ′0(δ0) is an increasing function of δ0. During
iteration of Algorithm 3, we update the value of λ. The
maximum value of λ in this case occurs when δ0 reaches
the upper bound (i.e., 1). Therefore if the optimal value
of λ causes δ0 to attain an imaginary value, we map the
solution to the upper bound value. In addition, if λ∗ = 0 and
ε0C � ε0T then δ0(λ) > 1. In this case, we map the solution
to the upper bound as well (i.e., δ∗0(λ∗) 7→ 1) since, sending



Fig. 1: Convergence of the proposed iterative method vs.
iteration index t.

Fig. 2: Convergence of estimated compression rate vs.
iteration index t for nodes at different levels of the tree..

all information (choosing δ0 = 1) is more energy efficient
that processing and reducing the data. Note that the same
argument is applicable at the intermediate or leaf nodes.

V. NUMERICAL EVALUATION

In this section, we present numerical results for evaluating
the proposed distributed method. The function li(δi) = 1

δi
−1,

for δi > 0 is the scaling function. The energy consumption
parameters εR, εT and εC are set at εR = εT = 0.02, εC =
0.01. Each leaf node generates 15 packets. The QoI threshold
γ is assumed to be 5 data packets. In this experiment the
feasibility and existence of optimal solution is guaranteed as
we assume the amount of QoI requirement by the end use is
less than the total amount of data generated in the network.
We consider a symmetrical binary aggregation tree with 15
nodes and identical parameters for all nodes. This way, we
can compare results of the proposed distributed method with
the optimal solution generated by exhaustive search.

Fig.1 presents the convergence of the proposed distributed
optimization algorithm versus the number of iterations. The
solid line presents the value of the objective function p(δ(λ))
at each iteration and the dashed line depicts the optimal value
of the objective function denoted by p∗ and obtained by an
exhaustive search algorithm. As the graph shows, after 20 iter-
ations or so, the distributed algorithm converges to the optimal
solution identical to that obtained by exhaustive search p∗.

Fig. 3: Data reduction rates variations at different levels of
the data aggregation tree under different parameters’ settings.

The distributed algorithm converges when the residual incon-
sistency value equals to zero. i.e., ∂L(δ,λ)∂λ = 0, where the price
value gains its optimal value 0.004141. In this experiment, the
initial value of the Lagrangian multiplier λ and the step size
α were set at 0 and 0.001 respectively. Since we consider a
symmetrical aggregation tree with homogeneous nodes, nodes
located at the same level of the tree have identical optimal data
reduction rates. Fig.2 illustrates the variation of the reduction
rates for nodes at level 0, 1, 2 and 3 after each iteration.

We evaluate the performance and correctness of the dis-
tributed algorithm under different parameter settings. In par-
ticular, we consider the computation energy to transmission
energy ratio and test the algorithm under various values from
extreme to moderate cases as presented in Table I. The optimal
reduction rate at each level associated with these parameters
settings is illustrated by Fig.3. It can be seen that when εC is
much greater than εT (an extreme case) all nodes at each level
will send all received data. That means they will not compress
data due to extremely high cost of computation. In contrast, if
εC � εT (the last) it is beneficial to compress the data at lower
levels of the aggregation tree in order to spend less energy
for transmitting data. The increasing trend of data reduction
rate from leaf nodes to the root node continues among other
moderate parameter settings as illustrated by Fig.3. However,
this trend is valid only for a symmetrical data aggregation
tree. A different pattern can be observed when we consider
an irregular data aggregation tree with heterogeneous nodes as
illustrated by Fig. 4. In this experiment, εC is randomly chosen
from the interval [0.01, 0.02]. Furthermore, it is assumed that
εT = εR = 0.02. The input data at each leaf node is 15
packets. The algorithm converged after 560 iterations and the
delivered QoI and optimal price are 8 and 0 respectively.

Table I presents optimal price value and delivered QoI
corresponding to each parameters setting. The optimal price
attains positive values when the delivered QoI is exactly
equal to QoI threshold γ. That means the constraint in (9)
is active,

∑
k∈Kyk(

∏hk

i=0 δ
∗
ki

) = γ. On the other hand,
when the delivered QoI is greater than γ, the Lagrangian
multipliers (price) equals zero. This result is compatible with
the fact that for any primal and dual optimization problem
with zero duality gap, the complementary slackness condition
of KKT conditions must be satisfied by both the optimal



εC
εT

λ∗ Delivered QoI # Iterations λ0 α

50 0 120 17 0.0002 0.0000001
5 0 101 20 0.0002 0.0000001
1 0 14 212 0.0002 0.0000001
0.5 0.0041 5 324 0.01 0.001
0.2 0.121 5 112 0.02 0.001
0.02 2.444 5 72 0.1 0.01

TABLE I: Performance of the distributed algorithm under
different settings

:Sensor nodes

:The end user
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0.371

0.447
0.4680.373
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Fig. 4: Data reduction rates for a tree with heterogeneous
nodes.

solution and the optimal Lagrangian multiplier. That means
−λ∗(

∑
k∈Kyk(

∏hk

i=0 δ
∗
ki

) + γ) = 0.
The Table also presents the number of iterations required

to reach convergence. Note that initial price value of λ can
affect the speed of convergence (compare this result to that in
the previous experiment).

In this work, we identified practical network conditions and
assumptions under which we could show that the duality gap
between primal and dual problem is zero. Our future work
will involve further investigation on the proposed problem
in order to characterize more generic network conditions and
assumptions that could lead to the optimal solution.

APPENDIX

Price-based solution function calculation
Taking the partial derivative of (11) at δ0 (i.e., root node) ,

δk where k ∈ K and δj where j 6∈ K we have

∂L

∂δ0
=

∑
k∈K

yk
(
f ′0(δ0)

h(k)∏
m=1

δk,m
)

−λ
∑
k∈K

yk(

h(k)∏
m=1

δk,m) = 0. (17)

∂L

∂δk
= ykf

′
k(δk) + yk

h(k)−1∑
i=0

(
fk,i(δk,i)

h(k)−1∏
m=i+1

δk,m
)

−λyk(

h(k)−1∏
m=0

δk,m) = 0 for k ∈ K. (18)

Given that
∏
i∈N δi 6= 0, by factorising and rearranging the

terms in (17) and (18) we have:
f ′0(δ0) = λ . (19)

f ′k(δk) = −
h(k)−1∑
i=0

(fk,i(δk,i)

h(k)−1∏
m=i+1

δk,m) + λ(

h(k)−1∏
m=0

δk,m) .

To compute ∂L
∂δj

, notice that δj only affects the energy cost
of node j and its ancestors. Let τj = (nj,h(j), . . . , nj,1, nj,0)
(as defined in Section III). Let yj denotes the total volume of
incoming data at node j. Then

∂L

∂δj
= yjf

′
j(δj) + yj

h(j)−1∑
i=0

fj,i(δj,i)

h(j)−1∏
m=i+1

δj,m

−λyj
h(j)−1∏
m=0

δj,m = 0. (20)

We treat (20) in the same manner as (17) and (18) to obtain

f ′j(δj) = −
h(j)−1∑
i=0

fj,i(δj,i)

h(j)−1∏
m=i+1

δj,m + λ

h(j)−1∏
m=0

δj,m . (21)

Notice that we do not need to deference between leaf nodes
and intermediate nodes. For the cost model in (6), we have:

f ′i(δi) = εT −
εC
δ2i

. (22)

Substituting (22) into (19) and (21) lead to (13) and (14).
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