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Abstract

ECG signal processing has been one of the major studied topics in the biomedical field. The

introduction of new techniques and the extensions to the previous keep constantly evolving the

span of the ECG research, providing a true realisation of the problems specific to each new

approach. For this reason, thorough data analysis and accuracy evaluation have been the most

significant tools in effective quantifying of ECG noise elimination techniques.

The ECG signal is generally defined to have a spectral content between 50 mHz and 150 Hz

with a few millivolts in amplitude, and identified as susceptible to physiological and environ-

mental interferences. The elimination of noise interferences, in particular the baseline wander,

is a major concern in preserving the ECG signal integrity (i.e the ST segment) due to the

overlapping spectral content of noise sources with this segment. The inherent complexity of

such a problem has led to computationally-intensive algorithms in the literature (i.e. Empirical

Mode Decomposition (EMD), Independent Component Analysis (ICA), Wavelet Transforms

(WT) and others) and the removal of the baseline drift is acquired off-line with powerful sim-

ulation tools. The adaptations of these methods for ambulatory designs, on the other hand,

demonstrate substantial accuracy degradation due to scaling. Therefore, real-time approaches

to match comparable accuracy to the computational intensive algorithms are yet to be proposed.

This research investigates a computationally-efficient baseline wander removal technique and

targets comparable performance to its computational off-line counterparts reported in the lit-

erature while preserving the signal integrity of the ECG.

This work introduces a novel hardware-efficient real-time baseline estimation method based

on three distinctive “isoelectric” fiducial point detections per heart beat. These detected points

are cubic spline interpolated to achieve a realistic representation of the baseline estimation,

and removed from the noisy signal to provide an “undistorted” ECG signal representation.

Computational efficiency of this approach is further improved with a novel weighted piece-

wise linear interpolation technique. This approach targets non-uniformly sampled systems with

less computational requirements compared to the higher order polynomial interpolation. The

MCU-based real-time hardware system realisation of these algorithms demonstrates accurate

ambulatory system response and this is the first tested system level design addressing baseline

wander removal with detailed analysis. The validated tests have presented original contribu-

tions for baseline wander detection and removal by tackling one of the most crucial challenges

currently present in clinically valid ECG signal processing. The accuracy and the computational

requirements of the developed algorithms show real-time capabilities of the overall system and

challenge its computational ECG signal processing counterparts.
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Chapter 1

Introduction

Electrophysiology, a field first studied in the second half of the 18th century [1], investigates the

electrical properties of biological cells and tissues. With the advent of technology, it has been

shown how these bio-potential reactions convey crucial information about human nature more

so than previously predicted.

These electrical interactions of tissues and cells cover the whole human body and control

voluntary and involuntary responses to the surroundings such as the electrical activity of the

heart, the contractions and relaxations of certain muscle groups or the activity of nerve impulses

within the brain. Fig. 1.1 compares the signal characteristics of such common bio-potential

signals [2]. It can be observed that several of these signals have characteristics that overlap

in both amplitude (level) and frequency content (bandwidth). In general, bio-potential signals

span a frequency range from 50 mHz up to 10 kHz and signal amplitudes span from microvolt

to millivolt levels. Interference can thus be attributed to overlapping signal bands with other

bio-potential signals (a kind of “bio-crosstalk”) but also to external sources. Therefore, several

approaches have been reported to eliminate the different sources of interference in order to

obtain an “undistorted” signal that is viable for clinical diagnosis.

Based on the characteristics of physiological signals, certain requirements need to be ad-

dressed. Due to their low frequency content, large time constants are necessary to filter out

noise interferences while preserving the signal integrity. In order to achieve those large time

constants, analogue solutions require large resistances and capacitances. Usually, this is not a

design problem with discrete components; however, integrated solutions with large capacitance

values are difficult to be fabricated due to large die area requirements. On the other hand,

large DC offsets and powerline interferences from the mains disturb the signal quality as the

amplitude of the physiological signals is in microvolt to millivolt ranges. These noise sources

require efficient filtering techniques and low noise analogue front end (AFE) designs to avoid

crucial information loss and achieve high dynamic ranges.

With such small amplitude levels and bio-crosstalk interferences, the electrical signals trans-

mitted through the corresponding type of sensors or transducers need to be filtered and amplified

by the front-end designs before further processing takes place in the digital domain. One of the

challenges in the front end designs is the requirement of the low power read out circuits for long-
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Figure 1.1.: Biopotential signals and their characteristics

term ambulatory operations. Unless paid attention, long term operations via body patches can

cause necrosis (death of living cells) in the muscle tissue due to the excessive heat dissipation

of integrated designs. Seese et al. state that a heat flux of 0.08 W/cm2 is enough to cause the

death of biological cells adjacent to the heat source [3, 4]. In addition to that, increased power

dissipation would require change of batteries limiting its continuous time ambulatory operation.

Therefore, power dissipation should always be considered in system level design.

1.1. Motivation

Every day thousands of people face life-threatening situations based on cardiovascular diseases.

These instances not only result in negative emotional impact both for the patient and their

family, but also have socio-economic consequences such as requiring life-long treatment and/or

medicine intake to reduce a future heart failure.

According to the World Health Organisation’s year 2012 statistics, an estimated 17.5 million

people (31 % of the global deaths) died from cardiovascular diseases (CVD) and CVDs are still

the main cause of deaths globally [5]. These reported deaths are mainly observed in low and

middle income countries (82 % of all the CVDs), equally distributed between men and women.

Fig. 1.2 displays the cardiovascular death rates of male and female patients around the globe.

The same organisation predicts by the year 2030, 23.6 million people will die from CVDs mainly

because of heart diseases and stroke annually [6]. In addition, the prediction also states that

CVDs are projected to remain the single leading cause of death by the year 2030 [7]. Therefore,

the need to improve modern healthcare systems for the reliable diagnosis and early detection

of CVDs is certainly a priority.

With the advent of medical device technology, mobile and ambulatory applications prove to

be the new advancement in pre-detection of coronary heart diseases and many others. Therefore,

there is an increasing demand by both professionals and patients in shifting from hospitalised
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Figure 1.2.: World Health Organization’s CVD related death rates. Extracted from [8]

care solutions to home care detection systems in order to act before heart disorders reach

critical levels. On the other hand, with the development of home care solutions fewer sensor

measurements cause less electrode irritation when compared to conventional 12-lead hospitalized

solutions. Once critical levels are detected via ambulatory devices, further tests can be held in

hospitals by keeping electrode irritation to a minimum level. If such systems are deployed at

home or integrated into lifestyle, there are further challenges such as compliance, good electrode

placement and general reliability.

Fig. 1.3 shows the examples of the easily available devices in the ECG market. These systems

can be divided into two main categories as consumer and medical-grade electronics. In the recent

years, there has been a growing trend towards the field of wearable consumer electronics devices

Figure 1.3.: ECG devices available on the market. Extracted from [9–12]
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for lifestyle and sports monitoring; however, these “lifestyle” devices do not generate clinically

valid data. On the other hand, in medical-grade electronics Smartheart states to be the “first”

and “only” 12-lead ECG device on the market that enables the detection of heart attacks by

requiring telemetry and diagnosis at a telemedicine center [13]. With the limited progress in

wireless technology, the total amount of data transfer in ambulatory devices is restricted. High

resolution data transmission combined with high sampling rates dissipate too much energy,

given the capacity of a typical battery. Secondly, the progress in battery technology has been

very limited. Therefore, seeking for new methodologies to alert the patient about their condition

is critical.

1.2. Challenge on ECG systems - Defining the problem

Various ECG systems are available on the market for commercial use and still loads of research

have been conducted on ECG read out circuits and processing methods. Fig. 1.4 shows the

target application of these systems which deploy different algorithms and hardware design to

process raw ECG data with varying success rates. According to a study by 8 cardiologists,

nine different algorithms yielded correct classifications ranging from 69.7 % to 76.3 % success

rate [15]. Although this experiment was performed in 1991 and improved algorithms with the

“self learning” attributes have been utilised in the following years, diagnosis of acute cardiac

ischaemia have been a challenge throughout the years. In 2001, another study showed a sensitiv-
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ity of 76 % and a specificity of 88 % by a computer algorithm in the identification of ventricular

late potentials [16]. These results demonstrate that identification of myocardial infarction is

challenging due to the high noise levels present in the signal of interest. Therefore, American

Heart Association and International Electrotechnical Commission required high resolution read-

ings for diagnosis purposes within the ECG frequency band in the evaluation of ST segment

morphology thoroughly [17–20].

The evaluation of the baseline drift in addition to other noise sources and their removal carries

a significant importance to all ECG measurements. However, since the frequency of interest

of the ST segment coincides with the frequency content of the baseline wander, removing the

baseline wander through a high-pass filter often results in elevation or in suppression of the

ST segment [20, 21]. However, in order to evaluate the readings correctly, baseline wander has

to be removed in a way without affecting the ST segment. Various approaches with different

success rates do exist, nevertheless there is no consensus on the best methodology due to ECG

recordings varying from person to person and even from one instance to another. Most of the

methods reported in the literature are computational and applied for hospital care solutions

only due to high power dissipation requirements.

Most of the ambulatory ECG systems like commercial Holter monitors feature low resolution

readings from 8-bits to 12-bits in their specifications. In addition, stored data in those systems

need to be processed by software algorithms eventually, resulting in hospitalised care solutions

rather than home care. On the other hand, real-time systems for HR-ECGs mainly digitise the

signal of interests with higher resolutions and/or utilise advanced signal processing techniques

to overcome the lack of SNR. However, as ventricular potentials are in microvolt levels, comput-

erised solutions like signal averaging of a few hundreds of heart beats can still produce errors

due to the large noise transitions and/or noisy beats [22]. Adopting these solutions to ambu-

latory care is not easy due to the low resolution systems not identifying certain problems and

high resolution systems requiring high process power dependant computerised solutions. These

computerised solutions limit the overall systems to be applicable to hospital care purposes only

due to the high power requirements of the system.

1.3. Research Hypothesis

As indicated in the previous section, ECG baseline wander removal poses significant challenges

in clinically valid data interpretation. Elimination of this noise source through conventional fil-

tering and/or signal processing techniques, results in ST segment elevation/depression due to its

frequency content coinciding with the noise interference. This disturbs the ECG signal integrity.

Therefore, ambulatory diagnostics require frequency-independent and computationally-efficient

ECG baseline wander removal.
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1.4. Research Objectives

Various works have been reported in the literature related with this area and different approaches

exist in removing the noise interferences mainly caused by respiration, muscle movement, im-

proper electrode site preparation and deficient electrodes. Most of these systems are designed for

hospital care solutions and with advancement of home care and ambulatory applications, pre-

detection of coronary heart diseases gains significant importance. Therefore, specific research

objectives to test the Hypothesis are:

• To detect and remove baseline wander interference as required by the applicable stan-

dards while accomplishing resource efficient real-time system design. To achieve this goal,

noise source characteristics affecting the in-band signal quality have to be comprehended

thoroughly as they will be forming the main challenges of system level design. These

noise interferences have to be isolated and/or removed in baseline drift estimation and

the detection algorithm has to be agile to predict and perform real-time measurements

without requiring significantly large number of cycles and data storage as these would be

limiting real-time system implementation.

• To investigate methods for reducing complexity in the most computationally demanding

parts of baseline detection algorithm (i.e. interpolation). Comprehensive analysis shows

that even though polynomial approaches achieve smoother fits, sometimes they are not

accurate and they rely on computationally demanding number of operations, thus limiting

their real-time implications. This project develops a novel and an efficient algorithm to

utilise the information acquired from baseline detection stage improving the accuracy vs

complexity trade off in ECG applications.

• To implement baseline wander detection and interpolation algorithms in an embedded

system to achieve real-time baseline wander estimation. This way, computational com-

plexity of the overall system such as dedicated memory, and hardware requirements are

investigated, and the power consumption of the overall system is quantified.

1.5. Outline of the Thesis

The remainder of the Thesis is organised as follows:

• Chapter 2 focuses on ECG characteristics, heart activity and noise artefacts present in

ECG signal as well as the challenges associated with removing these artefacts. The dis-

cussion then follows on with a detailed literature review covering conventional systems,

and the state-of-the-art techniques in baseline wander removal.

• Chapter 3 discusses a novel hardware efficient approach for ECG baseline drift removal

that is shown to preserve integrity of the ST segment by tracking 3 “isoelectric” points

within the ECG waveform. The hypotheses behind such an approach and the proposed
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methodology are covered in detail along with the in depth analysis with synthetic and

real test results. These findings are then compared and evaluated with the state-of-the

art techniques.

• Chapter 4 introduces a computationally-efficient interpolation method that has been op-

timised for use in ECG baseline drift removal algorithm. A feasibility study investigates

the trade-offs between computational complexity and accuracy of the proposed two-stage

interpolation approach and compares its evaluated synthetic and real test results with

higher order polynomial interpolation techniques.

• Chapter 5 tests both algorithms in an embedded target presenting and evaluating the

measured results. To follow up, complexity measure of both algorithms is quantified in

more detail and an in depth analysis in regards to power consumption is presented.

• Chapter 6 concludes the thesis highlighting original contributions in addition to possible

future directions.
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Chapter 2

Background & The State-of-the-Art

The previous chapter has introduced the key physiological signals and their susceptibility to

noise interferences briefly. As discussed, these electrical activities are small in amplitude and

their frequency content often overlaps with environmental noise sources and other physiological

signals. The removal of these noise sources poses a significant challenge such that without

reliable signal processing techniques, the processed output often deforms in the process. This

deformation results in clinically significant information to be irrecoverable before the data is

even interpreted by a clinician.

Baseline wander has been a vastly studied subject in ECG signal recording especially in

hospitalised care solutions [23,24]. These clinical systems focus on preserving the signal integrity

while addressing the noise activity through extensively computational digital signal processing

techniques. On the other hand, real-time applications in ambulatory care do not trifle ECG

signal integrity. Usually, these systems implement system-on-chip solutions and address baseline

drift with filtering techniques. As a result, the signal of interest gets distorted and its clinical

validity is undermined within the process. Removal of these noise sources while preserving

the signal quality in real-time applications, therefore, remains unsolved, and whether or not

computationally efficient algorithmic techniques ascertain these have to be investigated in more

detail.

This chapter focuses on the ECG morphology and the state-of-the-art techniques in baseline

wander removal. Section 2.1 provides a brief background on ECG signals and their properties.

These cover basic ECG morphology knowledge to detect and estimate the baseline wander

without distorting the signal of interest. Later, these are going to form the basis of the baseline

wander estimation technique developed in the following chapters. In Section 2.2, the state-of-

the-art review details up-to-date methods in ECG baseline drift removal and provides a brief

background about each technique. The issues and problems that are currently associated with

each method in baseline wander detection and their real-time implementation suitability are

also discussed.
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2.1. ECG Background

Electrocardiography (ECG) is the transthoracic interpretation of the electrical impulse of the

heart. It is generated by the right atrium of the heart at a site called the sinoatrial node.

Electrocardiograms record this activity by means of electrodes attached to the outer surface

of the chest over a period of time in a non-invasive procedure. In the sections that follow, a

background to heart activity, lead placements, ECG characteristics and noise interference types

are explained.

2.1.1. Heart Activity

The heart is composed of two major types of cardiac muscle cells, the cardiomyocytes and

the cardiac pacemaker cells [25]. These two types of cells differ from each other and fulfil

different purposes during the electrical activity of the heart: (1) The former are responsible for

the mechanical movement of the heart and form the bulk of the cells present in the atria and

ventricles (≈ 99 % [26]); whereas (2) the latter generate and conduct the electrical impulses

through the heart and are significantly fewer in number.

Each heart beat starts with the depolarisation of cardiac pacemaker cells at the sinoatrial

(SA) node, which is located in the posterior and anterior walls of the right atrium. These

autorhythmic cells generate the electrical impulses and are responsible for sinus rhythm as the

induction spreads through the heart. This propagation is illustrated in Fig. 2.1(a) with white

arrows.

Prior to the atrial systole (contraction), the blood flows through the atrium to the ventricles

passively. The first wave, namely the P wave, that is shown in Fig. 2.1(b) is formed when the

sinoatrial node discharges and the depolarisation impulse spreads over the atria through Bach-
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(a) Electrical system of the heart. Adapted from [27]
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Figure 2.1.: Conducting components of the heart pathway including the sinoatrial node, the
internodal pathways, the atrioventricular node, the right and left bundle branches,
and the Purkinje fibers with frontal plane and typical ECG waveform
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Figure 2.2.: ECG waveform tracings with the electrical and mechanical events of a heart con-
traction. Extracted from [26]

mann’s Bundle and internodal pathways (anterior, middle and posterior tracts). An illustration

of this SA node activity is shown in Fig. 2.2(1), and (2).

As the impulse reaches to the second clump of autorhythmic cells at the atrioventricular (AV)

node located in the inferior section of the right atrium, there is a delay in the completion of

pumping blood in the atria as shown in Fig. 2.2(3). This brief pause, referred to as PR segment,

tops off the ventricles with blood, which increases the ventricular pressure. As a result of this

pressure change, the AV valves close to prevent blood flowing backwards and the semilunar

valves (aortic and pulmonary valves) open.

The impulse is then transmitted to the atriaventricular bundle through conduction pathways

and branches into Purkinje fibers as illustrated in Fig. 2.2(4). During this time interval, the

QRS complex is generated and the impulse is spread over the ventricles causing the large muscle

mass to depolarise. This depolarisation continues on until the pressure within the ventricles

equalises with the pressure in the aorta and pulmonary arteries.

After the contraction of the ventricles, the heart goes into a silent phase called the ST segment.

During this time interval, no electrical activity can be passed through the myocardium as shown

in Fig. 2.2(5). Any electrical activity in that interval can be interpreted as a cause of myocardial

infarction or ischaemic behaviour.

27



Chapter 2 - Background & The State-of-the-Art

Finally, the T-wave is generated when the ventricles repolarise; in other words, when the

ventricular myocardium relaxes as depicted in Fig. 2.2(6). During the diastole, the pressure in

the aorta and pulmonary arteries exceeds the pressure in the ventricles resulting in the semilunar

valves to close. After the completion of ventricle repolarisation, the heart prepares for upcoming

contractions.

As can be seen from the Fig 2.1(b), there does not seem to be a recharging phase for the

atria. Since the total muscle mass in ventricles is heavier and the relaxation of atria occurs

when the ventricles depolarise, the missing waveform is concealed beneath the QRS complex.

Additionally, some papers report another wave after the T wave called the U wave [28]. However,

the origin of the U wave is uncertain and its possible causes are thought to be interventricular

septal repolarisation or slow ventricular repolarisation.

2.1.2. Table of Cardiac Events

Based on the heart activity described previously, cardiac events with typical ECG feature char-

acteristics are presented in Table 2.1. Additionally, the illustration of each specific event is

depicted in Fig. 2.1(b) and this table lists possible problems associated with each segment that

can lead into sinus arrest, atrial enlargement, myocardial infarction, ischaemia and many others.

The reader can refer to the work of Andrew R Houghton et al. for further descriptive analysis

on ECG disorders associated with each certain cardiac event markers [28]. Throughout the

thesis, ECG events and their typical durations listed in this table are used in estimating the

ECG baseline wander.

Table 2.1.: Typical cardiac event durations [28]

ECG
Event

Cardiac Event Problems Typical Values

P wave Atrial Depolarisation
Absent, inverted, tall or

wide
< 0.25 mV in amp.
< 0.12 s in dur.

PR
interval

Time from atrial to
ventricular

depolarisation

Longer or shorter
duration than typical

values

0.12 s< x<0.2 s in dur.
Should be consistent

QRS
complex

Ventricular
depolarisation

Abnormal shape or tall,
small or wide complex

< 2.5 mV in amp.
< 0.12 s in dur.

ST
segment

Pause in electrical
activity

Elevated or depressed ST level shifts< 0.1 mV

T wave
Ventricular

repolarisation
Tall small or inverted Half the size of QRS

QT
interval

Time between
ventricular

de & re-polarisation

Longer or shorter
duration than typical

values

QTc> 0.44 s
QTc< 0.35 s
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2.1.3. Lead Nomenclature

The ECG waveform is composed of 3 main waves namely the P-/T- waves and the QRS complex.

When these waves are investigated from different leads, a wide range of abnormalities regarding

the electrical conduction system and the muscle tissue of the heart’s pumping chambers can

be diagnosed based on the typical values tabulated in Table 2.1. Therefore, it is important to

understand the “lead” arrangements to make sense of the ECG waveforms properly.

Leads capture electrical activity of the heart from different viewpoints. Therefore, more lead

placements provide a more comprehensive picture of the heart’s electrical activity from different

angles. A conventional 12 lead ECG collects information via six limb and six chest leads as

shown in Fig 2.3(a) and 2.3(b) respectively. Limb leads in Fig 2.3(a) are abbreviated as LI, LII,

LIII, aVR, aVL and aVF, whereas six chest leads in Fig 2.3(b) are abbreviated from V1 to V6.

Limb leads (LI, LII and LIII) are utilised to form the Einthoven’s triangle by placing the

electrodes at the ankles. This orientation forms an inverted equilateral triangle with the heart

located at the centre generating zero potential when the voltages are summed. An example

of such lead placement at the corners of the chest is illustrated in Fig 2.4, as well as the

corresponding limb lead equations demonstrating their arrangements as in Eq. 2.1, 2.2, and 2.3.

In these equations, left arm electrode is abbreviated as LA, right arm electrode is abbreviated

as RA and left leg electrode is abbreviated as LL.

ECG leads are categorised as bipolar (LI, LII, and LIII) or unipolar (augmented and chest

leads). Bipolar leads measure the voltage difference between two distinctive points, whereas

unipolar leads utilise a reference point. This reference point, VW , is often generated by a

Wilson central terminal through a simple resistive network to obtain a potential average across

the body as noted in Eq. 2.4, where left arm, right arm and left leg electrodes are denoted as

LA, RA and LL respectively. Utilising this reference point, VW , with the right arm, left arm

and left leg electrodes, augmented limb leads, aVR, aVL and aVF are derived as in Eq. 2.5, 2.6,

and 2.7 respectively. These leads see the heart from different angles compared to the limb leads

aVR aVL

aVF

aVR aVL

aVF

LIII

LI

LII

LIII LII

LI

(a) 6 Limb leads (3 normal + 3 augmented)

V1 V2 V3
V4

V5

V6

V1 V2
V3

V4

V5

V6
RV

RA

LA
LV

(b) 6 Chest leads

Figure 2.3.: 12-Lead ECG placement. Redrawn from [29]
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LI = LA− RA (2.1)

LII = LL− RA (2.2)

LIII = LL− LA (2.3)

Equation Abbrevations:

LI = Lead I, LII = Lead II,
LIII = Lead III, LA = Left Arm,
RA = Right Arm, LL = Left Leg

Figure 2.4.: Placement of limb leads and limb lead equations. Redrawn from [30].

due to the vectorial formation from one electrode to the Wilson central terminal.

VW =
1

3
∗ (RA+ LA+ LL) (2.4)

aVR =
3

2
∗ (RA−VW ) (2.5)

aVL =
3

2
∗ (LA−VW ) (2.6)

aVF =
3

2
∗ (LL−VW ) (2.7)

Every single lead captures a different signal depending on the motion of the electrical current

relative to the lead positioning. This way a certain type of deflection is observed on the ECG

trace as illustrated in Fig. 2.5. An example of a positive deflection can be observed in Lead-II

recordings as a result of electrical impulses moving towards the lead with ventricular depolarisa-

tion. This way, all six limb leads form the “hexaxial reference system” and the heart’s electrical

activity in the frontal plane is observed from different angles [31].

As the lead types define the typical ECG waveforms, a detection algorithm is required to

assess lead orientations and define reference points in system level design. In the event of

a myocardial infarction, the ECG trace displays changes in the leads looking at that region,

namely Lead-II,-III and aVF [28]. Based on this, the baseline detection algorithm is going to

focus on Lead-II recordings as Lead-III trace generates marginally smaller amplitudes. Lead-II

recordings display positive deflections in all P-/T- waves and QRS complexes and do not require

Wilson central terminal during implementation.

30



Chapter 2 - Background & The State-of-the-Art

Negative De�ection Equipolar De�ection Positive De�ection

Current Flow Direction

Figure 2.5.: Deflection type based on current flow direction

2.1.4. Myocardial Infarction

As covered in Section 1.2, the removal of noise interferences poses a significant challenge in pre-

serving ST segment integrity. Evaluation of this time interval yields clinically valid information

in acute myocardial infarction (AMI) diagnosis. This section briefly describes the symptoms of

AMI and the subsequent changes observed in a Lead-II ECG trace.

Myocardial infarction is the name of the condition when the blood flow halts to a part of

the heart. This condition occurs when coronary arteries are occluded due to an unstable build

up of white blood cells, cholesterol and fat causing oxygen deprivation in the heart tissue [31].

Due to these prolonged ischaemic conditions, necrosis of myocardial cells occur within a period

of time [32]. Therefore, timely diagnosis of myocardial infarctions is key to preventing life

threatening arrhythmias [33].

There are two categories of AMI which differentiate from each other based on the elevation

and depression observed at the ST segment of the ECG trace [31]. In ST elevated myocardial

infarction (STEMI) cases, the ST segment elevation occurs due to major damage of heart

muscles. In a non-ST segment elevated myocardial infarction (NSTEMI), patients have a partial

blockage of the major coronary artery or a full blockage of minor ones resulting in an ST

depression.

Fig. 2.6 illustrates both of the STEMI and NSTEMI responses. In STEMI, there are typically

three changes evolving in time over a period of minutes to hours. These changes initiate with

ST segment elevation followed by T wave inversion and Q wave formation [31]. On the other

hand, patients experiencing NSTEMI with acute coronary syndrome display ST depression and

T wave inversion [32,34]. Both cases require myocardial infarction treatments according to the

clinical practice guidelines [35].
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Figure 2.6.: Types of ST elevation and depression seen in myocardial infarction

2.1.5. ECG Characteristics & Noise Artefacts

ECG Characteristics ECG signals are in the order of a few millivolts as illustrated in

Fig. 1.1. These signals are patient-specific and the amplitude differences depend on factors

such as the total muscle mass of the chambers and their de-/re- polarisation states. Each QRS

complex can reach up to 2.5 millivolts, and they are significantly larger in amplitude compared

to P and T waves. Typical values of each of these waves are presented in Table 2.1.

Heart rate varies with emotional and physiological conditions, and heart rates from 60 beat-

s/min to 100 beats/min are considered to be normal [36]. As the heart rate gets faster or

slower, excessive conditions such as tachycardia or bradycardia occur respectively. In the liter-

ature, bradycardia is defined for heart rates below 60 beats per minute [37]; however, elderly

people, athletes or even normal people during deep sleep can experience lower heart rates in

rare cases. For that reason, heart rates of 40 beats/min and below are considered as absolute

bradycardia [28].

The lowest frequency component of an ECG waveform is defined based on the heart rates.

American Heart Association (AHA) states heart rates below 30 bpm (0.5 Hz) are “unlikely”

whereas heart rates below 40 bpm (0.67 Hz) are “uncommon” in practice and recommends non-

linear phase response filters to have a maximum cut-off frequency of 0.05 Hz to avoid ST segment

distortion [20, 21]. This requirement is relaxed to 0.67 Hz and below for filters with no phase

distortion whereas high frequency content up to 150 Hz is required for diagnostic purposes [38].

Noise Artefacts As interferences superimpose on to the signal of interest, the retrieval of

crucial information by preserving the signal integrity becomes much of a challenge for small

amplitude signals. These interferences and their characteristics are provided in this section.

ECG signals are weak bio-potential signals with low signal to noise ratio. Large DC off-

set, baseline wander, powerline interference, motion artefacts, defibrillation pulses, pace maker

pulses and the electrical activity of skeletal muscles (EMG) interfere with the signal of interest.

Elimination of these interferences poses several challenges due to improper electrode placements
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Table 2.2.: Noise artefact types seen in Lead-II ECG recordings [40]

Noise artefact type Maximum Amplitude Frequency Range

Baseline drift 15 % of peak-to-peak (p-p) ECG
0.15 - 0.3 Hz depends

on the respiration rate

Motion artefacts 500 % of p-p ECG
1 - 10 Hz lasts for
100 ms to 500 ms

Muscle contraction (EMG) 10 % of p-p ECG DC - 10 kHz

Powerline interference Up to 50 % of p-p ECG
50 / 60 Hz depends on

the locale

Electrode contact noise Max recorder output 50 / 60 Hz

Electrosurgical noise 200 % of p-p ECG 100 kHz - 1 MHz

Thermal noise
kT

C
Frequency dependent

Quantization noise SQNR ≈ 1.76 + 6.02 ∗QdB ≈ kfs ± finput

and filter applications [39]. Typical examples and their characteristics observed in a single chan-

nel lead ECG system (Lead-II) are listed in Table 2.2. Origins of each of these noise sources

are detailed as follows:

• Baseline wander forms as a consequence of respiration of the patient. During inhalation,

the chest expands and this movement results in an impedance change seen by the am-

plifier. Similarly, exhalation creates an effect in the opposite direction and this complete

cycle generates baseline wander which can be modelled as a sinusoid. The fundamental

frequency of this sinusoid is related to the respiration rate whereas its amplitude content

varies with the lead positioning. In a Lead-II recording, the baseline and the amplitude

variation can be approximated as 15% of the peak-to-peak (p-p) ECG signal [40].

• Motion artefacts are also caused by the electrode-skin impedance changes seen by the

amplifier. These transient artefacts are attributed to the movements and the vibrations of

the subject which often result in large fluctuations at the output. They can be modelled

as biphasic signals lasting for 500 ms with a maximum amplitude level of 5 times the peak

to peak ECG signal [40].

• Muscle contractions cause artefactual potentials due to neural excitation of muscle groups

in the vicinity of the recording sites. Most of the power of EMG contractions is within 20

to 200 Hz range with their mean power point located below 100 Hz [41]. These transient

bursts can be modelled as zero mean band limited Gaussian noise with their frequency

content ranging from DC up to 10 kHz lasting for 50 ms [40]. The amplitude levels of

these noise sources depend on the muscle mass and the fat surrounding the recording
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area. Common analysis techniques of these amplitude levels involve running a root mean

square of the signal over a short observational period of time [41].

• Powerline interference is the coupling of the frequency content of the mains to the patient’s

body due to parasitic capacitance between the patient and the power lines. Therefore,

the frequency contents of these interferences depend on the geographical location and

occur due to poor grounding and/or not appropriate filtering. This type of noise artefact

requires high common mode rejection ratio (CMRR) at the front-end stages, active right

leg drives and utilisation of notch filters.

• Electrode contact noise occurs due to loss of electrode-skin contact and is observed as step

changes on the ECG trace. As the ECG signal is capacitively coupled, these disconnections

occur as large artefacts with superimposed powerline interference. Electrode contact noise

can be modelled as randomly occurring step changes, and decays exponentially to the

baseline [40].

• Electrosurgical noise interferes with ECG signal during surgery. This radio frequency

signal with extraordinary large transient voltages applied to the patient’s skin surface re-

quires adaptive filtering to acquire a “clean” ECG signal [42]. Even though the frequency

bands are completely different, an aliased version of these type of noise interference cor-

rupts the ECG signal. The amplitude, duration and the aliased frequency characteristics

of such interferences vary and aliasing depends on the sampling frequency of the ECG

system.

• Thermal noise occurs due to agitating thermal charge carriers generating a stochastic

Gaussian noise distribution. This noise interference is mostly contributed by resistors or

amplifiers in ECG systems and is proportional to the square root of the noise bandwidth

as in Eq. 2.8, where kB is the Boltzmann’s constant in joules per kelvin, T is the resistor’s

absolute temperature in kelvin, R is the resistor value in ohms and ∆f is the bandwidth

in hertz over which the noise is measured. In an RC network, Eq. 2.8 simplifies to
kT

C
when integrated over the bandwidth of the RC network as noted in Eq. 2.9.

vn =
√

4kBTR∆ f (2.8)

v2
n = 4kBTR ∗

∞∫
0

H(ω) dω =
2kBT

π C
tan−1(ω) |∞0 =

kT

C
(2.9)

• Quantisation noise occurs during analogue to digital conversion as the real values are

approximated with a finite set of discrete levels. These interferences have flat power

spectral density and affect the system in a similar manner to an additive white noise [43].

The overall noise amplitude levels are determined by the number of quantisation bits, Q,

and the general equation is noted in Table 2.2.
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(c) BASELINE WANDER (d) POWERLINE INTERFERENCE

(a) MOTION ARTEFACTS (b) EMG

Figure 2.7.: Noise types superimposed on a synthetic ECG signal. Shown are: (a) Motion
artefacts; (b) EMG interference; (c) Baseline wander; and (d) Powerline interference

Fig 2.7 displays noisy ECG instances showing motion artefacts, muscle contractions, baseline

wander and powerline interference superimposed on a synthetic ECG.

2.2. The State-of-the-Art In ECG Baseline Removal

ECG systems are divided into two main categories based on their coupling methods, namely

referred to as AC and DC coupled systems. Each system has its advantages and disadvan-

tages associated with the noise artefact removal methods utilised thereafter. Here, common

requirements for each system and their main difference are explained in detail.

Even though a sampling rate of twice the desired high frequency cut-off is required (Nyquist

rate), 1990 AHA report states that sampling rates at 2 or 3 times the theoretical minimum are

recommended [38]. Studies showed that a sampling rate of 500 Hz is needed to capture 150 Hz

high frequency content to reduce the amplitude error measurements to 1 % in adults [44, 45].

This high frequency content is also mentioned by the American National Standards Institute and

the Association for the Advancement of Medical Instrumentation (ANSI/AAMI) standard [46].

However, these sampling rates are not sufficient to capture pacemaker stimuli which are generally

shorter than 0.5 ms in duration, therefore, oversampling is necessary to detect pacemaker pulses

reliably [20].

Systemic noise sources affect both systems and standards define maximum allowances regard-

ing each of these noise interferences. One such requirement is outlined for cable, circuit and

display noise, which is mainly contributed by thermal noise. ANSI/AAMI allows a maximum of

30 µVp−p at 150 Hz bandwidth during a 10 second of ECG recording [46]. As the error limitation

is defined over a window and the white noise is often expressed in VRMS , a conversion factor is

calculated by means of the inverse cumulative distribution function of the yield from a standard
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Figure 2.8.: Powerline interference and electrode offset in ECG systems

normal distribution in MATLAB. These parameters are defined as in the work of Forrest W.

Breyfogle [47] and based on these definitions, yield of 1 in 5000 samples (at 500 Hz sampling

over 10 second window) corresponds to a confidence level of 5σ. As root mean square (RMS)

is by definition equal to 1σ, a maximum of 6 µVRMS is allowed at the specified sampling rate.

Texas Instruments define the same requirement as 3.75 µ VRMS at this sampling rate [48].

Similar to the thermal noise, ANSI/AAMI defines the requirements for common mode re-

jection and limits a maximum input referred output signal of 1 mVp−p signal over a 60 second

window when 20 VRMS input signal is applied [46]. At a sampling rate of 500 Hz, this require-

ment corresponds to a confidence level of 5.5σ (1 part in 30000) and equates to 110 dB common

mode rejection ratio.

The main difference in both techniques is based on the removal of the electrode offset and the

low frequency content up to 0.05 Hz. Electrode offset forms across the electrode-skin interface

due to the uneven distribution of anions and cations [2]. Characteristics of this half-cell potential

are determined by the manufacturing material and standards require ECG waveforms to be

displayed in the presence of ± 300 mV electrode offset when applied to any lead [46]. Fig. 2.8

shows the dynamic range and the powerline interference present to both systems.

2.2.1. AC Coupled Systems

In AC coupled systems, removal of the electrode offset increases the effective dynamic range

and relaxes the analogue-to-digital converter (ADC) resolution requirements. However, the

large time constant requirement of the analogue high-pass filter at the front end is a challenge

and the non-linear phase response of these filters must not distort the ST segment. Therefore,

the high-pass cut-off frequency is defined up to 0.05 Hz as discussed in Section 2.1.5.

Conventional AC coupled ECG systems consist of an instrumentation amplifier (IA), a high-

pass filter (HPF), an additional gain stage, an anti-aliasing low-pass filter (LPF) and a low

resolution ADC implementation. Fig. 2.9 illustrates a typical implementation and the signal

path of a single lead AC coupled ECG analogue front end (AFE). These systems require more

analogue signal processing components compared to DC coupled systems and require low noise

amplifiers to be utilised for system level design as the noise free dynamic range at the ADC must
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Figure 2.9.: A typical AC coupled front end architecture in ECG systems

comply with the maximum allowable noise provided by the standards as covered previously.

In these type of implementations, high CMRR of the instrumentation amplifier suppresses

the common mode interference and the first gain stage amplifies the output with a small factor.

Following this, a high-pass filter with its cut-off frequency defined below 0.05 Hz suppresses

the electrode offset and the second gain stage utilises the full dynamic range of the ADC by

amplifying the signal. The output of the second stage is then filtered by an anti aliasing low-pass

filter with a cut-off frequency at 150 Hz to discard the out-of-band images to fall into the in band,

avoiding distortion to the ECG signal. Finally, a low resolution ADC samples the full dynamic

range and additional signal processing takes place in the digital domain. The sampling rate of

the ADCs depends on the ANSI/AAMI requirements as covered in the previous section. With

pacemaker detection, the sampling frequency requirement increases substantially; however, the

resolution of ADCs is lower compared to DC coupled AFE, and theoretically the 2.5 V full scale

ADC voltage requires at least 10 effective bits to achieve 5 µV resolution with a 5 mV input

signal.

2.2.2. DC Coupled Systems

Unlike AC coupling, DC coupled systems do not remove the electrode offset and require process-

ing in the digital domain to remove the DC component. Therefore, the total hardware required

in the analogue front end is substantially less compared to AC coupled counterparts. Fig. 2.10

shows a conventional DC coupled AFE system architecture for single lead implementation.

The overall architecture consists of instrumentation amplifiers with high CMRR, an anti-

aliasing low-pass filter with cut-off frequency defined at 150 Hz and a high resolution ADC to

sample the ECG signal. Since the overall system samples the electrode offset in addition to the

signal of interest, the overall amplification in the analogue domain is two orders of magnitude

less compared to AC coupled systems to avoid saturation.

Given a full-scale ADC voltage of 2.5 V with a 300 mV electrode offset and a gain setting of

5 V/ V to guarantee an unsaturated output, at least 17 effective bits are required to achieve

5 µV resolution. For this reason, these types of implementations often utilise delta sigma ADC

structures with oversampling and noise shaping techniques unlike SAR ADC implementations in

AC coupling approaches. Therefore, the noise free dynamic range improves compared to the AC

coupled systems preserving the signal integrity. The flexibility of signal processing techniques

in the digital domain then addresses noise artefacts such as baseline wander, motion artefact,

muscle contractions and residual powerline interference.
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Figure 2.10.: A typical DC coupled front end architecture in ECG systems

2.2.3. Baseline Wander Removal Methods

As covered in Section 2.1.5, baseline wander is the classical disturbance to the isoelectric line

mainly caused by respiration. Regardless of the AFE implementations, this type of noise should

be eliminated without distorting the ST segment. In this section, the types of baseline wander

removal approaches reported in the literature are covered in two main categories namely com-

putational and DSP-Hardware based methods. Computational methods require high number

of hardware resources limiting their real-time implementations, whereas hardware-based ap-

proaches focus on baseline wander removal with less computational resources with an accuracy

trade-off. These methods are discussed in more detail and the reported comparisons of these

algorithms found in the literature are also provided.

2.2.3.1. Computational Methods

Empirical Mode Decomposition, (EMD) which was proposed by N.E.Huang in 1998 [49],

is an iterative method used to decompose non-linear and non-stationary signals into its compo-

nents with slowly varying amplitude and phase characteristics. This adaptive approach is used

in ECG recordings to estimate and remove band-limited noise interferences.

EMD relies on a fully data-driven mechanism without a priori specification and utilises the

decomposed signal functions in estimating the noise interferences. These functions, referred to

as intrinsic mode functions (IMFs), are formed through an iterative approach called the sifting

process. This process averages the mean of upper and lower envelope functions detected at the

local extrema and subtracts the calculated average of these envelope functions from the signal of

interest until the sum of difference criterion is smaller than a pre-determined threshold [49]. The

result of this process forms the first intrinsic mode function (IMF), which possesses a narrow-

band frequency component of the signal. The same process is then repeated on the generated

intrinsic mode function until a slowly varying residue remains.

When the process is completed, the signal of interest is decomposed into its high and low

frequency components, and the removal of noise interferences can be achieved separately. The

high frequency noise components can be filtered out by partial signal reconstruction of the first

several IMFs. During such an operation, one should take into account that QRS components

lie in the same IMFs with the powerline interference. Therefore, delineation and separation of

the QRS complex by using proper windowing techniques are required to preserve the integrity

of the complex [50]. Similarly, higher order IMFs refer to the low frequency components and
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these are low pass filtered to remove the baseline wander.

Due to the iterative nature of such an approach, the EMD operation is computationally

demanding and not suitable for real-time implementations as high order of IMFs are generated

by running the sifting process multiple times on recorded data. In addition, the removal of

baseline wander is achieved by filters and these can still introduce distortions to the ST segment

and limit the implications of such an approach. EMD for baseline wander removal has been

previously reported in the literature; however, the acquired results do not follow a certain

pattern in all cases.

In the most cited EMD baseline wander removal technique, Blanco-Velasco et al. utilise only

the first 46000 samples of MIT-BIH Arrhythmia signals (100, 103, 105, 119, 123) sampled at

360 Hz and compare the results to a high-pass Butterworth filter with a cut-off frequency defined

at 0.09 Hz [50–52]. In addition, real-time tests involve baseline wander signals with different

attenuation levels from the MIT-BIH Noise Stress Database and the signal-to-error ratio (SER)

is utilised as the evaluation metric. The reported result of MIT-BIH Arrhythmia signal (100)

with 6 dB attenuated baseline wander signal (BW) shows 11.40 dB SER in comparison to 5.22 dB

and 6.14 dB SER results of the high-pass filtering and the wavelet approaches respectively. Even

though such high-pass filtering is not within the standards and the baseline wander signals have

respiration content above these frequencies, ST segment distortion is not mentioned throughout

the article. In addition, the first two minutes of these recording are somewhat clear and do not

involve step changes or artefacts; therefore true evaluation is unknown.

In the work of Chang, ensemble EMD (EEMD) is tested on baseline wander removal of ECG

signals [53]. Reported tests involve 30 minute duration of noise interferences added on the MIT-

BIH Arrhythmia Database signals (101, 102, 103 and 104, which are recorded at a sampling

rate of 360 Hz). Pre-processing is applied with a band-pass filter cut-off frequencies defined at 1

and 35 Hz and the filtered signal is used as a template. Results of ensemble EMD are compared

with a 3rd order Butterworth filter with a 1 Hz cut-off frequency, a 300th order Wiener Filter

and a typical EMD approach. The reported errors of MIT-BIH Arrhythmia Database signal

101, show mean square error (MSE) of 0.041, 0.016, 0.001 and 0.0007 with no units mentioned

respectively. Also the work of Jenitta et al. [54] shows improvements on EMD and EEMD

techniques by utilising adaptive filtering of the IMF components.

In another work, EMD and EEMD results on real data and baseline wander show signal

to noise ratio (SNR) of 39.2 dB and 36.7 dB respectively [55]. Lastly, an EMD approach with

FIR filter implementation showed RMS errors of 55 µV and 34.5 µV for MIT-BIH Arrhythmia

Database signal 106 and 111 with no added baseline wander respectively [56].

Other works of EMD based baseline removal methods covered in the literature do not provide

a deep analysis to baseline wander removal but rather illustrate plots or mention cross correlation

coefficients associated with each removal technique [57–59].
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Independent Component Analysis (ICA) is a type of blind source separation method

utilised in ECG signals to remove the baseline wander. Similar to the EMD method, ICA does

not require a priori knowledge and the signal is separated into its additive subcomponents. ICA

methodology is based on the assumption that these subcomponents are non-Gaussian signals

and statistically independent from each other [60].

The ICA based researches on biomedical signals including ECGs have been reported in the

literature [61,62]. According to these studies, ECGs satisfy some of the ICA conditions, which in-

clude superimposing current linearly at the electrodes, negligible time delays and non-Gaussian

voltage distribution. A detailed analysis of different types of component analysis to noise and

artefact suppression in multichannel ECGs is provided in the literature [63]. In one of the most

cited works of ICA in ECG artefact removal, results based on the kurtosis and variance are

provided [64]. This study identifies all the components whose Kurtosis modulus is below a

certain threshold as continuous noise. While the authors demonstrate the successful removal of

noise artefacts, a quantitative analysis is still missing.

Most ICA approaches focus on separation of fetal ECG from the ECG of the mother and a

detailed analysis of this method on ECG baseline wander removal is not covered in most of the

articles. Nevertheless, SNR improvements with FastICA technique on real data signals acquired

from MIT-BIH Arrhythmia Database with artificial baseline wanders generated in MATLAB

are reported [65, 66]. Other ICA approaches with plot illustrations of baseline wander removal

can be found in the literature [67–71].

Discrete Wavelet Transforms (DWTs) have been used in ECG data compression, baseline

drift and powerline interference removal as reported in the literature. These transforms are

suitable for transient and non-stationary signals and offer simultaneous interpretation of the

signal both in the time and in the frequency domain.

The performance of the wavelet transforms is correlated to the defined mother wavelet in

each approach. Rahman et al. investigate the effect of 110 mother wavelet functions on ECG

baseline wander removal and quantify a compatible mother wavelet function by means of SNR

and MSE [72]. Another approach estimates baseline wander by removing the signal mean from

the transform space, and setting the low frequency coefficients to zero as these do not appear

on the wavelet space [73].

Park et al. presents a detailed analysis on ST segment distortion with wavelet approaches [74].

This study utilises “Vaidyanathan - Hoang” wavelets with adaptive filtering and incorporates

ST segment distortion defined within standards. MIT-BIH Database tests show that lower ST

segment distortion is achieved when compared to a standard high-pass and a general adaptive

filter. Similarly, a wavelet adaptive filter structure is utilised to identify ST segment fiducial

points in the literature [75].

An example of mean-median filter and discrete wavelet transform aims to remove the baseline

wander with a selection of different mother wavelets [76]. In their work, Hao et al. compared

their results to the EMD technique. Reported MIT-BIH results with artificial baseline wander

demonstrate improvements on SNR levels from 11.3 dB to 13.4 dB [76]. However, real data
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baseline wander removal response of the proposed method is unknown and not covered in the

reported work.

A detailed bionic wavelet analysis shows that bionic wavelet transform and adaptive deter-

mination of the centre frequency can be used to decompose ECG signal into its low frequency

components. Sayadi et al. utilise the first 4096 samples of the MIT-BIH Arrhythmia Database

signals sampled at 360 Hz for testing and define “Morlet” wavelet as their mother wavelet [77].

The results are then compared with the noise free signal and improvements on the added white

Gaussian noise are quantified. These tests do not involve ambulatory baseline wander signals

acquired from the MIT-BIH Noise Stress Database. In addition, a non-local wavelet transform

domain filtering is utilised in ECG signal denoising in the literature [78]. MSE and SNR of

MIT-BIH Arrhythmia Database signals with added white Gaussian noise are evaluated and

results are compared with other methods. Similar to the bionic wavelet analysis, a thorough

evaluation of baseline wander removal is not provided with the reported work.

Other works of wavelet based baseline wander removal that do not explicitly mention ST

segment error analysis but rather illustrate baseline wander correction, can also be found in the

literature [79–83].

Brownian Motion Process, first introduced by Van Ness et al., models the clean ECG

signal and the baseline wander as a 1st and a 2nd order fractional Brownian motion (fBm)

processes [84,85]. Eigenvectors of the auto-covariance matrix of clean ECG are then utilised in

designing an M-channel uniformly decimated filterbank and the noisy signal is filtered by this

filterbank [86]. The same authors also present another approach based on fractional Brown-

ian motion process and achieve baseline wander removal by a projection based operator [87].

Reported results of both methods include 3600 samples of MIT-BIH Arrhythmia records (100,

101, 103 and 115) sampled at 360 Hz and show SNR of 8.0 dB, whereas filterbank, EMD and

wavelet analysis achieve SNR levels of 13.5 dB, 4.5 dB and 1.9 dB respectively.

Polynomial Interpolation has been used as a baseline wander removal technique and requires

a priori knowledge in baseline estimation, known as the “knots”. The order of the polynomial

interpolation has been a studied topic and a third order approximation known as the cubic

spline interpolation is preferred in the literature [88].

By making use of the previous information of the ECG isoelectric levels at the PR intervals,

the baseline drift estimation is generated [89]. The performance of the cubic spline interpolation,

however, depends on the detected PR intervals and the heart rate [88]. As the heart rate slows

down, the distance between two adjacent PR level increases, which results in degradation of the

estimation. In addition, Meyer et al. mention that two fiducial points, one during PR-interval,

and one during TP-interval are resisted as these two intervals might be at different elevations

and heart-generated differences might be removed in such instances.

Froning et al. list problems and limitations in regards to cubic spline interpolation based

baseline wander estimation and cover current approaches and solutions [90]. The authors men-

tion that linear interpolation works better when baseline wander is “relatively slight” and starts
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to degrade with curvatures. The same article also mentions that the accumulation of errors due

to arithmetic computation needs to be compensated by a scaling factor in state-space coefficient

calculations.

A comparison of polynomial interpolation of synthetic baseline wander with other methods is

provided in the work of Gradwohl et al. [91]. A single pole (fc=0.05 Hz), a null phase (fc=0.75 Hz)

and a 6-pole filter (fc=1.2 Hz) are compared to cubic spline interpolation and the root mean

square results show 297.1 µV, 75.4 µV, 58.4 µV and 23.5 µV of deviation respectively.

In addition to that, another cubic spline interpolation approach with real and synthetic data

is mentioned in the literature [92]. The reported tests include a single signal acquired from

MIT-BIH Fantasia Database with added artificial baseline wander. The analysis is acquired

through the evaluated mean square errors and correlation coefficients of the test signal.

Quadratic Variation Reduction (QVR) in ECG baseline wander removal is based on an

optimisation problem and the quadratic variation is defined as a constraint [93]. Not many

articles exist in this topic; however, Fasano and Villani, provide a detailed analysis and test

their approach with synthetic data sampled at 512 Hz, at a heart rate of 75 bpm [93]. The

baseline wander is rendered as Gaussian white noise (µ=0, σ2=6.25) and low pass filtered at

0.8 Hz. Results show better ST segment evaluations when compared to high-pass filter, cubic

spline interpolation, median filter, adaptive filter and wavelet adaptive filter. Other works of

the same authors in regards to this topic showing results with different datasets are also covered

in the literature [94–96].

Multi-scale Mathematical Morphology is a non-linear technique focusing on the shape

information of a signal. Basic operators, such as erosion and dilation referred to as grey-scale

morphological operators in the signal processing literature, are used in tandem for opening and

closing a signal. The main idea is to suppress the impulsive noise by processing the data through

a sequence of basic operators. The output of two consecutive operations can be improved

by exchanging the operators’ order such as “opening-closing-closing-opening” and taking the

average of the outputs.

The baseline drift is estimated by background normalisation, which depends on the design of

the structuring elements. The peaks of the data are removed by opening it with a structuring

element resulting in a pit where the ECG signal is situated. The closing operation is employed

with a larger structuring element to remove the pit in order to obtain an estimate of the baseline

wander [97]. In other words, structuring elements suppress the peaks and valleys of the ECG,

leaving behind the low frequency components like the baseline wander estimate. Finally, a clean

ECG signal is obtained by subtracting this estimate. According to the results reported in the

work of She et al., MIT-BIH Arrhythmia Database signal (106) and added white noise generated

SNR levels of 9.4 dB, 14.4 dB, and 15.0 dB with different thresholding techniques.

In another work, Taouli and Bereksi-Reguig carry out a more detailed analysis. This article

investigates the baseline removal on MIT-BIH Arrhythmia Database signals (101, 113 and

209) [98]. The results are evaluated in terms of SNR, RMS, MSE and correlation coefficients
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and demonstrate similar results when compared to wavelet approach. MIT-BIH Arrhythmia

Database signal 101 result leads to SNR levels of 28.7 dB with the morphological filter whereas

the wavelet approach result shows 27.9 dB SNR. It should be noted that these test do not include

ambulatory baseline wander acquired from the MIT-BIH Noise Stress Database. Additionally,

a similar analysis can be found in the article with artificial baseline wander [99]. The results

show that SNR levels degrade significantly and relate to the amplitude of the baseline wander.

In addition, white noise suppression and background normalisation with mathematical mor-

phology are also discussed in the literature [100]. Additional work originated from the same

baseline correction technique is covered in the work of Sun et al. [101]. In this article, the

tests include synthetic and real data acquired from the MIT-BIH Arrhythmia Database. As

evaluation metric correct, however, QRS complex detection rates are utilised showing an im-

provement from 96.7% to 99.4%. Other mathematical morphology methods also can be found

in the literature [102,103].

Median & Moving Average Based Filters are other non-linear and linear techniques that

have been utilised in baseline wander removal. Both techniques operate in a similar fashion

where new samples get filtered with respect to the median or the average of the corresponding

filter’s window size respectively.

Empirically it was found in the works of Hao et al. that a window size for a mean-median

filter that is half of the sampling frequency is more suitable for baseline removal when the output

is corrected with a discrete wavelet approach [76]. In another article, Dai and Lian describe

a modified moving average filter to avoid distortions to the low frequency content [104]. The

cross correlation results show improvement when compared to moving averages and the cross

correlation accuracy increases from 0.845 to 0.965.

In the work of Leski and Henzel, mean and standard deviation errors of a moving average

filter with a window size of 5000 samples (sampled at 500 Hz) show mean error results of 58 µV

with a standard deviation of 42 µV when artificial baseline wander of 48 µV mean and 105 µV

standard deviation is added [105]. The tested signals are acquired from CTS-IEC Database and

when no artificial baseline wander is added, the maximum distortion is reported as 18.8 µV.

In addition, median filtering when combined with mathematical operators shows an improve-

ment as reported in the work of Verma et al. MIT-BIH signals (118 and 119) with added 24 dB

attenuated baseline wander signal, show improvements up to 34.4 dB and 24.1 dB.

Infinite Impulse Response (IIR) filters are digital recursive filters with non-linear phase

characteristics. Due to the subsequent distortion caused by their phase response, computational

methods require zero phase filtering. These type of filters filter the signal in the forward and

reverse directions, therefore, require data to be stored in memory. A bilinear transformed filter

utilised both ways and RMSD errors are presented in the work of Pottala et al. [106]. These

RMSD errors are “practically equivalent” to the implemented cubic spline interpolation method.

In another work, a two-pole phase compensated filter with a synthetic baseline wander (RMS

value equal to 338.6 µV) generates an SNR improvement of 15 dB, whereas a standard 0.5 Hz
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single-pole filter improves by 8 dB [107]. In the work of Shusterman et al., selective zero-phase

filtering shows improvement in SNR by 13.8 dB (RMS error equal to 46 µV) when simulated

baseline wander is utilised [108].

Finite Impulse Response (FIR) filters are used to remove the baseline drift and powerline

interference. As these filters have linear phase response, the cut-off frequency requirements

defined by the standards are relaxed when compared to non-linear phase response filters. Due

to the narrow transition bandwidth, however, FIR filters require high number of taps and high

computational complexity.

An FIR study shows removal of baseline wander with reduced number of taps [109, 110]. In

this article, the authors define a bandpass filter from 0.8 Hz to 50 Hz used to filter the ECG

signal baseline wander and powerline interference with its harmonics. This approach reduces

the total number of multiplications per output by a factor of 10. However, results of such a

technique are not evaluated with real data and the ripple effect of pass-band and stop-band

attenuation might not be sufficient enough in case of baseline wander with high amplitudes.

As an improvement to the previous article low-pass FIR filter response is subtracted from the

delayed input and the results are illustrated [111].

In the work by Kumar et al., FIR filter approaches with different window sizes are compared

with IIR filter responses on real ECG data acquired from MIT-BIH Arrhythmia Database [112].

Other digital FIR filter approaches utilising windowing techniques include [113–116].

Adaptive Filters utilise an optimisation algorithm and adjust the coefficient values of the

digital filter according to this optimisation. The least mean squares (LMS) and the recursive

least squares (RLS) filters are types of adaptive filters.

In ECG baseline wander removal, adaptive filters with least mean squares algorithm are

covered in various articles. Thakor et al. describe an adaptive recurrent filter structure with

a least mean squares algorithm and investigates baseline wander removal [117]. In the work of

Thodetil and Lakshmi, different least mean squares techniques on synthetic ECG and synthetic

baseline wander are investigated [118]. Results show SNR ratios of 31.7 dB and 34.2 dB for

the LMS and normalised-LMS algorithms respectively. On the other hand, real data signals

acquired from MIT-BIH Arrhythmia Database (104 and 105) with no added baseline wander

show SNR results of 14.6 dB and 16.4 dB respectively [119]. A detailed analysis on the first 4000

samples of the real data acquired from MIT-BIH Arrhythmia Database records (100, 105, 108,

and 228) sampled at 360 Hz with real baseline wander acquired from MIT-BIH Noise Stress

Database demonstrates SNR results of 11.1 dB, 12.3 dB, 11.6 dB, 12.9 dB respectively [120].

Similar results can also be found in the work of Paul, and Mythili [121]. In addition to these,

other adaptive filter approaches illustrate baseline wander removal in the literature [122–126].

Similarly, recursive least square approaches have been implemented on ECG baseline wander

removal. Unlike least means square algorithms, these approaches are more computationally

intensive and harder to stabilise. The results, however, converge faster. Real data results of

both of RLS and LMS adaptive filters on ECG baseline wander removal are compared in the
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literature and as evaluation metrics SNR, RMSE and correlation coefficients of each method

are utilised respectively [127–129]. In addition, in the work of Chandrakar SNR improvement

of 5.0 dB is reported with real baseline wander signal acquired from the MIT-BIH Noise Stress

database on real ECG signals [130].

Kalman Filters are also utilised in ECG baseline wander removal. These types of filters

are based on recursive measurements, and generate an estimate of unknown variables. These

estimates can be based on various variables and has a better estimated uncertainty than the

predicted and the measured states alone. These systems require the last “best guess” in cal-

culating a new state rather than the entire state history. Therefore, storage requirements are

minimal.

In ECG baseline removal, this linear estimator has been investigated and results of synthetic

ECG are presented [131, 132]. In the work of Sayadi and Shamsollahi, a detailed analysis of

MIT-BIH Arryhtmia Database signal portions with real baseline wander acquired from MIT-

BIH Noise Stress Database show an SNR improvement of 10.2 dB [133].

2.2.3.2. Hardware-based Approaches

Hardware-based EMD Algorithm is reported in the literature via a digital signal processor

(DSP) and a field programmable gate array (FPGA). These processors utilise cubic spline inter-

polation to define the envelope functions and handle sifting operation on IMFs iteratively [134].

Results are tested on the first 1000 samples of a single MIT-BIH Arrhythmia Database record

sampled at 360 Hz with added synthetic baseline wander and a correlation coefficient of 0.9963 is

achieved. These results degrade with additional synthetic powerline interference as the number

of generated IMFs are limited and blind signal decomposition requires more IMFs to delineate

noise interferences. Another implementation of hardware-accelerated EMD approach is covered

in the work of Wand et al. [135].

AFE Design With DSPs are one of the key hardware approaches for noise removal in ad-

dition to the computational approaches described above. IMEC has published hardware-based

solutions to remove motion artefacts that are detected via electrode tissue impedance measure-

ments along with other AFE designs [136–141]. In this approach, the electrode impedance is

constantly measured independent of the ECG inputs and is fed to a microcontroller where a

least mean squares adaptive filter processes the readings. The processed output is then fed back

to the analogue front end and the noise estimate is subtracted from the input. As the motion

artefact and baseline wander originate from the impedance changes seen by the amplifier, this

approach also addresses baseline wander. However, 200 mHz cut-off frequency for the high-pass

analogue filter is still above the specified limits for certain ECG segments. Similarly, a long-term

baseline wander tracking system is recently published and utilises a microcontroller approach

employing MSP430 [142]. This approach reacts fast to offset shifts and report 29 dB SER with

synthetic ECG.
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Multiplier-free FIR Filters are required in hardware-based baseline wander removal to be

implemented in VLSI technology. For this purpose, multiplication free recursive running sum

(RRS) filters are utilised with high-pass cut-off frequency defined at 0.5 Hz. In this approach,

RRS filters utilise only 37 adders and 2248 delays to obtain a better computational result when

compared to an FIR filter with 1149 multipliers and 2296 adders [143]. However, a true analysis

and error quantification are lacking in the reported work.

Commercially Available Systems also target baseline wander removal; however, these sys-

tems do not provide enough information about their system architecture, accuracy or compu-

tational requirements. One such system is the Smartheart, which provides 12-lead telemetry

solution [9]. The recorded results are sent to a telemetry centre and the patient is diagnosed by

clinicians within three hours; however, neither the utilised baseline wander removal technique

nor its accuracy is clear. Similarly, Sensium provides real-time medical care solutions by record-

ing patients’ vital signs and transmits these signs wirelessly [10]. Alivecor, on the other hand,

generates ECG results in 30 seconds with “FDA-cleared machine learning algorithms” [144].

There are of course other available systems on the market; nevertheless, as the utilised methods

and their accuracy remain unknown, they do not provide any meaningful additional insight.

2.2.4. Comparison of Algorithms

Different algorithmic approaches in baseline wander removal were presented previously. The

evaluation metrics utilised in each method, however, vary from one another. Some approaches

only utilise synthetic signals, whereas others use sections of real data from various databases in

addition to varying characteristics of the added baseline wander. Moreover, evaluated results

in some are obtained by employing original databases as “clean” ECG signals, whereas some

approaches utilise the filtered versions instead. Some approaches show only SNR improvements;

Table 2.3.: Comparison of algorithms - ESC ST-T Database ST segment

Method Mean deviation from Median deviation from

the isoelectric line in µV the isoelectric line in µV

Cubic Spline Int. 85.4 53.6

Linear Spline Int. 77.9 55.0

MF 86.1 55.9

AF 78.9 56.9

WAF 67.6 42.6

FIR HPF 73.3 50.9

EMD 76.7 54.1

QVR 64.4 32.1
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Table 2.4.: Comparison of algorithms - MIT-BIH Arrhythmia Database ST segment

Method Mean deviation from Standard deviation from

the isoelectric line in µV the isoelectric line in µV

HPF 9.7 45.0

MF 6.7 28.8

Adaptive Filter 7.9 32.3

WAF 5.8 25.9

QVR 4.3 20.7

however, the original signal is usually corrupted with powerline interference and these improve-

ments do not yield a true evaluation in baseline wander removal. Therefore, a true comparison

of utilising the results of each work is hard to evaluate.

Based on the diversity of evaluation metrics, algorithm comparison articles are investigated

in the literature. In the work of Afsar et al., different algorithms are tested with the European

Society of Cardilogy (ESC) ST-T Database, which include two hours of two-channel ECG data

sampled at 250 Hz. Table 2.3 presents the amount of mean and median of maximum distortion

of these methods evaluated from this database. Later, Fasano et al. added quadratic variation

reduction results to this table [96].

In another work, Fasano and Villani utilises MIT-BIH Arrhythmia Database with eight non-

overlapping realisations of added baseline wander from MIT-BIH Noise Stress Database added

to each channel of recording 119 [94]. However, these non-overlapping realisations of baseline

wander are not stated clearly and reported results are shown in Table 2.4

2.3. Summary

A comprehensive literature review shows that over the years new computational methods for

ECG baseline wander removal are being developed. Due to the high efficiency requirements,

however, challenges of ECG signal processing to facilitate ambulatory applications still remain

to be investigated.

New approaches are being considered to find innovative and comprehensive solutions to ad-

dress the removal of noise interferences while preserving the signal integrity. These approaches,

especially the ones that base their methodology on ECG morphology, require a thorough under-

standing of heart activity and its dynamics. Of course, the studies presented here by no means

cover the full spectrum of work in relation to ECGs but rather provide a background for the

reader to comprehend the methods developed in the following chapters as well as defining the

true nature of problems associated with noise interferences.

The methods that can be found in the literature in regards to baseline wander removal are

reviewed in detail and where available statistical measures associated with each method are
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provided. As reported, baseline removal methods are computationally extensive with limited

hardware-based approaches existing. The lack of a standardised measurement process for each

algorithm, however, challenges a thorough evaluation of each algorithm.

Advances of the methods developed years ago, remain limited and no reported study inves-

tigates whether these methods can be improved further. The feature of interest that is covered

throughout the thesis will be focused via a new interpolation-based baseline wander estimation

originated from cubic spline interpolation. Due to its non-filter based removal characteristics,

distortions to the signal of interest, especially to the ST segment, are limited and carry a

significant importance in the context of myocardial infarctions.
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Chapter 3

An Isoelectric Point Based ECG

Baseline Removal Algorithm

ECG’s non-invasiveness coupled with the growing trend in wearable technology has given ambu-

latory systems a resurgence in daily healthcare applications. However, in ambulatory monitoring

there are still critical challenges for accuracy, noise and artefact removal without compromising

the clinical validity of the ECG. Therefore, one needs to understand ECG morphology thor-

oughly and know how to address each noise interference in the signal processing chain prior to

system realisation.

The main motivation in this chapter is to address the baseline wander in the presence of

other noise artefacts in a resource efficient manner and identify/characterise all the system

parameters in ECG signal processing. The comprehensive literature review in the previous

chapter showed that ambulatory system designs rely on high-pass analogue filters to remove

baseline wander. These approaches introduce unacceptable distortion to the signal of interest

due to the non-linear phase responses of these filters.

Noise artefact detection accuracy depends on the interference characteristics and the robust-

ness of the methods used. However, the sensitivity of a specific feature to noise or to distortion

in ECGs varies from feature to feature. One such feature in particular that is highly susceptible

to noise and distortion is the ST segment. Within this context, it is the aim of this chapter to

develop a novel method for ECG baseline drift removal while preserving the integrity of the ST

segment.

The remainder of this chapter is organised as follows: Section 3.1 lists the main objectives,

Section 3.2 provides a brief background on noise artefacts present in ECG recordings and de-

scribes the challenges; Section 3.3 introduces a new baseline wander removal algorithm and

discusses system methodology; Section 3.4 details the datasets and evaluation parameters used

in testing; Section 3.5 focuses on the computationally efficient parameter selection; Section 3.6

presents and discusses the results with complex algorithms; while Section 3.7 concludes the

chapter.
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3.1. Objectives

This chapter focuses on a novel baseline wander detection algorithm that is suitable for ambu-

latory systems. The main objectives of this chapter can be summarised as follows:

• Distortion: Baseline wander is required to be eliminated in ECG recordings to acquire

a “clean” reading on ECG signals; however, utilising high-pass analogue filters like most

conventional systems do, distorts the signal integrity. The developed algorithm is therefore

required to detect and accurately remove the baseline wander in the presence of other noise

interferences while preserving the ECG signal integrity.

• Adaptability to Biological Signals: ECG characteristics vary not only from person to

person but also from beat to beat as there are many internal and external factors that can

cause heart rates to fluctuate. These can depend on certain conditions such as illnesses,

diseases or can be experienced during emotional circumstances or physical exertions [145].

Therefore, the developed algorithm is required to adapt to changing ECG dynamics and

evaluate baseline wander accurately.

• Computational Complexity: Clinically valid systems utilise computationally complex

algorithms requiring high number of multiplication operations as well as extensive amounts

of data storage space. These techniques require windowing approaches and large chunks

of data storage to obtain time-frequency based analysis [146]. Due to these requirements,

they are not viable in ambulatory design and therefore, developed algorithm has to be

efficient and require low computational complexity.

3.2. Background

3.2.1. Noise Interferences

Noise and interference pose significant challenges to the signal processing chain in an ECG sys-

tem, particularly when they have spectral content within the ECG bandwidth (0.05 - 150 Hz)

and are comparable in amplitude (2 - 3 mV). Typical noise interferences that fall into this cat-

egory but not limited to include baseline drift, powerline interference, muscular contractions,

and motion artefacts as shown in Fig 3.1. These noise sources are present during baseline detec-

tion and their origins and characteristics are essential in dealing with baseline drift. A detailed

description of each noise interference is provided in the previous chapter.

Briefly, these noise sources can be summarised as follows: (1) Baseline Drift (often referred to

as baseline wander) is the result of the electrode skin impedance changes due to respiration and

can be as much as 15% of the peak-to-peak (p-p) ECG amplitude; (2) Motion Artefacts occur

due to impedance changes associated with movement/vibrations and last for approximately

500 ms with amplitudes up to 5 times the p-p ECG signal [40]; (3) Muscle Contractions (EMG)

are related to skeletal muscle movement with a range of 50 µV - 2 mV and frequency components

from DC to 10 kHz [40]; (4) Powerline Interference occurs due to the capacitive coupling from

50



Chapter 3 - An Isoelectric Point Based ECG Baseline Removal Algorithm

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

Re
la

tiv
e 

po
w

er

ECG

QRS Complex

P-T Waves
Muscle noise

Motion
artefact

Baseline Wander

Figure 3.1.: Power spectra of ECG components. Redrawn from [147]

the mains supply to the patients body with its fundamental frequency depending on the region

(50/60 Hz).

The focus of this work is the removal of baseline wander, which poses one of the main

challenges for ambulatory ECG systems. As motion artefacts also originate from impedance

changes seen by the amplifier, the focus of this work also applies to removal of these interferences

as long as the signal of interest is not corrupted. In addition, other noise sources can still be

present during baseline detection and degrade system performance.

3.2.2. Isoelectric Point Definition

In baseline wander estimation, fiducial points will be forming the basis of detection algorithm

and will be referred to as J1, J2 and J3 points throughout this chapter. These points are

isoelectric landmarks on the ECG complex with slight elevation differences that are detected

at different time intervals. For simplicity, these points are considered as isoelectric and will be

described in more detail later on.

A typical ECG pattern showing isoelectric/fiducial points J1, J2 and J3 along with key

futures of each segment/interval is presented in Fig. 3.2. As can be seen, J1 point is located

after the P wave (referred to as P offset in the literature) within the PR segment; J2 point

is detected after the S point (referred to as S offset in the literature) within the ST segment;

and J3 point is situated after the T wave (referred to as T offset in the literature). Here, intervals

include at least a wave in their representation, whereas segments are denoted between the onsets

and the offsets of the particular waves. These features are utilised to deduce physiological

parameters such as R-R interval (heart rate), QRS duration (ventricular depolarisation), ST

segment activity and many more.

The physiological explanations of the ECG waveform along with its nominal characteristics

are covered in Section 2.1.1, whereas the table in Section 2.1.2 shows the typical durations of

each wave, interval and segment.
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Figure 3.2.: Typical ECG waveform showing key features and isoelectric/fiducial points (J1-3),
used here to track the baseline wander

3.2.3. Challenges

Developing a new baseline wander algorithm has its challenges; deciding on which physiological

parameters to focus on; how to implement its structure; and computational complexity require-

ments while preserving the signal integrity. Methods that are clinically valid often demand a

high number of computational resources, whereas approaches suitable for ambulatory systems

often distort the signal of interest. To address the requirements of both systems, a complete

list of challenges can be summarised as follows:

• The designed system has to maintain certain standards and improve accuracy when

compared to existing ambulatory systems. Therefore, in baseline detection multiple ap-

proaches (i.e. structural, iterative) have to be investigated thoroughly to achieve the best

possible accuracy results.

• The developed algorithm is required to estimate and remove the baseline drift without

distorting the ECG signal as defined by the standards of the American Heart Association

(AHA) and International Electrotechnical Commission (IEC) [17]. It is stated in the

literature that a maximum of 100 µV distortion is allowed at the ST segment [18–20]. Any

algorithm addressing baseline wander detection is required to follow these constraints and

preserve signal integrity.

• The method must adapt to ECG signal dynamics. In other words, it should not be affected

by changing signal characteristics and/or physiological disturbances and preserve the ECG

signal integrity to its maximum.

• Computationally, processing should be kept to a minimum without requiring high number

of operations (i.e. multiplication). In addition, data storage should be kept light as real-

time applications are targeted.
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Figure 3.3.: Baseline wander algorithm showing indicative signals through the datapath.

3.3. Real-time ECG Baseline Removal Algorithm

Ambulatory electrocardiograms can be used to monitor patients for myocardial ischaemia; how-

ever, often the recordings are contaminated by noise interference that needs to be eliminated. A

novel method to address ECG baseline drift removal is developed and presented in this section.

The proposed algorithm utilises multiple tested structures to increase accuracy, aims for a com-

putationally efficient real-time approach to decrease power consumption, and achieves accurate

baseline wander estimation while preserving the ST segment integrity.

3.3.1. Methodology

The algorithm crudely removes noise artefacts facilitating P, T wave and QRS complex de-

tection, locates three distinctive isoelectric fiducial points, and estimates the overall baseline

drift by interpolation. The entire signal chain for this baseline wander estimation process is

shown in Fig. 3.3. The proposed algorithm consists of four main stages: (1) downsampling and

filtering (to crudely filter baseline drift and EMG interference only for fiducial point detection);

(2) QRS detection (to detect QRS complexes based on non-linear thresholding); (3) fiducial

point detection (to locate distinctive isoelectric points); and (4) baseline wander estimation &

subtraction (to remove estimated drift on the raw ECG data). Each key stage is described in

the following sections.

3.3.2. Downsampling & Filtering

The first stage aims to crudely remove noise artefacts (with limited distortion) such that fiducial

points can be detected accurately in the following stages. To achieve this with low computational

complexity, the signal is first downsampled and then filtered by multiple sub-blocks.

Downsampling the input signal by a factor of M relaxes the transition bandwidth require-

ments of bandpass filtering, hence reduces the number of operations required by the overall

system and the total number of processed samples. Following this, the noise interference is

addressed and eliminated coarsely: (1) A high-pass and a low-pass filter with cut-off frequencies

fL and fH rejects the electrode offset, baseline wander and high frequency content respectively;

and (2) a moving average filter suppresses muscle artefacts so that next stages can detect fiducial

points.
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3.3.3. QRS Detection

The QRS detection stage utilises a (2*N+1) point derivative transfer function which is adapted

from the Pan & Tompkins method and has the form in the Z-domain as in Eq. 3.1, where G

denotes the gain, N defines the window size and, an denotes the coefficients of the transfer

function [148–150]. The transfer function is then used to derive the 5-point difference equation

as in Eq. 3.2. This way the derivative of the overall function (DC to 30 Hz range) is approximated

close to the ideal derivative calculations facilitating real-time operation.

H(z) = G ∗
N∑
n=1

an
2
∗ (zn − z−n) (3.1)

y(nT ) ≈ G ∗ a2 ∗ x(nT ) + a1 ∗ x(nT − T )− a1 ∗ x(nT − 3T )− a2 ∗ x(nT − 4T )

2
(3.2)

Following the derivative calculations, the output is then squared and passed through a moving

window integrator as in Eq. 3.3. In this equation, K denotes the width of the moving integrator

window and is determined based on three factors such as the duration of widest QRS complex,

the downsampling rate, M , and the sampling frequency, fs.

y(nT ) =
1

K

K−1∑
i=0

x (nT − iT )2 (3.3)

Finally, an adaptive threshold is compared to the output of the integrator to locate QRS

complexes. This adaptive threshold is updated once per heart beat as a function of the previous

threshold value and the new detected R peak value based on the relationship in Eq. 3.4, where

the coefficient values, a and b, are determined empirically.

Threshold(n) = a · Threshold(n-1) + b ·New R Peak(n) (3.4)

3.3.4. Fiducial Point Detection

Once the QRS complex is detected, the algorithm introduces a flagging system to locate P and

T waves. This operates as follows: QRS detection raises the QRS flag, initiating the T wave

search using the reduced QRS threshold value. After this threshold crossing detection, T wave

is located when the derivative changes sign. Similarly, T wave detection raises the T flag and

P wave search takes place with a further decrease of the T threshold value, whereafter the

algorithm again searches for a derivative sign change. Fig. 3.4(c) shows in detail the threshold

technique used to detect P, T waves and QRS complexes.

This way all three waves on a normal ECG rhythm are located. To detect the isoelectric

fiducial points, J1, J2 and J3, delays are introduced after each detection based on nominal

ECG temporal characteristics and the derivative of the signal is checked if equal to zero. This

assumes a P wave duration = 80 ms, PR segment = 50 to 120 ms, QRS complex duration =
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120 ms, ST segment = 80 to 120 ms and T wave duration = 160 ms [28].

As the fiducial point search relies on the detection of the QRS complexes, T and P wave

searches are not conducted until a J2 fiducial point has been located. If one or both of these

waves are missing, the algorithm aligns itself to the QRS complexes and continues on gener-

ating the baseline wander with less fiducial points. Additionally, in the event of missing QRS

complexes or no detections the system re-initialises itself to recover. On the other hand, in the

event of large EMG signals and multiple threshold crossings the algorithm only allows a single

fiducial point (J1 ). Therefore, the fiducial point locations temporarily stored in the buffer up

to the QRS complex are discarded once a (J1 ) location is validated with an R peak detection.

Similarly, multiple (J3 ) threshold crossings are discarded once (J2 ) fiducial point is detected

and (J3 ) fiducial point is accepted only when it is within nominal ECG characteristics.

A recovery operation is triggered when a large amplitude step change or motion artefact

increases the new threshold value such that the next QRS complex never crosses the new

threshold and the system needs to be recovered to proceed. Therefore, in all cases this operation

has been implemented as a function of heart rate corresponding to 40 bpm in all cases since

lower rates correspond to absolute bradycardia [28].

3.3.5. Baseline Wander Estimation

Even though J1, J2 and J3 fiducial points are referred to as isoelectric up to this point for

simplicity, these fiducial points are not necessarily at the same elevation due to patient-specific

heart muscle contractions, relaxations and also certain conditions [88]. These electrical differ-
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Figure 3.4.: Time domain operation of the proposed algorithm using an 8 second synthetic
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and T wave detection; (d) fiducial point detection; (e) baseline wander error
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ences between detected fiducial points J1, J2 and J3, have to be compensated to estimate more

accurate baseline wander. Therefore, a temporary variable stores these differences (J1-J2 &

J2-J3) and the isoelectric point estimation sub-block introduces these errors and interpolation

occurs on the corrected fiducial point.

Finally, the baseline estimation is generated by interpolating fiducial points J1, J2 and J3

using one of three interpolation methods. These include: piecewise cubic hermite (PCHIP),

cubic spline and linear interpolation. Fig. 3.4(d) and (e) show baseline wander estimation and

error analysis on a 8 second synthetic ECG signal.

3.4. ECG Data & Evaluation Metrics

The overall system is tested and validated using both synthetic and real ECG signals in MAT-

LAB R2015b platform. Synthetic data sets are utilised for quantifying the effect of individual

design parameters (e.g. filter frequencies) on the overall system performance, since the ground

truth is known. Once determined, real data sets from the MIT-BIH Databases are used for

determining the overall system performance. Both of these data sets are described in this

section.

3.4.1. Synthetic Data For System Design

Synthetic data are referred to as a combination of simulated ECG signals, generated using

Fourier series approximations [151], whereas two real baseline wander recordings, namely BWM1

and BWM2, are extracted from the Noise Stress Database in Physionet [152]:

• The simulated ECG signals are Lead-II representation of regular heart beats in a 12-Lead

ECG system. As the ECG signal is quasiperiodic and satisfies Dirichlet’s conditions,

Fourier series approximation can be utilised to express ECG signal. By decomposing the

overall signal into smaller segments and defining optional parameters, ECG representation

can be customised. These optional parameters include RR interval, P, R, and T wave

durations as well as their amplitudes. For this study, a 30-minute long segment of data

is utilised (650,000 samples at 360Hz) with a random variation (up to 10% from the

previous heart beat) in all parameters. The P, R and T wave durations with RR intervals

are capped to avoid waves overlapping in time and deform other segments.

• The baseline wander signals provided in the MIT-BIH Noise Stress Database, are recorded

in ambulatory settings with a gain of 200 V/V, under various extreme conditions. Usually,

baseline wander is expected to be 15 % of the peak to peak ECG amplitude and can be

modelled as a sinusoid [40]. However, in these datasets baseline wander generally reaches

up to 100 % of the peak to peak ECG amplitude and higher in some instances. It should

be noted that the presence of white Gaussian noise in addition to the baseline wander

degrades the baseline estimation since the noise floor here is defined by the white noise.

To avoid this, when investigating design parameters, these signals are passed through a

16th order moving average filter.
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3.4.2. Test Data For System Evaluation

After design parameter selection, the algorithm is tested on both synthetic and real data from

MIT-BIH Databases:

• Synthetic data are generated as described previously, with an attenuated baseline wan-

der in amplitude (from MIT-BIH Noise Stress Database) at ratios of 0, 6, 12, 18 and

24 dB [152]. Therefore, we are able to assess the accuracy of the algorithm at different

levels of baseline wander.

• The algorithm is then tested on 12 half hour long recordings from the MIT-BIH Arrhyth-

mia Database. These are each sampled at 360 Hz with 11-bit resolution over a ±10 mV

range and the datasets are annotated by at least two cardiologists.

• Real baseline wander signals (from the MIT-BIH Noise Stress Database) are combined

with real ECG recordings from MIT-BIH Arrhythmia Database (specifically, datasets 100

and 101) with signal to baseline wander ratios of the amplitude at 0, 6, 12, 18 and 24 dB.

3.4.3. Evaluation Metrics

3.4.3.1. Synthetic Data

To evaluate the performance of the algorithm, the clean (synthetic) ECG signal is annotated.

The second derivative of the synthetic ECG is squared and a threshold applied to determine

the fiducial points and separate the signal into sections.

Once the segments are separated, the estimated baseline wander is compared with the real

baseline wander for every RR interval and ST segment at the annotated locations. The root

mean square deviation (RMSD) of the real, yri , and the estimated, yei , baseline wander over a

defined duration, 1 : n, is evaluated as the accuracy metric as in Eq. 3.5.

RMSD =< ε2 >=

√
Σn
i=1(yri − yei)2

n
(3.5)

3.4.3.2. Real Data

Similarly, for the real ECG signals annotations from the MIT-BIH Databases are read with the

code (rdann) provided in the Waveform Database (WFDB) toolbox for MATLAB [153]. RMSD

calculations are done by estimating the baseline with a high order low-pass equiripple FIR filter

with a transition bandwidth defined at 0.55 Hz to 0.67 Hz (fs=360 Hz), 0.01 dB passband and

80 dB stopband attenuation. MATLAB fdatool defines the minimum order of such filter as

12218th order filter. This way, even though the ground truth is not known, a good and accurate

approximation of baseline wander algorithm is targeted. Finally, the cross-correlation matrix

of the estimated and the real baseline wander are determined.
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3.5. Design & Implementation

In this section, the sensitivity of key design parameters of the baseline wander estimation

algorithm is investigated. Each parameter is then determined based on the overall accuracy

and its computational requirement.

3.5.1. Downsampling Rate

In digital signal processing, decimation is the processes of reducing the sampling rate of a signal.

This approach requires low-pass filtering to mitigate aliasing [154]. Downsampling on the other

hand is a more specific term that does not require anti-aliasing filters and only focuses on

reducing the sampling rate. Due to its nature, such an approach is susceptible to distortion as

noise gets folded into in-band, therefore limiting its applications.

Fig. 3.5 illustrates fundamental concepts of decimation process in detail. Here, x[n] is defined

as a sampled representation of a continuous function x(t) at a sampling frequency fs. To

decimate the signal without introducing aliasing, a low-pass filter with a cut-off frequency, fc,

filters the signal and the bandwidth, Bc, satisfies the inequality as defined in Eq. 3.6.

Bc <
1

M
∗ fs

2
(3.6)

In ECG applications, signal content below 45 Hz sampled at 360 Hz can be preserved with a

downsampling rate of 4. Even though increasing the downsampling rate, M , reduces the number

of operations by M − 1 per output, the trade-off is the accuracy degradation in fiducial point

detection. This is due to shrinking window sizes of ECG characteristics with downsampling.

The maximum window size for QRS complexes of MIT-BIH Arrhythmia Database lasts for 44
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Figure 3.5.: Illustration of decimation with anti-aliasing filter
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samples [155], and typically ranges between 22 to 36 samples [28] when sampled at 360 Hz.

Therefore, increasing the downsampling rate reduces total number of samples and requires

precise thresholding to avoid accuracy degradation.

In the baseline estimation approach presented here, the main aim is to reduce the cost of

processing while still being able to detect fiducial points. As ECG characteristics in Fig. 3.2

demonstrate most of the signal content lies at low frequencies and diminishes at higher fre-

quencies, downsampling can still be achieved with small aliasing effects without utilising an

anti-alias filter. This preserves computational resources as the decimation filter implementation

operating at the sampling frequency, fs, is discarded.

A thorough quantification of preserving computational resources can be identified with MAT-

LAB simulations. The MATLAB fdatool requires a minimum order of 153 to design an anti-

aliasing low-pass equiripple FIR filter implementation with a transition bandwidth of 55 to 60 Hz

and a stopband/passband attenuation of 20 dB/0.01 dB respectively. The filter order reduces

down to 77 when the transition bandwidth is defined from 50 to 60 Hz. As the total number

of multiplication operations are determined by the total number of taps defined for the anti-

aliasing filter operating at the sampling frequency, fs, such filters increase the computational

load extensively. On the other hand, even though IIR filter implementations for the same tran-

sition bandwidths, reduce the filter order required, non-linear phase responses distort the signal

quality. Similar to the FIR filter design, low-pass Butterworth IIR filter requires a minimum

order of 52 and 25 for the same transition bandwidths respectively and the phase response is

almost linear up to 40 Hz in both cases. Increasing the downsampling rate and defining the filter

transition bandwidth close to 10 - 30 Hz range, however, affect the signal quality and degrades

the system performance. This is due to the non-linear phase distortion of the filters and most

of the ECG signal power being defined within that range as can be seen in Fig. 3.1.

With no significant improvements on ECG fiducial point detection, tests have been carried

without introducing anti-aliasing filters. Using the test data sets described in Section 3.4.1,

downsampling rates are chosen as, M = 1, 2, 3, 4, 6 and 8. Fig. 3.6 shows the overall impact

error by varying the downsampling rate. As described in Section 3.4.1, the white noise over the

BWM1 data defines the noise floor and thus acts as the limiting factor. To present the baseline

wander estimation accurately, a moving average filtered version of this BWM1 noise has also

been tested and presented with the blue bars along with the unfiltered version of the BWM1.mat

file. As can be observed from the plots, for all the plots with white noise removed, the RMSD

errors decrease substantially. It can also be observed that the errors (for each downsampling

rate) are less than 100 µV, even when using M = 4. (For M ≤ 4, downsampling rate does not

affect noise; For M ≥ 6 there is significant SNR degradation is observed.)

Downsampling also impacts subsequent filtering stages by reducing complexity significantly.

For example, a 12th order moving average (MA) filter would be required on the original signal,

whereas a 3rd order MA filter is sufficient for a downsampling rate of 4. This also applies to

the bandpass filtering. For the following sections, downsampling rate has been fixed to 3 as this

provides a good trade off between complexity and accuracy for the heart beats with short ECG

intervals.
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Figure 3.6.: RMSD error vs downsampling rate over 1700 synthetic ST segments using MIT-
BIH Noise Stress Database baseline wander (BWM1.mat) and moving average (16th

order) filtered version of the baseline wander

3.5.2. Filtering

Once downsampling reduces the sampling frequency to fs
M , filtering stage crudely removes noise

artefacts at this rate. As the transition bandwidth requirements are relaxed, noise artefact

removal is achieved with minimal computational requirements.
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3.5.2.1. High-pass Filtering

The high-pass filter removes the baseline drift for detecting the QRS complex. Typically, FIR

filters are preferable because of their linear phase characteristics [156]. However, to reduce

the computational complexity of the system, IIR filter responses are investigated. The filter

coefficients are generated by matching the filter specifications to the stop-band frequency and

varying this parameter as this has the most impact on the signal components (see Fig. 3.1).

Note that IIR filtering will introduce distortions in the ST segment, but here the goal is only

to detect the fiducial points accurately to determine the baseline wander. The ST segment

recorded by the system is not affected by this filtering.

As can be seen in Fig. 3.7, IIR filters here can achieve a similar accuracy to FIR filters

(e.g as in [156]) without requiring a high number of coefficients. All the IIR filters can be

implemented using only 10 coefficients (3rd order composed of 2 sections) whereas an FIR filter

with a transition bandwidth defined as 0.05 - 4 Hz requires 50 coefficients at the downsampled

rate. This high number of FIR coefficients not only increases the computational complexity but

also requires the original signal to be delayed due to the large group delay. Therefore, IIR filters

offer a better design choice for real-time implementation where the phase can be compromised.

As the high-pass frequency is increased, the IIR filter accuracy degrades (see Fig. 3.7). This is

expected due to low frequency components of P waves. On the other hand, a cut-off frequency

below 1 Hz does not sufficiently remove noise artefacts resulting in an inefficient baseline estima-

tion, hence compromising accuracy (ST segment distortion). Fig. 3.7 shows that Butterworth

and Chebyschev2 filters show the best results with the pass-band defined at 1 to 2 Hz. A Butter-

worth filter with Fc = 1.5 Hz, 20 dB stop-band attenuation and 0.5 dB pass-band ripple shows

the least RMSD error among all the filters compared and implemented as the filter type.
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3.5.2.2. Low-pass Filtering

As discussed in Section 3.3, low-pass filtering stage is implemented after the downsampling stage

to relax computational requirements. Consequently, images of the harmonics of the powerline

interference alias into the pass-band as in Eq. 3.7. Theoretically, a downsampling rate of 3

generates aliases either at 20 Hz± 1Hz and 30 Hz± 1Hz (2nd and 3rd harmonic of 50 Hz powerline

interference) or at 0 Hz± 1Hz (2nd harmonic of 60 Hz powerline interference) at a sampling rate

of 360 Hz. Low frequency content is filtered by the high-pass filter stage whereas 20 Hz and 30 Hz

components are marginal when compared to QRS complexes and do not affect QRS detection.

falias
d
= |f −N ∗ fs| where N = 1, 2, 3...∞ (3.7)

Low-pass filtering introduced in this stage removes the fundamental tone of the residual pow-

erline interference and the high frequency noise in fiducial point detection. This way, multiple

threshold crossings are avoided to a certain extent; however, these noise interferences are still

present in the original signal and accuracy improvement is subject to the defined noise floor.

The filter operates at the new sampling frequency defined by the downsampling rate, fs
M . Sim-

ilar to the high-pass filtering, IIR filter responses are investigated to reduce the computational

complexity. The main difference in such implementation, however, is the matching of filter

coefficients to the stop-band frequency as the signal of interest here is the QRS complex and

filtering of this segment degrades the system performance. This can be seen in Fig. 3.8, whereas

at higher cut-off frequencies the filter responses are similar as the residual powerline interference

defines the noise floor. Therefore, Butterworth filter with Fc = 35 Hz cut-off frequency 20 dB

stop-band attenuation and 0.3 dB pass-band ripple characteristics is selected as the filter type.
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3.5.2.3. Moving Average Filter (MAF)

Moving averages, Si, are the arithmetic means of n subsequent terms defined in a given sequence

of data points, (xi, .., xi+n−1). Eq. 3.8 defines this relationship in mathematical terms. Reducing

the number of data points with no aliasing affects the filter order which is inversely proportional

with the downsampling rate, M .

Due to their nature, moving average filters are poor in separating one band of frequencies

from another. However, they are suitable for time domain encoded signals and produce opti-

mum results in reducing random noise while retaining sharp step responses [157]. Due to their

smoothing ability, they are utilised for specific purposes in the ECG baseline wander detection

algorithm.

Si =
1

n
∗
i+n−1∑
j=i

xj (3.8)

Suppressing the EMG interference to prevent multiple threshold crossings in ECG recordings

can be achieved with a FIR MA filter design. In addition to removing these artefacts, other

random noise sources such as the aliased noise due to downsampling and quantization noise is

partially filtered and a smoother output is generated with MA filters.

The errors of different moving average filters are shown in Fig. 3.9. Here, it can be observed

that a 3rd order MA filter achieves similar results compared to higher order filters. However, a

4th order filter implementation requires less computational complexity since the multiplication

can be handled using logical shift operations. Thus, a 4th order moving average filter is selected

here.

63



Chapter 3 - An Isoelectric Point Based ECG Baseline Removal Algorithm

3.5.3. QRS Detection

Although the main QRS detection concept originated from Pan & Tompkins algorithm [148–

150], the parameters mentioned in Eq. 3.2, 3.3 and 3.4 are investigated thoroughly and they

are adapted to the baseline wander detection algorithm.

3.5.3.1. Differentiator

The main purpose of differentiation in QRS detection is to account for the steep slopes of the

QRS complex such that R peaks can be detected in time through energy calculations and thresh-

olding techniques. However, as ideal differentiators have a frequency response as in Eq. 3.9, their

magnitude responses have a straight line enhancing higher frequency components. In discrete

data systems, ideal differentiators require infinite bandwidth and even so their ideal behaviour

is not desirable for most practical signals mainly due to SNR degradation [158]. Similarly, as

in ECG signals most of QRS complex is situated within 5-40 Hz band and amplifying the noise

at higher frequencies can drown out the desired signal.

H(ejω) = jω (3.9)

As the impulse response of such an ideal system is real and odd, an FIR approximation with

the same form (Eq. 3.1) can be utilised as a differentiator. Substituting z = ejω in this equation

yields an N th order approximation with a gain and coefficients denoted as G and an respectively.

H(ejω) = G ∗ j
N∑
n=1

an ∗ sin(nω) (3.10)

This equation can be approximated to Eq. 3.9 and solved for coefficients to obtain an approx-

imated version of an ideal differentiator. This includes solving for different parameters such as

minima, mean squared error or maximal tangency mathematically. However, here the aim is to

generate computationally efficient parameters while achieving a desired frequency response. In

Pan & Tompkins algorithm, a1 and a2 is defined as 2 and 1 respectively [148]. In their quan-
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titative analysis, however, these coefficients are defined the other way around [149]. In both

articles the sampling frequency is defined as 200 Hz, whereas in baseline detection algorithm

FIR filter differentiator approximations at a sampling frequency of 360 Hz are investigated.

Fig. 3.10 shows both approaches as reported in Pan & Tompkins publication and quantifies

side lobe cut-off frequency parameters of a differentiator. Any differentiator defined utilising

Eq. 3.10 suppresses the low frequency components (P and T waves) with respect to the QRS

complex like an ideal differentiator. In addition, as a benefit of a non-ideal differentiator high fre-

quency content does not get enhanced further and due to the high SNR ratio at high frequencies,

non-ideal differentiators preserve signal quality. As these approaches are FIR implementations,

their phase response is linear and the delay is defined by the order, N .

In the baseline estimation algorithm, unlike Pan & Tompkins, not all magnitude responses are

suitable for implementation. This is due to the fact that downsampling reduces the sampling

rate to fs
M , causing some differentiator implementations to partially suppress the QRS complex.

For instance, for a downsampling rate of 4, the quantitative magnitude response’s side lobe

appears to be around 25 Hz (N=2) which degrades system performance due to inaccurate QRS

detection.

On the other hand, increasing the order of the differentiators increases the computational

load, suppresses the QRS complex partially, and introduces larger delay. This can be seen with

N=3 (7-point differentiators) as in Fig. 3.10(b). The ratio of the coefficients defines the side lobe

frequency and for a downsampling rate of 3 such implementations do not improve the system

performance. For this reason, a 5-point differentiator is implemented with coefficients a1 and a2

defined as 1 and 2 respectively (see Eq. 3.11). These coefficients are computationally efficient

and calculations can be done with shifting operations and no distortion to QRS complex is

observed with a downsampling rate of 3. Detailed analysis of N-point differentiators tested in

system design and their magnitude response Bode plots are provided in Appendix B.1. For

higher downsampling rates, 3-point differentiator implementations preserve QRS complex and

thus avoid errors in energy collector calculations of the QRS complex.

y(nT ) ≈ 2 ∗ x(nT ) + x(nT − T )− x(nT − 3T )− 2 ∗ x(nT − 4T )

8
(3.11)

3.5.3.2. Moving Window Integrator

Following the differentiator, the signal is squared and passed through a moving window inte-

grator. Governing energy operations are mentioned in Eq. 3.3. Here, the window size of the

moving integrator is decided based on nominal ECG characteristics, downsampling rate and

sampling frequency. The maximum window size for QRS complex lasts less than 120 ms [28].

Therefore, based on a 360 Hz sampling frequency and a downsampling rate of 3, a window size

of 15 samples (15 ≥ 120 ms X 120 Hz) is required to achieve a saturated output as shown in

Fig. 3.11.

As the previous stages suppress the noise, attenuate P and T waves, and the squaring op-
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Figure 3.11.: Moving window integrator response. Notations denoted as: QSW refers to QRS
complex width and MIW refers to integrator window size

eration increases the effect of steep slopes of the QRS complex, the moving integrator window

size is defined based on the half of the maximum QRS complex. Once the algorithm detects

a threshold crossing on the integrator output, then a QRS flag is generated; therefore preserv-

ing an ideal integrator response has no added benefit. This way the generated output is at

least equal to the ideal integrator response as the output is normalised by the window size.

On the other hand, the overall computational resources utilised in integration are reduced by

eliminating extra additions and normalizing can be achieved with shifting operators.

In experimental testing, a moving window integrator with a window size of 15 generated the

same number of QRS flags when compared to a window size of 8. Therefore, the latter has been

implemented in the baseline wander detection algorithm.

3.5.3.3. Threshold Generation

Threshold coefficients are determined according to Eq. 3.4 in Section 3.3.3. Due to the adaptive

nature of the threshold generation equation, an exhaustive search has been applied to the

overall algorithm to determine optimal coefficient values, a and b. Fig 3.12 shows the error

on ST segments of 1700 heart beats on the 16th order MA filtered BWM1.mat data. As can

be seen in Fig. 3.12, higher coefficient values, a and b, degrade the system performance. This

is due to raising the new threshold higher than the upcoming peak subsequently resulting in

missing fiducial point detections. The results match our previous work [156] where the best

results are obtained with a= 0.425 and b= 0.075. To implement these as shifting operations,

however, coefficient values of a= 0.5 and b= 0.125 are more computationally efficient choices

and results using these coefficients do not significantly impact the errors.

One can think that P and T waves can affect threshold generation. However, nominal char-

acteristics of these waves before pre-processing show that T wave amplitude is approximately

equal to the half the size of the QRS complex whereas P wave amplitude is typically below

0.25 mV with longer durations [28]. These differences, when combined with the differentiator

magnitude response (attenuating these waves approximately by 20 dB) and the squaring opera-

tion (further enhancing QRS to T & P wave SNR ratio), prevent triggering threshold detection
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ing 16th order MA filtered MIT-BIH Noise Stress Database baseline wander
(BWM1.mat). Shown are mean (left) and standard deviation (right) of RMSD
error

of P and T waves.

3.5.4. Fiducial Point Detection

This section discusses the design parameter selection in detecting and locating fiducial points.

As QRS detection is acquired by the previous stage, this information is utilised here to locate

isoelectric points, J1, J2 and J3. This process is illustrated in Fig. 3.13. The algorithm can be

divided into three sections that are colour coded: (1) Watchdog Operation (red); (2) P and T

wave detection (brown); and (3) Fiducial point search (green).

3.5.4.1. Recovery Operation

Here, a recovery operation has been implemented as the initial block of the fiducial point

detection stage. The main purpose of this section is to recover and re-initialise the algorithm

when no heart beat is being detected. Such conditions can occur in case of extreme motion

artefacts that are large in magnitude and have high slopes. These interferences cannot be filtered

thoroughly by the high-pass filter stage and the residual interference triggers a false positive

QRS detection. In some cases, the new threshold might be set so high that the new upcoming

peaks cannot trigger threshold crossings (see Eq. 3.4). During these type of stall events, the

algorithm is recovered as illustrated in Fig. 3.13. If no QRS complex is detected for 1.5 seconds

which corresponds to 40 bpm, the algorithm re-initialises the threshold. For a downsampling

rate of 3, and a sampling frequency of 360 Hz, a counter continuously checks QRS detections

and in the event of no detection for 180 samples, the threshold is set back to 0.
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Figure 3.13.: Flow chart illustrating the fiducial point detection algorithm
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3.5.4.2. P- and T- Wave Detection

As mentioned, the algorithm is divided into three stages and their purpose focuses on initiali-

sation/recovery, detection, and search respectively. In this section, the detection methodology

is discussed.

The detection stage locates QRS, P and T waves and this is achieved by generating the

threshold as mentioned in Eq. 3.4. Once a wave detection generates a flag, the algorithm

proceeds into fiducial point search. This will be discussed in detail in the following section.

For simplicity and ease of understanding, however, it may be assumed that once a wave (QRS

complex, P or T wave) is detected, the corresponding fiducial point, J1, J2 and J3, is then also

located. Such an example can be seen in Fig. 3.2, indicating a detected R peak, and the ST

segment fiducial point J2 is estimated when the signal derivative changes sign after a 60–80 ms

delay after the S point.

The main aim of P and T wave detection stage is to locate these waves. This can be achieved

by adjusting the threshold that has been generated for the QRS detection. As the T wave

amplitude is usually equal to the half the size of QRS complex and P wave amplitude is less

than 0.25 mV [28], using fractions of 1 / 8 and 1 / 16 of the QRS threshold to detect P and

T waves respectively generates the best results, which are suitable for the tested MIT-BIH

Arrhythmia Database signals.

In certain conditions, i.e. when P and T waves are substantially small, the algorithm has

to adjust the detection further by a fraction of 1 / 2 when the algorithm misses to detect P

and/or T waves. These instances are covered in the flowchart as shown in Fig. 3.13. When

the algorithm does not detect T or P waves for 8 consecutive cycles, Flag 1 or Flag 2 is raised

respectively. Once a raised flag is recognised, the new threshold fractions, 1 / 16 and 1 / 32, are

utilised to detect these waves respectively. This way, the amplitude variances in P and T wave

of ECG signals are taken into consideration during algorithm design.

3.5.4.3. Fiducial Point Search Window

Before proceeding further, the reader should know that the remainder of the algorithm utilises

the time stamps of P-, T- waves and QRS complex detections that are employed to locate

fiducial point search on the input sampled at 360 Hz.

Once the P, R and T waves are detected, corresponding fiducial points are searched as in

this section. In the flowchart, these blocks are green coded and as can be seen in Fig 3.13 each

search window utilises 2 criteria: (1) The duration of the search window; and (2) Derivative

sign change requirement.

Search windows are defined as follows:

• J2 search window is initiated after the QRS complex and lasts for 48 samples correspond-

ing to 133 ms in duration. This search window is composed of two stages; (1) Wait Period;

and (2) Locating Period. Once a QRS detection occurs, the algorithm waits for 18 sam-

ples to initiate the J2 isoelectric point search. This wait period is determined by two
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Figure 3.14.: J2 search window definition

factors: (1) The maximum duration of the QRS complex defined (≈ 120 ms), and (2) QRS

detection location (after the R peak, close to the peak). Therefore, 50 ms of wait period

is more than enough to end the QRS complex. On the other hand, the duration of the

J2 point window is defined by the duration of the ST segment. As this segment ranges

from 80 ms to 120 ms, a window of 30 samples approximately lasting for 83 ms is defined

to locate the fiducial point. The search window process for J2 fiducial point is illustrated

in Fig. 3.14. As can be seen, the total time of the search window corresponds to 133 ms

(T1 + T2).

• Similarly, the J3 search window starts after the T wave detection. As the nominal T wave

duration is 160 ms, and the T wave is detected after the peak, 24 samples corresponding

to 67 ms have been chosen as the wait period. Following this period, the search is initiated

similar to the QRS search window, and J3 is located within 18 samples (corresponding

to 50 ms). Here, the search window is shorter than the J2 search window. This is mainly

because the RR interval defines the rest period between T offset and P onset and for

increased heart rates the duration of these sections substantially decreases. While working

with MIT-BIH Database signals, J3 fiducial points are easily detected within these limits.

The total time used for the J3 search window corresponds to 117 ms (T1 + T2) as noted

in the flow chart.

• Finally, the J1 search window is initiated after the detected P wave. As the P wave

lasts less than 120 ms, the search window starts 33 ms (12 samples) after the detection.

To determine the duration of this search window, PR segment ranges (50 - 120 ms) are

utilised and the search window is set for 18 samples, corresponding to 50 ms. The total

time used for J2 search window corresponds to 83 ms (T1+T2) as noted in the flow chart.

During search window operations, the second criterion locates J1, J2 and J3 fiducial points.

This is achieved by detecting sign changes of the derivative within the defined search window.
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3.5.4.4. Group Delay

Once the fiducial points are located, (depending on the filter types used), the estimated baseline

wander is delayed by the overall group delay. The overall group delay required by the system is

defined by the moving average filter, the differentiator and the integrator window size. A fourth

order MA filter with a downsampling rate of 3 requires the system output to be delayed by

16 ms. Similarly, the five-point differentiator is an FIR filter approximation introducing a delay

of 2 samples, which corresponds to an additional 16 ms. The delay of the moving integrator

on the other hand corresponds to 8 samples which is equivalent to 67 ms, and the overall delay

adds up to 100 ms.

In real time implementation, these group delays are required to be taken into consideration

as well as the delay introduced by the total number of operations at the clock speed. However,

one benefit of the system is: Once fiducial point search windows are defined, there is a 50 ms

wait period in all three cases. Therefore, the overall system is required to be delayed by 50 ms

(corresponds to 18 samples at 360 Hz) as defined by the Eq. 3.12.

τTotal = τMAFilter + τDifferentiator + τIntegrator + τSearchWindow (3.12)

3.5.5. Baseline Wander Estimation

The final stage of the baseline wander estimation utilises the information gathered from previous

stages, and estimates the baseline wander through interpolation. Below, each sub stage is

explained in more detail.

3.5.5.1. Fiducial Point Shift

Up to this point, it has been assumed that fiducial points J1, J2 and J3 are isoelectric; however,

in reality this is not the case, especially for patients with a previous history of heart attack as

shown in Fig 3.15. In such cases, the heart tissue gets damaged and the J2 point becomes

elevated or depressed. Therefore, assuming that these fiducial points are at the same elevation

and estimating the baseline in such a manner can lead to errors. In the literature, single

fiducial point cubic spline approaches exist and they utilise the PR interval (J1 ) as generating

the interpolation points [88]. These locations do not alter in magnitude as much and have

less effect on the ST segment while interpolating; however the ST segments’ magnitude carries

information and changes can be observed in this segment due to certain conditions. Therefore,

during recording and processing elaborate design is required to detect these discrepancies.

To avoid introducing error in baseline estimation based on fiducial point discrepancies, the

algorithm utilises elevation/depression differences of each interval maintained on the clean ECG

signal at the start up (for each heart beat between J1 & J2 and J2 & J3 ). These relative

magnitude differences of 8 averaged consecutive sections are stored temporarily in a variable and

fed back to the input signal before interpolation takes place on the input. Due to the presence

of noise interferences on the raw data such as white noise and baseline wander, discrepancy
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Figure 3.15.: J1, J2 and J3 fiducial point discrepancies

calculations are evaluated on the clean ECG signal. These interferences contaminate the signal

of interest and usually discrepancy information resides below the noise floor. Filtered data are

also not suitable for such an operation since the phase distortion introduced by IIR filters distorts

these segments and minor elevation changes can not be captured as presented in Fig. 3.16.

As mentioned, 8 clean consecutive heart cycles are utilised to generate the segmental dis-

crepancies present within the signal. These segmental differences are evaluated at the fiducial

point locations after each wave detection. For instance, once a P wave is detected, the algo-

rithm waits for the corresponding fiducial point to determine the PR interval level and utilises

this information with the ST segment level detected after a QRS detection. Their difference

generates the PR interval and ST segment discrepancy, which is denoted as J1 & J2 difference.

Similarly, once a T wave is detected, corresponding isoelectric level is located after a successful

fiducial point detection and utilised with the ST elevation level to generate J2 & J3 difference

in the same manner. These generated differences are then compensated and baseline estimation

is achieved on the shifted fiducial points.

In the event of unexpected large amplitude changes in the ST segment, a control mechanism

is required. If the patient experiences a shift above 100 µV for 8 consecutive cycles at the ST

segment as shown in Fig 3.15, the algorithm requires re-initialisation of discrepancy calculations.

Even though filtered data are not suitable to capture minor changes, they are effective to detect

large shifts. This approach is demonstrated in Fig. 3.16 with two different heart signals (with

and without ST depression) showing their filtered responses as well as the raw data with baseline

wander. Here, the patient on the right has ST depression whereas the patient on the left sub

plot has a normal recording. When their filtered plots are compared, the segmental change

can be detected and these changes are then compared with the temporary variable requiring

re-initialisation to avoid removing elevated/depressed sections.
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3.5.5.2. Interpolation Methods

Once fiducial points J1, J2 and J3 are detected and elevation differences are compensated, the

next step estimates the baseline wander through interpolation. Here, three different methods

are compared namely cubic spline, piecewise cubic hermite, and linear interpolation and one is

implemented as the interpolation method.

Tests have been performed on the synthetic data with added baseline wander signal, BWM1,

acquired from MIT-BIH Noise Stress Database as mentioned in the evaluation metrics. There-

fore, the ground truth is known and the histogram plots of each interpolation method are

illustrated as in Figs. 3.17 and 3.18. These plots show RMSD error per ST segment and per

heart beat over 1700 heart beats, whereas the highlighted areas in Fig. 3.18 demonstrate the

large errors specific to each interpolation method.

As can be seen from the mean and standard deviation results, the overall error in each

interpolation method is comparable with the other approaches. When their computational

complexity is considered, linear interpolation requires less hardware resources as compared to

its polynomial counterparts. Also, it should be noted that the high standard deviation errors in

each interpolation method are due to present quantisation noise and EMG interference in the

raw data. As the baseline wander estimation method does not suppress these at the output,

the overall noise floor is defined by these type of noise interferences. Additionally, five instances

of the recording show large step changes in the range of 4-5 mV. Even though these sudden

shifts are eventually compensated by the algorithm, errors of corresponding heart beats are not

included in these histogram plots to accurately compare each method. Based on the accuracy

results, real data tests have been carried out with cubic spline interpolation.
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3.6. Results & Discussion

In the preceding section design parameters are set and implementation of the baseline detection

algorithm has been discussed in detail. Based on these set parameters, extensive tests have

been carried out as will be described in this section. These tests involve synthetic and real

data acquired from MIT-BIH databases as explained in Section 3.4.2. After a description of the

tests, obtained results will be presented and discussed with comprehensive analysis comparing

the algorithm performance with other methods. Finally, the results section is concluded with

computational complexity analysis investigating approximate hardware resource requirements

for the baseline wander detection algorithm.

3.6.1. Synthetic Data Analysis

As indicated in Section 3.4.2, synthetic data analysis has been carried on the ECG recordings

generated from Fourier series approximation. Here, these recordings are combined with real

baseline wander signals acquired from the MIT-BIH Noise Stress Database. Therefore, these

test are only partially realistic. The overall aim is to carry out segmental analysis precisely on

a synthetic ECG signal to evaluate the algorithm accuracy on the real baseline wander as the

ground truth is known throughout the process.

3.6.1.1. Synthetic Data Test Results

The real baseline wander signals, namely BWM1 and BWM2, are combined with the generated

synthetic ECG signals. Table 3.1 shows the error in estimating baseline wander of the proposed

algorithm at various SNR levels. These SNR ratios are recorded at ambulatory settings and can

be added to any ECG recording at different attenuation levels in amplitude (at 0,6,...,24 dB). The

resulting, RMSD errors are generated and tabulated within the S-T segments of the synthetic

ECG data which is accurately time stamped as mentioned in Section 3.4.3.

Following these tests, other MATLAB filter implementations are compared with baseline

wander detection algorithm. The filtering approaches in these tests involve low-pass elliptic

IIR filters (utilising embedded filter and filtfilt functions in MATLAB), equiripple FIR imple-

mentation and the baseline wander estimation algorithm covered in this chapter. The aim is

to compare baseline wander estimation algorithm with non-/linear filtering. As elliptic filters

provide sharp cut-off and narrow transition width, they are chosen as non-linear phase response

filters and also zero phase filtering with this filter is utilised with filtfilt MATLAB function.

This function enables to filter the signal in both forward and backward directions [159]. Even

though these systems are not causal, their generated off-line results are compared with the

baseline wander detection algorithm. These filters estimate a 16th order moving average filtered

version of the BWM1.mat signal and their corresponding RMSD results are shown in Table 3.2.

Additionally, correlation coefficient results of the estimated (denoted as Be) and the real base-

line wander (denoted as Br) of each method are calculated as in Eq.3.13, where E denotes the

expected value, µ denotes the mean and σ denotes the standard deviation.
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ρ(Be,Br) =
E[(Be − µBe)(Br − µBr)]

σBeσBr

(3.13)

Table 3.1.: Synthetic data with real baseline wander RMSD errors

Dataset Attenuation RMSD error (µV) Total Interval

(Synthetic/ Real) (dB) (Without motion artefact) beats (Err)

µ Med σ # ε

BWM1 (S) 0 17.6 14.6 12.7 1681 S-T

BWM1 (S) 6 8.9 6.3 7.6 1681 S-T

BWM1 (S) 12 4.5 3.3 3.8 1681 S-T

BWM1 (S) 18 2.3 1.7 1.9 1681 S-T

BWM1 (S) 24 1.3 1.0 1.0 1681 S-T

BWM2 (S) 0 12.4 11.5 5.2 1681 S-T

BWM2 (S) 6 6.2 5.8 2.6 1681 S-T

BWM2 (S) 12 3.2 2.9 1.3 1681 S-T

BWM2 (S) 18 1.7 1.5 0.7 1681 S-T

BWM2 (S) 24 1.0 0.9 0.5 1681 S-T

Average - 5.9 5.0 3.7 1681 S-T

Table 3.2.: Comparison table of different filters with baseline wander algorithm

Filtering Filter Synthetic RMSD error (µV) Correlation Total Int.

Method Order Dataset (Without motion art.) coefficient beats Err

µ Med σ ρ(Be,Br) # ε

LPF Elliptic 7
MA

Filtered
10.3 8.0 12.9 0.9840 1681 S-T

IIR (filter) BWM1

LPF Elliptic 7
MA

Filtered
6.8 5.5 5.6 0.9933 1681 S-T

IIR (filtfilt) BWM1

LPF FIR 12218
MA

Filtered
6.5 5.3 5.1 0.9940 1681 S-T

Equirriple BWM1

This work -
MA

Filtered
BWM1

3.8 3.4 3.6 0.9946 1681 S-T
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3.6.1.2. Synthetic Data Test Discussion

Synthetic data tests in Table 3.1 show that baseline wander estimation accuracy is directly

proportional to the noise interference levels. As the amplitude ratio of the baseline wander is

halved (every additional 6 dB attenuation), the mean/median/standard deviation RMSD errors

at the ST segment approximately halve as well. This also explains the reason why BWM1 and

BWM2 RMSD results differ in magnitude. A statistical analysis shows that BWM1 signal varies

more in amplitude and conveys higher kurtosis results.

Synthetic test results reveal that upon successful fiducial point detection, the algorithm de-

tects baseline wander accurately and even though these noise artefacts are sometimes 500% of

the ECG signal peak to peak, baseline wander estimation is still within the limits as required by

AHA and IEC [17–20]. It should be noted, however, that these results do not include isoelectric

point elevation differences, white Gaussian noise in the ECG recording, and EMG noise arte-

facts. In cases where the noise floor is defined by these interferences, fewer fiducial points per

heart beat are detected and this degrades the system performance. Therefore, real data tests

are required to understand the effects of other noise sources on the overall algorithm accuracy.

Table 3.2 shows the results of the FIR and IIR filter implementations (with and without zero

phase filtering) evaluated in MATLAB with double precision filter coefficients. These results

are then compared with the baseline wander detection algorithm with double precision, whereas

single precision implementation of the overall embedded system is covered in Chapter 5. It can

be seen that the high order equiripple FIR filter (as described in Section 3.4.3) yields similar

results compared to the 7th order elliptic IIR filter with zero phase filtering. However, zero

phase filtering is non-causal and requires data storage. On the other hand, low-pass elliptic IIR

filter implemented with filter function in MATLAB, shows the least accuracy due to its non-

linear phase response. Also it should be noted that, as synthetic ECGs have ideal ST segment

responses with no low frequency content close to the transition bandwidth, distortion to this

segment is limited. In real recordings, however, such disturbances are more pronounced as can

be seen in Fig. 3.16, denoted with the blue ECG signal.

Finally, the baseline wander detection algorithm generates the most accurate results compared

to other methods. The correlation coefficient is the closest to unity among all approaches

showing high resemblance with the real baseline wander signal. Also it should be noted that,

as the detection is done on the input, electrode offset is removed accurately.

3.6.2. Real Data Analysis

Following synthetic test, real data analysis has been carried on the MIT-BIH Arrhythmia

Database (section 3.4.2). These signals typically contain step changes, EMG and motion arte-

facts, with variation in the isoelectric lines, missing P waves and irregular heart beat char-

acteristics. Each of these events creates a challenge to any algorithm and, since these noise

sources are not addressed specifically, a degradation in accuracy is expected when compared to

synthetic test results.
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3.6.2.1. Real Data Test Results

Table 3.3 and 3.4 show RMSD errors of the baseline wander estimation algorithm utilising MIT-

BIH Database signals. The former presents results for the signals recorded in an ambulatory

setting and annotated by at least two cardiologists. The latter presents the MIT-BIH Noise

Stress Database baseline wander added to MIT-BIH Arrhythmia Database signal with varying

signal to noise ratios, as described previously.

In these tests, the ground truth is not known and for that reason the error is calculated

against a high order FIR filter (section 3.4.3) since this is the gold standard, (i.e. it is clinically

accepted to use such filters). Average results show that when motion artefacts are not present,

isoelectric fiducial point estimation provides clinically valid data with average mean, median

and standard deviation RMSD errors of 28.7 µV, 25.8 µV and 15.4 µV respectively.

As more baseline wander is introduced into the system, BWM1.mat file, the algorithm perfor-

mance degrades as shown in Table 3.4. These results are in agreement with the synthetic data

analysis as covered in the preceding section, and as the attenuation level of the noise interference

increases, its effect on baseline wander estimation diminishes. Dataset number 100 shows mean,

median and standard deviation RMSD errors of 32.3 µV, 28.1 µV and 17.9 µV with introduced

BWM1 signal (0 dB attenuated). Similar results can be observed with the dataset number 101,

however, at higher attenuation levels the effect of the added noise artefact diminishes and mean

errors are determined by the random noise present in the recordings.

3.6.2.2. Real Data Test Discussion

Real data tests have been carried out on 12 MIT-BIH Arrhythmia Database signals as reported

in Table 3.3 and 3.4. Some of these recordings show a high number of motion artefacts com-

pared to others therefore results with and without these noise interferences vary from signal to

signal. The effect of these noise artefacts can be analysed from the mean and median results

of each recording. Database signal 101 shows RMSD error change of 0.2 µV in its median with

and without motion artefacts whereas the mean changes by 7.4 µV. When these results are

interpreted in conjunction with the database signal 105, the difference in each result is much

more significant and is related to the high number of motion artefacts present in the recording.

High standard deviation results with motion artefacts are explained by different reasons. In

database signal 102, the high standard deviation results as well as the high mean and median are

related to the precordial (chest) recording. This signal is recorded with the V5 chest lead and

even though this lead recording generates the same structure as the Lead-II recording in a 12-

Lead ECG system, P waves are substantially small when compared to the Lead-II counterpart.

Therefore, when the algorithm does not detect P waves, the baseline estimation is acquired with

a missing fiducial point. Consequently, the mean, median and standard deviation results degrade

in all cases. On the other hand, database signal 105 shows large mean and standard deviation

due to motion artefacts and also it should be noted that the signal is corrupted partially and

no ECG signal is recognisable at these instances which degrades overall system performance.

Finally, database signal 108 shows the worst standard deviation among all recordings. The
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Table 3.3.: RMSD errors of MIT-BIH Database signals

Dataset Amp. RMSD error (µV) Total Int.

(Synthetic/ Real) Att. (With motion art.) (Without motion art.) beats Err

(dB) µ Med σ µ Med σ # ε

100 (R) 0 14.8 13.0 11.0 14.6 13.0 8.2 2243 P-T

101 (R) 0 31.0 21.6 104 23.6 21.4 12.6 1835 P-T

102 (R) 0 46.5 35.1 41.2 37.0 32.3 21.0 2147 P-T

103 (R) 0 20.4 16.9 21.0 18.5 16.8 10.9 2044 P-T

105 (R) 0 89.2 31.8 168 32.7 27.1 19.6 2542 P-T

108 (R) 0 115 35.5 480 34.1 28.1 22.2 1733 P-T

111 (R) 0 43.1 37.4 29.2 39.9 36.6 19.9 2094 P-T

112 (R) 0 30.9 30.3 14.7 30.8 30.2 14.3 2509 P-T

115 (R) 0 29.7 24.4 20.9 28.1 24.1 16.6 1923 P-T

121 (R) 0 57.5 45.4 47.9 44.9 42.8 20.1 1833 P-T

122 (R) 0 18.8 17.5 9.5 18.6 17.5 8.8 2446 P-T

123 (R) 0 23.0 20.2 24.0 21.3 20.2 10.4 1488 P-T

Average - 43.3 27.4 81 28.7 25.8 15.4 2070 P-T

Table 3.4.: RMSD errors of MIT-BIH Database signals with added baseline wander

Dataset Amp. RMSD error (µV) Total Int.

(Synthetic/ Real) Att. (With motion art.) (Without motion art.) beats Err

(dB) µ Med σ µ Med σ # ε

100+BWM1 (R) 0 37.1 28.6 53.6 32.3 28.1 17.9 2243 P-T

100+BWM1 (R) 6 24.2 19.6 33.3 22.4 19.6 13.4 2243 P-T

100+BWM1 (R) 12 18.9 16.1 16.1 18.2 16.1 10.7 2243 P-T

100+BWM1 (R) 18 16.7 14.8 11.8 16.4 14.8 9.4 2243 P-T

100+BWM1 (R) 24 16.0 14.0 11.6 15.8 14.0 9.1 2243 P-T

101+BWM1 (R) 0 44.8 30.4 106 33.8 29.5 18.7 1835 P-T

101+BWM1 (R) 6 32.8 21.4 101 24.6 21.0 14.8 1835 P-T

101+BWM1 (R) 12 28.2 17.5 102 20.5 17.2 13.2 1835 P-T

101+BWM1 (R) 18 26.7 16.0 103 19.2 15.8 13.0 1835 P-T

101+BWM1 (R) 24 26.1 15.6 103 18.7 15.5 12.6 1835 P-T

Average - 27.2 19.4 64.1 22.2 19.2 13.3 2039 P-T

79



Chapter 3 - An Isoelectric Point Based ECG Baseline Removal Algorithm

1

1.4
(a)

(b)

250

0

500

-250

750

Er
ro

rs
 (µ

V
)

EC
G

 S
ig

n
al

 (V
) 1.2

0.6

0.8

2 4 6 8

Step ChangeEMG Interference

-500
0 2 4 60

Time (s)

Error Error

QRS Flag
Dataset 101

QRS Flag
Dataset 101
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channel exhibits considerable noise and baseline shifts as well as inverted QRS complexes which

means the septum depolarizes from right to left meaning the right ventricle contraction is

triggered first and followed by the left ventricle. These QRS complexes do not trigger threshold

crossings, and therefore, at these instances the algorithm fails to track baseline wander.

On the other hand, some signals have quantisation noise present with small P waves. These

make detection of all three fiducial points a challenge as mentioned before. One such signal is

database signal 121 such that mean and median RMSD results of these signals are determined

by the quantization noise floor which substantially suppresses small P waves (approximately

around 50 µV) at various instances.

During large EMG interference, the noise floor increases substantially. At these instances,

accurate detection of P and T waves becomes more challenging and the algorithm performance

degrades due to fewer fiducial point detections. On the other hand, when a step change occurs,

the algorithm detects it as a QRS complex and initiates the J2 point search. However, if a

real QRS complex is detected before locating the fiducial point, the algorithm proceeds with no

detection, thus can not correct narrow step changes. The error related to the EMG interference

and narrow step changes is shown in Fig 3.19. Similar to step change errors, the algorithm

requires a successful fiducial point detection during motion artefacts and any delay in successful

detection results in accuracy degradation [156]. These events increase the mean, median and

standard deviation RMSD errors to 43.3 µV, 27.4 µV and 81 µV respectively.

When comparing results with and without motion artefacts, it can be seen that median errors

are similar, which implies that the large standard deviation is due to the motion artefacts and

step changes. These errors are present in any filtering approach as the motion artefacts contain
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frequency components that overlap with the ECG signal (as shown in Fig. 3.1). Fig. 3.20 shows

an error histogram for the entire MIT-BIH Arrhythmia 101.mat dataset with 1835 P-T intervals.

In this data set, approximately 100 heartbeats are contaminated with EMG interference and 5

heartbeats undergo step changes and motion artefacts. These errors are annotated on Fig. 3.20

with different colour markers. It should be noted that these errors are denoted at P-T intervals

since the clinically annotated files only cover this information. When these interferences are

suppressed, the results clearly show that RMSD errors are well within the AHA and IEC

standards of a 100 µV variation in the ST segment.

The work of Afsar et al. [160] and additional analysis of Fasano et al. [96] lists accuracy results

of baseline wander estimation of various algorithms on data signals acquired from European

Society of Cardiology (ESC) ST-T Database as in Table 2.3. Similarly, Fasano and Villani list

MIT-BIH Arrhythmia Database results on ST segments and they are presented in Table 2.4.

3.7. Conclusion

As discussed, clinical baseline wander detection algorithms are computationally demanding and

not suitable for real-time implementation. Most of the existing approaches rely on frequency-

based methods and due to strict requirements by guidelines, they demand extensive computa-

tional resources.

This chapter has proposed a novel real-time fiducial-point based tracking approach to esti-

mate the baseline drift that can be implemented on low-power hardware. This approach relies

on time stamping 3 “isoelectric” fiducial points and estimating the baseline wander through

interpolation. The design parameters are determined to reduce the computational complexity

of the overall system with the aim of finding a good balance between resource efficiency and
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accuracy.

It has been shown that the method can be used to remove the baseline drift without causing

significant distortion in the ST segment and as such can be applied to achieve clinically-viable

ECG waveforms. Through extensive tests on synthetic and real data, average RMSD errors with

5.9 µV mean, 5.0 µV median and 3.7 µV standard deviation, and 22.2 µV mean, 19.2 µV median

and 13.3 µV standard deviation are measured respectively. Both of the synthetic (synthetic

data with added baseline wander acquired from MIT-BIH Noise Stress Database) and the real

(MIT-BIH Arrhythmia Database with added baseline wander acquired from MIT-BIH Noise

Stress Database) test results reveal that baseline removal is within the guidelines stated by the

AHA and IEC for clinically valid ECG and these tests do not significantly distort the sensitive

ST segment.

In the event of large noise artefacts, the algorithm performance degrades due to the noise

caused by these interferences even though fiducial point estimation in time is precise. Therefore,

other methods suppressing these artefacts at the output without distorting ST segment integrity

can improve the accuracy of the overall system.
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Chapter 4

Piecewise Linear Interpolation For

Non-Uniformly Sampled Biosignals

The previous chapter developed a new algorithm to estimate ECG baseline wander by locating

the fiducial points in an ECG recording. These fiducial points are interpolated and baseline

wander estimates are generated with different interpolation techniques to quantify the developed

algorithm thoroughly.

There are of course several interpolation algorithms and methods reported in the litera-

ture and it has been an intensively studied subject, where each approach aims to approximate

smoother curves and better fits. However, the extensive requirements of most of these algo-

rithms limit their real-time applications and there lies a challenge to find a balance between

their complexity, accuracy, and adaptability. The latter is crucial in biological applications

as changing signal dynamics carry a challenge in system design. Therefore, one needs to un-

derstand the limitations of these interpolation algorithms and investigate their suitability for

real-time biological applications as well as their computational complexity prior to hardware

implementation.

It is the aim of this chapter to assess the suitability and/or limitations of different interpolation

techniques and to propose a new method that is computationally efficient and suitable for

interpolating non-uniform sampled biosignals. This approach focuses on improving the final

stage of the baseline estimation algorithm covered in the previous chapter aiming to preserve

available on-chip resources of the overall system. The chapter is organised as follows: Section 4.1

lists the main objectives, Section 4.2 provides a brief background on interpolation algorithms

and describes the challenges in ECG baseline wander removal; Section 4.3 describes the overall

system concept and methods; Section 4.4 covers the datasets and evaluation metrics briefly;

Section 4.5 details the parameter selection and the implementation; Section 4.6 presents and

discusses the results with complex algorithms; and Section 4.7 concludes the chapter.
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4.1. Objectives

As mentioned previously, this chapter focuses on a new interpolation algorithm that is suitable

for real-time signal processing applications. The requirements and the key objectives of this

chapter can be summarised as follows:

• Accuracy: As the baseline wander can be modelled as a low frequency sinusoid signal with

a varying fundamental frequency, the interpolation algorithm has to detect any curvatures

and estimate the baseline wander without degrading the system performance.

• Adaptability to Biological Signals: Fiducial points are generated based on the ECG

morphology such as detection of P, QRS and T waves. Therefore, these fiducial points are

non-uniformly sampled and the interpolation algorithm has to interpolate through these

points and take into account the variance of these fiducial points in time.

• Suitability for Real Time Systems: The main application aims for real-time systems;

therefore, the algorithm has to estimate the baseline wander on the go without requiring

the overall system to store large amounts of data.

• Resource Utilisation: Any operations requiring multiplication and/or division signif-

icantly contribute to power consumption. Therefore, a balance between complexity and

accuracy needs to be identified such that the proposed algorithm can improve the overall

system performance where needed.

4.2. Background

4.2.1. Evolution of Interpolation

Interpolation is the method of generating new data points within the range of a discrete dataset.

In other words, it is the way of generating information that is not available explicitly within

the signal itself. Historically, this way of retrieving information can be dated as far back as

ancient Babylonian (300 BC) and Greek (190-120 BC) times [161]. During those times, linear

interpolation was used to predict astronomical events and had impacts on certain practical

needs such as farmers basing their strategies according to these estimations.

In the 17th century, Newton initiated an advancement in Mathematics with his contributions.

In his famous work, Principia, he published two formulae related to interpolation: one dealing

with equal-interval data, and the other focusing on the more general case of arbitrary-interval

data. As a continuation to Newton’s general formula, Edward Waring mentioned one of these

formulae without requiring the computation of finite and divided differences in his work [162].

Similarly, Lagrange who was unaware of Edward Waring’s work at the time, published his rep-

resentation 16 years later [163] and introduced the formulae we know of today as Lagrange

polynomials. Following these years, more advancements have been noted with the age of scien-

tific revolution. A detailed description of these advancements are covered in the work of Erik

Meijering [161].
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Figure 4.1.: Number of overall publications with the keyword “interpolation” in their title, list
of keywords, or the abstract over the last two decades

Today, it is an area of interest for most studies as we have entered the era of digitization, where

many applications require additional information whether it is required in processing, analysis

or communication of information. This increased interest can also be observed by the overall

number of publications containing the word “interpolation” in their title, list of keywords, or

the abstract as revealed by the Institute for Scientific Information in the Web of Science as

shown in the Fig. 4.1.

4.2.2. Interpolation Methods

As mentioned in the work of Erik Meijering [161], interpolation methods and techniques have

been evolving continuously from the basic linear approach to polynomial and convolution based

methods. As for our research, some of the basic methods that form the basis to our approach

as well as other interpolation algorithms utilised to evaluate the proposed approach are covered

in this section.

4.2.2.1. Polynomial Interpolations

Linear Interpolation The simplest of all the interpolation methods, linear interpolation,

generates additional information by joining two data points through a straight line. This line

follows the form of y = mx + b, where m is denoted as the slope of the straight line and b is

the y-intercept. A more generalized formula is shown in Eq. 4.1, where (xi, yi) and (xi+1, yi+1)

are the coordinates of two arbitrary data points and m is the slope between these two points.

Fig. 4.2 shows the reconstruction of an arbitrary new data point at (xN , yN ). This simplistic

approach is appropriate only for “slowly varying functions” due to small variations in the signal.

y = m(x− xi) + yi, where m =
yi+1 − yi
xi+1 − xi

(4.1)
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Quadratic Interpolation Unlike linear interpolation, higher order polynomial interpolations

are expected to yield more accurate approximations for “regularly varying functions”. The next

simplest interpolation method utilised for such signals is the quadratic interpolation and its

generalized formula has the form as in Eq. 4.2, where the coefficients are denoted by a, b and c

and two data points are denoted as (xi, yi) and (xi+1, yi+1).

y = a+ b(x− xi) + c(x− xi)(x− xi+1) (4.2)

Lagrange Interpolation Polynomials Following quadratic interpolation, higher order in-

terpolation polynomials are defined by Lagrange polynomial representation. This representation

defines the least degree of a polynomial curve that passes through a given set of coordinates

(xi, yi) as in Eq. 4.3. However, due to the nature of this representation, any small perturbations

in coordinates result in large overshoots at the end points, known in the literature as the Runge

Phenomenon [164]. These oscillations have no relation with the true nature of the defined func-

tion and due to this effect higher order polynomial interpolations both degrade accuracy and

increase complexity of the interpolation method.

fx = f(x0)
(x− x1)(x− x2)(x− x3)...

(x0 − x1)(x0 − x2)(x0 − x3)...
+ f(x1)

(x− x0)(x− x2)(x− x3)...
(x1 − x0)(x1 − x2)(x1 − x3)...

+ ... (4.3)

4.2.2.2. Spline Interpolations

The errors associated with higher order polynomials due to small perturbations in coordinates

led to development of spline interpolation methods. These are piecewise defined polynomial

functions that are connected at the interpolation coordinates also known as knots.

Cubic Spline Interpolation One such example is the cubic spline interpolation which has

been well accepted by achieving a smooth representation of the signal and preserving the continu-
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ity of the derivatives. Eq. 4.4 shows the general representation of the cubic spline interpolation,

where the spline segment is denoted by Si(x) and the coefficients of each segment are denoted

by ai, bi, ci and di. Cubic spline representation with the predefined knot sequence, (x0, y0) to

(x5, y5), is illustrated in Fig. 4.3.

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (4.4)

In order to achieve cubic spline interpolation, one has to make sure splines and their first &

second derivatives are continuous at the knot locations. If there are M + 1 number of vertices

defined, M number of spline segments require 4M equations to be solved such that each spline

coefficients are determined, ai bi, ci and di. One can obtain 4M − 4 number of equations at

M − 1 interior vertices by using the conditions defined in Eq. 4.5.

Condition (1)→ Si(xi) = yi

Condition (2)→ Si−1(xi) = yi

Condition (3)→ S′i(xi) = S′i−1(xi)

Condition (4)→ S′′i (xi) = S′′i−1(xi)

(4.5)

Additionally, two more equations are defined at the end points, S0(x0) = y0 and SM−1(xM ) =

yM and the remaining two equations can be defined by equating the second derivatives to zero

at those end points to obtain a natural cubic spline approach. There are additional ways of

maintaining a spline approach discussed in the literature, where the first or the third derivatives

at the end points are fixed to zero rather than the second as in the works of Carl De Boor and

George Elmer Forsythe respectively [165], [166]. When all conditions are utilised, 4M equations

form a triangular matrix which can then be solved by “forward elimination” and “backward

substitution” to evaluate spline parameters. A detailed explanation of such solution can be

found in the works of Beatty and et al. [167].
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Piecewise Cubic Hermite Interpolation Piecewise cubic hermite interpolation interpo-

lates a given set of data points via certain subroutines. Even though cubic spline interpolation

produces more accurate results, the key idea of PCHIP interpolation is to avoid overshooting

by knowing both the function and first derivative values given a set of data points. These first

derivatives, dk, as mentioned in Moler’s work are defined as follows [168]: Let k be an interior

point within a set of data points, when δk−1 and δk have opposite signs or equal to zero, dk is

equal to zero, whereas when they have the same sign, dk is equal to the harmonic mean of those

two discrete slopes as formulated in Eq. 4.6.

1

dk
=

1

2
∗ (

1

δk
+

1

δk−1
), where δk =

yk+1 − yk
xk+1 − xk

(4.6)

On the other hand, when the distance between xk+1 − xk to xk − xk−1 is not equal, then the

relationship mentioned in Eq. 4.6 becomes a weighted harmonic mean of those distances. Due

to the nature of this approach, continuity of the second derivatives, C2, can not be guaranteed.

However, PCHIP generates a monotonic output and might be preferred over cubic spline ap-

proach if the data consists of “steep” and “flat” sections. Therefore, their effect might be of

interest when investigated in ECG signals while estimating the baseline wander.

There are of course other techniques such as B-spline, exponential spline interpolation and

many more [165], [169]. However, due to their computational complexity these methods are not

covered here in detail.

4.2.3. Non-Uniformly vs Uniformly Sampled Interpolation Techniques

Interpolation of non-uniformly sampled points is often a challenge in signal processing as most

approaches rely on uniformly spaced data. However, techniques exist to overcome periodically

missing samples of a sampled signal sequence as long as Nyquist-Shannon criterion is met.

One such example is by utilisation of filterbanks with fractional delay filters as building

blocks. These utilise windowed sinc methods to approximate the fractional delays with FIR

subfilters [170], [171]. These types of filter bank implementations are used for reconstruction of

periodically non-uniformly sampled signals since such approaches avoid digital noise coupling

to the analogue signal [172].

When missing interpolation points are not repeated sequences, or in other words, samples are

not periodically missing but rather depend on the nature of the signal, generalized equation of B

splines exists to recover the signal from its discrete sample set [173]. These spline functions have

minimal support with respect to a given degree and it is possible to express any spline function

with a linear combination of B-splines which requires irregularly spaced sample locations based

on the integer multiples of the sampling period of the discrete signal.

Additionally, continuous time signals can be obtained from non-uniformly sampled data by

utilising fluency sampling functions. These functions enable to correspond to time varying sig-

nals by changing classes. One of the benefits of such an approach is, unlike piecewise polynomial

methods that require coefficient determining, fluency functions need only sample values to be

convoluted where these pseudo samples are simply generated by linear approximation [174].
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Moreover, iterative algorithms also focus on recovering band limited signals from their non-

uniformly spaced samples [175–177]. However, these are computationally demanding algorithms

with potential convergence issues.

4.2.4. Challenges

Baseline wander removal has crucial importance in ECG signal processing and challenges as-

sociated to baseline detection require preserving the signal integrity for ambulatory systems.

These challenges encountered by any interpolation algorithm can be itemised as follows:

• The standards of American Heart Association (AHA) and International Electrotechnical

Commission (IEC) allow distortions up to 100 µV at the ST segment [17–20]. Therefore,

the interpolation algorithm has to estimate the baseline wander without introducing large

distortions and must track the real baseline wander as accurately as possible.

• Due to bradycardia, single fiducial point estimations per heart beat show accuracy degra-

dation as the distance between interpolation points increases [88]. A multiple fiducial

point per heart beat approach aims to overcome this problem by shortening the distance

between interpolation points. Such an approach, however, increases the computational

load and requires compensation of isoelectric point differences. These additional mea-

sures need to be investigated to quantify baseline wander detection.

• Although smoothness of the baseline wander estimate can be achieved by higher order

interpolation algorithms, the presence of high frequency content degrades the baseline

wander estimation accuracy. Based on these noise artefacts, it is harder to detect fiducial

points accurately and for that reason interpolation algorithms are required to find a good

balance between computational complexity vs the accuracy of the system performance.

• Interpolation points are detected during different intervals based on various factors such

as R-R interval, QRS complex and P & T wave durations of a patient; therefore, the

interpolation algorithm has to interpolate non-uniformly sampled data and be adaptable

to biological signals. These requirements limit the use of most conventional techniques in

ECG baseline estimation.

4.3. Computationally Efficient WPL Interpolation Algorithm

ECG signals are prone to interference from physiological and environmental sources. In this sec-

tion, we propose a new algorithm to estimate ECG baseline wander which is based on weighted

piecewise linear (WPL) and linear interpolation. This approach utilises fiducial points detected

by the baseline wander algorithm as covered in Chapter 3. As mentioned in Section 4.2.4,

the proposed algorithm needs to comply with the clinical standards in ECG baseline wander

estimation, reduce the computational complexity when compared to higher order spline and

polynomial interpolation techniques, and be able to interpolate non-uniformly sampled data.
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4.3.1. Methodology

The overall methodology of the computationally efficient WPL interpolation algorithm is illus-

trated in Fig. 4.4. The main purpose of the proposed algorithm is to minimise errors at the

curvatures (turning points) with a better approximation than linear interpolation and simply in

other cases, to focus on reducing the computational complexity of the overall system. Fig. 4.4(c)

illustrates curvature approximation on a sinusoid at the peaks and valleys of the input signal

as well as showing linear interpolation at other instances.

The interpolation algorithm is divided into two main stages: (1) Turning point detection and

(2) Interpolation methods. The first stage detects possible curvature points on the input signal,

whereas the second stage utilises this information to either focus on improving the accuracy

or reducing the computational complexity of the overall system [178]. Fig. 4.4(b) shows the

interpolation flowchart of the overall system.

4.3.2. Turning Point Detection

Initially, turning point detection stage generates the slopes, Mi and Mi−1, by using three adja-

cent interpolation points, (xi, yi), (xi−1, yi−1) and (xi−2, yi−2), as in Eq. 4.7. Then the algorithm

checks for a turning point based on the predefined curvature detection conditions. Here we utilise

two criteria:

Mi =
yi − yi−1
xi − xi−1

, Mi−1 =
yi−1 − yi−2
xi−1 − xi−2

(4.7)

4.3.2.1. Turning Point Detection Condition 11

The first condition checks if there is a sign change between two consecutive slopes, Mi and Mi−1,

as shown in Fig. 4.5(a). This sign change means an absolute/local maxima or a minima exists

1First detection rule based on the slope sign change detection
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Figure 4.5.: Turning point detection conditions

in between the two coordinates, (xi, yi) and (xi−2, yi−2). Following such a detection, the output

is then generated through WPL interpolation improving the overall accuracy of the system.

4.3.2.2. Turning Point Detection Condition 21

On the other hand, sometimes the first condition on its own is not enough to detect the turning

points sufficiently. This situation happens when (xi−1, yi−1) interpolation point is located before

the peak and there is no detection of sign change in slopes. One example of such occurrence is

shown in Fig. 4.5(b). In this example, both of the slopes, Mi and Mi−1, have the same sign and

the curvature can not be detected based on the first condition only. Therefore, an additional

condition checks for slope magnitude changes to avoid such cases and be still able to detect and

interpolate these sections with WPL interpolation. Both of the conditions utilised throughout

the interpolation algorithm are expressed in Eq. 4.8.

Condition 1→Mi−1 > 0 &Mi < 0 || Mi−1 < 0 &Mi > 0

Condition 2→ 3

4
∗ |Mi−1| > |Mi| ||

3

4
∗ |Mi| > |Mi−1|

(4.8)

4.3.3. Interpolation Methods

Based on the evaluation of these conditions, the algorithm either focuses on increasing the

accuracy of the overall system in case of a turning point by applying WPL interpolation or

1Second detection rule based on the slope magnitude calculations
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otherwise utilises linear interpolation to reduce the computational complexity of the system.

4.3.3.1. Linear Interpolation

As mentioned in Section 4.2.2.1, it is possible to write the general equation of a line for any

two coordinates at any instant. However, this information is not required and increases the

computational load while interpolating. A better approach is to add a fraction of the current

slope, Mi, to every interpolated point in between yi−1 and yi. This way the number of operations

required is reduced as the slopes are already computed for turning point detection, and the

interpolation is mainly based on addition operations. Fig. 4.4(c) shows the linear interpolation

instances on an example input signal, M1,2,4,5,6. One of the benefits of such an operation is

being able to interpolate both uniformly and non-uniformly sampled data.

4.3.3.2. Weighted Piecewise Linear Interpolation

An improvement to linear interpolation is achieved when turning points are detected and cur-

vatures are interpolated with WPL interpolation such as M3 & M7 instances as shown in

Fig. 4.4(c). As can bee seen, these instances are divided into smaller segments, Hi1 , Hi2 and

Hi3 , and interpolated with different linear functions to achieve better accuracy. To do so, two

criteria need to be defined: (1) WPL Interpolation Equations and (2) Segmentation.

WPL Interpolation Equations When using linear interpolation, the continuity of the sec-

ond derivatives, C2, is not considered and peak/valley interpolation often carries a challenge.

One solution to this problem is to divide the interpolation intervals into smaller segments and

utilise better approximations with WPL interpolation equations when curvatures are detected.

This technique originated from Euler’s method referred to as Runge-Kutta method as discussed

in the literature [179]. In this technique, Taylor series expansion of a function can be approxi-

mated as in Eq. 4.9 and it can be used to evaluate a function through its derivative function by

taking a step size, h. As the step size gets smaller, then the estimated function values converge

to the real function values. Fig. 4.6 shows the first order Runge-Kutta approximation with

different step sizes on a sinusoid.

f(x0 + h) = f(x0) + f(x0)
′ ∗ h+

f(x0)
′′ ∗ h2

2!
+ ...+ +

f(x0)
n ∗ hn

n!

≈ f(x0) + f(x0)
′ ∗ h

(4.9)

Even though the full derivative function in WPL interpolation is not known as required in

Runge-Kutta method, the slopes, Mi−1 and Mi, are defined at the end points. With this infor-

mation one can define slope functions, Hi1 , Hi2 and Hi3 . Here, the motivation is to generate

a smoother transition than linear interpolation by reducing sudden changes in slope. This is

achieved by utilising a weighted average of the known slopes, Mi−1 and Mi, and then transi-

tioning to the current slope, Mi, and finally compensating any overshooting/undershooting at
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Figure 4.6.: First order Runge-Kutta method

the remaining section of the segment. Eq. 4.10 defines WPL interpolation equations utilised.

Hi1 =
Mi−1 +Mi

2
; Hi2 = Mi; Hi3 = 2 ∗Mi −Hi1 (4.10)

Segmentation Based on the number of WPL interpolation equations defined as in Eq. 4.10,

the segment, from xi−1 through xi, is divided into smaller segments to apply each slope function

to its matching segment. To do so, following the turning point detection, the distance between

xi−1 and xi is calculated and during WPL interpolation a counter continuously checks for

duration of each segment, Hi1 , Hi2 and Hi3 , to avoid interpolation errors. In cases where

equal segment partition can not be achieved, the algorithm introduces a compensation factor

to the last sample such that interpolation point, (xi, yi), is always met. Even though higher

segmentation is possible, this also requires additional segment equations, which increase the

computational complexity of the algorithm with no or little added benefit.

WPL interpolation Once these two criteria are defined, corresponding slope segment incre-

ments, Hi1 , Hi2 and Hi3 , are added every clock cycle to generate WPL interpolation as shown

in Fig. 4.7. The first segment’s slope is the average of the Mi−1 and Mi slopes. This enables

a smoother transition rather than an instant shift between slopes whereas the second segment

is interpolated with the original segment slope, Mi, and finally the last segment slope is intro-

duced to meet the final interpolation points. Meanwhile, as mentioned before the counter checks

the segment partition and makes sure that interpolation points are always met. As in linear

interpolation, WPL interpolation can interpolate both uniformly and non-uniformly sampled

data since each segment is interpolated with its defined slope functions, and is independent of

previous segments. Due to the definition of these slope functions, the error function is bounded

by the Mi−1 and Mi. A detailed theoretical error analysis is carried in Section 4.6.
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Figure 4.7.: WPL interpolation illustration with three segments.

4.4. Test Data & Evaluation Metrics

Two different software platforms, MAPLE and MATLAB are utilised for testing and validating

WPL interpolation algorithm. MAPLE 2014 platform is used to verify the methodology such

that the error function can be solved algebraically at any two arbitrary point in time and then

validation tests have been carried in MATLAB R2015b platform both with synthetic and real

data. A detailed explanation and characteristics of both synthetic and real data sets utilised

for algorithm validation are covered in the previous chapter in Section 3.4.

Additionally, it should also be noted that the interpolation points that are used both in

synthetic and real data WPL interpolation validation are generated by using MIT-BIH Ar-

rhythmia Database signal, 100m.mat. These points are, therefore, realistic representations of

non-uniformly sampled interpolation points.

Finally, both root mean square deviation (RMSD) errors and the maximum absolute error

deviations of the estimated and the real baseline wander are evaluated as the accuracy metric,

as covered in the previous chapter. The main reason of such an approach is the fact that RMS

errors carry good measure of its effect for sinusoidal signals, whereas maximum error seen during

ST segment carries crucial information as covered in the literature [17–20].

4.5. Design and Implementation

In this section, the sensitivity of key design parameters of WPL interpolation algorithm is

quantified and investigated through parametric analysis. Following this investigation, results

are then validated via MAPLE platform.

4.5.1. Turning Point Detection

As mentioned in the methodology section, two conditions continuously monitor turning points.

When either one of these conditions is detected, WPL interpolation is utilised in baseline wander
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estimation. Therefore, detailed analysis and quantification of these conditions are covered in

this section.

Condition 1→ As mentioned, Eq. 4.8 shows that the first condition detects sign changes

of two consecutive slopes. This sign change guarantees a local/absolute maxima or minima

detection. The location of this maxima or minima on the other hand is not known precisely due

to the lower sampling rate of interpolation points when compared to the input signal. Therefore,

in cases where the preceding slope approaches to zero and the upcoming slope changes sign,

turning point condition triggers WPL interpolation which might result in overshooting; such

an example is shown in Fig. 4.8. This is due to few interpolation points being available per

period and WPL algorithm lagging to detect curvatures accurately. To avoid these situations,

an extra requirement in the overall condition function is added and tested on synthetic inputs

as in Eq. 4.11, where the coefficient, a, checks the magnitudes of consecutive slopes. This way

overshooting instances are aimed to be kept to a minimum by discarding such turning point

detections and utilising linear interpolation at those instances instead.

Condition 1→Mi−1 > 0 &Mi < 0 || Mi−1 < 0 &Mi > 0 & a ∗ |Mi| > |Mi−1| (4.11)

Synthetic tests have shown that the number of these instances is related to the interpolation

point sampling frequency and the input signal frequency. When a 0.1 Hz sinusoidal input

is applied, 20 overshooting instances are observed over 2243 heartbeats and as the synthetic

baseline wander frequency increased to 0.3 Hz and 0.7 Hz, the number of these occurrences

increased to 50 and 180 respectively.

Tests showed that the accuracy improvement was limited and in some cases the added require-

ment condition performed even worse as shown in Fig. 4.9. It can be seen that, for low frequency

inputs, WPL interpolation without the added requirement introduces less error than the anal-

Interpolation Points
Input Signal
Slope between two points

TURNING POINT CONDITION 1

WPL Interpolation

Mi-1= +ve Slope

Mi= -ve Slope

WPL Interpolation
(xi-2,yi-2) (xi-1,yi-1)

(xi,yi)

Figure 4.8.: WPL interpolation overshooting occurrence
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and 0.7 Hz sinusoidal input (Red) with mean and standard deviation RMS errors

ysed version. In other words, the overshooting introduced by the WPL algorithm performs

better than the undershooting linear interpolation estimate at those instances. However, as the

frequency of the input signal increases and the interpolation point sampling frequency remains

constant, accuracy improvement can be observed. This can be seen in Fig. 4.9 with the 0.7 Hz

sinusoidal input. In cases, where undershooting has more importance and computational load

is not a priority, this function can be implemented. However, as long as the interpolation point

sampling frequency in relation to baseline wander frequency remains constant, the accuracy

improvement is worse. Also it should be noted that, Condition 1 change also requires changes

in Condition 2 introducing additional computational load as in Eq. 4.12. Therefore, the overall

algorithm has been implemented without these changes due to limited accuracy improvement

and increased computational load.

Condition 2→3

4
∗ |Mi−1| > |Mi| ||

3

4
∗ |Mi| > |Mi−1| & ...

(Mi−1 < 0 & Mi < 0 || Mi−1 > 0 & Mi > 0)

(4.12)

Condition 2→ As explained in Section 4.3.2.2, sometimes Condition 1 is not sufficient enough

to detect curvatures; therefore, an additional condition is introduced based on slope magnitudes

as in Eq. 4.8. Eq. 4.13 is the general form of this equation and the coefficient, b, in this equation,

is determined based on parametric tests on synthetic data with various fundamental frequencies.

Results of these tests are depicted in Fig. 4.10.

Condition 2→b ∗ |Mi−1| > |Mi| || b ∗ |Mi| > |Mi−1| (4.13)
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Fig. 4.10(a) shows that the accuracy of the algorithm improves as b values increase with

diminishing error magnitudes at higher b values for all tested sinusoids. For instance, 0.7 Hz and

0.3 Hz sinusoidal input RMS errors start to saturate around b values of 0.60 and 0.80 reaching its

minimum at unity respectively. Even though the error difference between saturation point and

minimum error point is marginal and computationally an unity approach seems reasonable, such

a condition would trigger WPL interpolation always and computationally would be less efficient.

Therefore, an event count analysis measures how many times WPL interpolation is triggered by

each b values with different sinusoidal inputs over approximately 30 minute datasets. Fig. 4.10(b)

shows the results of such analysis. The optimal b value requires interpreting accuracy and

complexity plots together. In this study, b value is defined as 0.75 aiming to improve the

system design by triggering WPL interpolation less when compared to unity b value and the

multiplication defined in Eq. 4.13 is achieved by a shift and an addition operation.

4.5.2. Segmentation

In this section, the effect of segmentation between two interpolation points from xi−1 through xi

is investigated through parametric analysis without any structural change in WPL interpolation

equations. Table 4.1 shows the number of partitions and tested function at each segment.

It should also be noted that at higher segmentation orders, possible permutations of WPL

interpolation equation arrangements are also taken into consideration. Fig. 4.11 shows the

synthetic test results of each segmentation order utilising WPL interpolation equations as shown

in Table 4.1. Here, the frequency of sinusoidal signals (sin(ωt)) are varied from 0.1 to 0.7 Hz

and the RMS mean and standard deviation errors are plotted against input frequency.

Fig 4.11(a) shows that the lowest mean RMS errors are achieved by 3th and 4th order segmen-

tation. At lower frequencies, segmenting 3 times performs better; however, as the sinusoidal

input frequency increases and interpolation point sampling frequency remains constant, 4th or-
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Table 4.1.: Segmentation and WPL interpolation equation of each segment

First Segment Second Segment Third Segment Fourth Segment Fifth Segment

# Segments Eq. (Hi1) Eq. (Hi2) Eq. (Hi3) Eq. (Hi4) Eq. (Hi5)

2
Mi−1 +Mi

2
2 ∗Mi −Hi1 - - -

3
Mi−1 +Mi

2
Mi 2 ∗Mi −Hi1 - -

4
Mi−1 +Mi

2
Mi Mi 2 ∗Mi −Hi1 -

5 (a)
Mi−1 +Mi

2
Mi Mi Mi 2 ∗Mi −Hi1

5 (b)
Mi−1 +Mi

2

Mi−1 +Mi

2
Mi 2 ∗Mi −Hi1 2 ∗Mi −Hi1

der segmentation becomes more accurate. This is due to the fact that as the distance between

interpolation points, xi−1 and xi, increases, the accuracy degrades due to overshooting. As the

4th order segmentation is a more conservative approach, these overshooting sections are com-

pensated with the segment linearity, Mi. However, both 5th order segmentations under-perform

when compared to 3th and 4th order. This is because 5th(a) order is more conservative than the

4th order undershooting more, whereas 5th(b) is more aggressive than the 3th order producing

larger overshoots. 0.3 and 0.4 Hz synthetic test results with an amplitude of 1 mVp−p show that,

3th order mean values are 16 µV, 26 µV and 10 µV, 12 µV less when compared to 2nd and 5th(a)

order respectively.

Similarly, standard deviation RMS errors show that 3rd order segmentation generates lower
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Figure 4.11.: Parametric segmentation analysis with 1 mVp−p synthetic sinusoidal inputs and
their fundamental frequency swept from 0.1 to 0.7 Hz.
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Table 4.2.: WPL interpolation equations for 3 segments

# WPL Parameter Parameter First Segment Second Segment Third Segment

Imp. a & b values c values Eq. (Hi1) Eq. (Hi2) Eq. (Hi3)

WAM
1

2
,
3

4
, 1, ...

5

2

3

4
, 1, ...

3

2

a ∗Mi−1 + b ∗Mi

a+ b
c ∗Mi (3− c) ∗Mi −Hi1

error variation when compared to conservative approaches such as 4th and 5th(a) orders. These

higher orders are more in resemblance with linear interpolation and therefore, higher standard

deviation is expected due to their nature of undershooting. However, as the sinusoidal frequency

increases and the interpolation point sampling frequency remains constant, these higher order

segmentation results improve. It can be seen that at around 0.6 Hz conservative approaches

intersect with more aggressive ones.

Additionally, the computational complexity of the overall interpolation algorithm increases

by two more additional conditions and multiplications per sample, as the segmentation order

gets incremented. Therefore, based on the overall results and the computational complexity re-

quirements, a 3rd order segmentation implementation proves to be a better approach. However,

in applications where interpolation point sampling can not be guaranteed, a more conservative

approach with additional computational load can still be implemented.

4.5.3. WPL Interpolation Equations

Following segmentation analysis, parametric tests on WPL interpolation equations have been

carried out. Similar to the previous analyses, tests have been carried on 1 mVp−p synthetic

sinusoidal inputs with fundamental frequencies ranging from 0.1 up to 0.7 Hz. Table 4.2 shows

the general expression of Eq. 4.10 for each segment.

Initially, tests have been performed on the second segment equation to define c parameter

by using a single tone sinusoidal input and by sweeping the other two parameters, a and b.

Fig. 4.12 and 4.13 show parametric test results of these tests with 0.3 Hz and 0.5 Hz sinusoidal

input signals. The blue areas in each plot show lower RMS mean and standard deviation regions

in all plots and c values of 1 and 1.25 provide best overall results for 0.3 Hz and 0.5 Hz sinusoidal

input respectively. On the other hand, the difference between these two results is mainly

correlated to the sampling frequency of the interpolation points and the input signal frequency.

However, as these two results differ around approximately 3 µV in mean RMS and usually

such a difference will be below noise floor, a computationally efficient approach is targeted and

therefore, c parameter is defined as unity.
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Figure 4.12.: Parametric analysis of coefficients, a, b and c, with 0.3 Hz sinusoidal input to
determine WPL interpolation second segment equation, Hi2 .
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determine WPL interpolation second segment equation, Hi2 .
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Figure 4.14.: WPL interpolation first segment equation, Hi1 , parametric analysis with sinusoidal
inputs ranging from 0.1 Hz up to 0.7 Hz

Similar to the c parameter analysis, tests have been utilised on a and b parameters to define

the first segment interpolation equation, Hi1 . This equation is based on the weighted arithmetic

mean relationship of the previous and the current slopes namely, Mi−1 and Mi. To investigate

the relationship, parametric analysis tests have been performed and results with sinusoidal

inputs and unity c parameter are plotted in Fig. 4.14. It can be seen that, RMS mean and

standard deviation errors perform the same behaviour where the optimum point is defined

diagonally in each plot requiring equality of parameters, a and b, at low frequency sinusoidal

inputs. This relationship shifts towards larger b values with increased input frequency due to

the constant interpolation point sampling frequency. Most of the a and b parameters generate

good results; therefore, they are determined based on their computationally efficiency. Defining

these parameters as unity shows that their accuracy responses are within blue shaded areas

in all mean and standard deviation RMS error plots, and are affected least by input signal

frequency as can be seen in Fig. 4.14.

Finally, the third segment is defined by the combination of these three variables and imple-

mented as shown in Table 4.2. It has to be noted here that apart from weighted arithmetic mean

average implementations, other mean relationships are also investigated. These tests include

weighted geometric, w/harmonic, w/quadratic and w/heronian mean implementations. Apart

from w/quadratic approach, other approaches generated worse results than weighted arithmetic

mean implementation and required additional conditions to avoid divergence in baseline esti-

mation since geometric and harmonic means are not defined for all real numbers. A similar
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effect can be seen in PCHIP interpolation at instances where harmonic mean is undefined. In

such cases the algorithm utilises pre-defined information as in Moler’s work [168]. In our tested

implementation, mathematically undefined conditions are checked with additional conditions

and in its place weighted arithmetic mean implementation has been utilised at those undefined

instances. On the other hand, w/quadratic results are approximately equal to the weighted

mean arithmetic results. However, it is computationally more demanding requiring 4 addi-

tional conditions & multiplication operations per interpolation point. Supplementary figures

and equations of these approaches are provided in Appendix C.1.

4.6. Results & Discussion

Once the design parameters are set, a theoretical error analysis is carried out to test our algo-

rithm, and these results are then validated using synthetic and real sets of data comparing our

results with other algorithms. As discussed in the previous chapter in more detail, the baseline

wander signal can be modelled as a sinusoid around 0.15 - 0.3 Hz frequency with a varying

fundamental frequency depending on exercise [40]. This information will be forming the basis

of theoretical analysis and synthetic test data.

4.6.1. Theoretical Analysis

In this section, theoretical error analyses of WPL and linear interpolation in sinusoid estimation

have been carried out algebraically. As interpolation points vary in time and depend on various

factors, assumptions based on heart morphology have been applied in order to reduce the number

of unknown parameters. Complete list of these employed assumptions are itemised below:

• Three coordinates are required during WPL interpolation namely (xi−2, yi−2), (xi−1, yi−1)

and (xi, yi) to generate the previous slope, Mi−1 and the current slope Mi. These interpo-

lation points are detected after P, T waves and QRS complexes within a single heartbeat.

Therefore, the distance from xi−2 to xi−1 and xi−1 to xi is determined by the heart mor-

phology and heart rate variability (HRV). Typical values of P, T waves and QRS complexes

are covered in Section 2.1.2 in more detail whereas in regards to R-R heart rate variabil-

ity of adjacent heart beats, studies show root mean square successive difference of 10 to

30 ms [180–182]. In this study, however, the distances from xi−2 to xi−1 and xi−1 to xi are

assumed to be equal when expressing the weighted piecewise error equation to simplify

the overall algebraic expressions. In reality, this is not the case due to physiological and

emotional conditions.

• To evaluate the error functions, turning point detection needs to be defined for any two

arbitrary points in time. It is expected to have 1 breath at least for every 3-4 heart-

beats [183, 184]. This ensures minimum of 9 to 12 interpolation point detections by the

fiducial point detection algorithm covered in the previous chapter. Therefore, the baseline

wander period is divided into 8 equal segments ensuring at least 9 interpolation points
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and the boundary conditions of the error function integrals are calculated from π
4 to π

2

with their ∆ (difference of the two arbitrary points) defined from π
16 to π

4 to generate 3D

images of the overall system. Therefore, WPL interpolation can be compared to linear

interpolation at those sections.

• Theoretical segmental error functions, ErrWPL−S1/2/3, of the WPL interpolation are cal-

culated as in Eq. 4.14, where f(x) denotes the real baseline wander and fS1/S2/S3(x)

denotes the segmental baseline estimation. To determine the exact area under the curve,

definite integral boundary conditions of each segment need to be determined based on the

location of zeros of each segmental error function, f(x)− fS1/S2/S3(x). Such an approach

requires to solve for zero crossings of every two arbitrary points in time, whereas a sim-

plified approach can be utilised to understand the general behaviour as in Eq. 4.15. This

approach focuses on the divergence of the error functions by focusing on the absolute error

of each segment and neglects the errors due to multiple zero crossings. As the interpola-

tion algorithm is tracking the function accurately, these neglected errors are small when

compared to the divergence error.

ErrWPL−S1 =

x11∫
x1

f(x)− fS1(x) dx

ErrWPL−S2 =

x12∫
x11

f(x)− fS2(x) dx

ErrWPL−S3 =

x2∫
x12

f(x)− fS3(x) dx

(4.14)

ErrWPL =

x11∫
x1

|f(x)− fS1(x)| dx+

x12∫
x11

|f(x)− fS2(x)| dx+

x2∫
x12

|f(x)− fS3(x)| dx (4.15)

4.6.1.1. Analytical Data Test Results

Complete analytical expressions of both linear and weighted piecewise interpolation are shown

in Appendix C.2. The differences between the analytical expressions of each interpolation

method and the input sinusoids are denoted as the error and two types of plots have been

presented to compare the accuracy of both interpolation methods. Even though the two plots

are alternatives of each other, sometimes 3D plots cannot be self-explanatory, therefore contour

plots can be used in assistance. For simplicity, the distance between interpolation points, x2

and x1, is abbreviated as ∆ in all plots.
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Linear Interpolation Numerical experiments have been run on sinusoids and error plots of

linear interpolation with sin(x) and sin(2x) input signals are shown in Fig. 4.15 and 4.17.

Weighted Piecewise Linear Interpolation Similarly, numerical experiments have been

carried out on WPL interpolation with sinusoidal inputs with different fundamental frequen-

cies. Fig. 4.16 and 4.18 show the absolute error function of WPL interpolation as mentioned in

Eq. 4.15 with sin(x) and sin(2x) input signals respectively. These tests have been utilised to

quantify the theoretical improvement of WPL interpolation when compared to linear interpo-

lation. On the other hand, Fig. 4.19, 4.20 and 4.21 show 3D error and contour plots of each

segment separately as mentioned in Eq. 4.14.
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Figure 4.15.: Error function plots of linear interpolation of sin(x) at the interpolation point x1
vs ∆
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Figure 4.16.: Absolute error function of WPL interpolation of sin(x) at the interpolation point
x1 vs ∆
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Figure 4.18.: Absolute error function of WPL interpolation of sin(2x) at the interpolation point
x1 vs ∆

4.6.1.2. Analytical Data Test Discussion

Fig. 4.15 up to 4.18 show both interpolation methods for two different input frequencies. In

both cases, WPL interpolation accuracy improvement is highly noticeable as can be seen in

both 3D and contour plots. At the coordinates before the peak of the sinusoid, the algorithm

is tracking the input signal accurately and the accuracy of the algorithm starts to degrade as

the interpolation point approaches the peak. However, even in worst case scenarios where WPL

interpolation overshoots at the peaks, the overall algorithm still performs much better than

linear interpolation. These instances occur at the peaks when the distance between interpolation

points x1 and x2 increases.

On the other hand, similar accuracy behaviour can be observed as the input frequency in-

creases. The accuracy of the overall algorithm is related to the interpolation point sampling

frequency in relation to the input signal frequency and when both double, better accuracy is ex-

pected as a consequence eventually. The improvement relates to the updated slope calculations
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Figure 4.19.: Error function plots of WPL interpolation (Segment 1 only) of sin(x) at the in-
terpolation point x1 vs ∆
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Figure 4.20.: Error function plots of WPL interpolation (Segment 2 only) of sin(x) at the in-
terpolation point x1 vs ∆
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Figure 4.21.: Error function plots of WPL interpolation (Segment 3 only) of sin(x) at the in-
terpolation point x1 vs ∆
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and a better approximation occurs as in Runge-Kutta method. Fig. 4.17 and 4.18 show the 3D

and contour error plots with input signal, sin(2x). As can be seen, the error is exactly equal

to the half of sin(x) error plots as these only relate to the first half of the interpolation point

introduced and do not include the updated slopes at remainder of the section when compared

to sin(x) input.

Additionally, plots of each segment show how well WPL interpolation is tracking the input

signal and they are used to identify where both functions are converging or diverging. In other

words, these plots can be utilised to identify the undershooting or overshooting conditions of the

overall system. When the segmental analysis has been carried out as in Eq. 4.14, it is seen that

at lower coordinates the error is almost close to zero. This means WPL algorithm is tracking

the input signal accurately and undershooting error is compensated with overshooting at each

segment as can be seen in Fig. 4.19, 4.20 and 4.21. When the distances between two arbitrary

points increase and the interpolation point, x1, approaches to the peak, the overall error function

reaches to its maximum. This condition has been discussed in Section 4.5.1 in more detail and

additional conditions have been utilised to overcome such instances; however, tests have shown

that overshooting areas still perform better when compared to linear interpolation. Therefore,

implementation has not been changed and the main reason degrading the performance of the

WPL interpolation is thoroughly investigated and well known.

4.6.2. Synthetic Data Analysis

Synthetic data tests have been carried out in MATLAB as mentioned in Section 4.4. As the

baseline wander can be modelled as a sinusoid around 0.15 - 0.3 Hz [40] and its frequency

increases with exercise, sinusoids with their fundamental frequencies ranging from 0.05 Hz up

to 0.7 Hz are utilised in this section. These frequencies correspond to approximately 3 to 42

breaths per minute respectively.

4.6.2.1. Synthetic Data Test Results

The results of WPL and other interpolation methods such as linear, cubic spline and piecewise

cubic hermite interpolation (PCHIP) applied to synthetic data are evaluated. These tests are

guided by 2243 heartbeats and the fiducial points belonging to the each heart beat are detected

by the baseline detection algorithm. Fig. 4.22 shows RMS errors per heart beat of the synthetic

data tested at various frequencies.

To investigate the mean and standard deviation variations of each algorithm, time domain

responses are also plotted in Fig 4.23. Fig. 4.23(a) shows 0.3 Hz synthetic data with linear,

cubic, WPL and PCHIP interpolation results whereas in Fig. 4.23(b) a more detailed time

domain analysis have been shown comparing linear and WPL interpolation at two different

frequencies, 0.3 Hz and 0.5 Hz, along with sample by sample error analysis.
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4.6.2.2. Synthetic Data Test Discussion

During synthetic data tests, real interpolation points are generated from MIT-BIH Arrythmia

Database signal 100m.mat file as mentioned in Section 4.4. This is because real interpolation

points can vary in time due to respiration sinus arrhythmia (RSA) [185, 186]. In theoretical

analysis, these details have been neglected to simplify analytical expressions and to investigate

the general behaviour; however, during synthetic data tests RSA effects have been also included

and it can be seen that WPL interpolation achieves more accurate results when compared to

linear and PCHIP interpolation at all frequencies and results are almost comparable to the

cubic spline errors as shown in Fig. 4.22. The same figure also shows that accuracy results

depend on the input signal frequency in relation to the interpolation point sampling frequency.

As the latter depends on the tested ECG signal recording, increasing the input signal frequency

degrades the accuracy of all interpolation algorithms.

To express the results in the time domain, two discrete frequency (0.3 Hz and 0.5 Hz) responses

are depicted in Fig. 4.23. As the heart rate of the patient is around 72 bpm, and given that

respiration rate and pulse rate are related with a ratio of approximately 1 breath for every

3-4 heartbeats [183, 184], 0.7 Hz synthetic input results would correspond to 130 to 170 bpm.

Therefore, 0.3 Hz and 0.5 Hz frequency responses are more realistic for algorithm evaluation

based on the heart rate vs respiration rate relationship. Time domain results and sample by

sample error analysis at these frequencies are depicted in Fig. 4.23. Fig. 4.23(a) shows the

results of 4 different algorithms namely, linear, PCHIP, cubic spline and WPL interpolation.

As can be seen from the figure near the 3 second mark, linear interpolation generates the
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Figure 4.22.: Synthetic data test results of interpolation algorithms showing mean & standard
deviation of RMS errors per heart beat
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worst results among all interpolation algorithms whereas PCHIP estimate is well undershooting

when compared to the original signal. On the other hand, cubic spline and WPL interpolation

estimates are the closest estimates. Even though, the algorithm does not perform better than the

cubic spline approach, WPL interpolation is less complex and it does not require any windowing

techniques as well as triangular matrix solving to calculate the coefficients.

4.6.3. Real Data Analysis

Following analytical and synthetic data test results, MATLAB tests with recorded data have

been executed and evaluated. To do so, recorded baseline wander datasets (BWM1.mat and

BWM2.mat) are acquired from the MIT-BIH Noise Stress Database [152] and details of those

datasets and pre-processing applied on these data sets are covered in the previous chapter. As

mentioned before, these pre-processing methods aim to eliminate the white noise present in

these recordings and reduce the white noise below 5 µV in worst conditions such that noise floor

is not defined by this random noise and interpolation methods can be tested thoroughly.

4.6.3.1. Real Data Test Results

Similar to the tests on synthetic data, four different interpolation algorithms (Linear, Cubic

Spline, PCHIP and WPL) are tested in MATLAB and their results with mean, median and

standard deviation RMS errors per heart beat and maximum absolute error per ST segment are

shown in Table 4.3. These results are also generated by utilising same real interpolation points

that are acquired from MIT-BIH Arrythmia Database signal, 100m.mat, over 2243 heartbeats

along with the annotation files used to define ST segments. The graphical representation of

Table 4.3 results is shown in Fig.4.24 with histogram plots to asses the probability distribution
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of continuous error functions. In these plots three quantities have been focused showing RMS

error per heart beat and ST segment as well as the maximum absolute error per ST segment.

While evaluating the cubic spline and PCHIP interpolation results, windowing techniques

have been utilised to avoid dependency on the past data or monotonicity requirements of the

interpolation methods respectively. Real baseline wander estimates of linear and WPL interpo-

lation in the time domain along with their sample by sample error analysis results are shown in

Fig. 4.25 and 4.26. These time domain results show the error analysis on both BWM1.mat and

BWM2.mat datasets, which are realistic baseline wander recordings acquired from the MIT-BIH

Noise Stress Database.

4.6.3.2. Real Data Test Discussion

Four different interpolation algorithms have been tested as indicated in the results section. The

general behaviour of real data test results acquired from MATLAB simulations is matching

to the low frequency synthetic data test results. Similar to these tests, linear interpolation

acts as the worst algorithm in real data tests and cubic spline approach generates the most

accurate results, whereas WPL interpolation is comparable in accuracy and more preferable

than its polynomial counterparts due to its simplicity. On the other hand, histogram results in

Fig. 4.24 show that linear and PCHIP interpolation error distributions are more spread, while

error distributions of WPL and cubic spline interpolation are similar with reduced number of

counted large errors (above 50 µV) than linear interpolation results. This occurrence is also

mentioned in synthetic data tests and the main reason of such a spread distribution both in

linear and PCHIP interpolation is due to the undershooting instances at curvature points.

Table 4.3.: Real data - RMS and maximum absolute error per heartbeat and ST segment

Interpolation Signal RMS error (µV) Max. Abs. error (µV)

Method (Hz) per heartbeat� per ST segment�

µ median σ µ median σ

Linear Interpolation BWM1 14.8 10.6 13.1 28.8 21.7 25.1

BWM2 8.4 7.1 5.5 16.2 14.5 9.7

Cubic Spline Interpolation BWM1 13.5 9.2 14.2 26.1 19.3 21.8

(Windowed N=3) BWM2 7.9 6.4 5.4 15.3 13.6 8.0

PCHIP Interpolation BWM1 13.5 9.5 13.3 26.2 19.5 21.7

(Windowed N=3) BWM2 8.0 6.7 5.6 15.5 13.9 8.2

WPL Interpolation BWM1 13.7 10.0 12.7 26.8 19.8 22.1

BWM2 8.1 6.9 5.2 15.5 13.7 8.6

�2243 Heartbeats detected via MIT-BIH Arrythmia Database (100m.mat)
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Figure 4.24.: Real baseline wander signal, BWM1.mat, RMS and maximum absolute error per
heart beat/ST segment histogram results. Shown are for: (a)linear interpolation;
(b) cubic spline interpolation; (c) PCHIP interpolation; (d) WPL interpolation
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Figure 4.25.: Linear and WPL interpolation comparison with real baseline wander signals: (a)
BWM1.mat input signal; (b) Its sample by sample error analysis; (c) BWM2.mat
input signal; (d) Its sample by sample error analysis

Time domain responses of linear and WPL interpolation in Fig. 4.25(b) show that improve-

ments at peaks and valleys can be achieved at various instances. Error analysis of both

Fig. 4.25(a) and (b) plots express that WPL interpolation results are more accurate. An oc-

casional overshooting, however, might occur as in the BWM1.mat subplot. It should be also

noted that accuracy improvements are subject to Nyquist sampling rate limitations such that

high frequency content cannot be recovered by any interpolation algorithm. This condition is

clearly shown in Fig 4.26. In this example, a 0.12 Hz respiration signal with residual Gaussian

noise generates error results comparable to the one at 0.4 Hz respiration rate. As the impedance

seen by the amplifier changes and even though low frequency content error estimations generate

more accurate results, due to the white noise present on the signal the accuracy improvement is

limited on this occasion. Therefore, not all of the results in Table 4.3 are related to systematic

interpolation errors.

Table 4.3 results show that there is a large variation in BWM1.mat and BWM2.mat results.

These differences are due to higher standard deviation (93 vs 36) and higher kurtosis (15.6

vs 4.3) of BWM1 signal when compared to BWM2 signal. In other words, BWM1 signal

variation in amplitude and peakedness is higher; therefore, accuracy performance degrades

in all interpolation algorithms. Possible causes of such difference can be related to gender

differences, stress test conditions or even lung capacity of the patient as the impedance change

seen by the amplifier can drastically alter these test signals. In the event of missing fiducial
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Figure 4.26.: Effect of residual Gaussian noise on linear and WPL interpolation algorithm. Sig-
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interp. (red) Shown are: (a) BWM1.mat response; (b) WPL interpolation sample
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point detections on the other hand, RMS and absolute errors increase. These results are also

observed in synthetic data tests where increasing the input signal frequency without changing

the interpolation point sampling degraded the accuracy results of every algorithm.

In evaluating both of these test signals, not only RMS but also maximum absolute errors

are calculated since ST segment carries additional information about the patient. Even though

RMS results carry a good measure of the real effect of sinusoids like baseline wander, maximum

absolute errors at ST segments are noticeably higher as expected. As the American Heart

Association (AHA) and International Electrotechnical Commission (IEC) standards allow a

maximum error of 100 µV for clinical ECG systems during ST segments [17–20], lower mean

and standard deviations results are crucial while preserving the system complexity. For this

reason, WPL interpolation provides the best trade off between accuracy and complexity and

forms the basis of our interpolation algorithm design.

4.7. Conclusion

Various interpolation algorithms exist in the literature and most of these approaches are based

on polynomial estimations. This chapter has proposed a novel interpolation algorithm utilised

in baseline estimation within the context of accuracy requirements defined by the American

Heart Association (AHA) and International Electrotechnical Commission (IEC) standards.

The proposed algorithm has merits of a hybrid approach, focusing on improving accuracy

and reducing computational complexity. Turning point sections are preserved by generating

comparable results to its polynomial counterparts, and computational complexity requirements

are reduced where possible. This way, the developed algorithm can be implemented on low-

power hardware.

It has been shown that ST segment distortion with the WPL interpolation is comparable

to the presented higher order polynomial interpolation techniques. Real data tests convey an

RMSD and a maximum absolute error of 13.7 µV mean, 10.0 µV median with 12.7 µV standard
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deviation, and 26.8 µV mean, 19.8 µV median with 22.1 µV standard deviation on the BWM1

signal acquired from the MIT-BIH Noise Stress Database, respectively. When these errors are

compared to cubic spline interpolation, less than 1 µV mean, median RMS errors are observed

per heart beat and per ST segment. According to these results, WPL interpolation exhibits

comparable accuracy with less computational complexity as opposed to its polynomial counter-

part. Compared to linear interpolation, undershooting instances are minimised, which shows

an accuracy improvement in the maximum absolute mean and median errors observed in the

ST segment by more than 2 µV.

When the histogram plots and the time domain responses of each interpolation technique are

closely investigated, cubic spline and WPL interpolation exhibit a more condensed distribution

compared to PCHIP and linear interpolation due to undershooting instances as presented in

their time domain responses. As for their computational requirements, WPL interpolation

requires less hardware resources when compared to polynomial counterparts. Therefore, it is

preferable on low-power hardware implementation systems, leaving enough headroom for the

overall system to estimate the baseline wander accurately while preserving the signal integrity.
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Chapter 5

ECG Baseline Drift Removal In Low

Power Real-Time Hardware

Real-time ECG hardware systems have existed in the market for a long period of time. However,

most of these systems often distort the signal of interest as they utilise AC coupling which limits

the accuracy of baseline wander removal as discussed in Chapter 2. Next generation systems,

on the other hand, aspire to achieve real-time noise interference removal implementations while

preserving the signal integrity. The feasibility of these systems relies on the efficiency of the

real-time algorithms and the potential of their low-cost, low-power, and low-area requirements.

With the advent of technology, the cost of individual components such as microcontrollers

(MCUs), high resolution analogue-to-digital converters (ADCs) and instrumentation amplifiers

(IAs) required in a real-time system implementations is becoming more affordable and is often

easily accessible as these are manufactured by the most well-known companies such as Texas

Instruments Corporation, Analog Devices and many others.

Today, the bottleneck in real-time system designs is often due to the high computational com-

plexity of baseline wander detection algorithms. As covered in Section 2.2.3, most algorithms

utilise iterative runs with multiplication operations and require extensive data storage limiting

their implementation in digital signal processors (DSPs) and microcontrollers. Their real-time

adaptations, on the other hand, utilise windowing techniques and due to limited data storage

available in processing, accuracy degradation is inevitable in such approaches.

In this chapter, the embedded system implementation of the proposed algorithms described

in Chapter 3 and Chapter 4 is presented in detail. In Section 5.4, the C implementation of

the overall algorithm and its memory requirements are described. In Section 5.5, the overall

algorithm is implemented on a Texas Instruments’ MSP430 microcontroller unit (MCU), and

the baseline wander removal results are compared with simulated results. In addition, the total

number of instructions per cycle required by each stage of the baseline wander estimation and

the interpolation algorithms are quantified and the energy efficiency of their implementations

are presented.
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5.1. Objectives

Focusing on the real-time hardware-efficient implementation, the key objectives of this chapter

can be summarised as follows:

• Accuracy: The proposed low-computational complexity algorithms developed in MAT-

LAB have to be adapted to C and the built-in functions utilised in MATLAB need to be

replaced with their real-time C counter-parts. In addition, the default precision format

in MATLAB is double-precision. However, C implementation and MCU responses should

be implemented in single-precision format to reduce power and area and the potential

degradation in performance due to single precision needs to be quantified.

• Resource Utilisation: Real-time implementations are restricted by the latency require-

ments based on the available amount of memory and MCU instructions in relation to the

clock frequency. Each sample is required to be processed within a certain period of time

and buffers are required to guarantee that no information is lost during processing. There-

fore, available resources required by the developed algorithms need to be quantified such

that real-time baseline wander estimation is targeted while preserving the signal integrity.

• Embedded System Implementation: The overall algorithm needs to be tested on the

microcontroller as in real-time implementation and the errors involved with transmission

and its overall effect on the baseline estimation need to be quantified. Finally, as the

target application aims for ambulatory design, the total power consumption of the overall

system has to be investigated.

5.2. Background

In this chapter, the embedded system realisation of the developed algorithms is investigated.

As the target application aims for ambulatory design, hardware interfaces such as ADC, and

communication interfaces such as Serial Peripheral Interface (SPI) and Universal Asynchronous

Receiver/Transmitter (UART) are a necessity to test the microcontroller implementation.

In terms of battery life, higher clock frequency increases the overall current consumption;

therefore, a mid-range system clock with low power dissipation increases the battery life. Finally,

the architecture type determines the tested application and 16-bit and 32-bit microcontrollers

can both be a viable option when the variables are represented with single precision.

Multiplication operations require a high number of instruction per cycles; therefore micro-

controllers with dedicated hardware multipliers are investigated to reduce the total number of

instructions per cycle required by the overall system.

TI launchpads provide one of the least active current consumption at 100 µA / MHz with a

clock frequency operating at 16 MHz (16-bit) - 48 MHz (32-bit) when compared to other manu-

facturers. These devices have UART and SPI connections, a dedicated hardware multiplier,

and a 12-bit ADC with 128 kB RAM storage.
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5.3. Challenges

Even though developed algorithms are computationally efficient, their implementation in real-

time embedded systems carries challenges. These challenges require identification of each phys-

ical parameter of the MCU to accurately estimate the baseline wander while preserving the

signal integrity, and can be listed as follows:

• Precision: Developed algorithms and their real-time implementations are required to

maintain accuracy results defined by the standards and preserve signal integrity in baseline

estimation. Single-precision implementations of the developed algorithms and their effect

on the overall system performance need to be quantified to achieve a viable embedded

system implementation.

• Latency: Even though developed algorithms avoid multiplication operations as much as

possible, the IIR and FIR filter implementations require 32-bit floating point calculations.

Therefore, the required number of instructions per cycle of the overall algorithm should

match the MCU capabilities.

• Accuracy: Errors in relation to transmission operation, clock frequency generation and

clock skew might distort the signal of interest. In addition, any type of data transmission

introduces mis-read/transmitted bits occasionally and degrades the system performance.

The resulting effect of these systematic errors needs to be quantified and identified.

• Run-time Operation: In ambulatory operations battery power is crucial and reducing

the total number of instructions per cycle increases the run-time of the battery cycle.

For this reason, utilisation of hardware multipliers needs to be investigated to reduce the

system clock frequency and power consumption consequently.

5.4. C implementation

This section covers the adaptation of developed algorithms into C environment and involves

any built-in functions utilised in MATLAB simulations to be adjusted into their real-time rep-

resentations in C. The simulations are done using GNU Compiler Collection (GCC) compiler

using the Xcode (Version 6.4) development environment. In addition, tests are done utilising

single-precision floating-point format which occupies 4 bytes (32-bits) in computer memory.

This format, namely referred to as IEEE 754 standard, can express all integers with six or fewer

significant decimal digits without loss of information in addition to some integers up to nine

significant digits [187].

5.4.1. Biquad Filtering Implementation

In digital signal processing, a biquad filter is a second-order recursive linear filter with two poles

and zeros. The gain of such a filter is denoted with G in Eq. 5.1, whereas numerator coefficients,
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b0, b1 and b2, define the feed-forward path and the denominator coefficients, a0, a1 and a2, form

the feedback path of a biquad filter implementation.

H(z) = G ∗ b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
(5.1)

In digital signal processing, biquad filters are often utilised as building blocks to avoid unstable

operation as higher order implementations are sensitive to coefficient accuracy.

In baseline wander estimation, the second-order sections (SOS) matrix generated in MATLAB

is converted into transfer function form by utilising the built-in function, sos2tf. Subsequently,

the filter stage of the developed algorithm has been tested with the built-in function, filter, in

the MATLAB environment. This function utilises numerator and denominator coefficients in

double precision and generates an accurate and stable filtering.

In the C implementation double precision of these filters requires computational resources

both in memory and total number of instructions per cycle. For this reason, these filters are

implemented in biquads as SOS forming a transposed direct-form-II implementation and single

precision is used in defining the filter coefficients.

In fixed-point calculations direct-form I are often preferred as these topologies involve single

summation points whereas in floating point calculations direct-form II implementations save

two extra memory locations. The transposed topology of two second order recursive filter as

shown in Fig. 5.1, has the same filter characteristics whereas the intermediate sums are achieved

with close-valued numbers achieving higher precision.

Filter coefficients are determined as covered in Section 3.5.2 using fdatool in MATLAB. These

coefficients are then expressed in transposed direct-form II structure in single precision while

their numerator coefficients are normalised. The other coefficients are then expressed with nine

significant decimal digits in IEEE 754 binary format in Xcode and the response of these filters

is then evaluated and compared with MATLAB results. The filter implementation in C is

acquired using a single function for each biquad with pointers addressing the filter coefficients,
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Figure 5.1.: Transposed-direct-form II implementation of two biquad (second order IIR) filters
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and the delay stage results that are statically stored in the memory. The complete function of

the real-time filter implementation is provided in Appendix D.

Fig. 5.2 shows MATLAB and C filter responses with double and single precision. The filter

responses are stable and slight differences appear in the order of 10-20 µV deviation at the

peaks. However, these deviations have no effect on fiducial point detections as the thresholds

are determined after differentiation and moving integrator stages in a recursive method.

5.4.2. Interpolation Implementation

As covered in Chapter 3, various interpolation techniques are utilised in baseline wander es-

timation. These techniques use the built-in MATLAB interpolation function, interp1, which

runs linear, cubic spline or PCHIP interpolation as the interpolation method. This function

has been replaced with the computationally-efficient WPL interpolation algorithm introduced

in Chapter 4 and its C implementation is provided in Appendix D.

The C-code before the interpolation stage runs in serial-in, serial-out format and depending

on the method preferred, the interpolation algorithm generates the output either in serial-in,

parallel-out or serial-in, serial-out format. Both implementation types require utilisation of

buffers in order to avoid information loss.

In serial-in, serial-out output type, the algorithm requires fiducial point storage in the buffer.

As these points are non-uniformly sampled, the duration between fiducial points might cause

instability when no buffer is utilised. Such an instance occurs in events like slow or undetected

heart beats. In these instances, the distance between two consecutive fiducial points increases
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and this change stalls the program as the interpolation stage requires the upcoming fiducial

point before it is detected. To avoid such cases, the C algorithm buffers fiducial points at start

up and utilises the information stored in the buffer during these instances. A single heart beat

delay is sufficient enough to overcome missing fiducial points. However, in the event of missing

heart beats when the buffer is processed completely, the algorithm is put into a buffering process.

This implementation can be seen in the interpolation section of the C coding in Appendix D.

In dataset 101 of the MIT-BIH Arryhtmia Database with the baseline wander added from

the MIT-BIH Noise Stress Database, the buffer stage is initialised only once over a 30 minute

duration and that instance is shown in Fig. 5.3. For simplicity, discrepancy calculations are not

shown in this plot and it can be seen that at the 1.8 second mark, the buffer is emptied and the

interpolation output stalls for 300 samples whereas ideal interpolation at this instance is shown

with green. After the re-initalisation, the algorithm recovers and continues as normal. These

instances occur during large step changes and missing QRS complexes when no fiducial point

is detected as can be seen in the plot.

On the other hand, a serial-in, parallel-out output implementation calls the interpolation

function only when a new fiducial point is detected. Once a new interpolation point is located,

the algorithm generates all the interpolated data and stores them in the buffer, which then

can be pointed by the main function and subtracted. This implementation type increases the

overall data storage and requires the processed data to be saved in the buffer to be fed back at

the sampling rate for processing. Due to this extra storage requirement in the microcontroller

implementation, a serial in, serial-out output type has been utilised.
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5.4.3. Computational Complexity

Power consumption and computational complexity might not be an issue for bedside systems as

processing is often done by powerful computer platforms. However, when the target application

aims for ambulatory system design, recording continuous data and utilising these platforms is

not viable. Therefore, algorithms designed for such purpose require computational complexity

quantification and profound analysis to assess their suitability for real-time operation.

Both algorithms covered in Chapter 3 and Chapter 4 have specifically targeted a real-time

hardware implementation (unlike most algorithms mentioned in Chapter 2). The hardware

complexity of both of these algorithms in terms of memory and computational requirements are

therefore discussed in this section.

5.4.3.1. Memory

The vast majority of algorithms for baseline wander removal require a significant buffer (i.e.

memory storage). The proposed algorithm, however, only requires memory for IIR filter coeffi-

cients, state variables for each stage and group delay compensation. Table 5.1 lists the required

number of variables for algorithm implementation stage by stage.

The memory requirements of the first stage (S1) are determined by the filter implementations.

The high-pass IIR filter implementation is stable using single precision and requires 10 coefficient

values to be stored in the memory for a direct form 2-transposed implementation. Similarly,

the low-pass cut-off frequency implementation is determined with a total of 10 coefficient values

stored in the read-only memory, whereas moving average filtering is achieved with 4 coefficients.

The second stage (S2) requires storing a 5-point derivative, squaring and moving window

integrator calculations in addition to the temporary variables required for system operation.

It should be noted that the output of the squaring operation and the moving integrator can

overflow when expressed with integers. Therefore, the output of these operations is required to

be expressed by at least 32-bits (long) if they are expressed as integers and shifting operations

are targeted.

The third stage (S3), on the other hand, is more complex. However, most of the flags and

search parameters require only a single bit whereas wait and search windows can be expressed

with eight bits.

Finally, the fourth stage (S4) requires a buffer, which stores the fiducial point locations

and the generated slopes in addition to temporary variables. Eq. 5.2 shows the total memory

allocation by the overall algorithm and each of its stages separately. The total memory required

for baseline wander estimation is equal to 652 bytes in total.

Nbytes =240 (S1) + 60 (S2) + 104 (S3) + 212 (S4) + 140 (Main) = 652 bytes (5.2)
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Table 5.1.: Memory requirements of each stage

Name Symbol Description Type Bytes

Filter Stage (S1)

Static constants

IIR Filter coefficients a,b (3rd order) High-pass (fH) coefficients float 4×10

a,b (3rd order) Low-pass (fL) coefficients float 4×10

FIR Filter coefficients b (4th order) Moving av. coefficients float 4×4

State variables

ptr[12] + filter var[12] ptr, var Pointers and Filter variables float 4×24

Delay Cells [12] (d1,d2)H,L, dM IIR filter delay cells float 4×12

Pan & Tomp. Stage (S2)

State variables

i, ptr i, ptr Temporary Variables int 2×2

y, sum y, sum Temporary Variables float 4×2

Derivative [4] dydt Derivative of the ECG signal float 4×4

Integral [8]
∫
ydt Integral of the ECG signal float 4×8

Fiducial P.D. Stage (S3)

State variables

i, j, k, Count[2], WDT i, j, k, C, WDT Temporary Variables int 2×6

Unfilt[5], Filt[2], MI[3] Uf , Ff , MI Un-/Filtered input float 4×10

QRSflag QRSf Derivative of the ECG signal int 2

ThresholdQRS ,P ,T TQRS , TP , TT QRS, P-/T- wave thresholds float 4×3

P-/T- flag, search Pf , Ps, Tf , Ts P-/T- flag & search variables int8 1×4

Wait, search window Ww, Sw Fiducial p. search variables int8 1×2

Floc[3] F1,2,3 Fiducial point locations float 4×3

Fdiff J1,J2,J3 Discrepancy variables float 4×3

Fdiff (J1J2), (J2J3) Fiducial point discrepancies float 4×2

WPL Interp. Stage (S4)

State variables

i, delay, Count, tempx i, d, C, tx Temporary Variables int 2×4

temp+, temp− tempy t+,t−,ty Temporary Variables float 4×3

Slope1[12], Slope2[12] S1, S2 Slope buffers float 4×24

Duration[12], Locy[12] D, Ly Duration & location buffers float 4×24

Main

State variables

Inputo,f,m,ix,iy Inputo,f,m,ix,iy Temporary Variables float 4×12

Output1,2,3 Output1,2,3 Temporary Variables float 4×3

Buffer Filti, UnFilti Buffer for filtered float 4×20
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5.4.3.2. Computation

In this section, an approximate measure to system complexity is targeted as the exact evaluation

of the overall algorithm is hard to achieve and depends on various parameters. The algorithm

is split into different functional blocks to quantify the number of operations and Table 5.2

shows complexity requirements of each stage based on basic ALU instructions in total number

of addition/subtraction, multiplication/division and condition operations as well as memory

requirements.

The total effective number of computations is determined by the number of computations per

sample, Cper sample, and per interpolation (fiducial) point, Cper interpolation point as in Eq. 5.3.

Eq. 5.4 shows the effect of interpolation point generation in relation to sampling frequency, IG,

on the overall system complexity.

CTotal = Cper sample + IG ∗ Cper interpolation point (5.3)

IG =
Tinterpolation point

Tsample
(5.4)

The filtering stage processes every downsampled sample, therefore, its complexity measure is

straightforward to calculate. The conditions in the filtering stage are determined by the states

of its biquad implementation, and the total number of operations are independent of these state

conditions. The moving average filter, on the other hand, can be implemented with shifting

operations, however this requires truncating the output of the IIR filters (as shifting operation

can be achieved on integers only). As long as real-time operation is satisfied, these operations

are handled with full precision.

The Pan & Tompkins stage, similar to the filtering stage, processes every downsampled sam-

ple. Ideally, the derivative and integrator calculations can be handled with shifting operations

as the generated numbers are quite large and less susceptible to noise, however similar to the

filtering stage, no truncation is performed in this stage.

During fiducial point estimation, QRS detection, threshold generation and watchdog opera-

tion every downsampled sample is processed however, the total number of operations in regards

to fiducial point detection depends on various factors such as multiple threshold detections,

missing P-/T- waves, and isoelectric discrepancy compensation. Table 5.2 does not constitute

these instances and shows the total number of operations based on fiducial point detection, M .

An approximate quantification of fiducial point detection instances can be achieved based on

the heart rate and characteristics (P, QRS and T waves). Under normal conditions, the resting

heart rate for adults is substantially lower than 100 beats a minute [188], [189]. Even though it

is not easy to estimate an individual’s heart rate precisely, a patient with a constant heart rate

of 72 bpm sampled at 360 Hz is expected to generate an interpolation point every 100 samples

(M = 1
100). This number can increase with lower heart rates, or decrease vice versa. Of course,
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there are other factors affecting interpolation point quantification such as the duration of each

heart segment or fluctuations on heart rate variability (HRV); however, these parameters are

neglected in complexity quantification for all algorithms.

Discrepancy calculations, on the other hand, are done at the start up for 8 consecutive heart

beats and these calculated discrepancies do not change unless a significant difference is detected

or the algorithm is re-initiated. Therefore, their effect on the overall effective complexity is

negligible.

Finally, the WPL interpolation stage is computationally non-exhaustive compared to higher

order interpolation approaches as this technique does not rely on past information storage like

higher order polynomial approaches and the number of total multiplication operations is limited.

In this manner, this approach aims to bridge the gap between complexity measure and accuracy

as these two factors usually appear as a trade off. Table 5.2 shows the complexity measure based

on WPL interpolation and does not constitute the instances which are acquired with linear

Table 5.2.: Baseline wander estimation algorithm computation complexity per sample

Stage
Memory
Access

Conditions
Add. &
Subtract

Multiply &
Divide

Filter Stage (S1)

IIR Filtering (HPF) 28 1 8 10

IIR Filtering (LPF) 28 1 8 10

FIR Filtering (MAF) 10 - 3 4

Pan & Tomp. Stage (S2)

5-point Derivative 4 - 3 3

Squaring - - - 1

Moving Integral 1 1 2 2

Fiducial P.D. Stage (S3)

QRS Flag & Watchdog 4 5 - -

Threshold Generation 4 6 1 5

QRS Detection 10*M 3+M 1 -

T Wave Detection 6*M 3+M 1 1

P Wave Detection 4*M 3+M - 1

Fiducial Point Detection 36*M 18*M M M

Discrepancy Calculations 14*N 10*N N 2*N

WPL Interp. Stage (S4)

Slope + Buffer 10+48*M 8+M 5 2

WPL Interpolation 18 12 6 8
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interpolation. When compared to polynomial approaches, cubic spline interpolation requires

fourteen floating point multiplications, ten additions and three conditions and an evaluation of

an N×N triangular matrix, where N is defined by the window size of the real-time cubic spline

interpolation [190]. This N by N matrix solution maintains the continuity of the overall system

by evaluating the second derivatives of the interpolating function at the interpolation points

and such an approach is computationally exhaustive.

As the polynomial approaches preserve the continuity of the interpolation function, baseline

estimation is often contaminated with white noise and the accuracy results do not show an

effective improvement as discussed in Chapter 4. Therefore, WPL interpolation is preferred due

to its computationally effective advancements when compared to polynomial approaches.

5.5. MCU

As indicated in Section 5.2, certain MCU characteristics are looked for in determining the

embedded system realisation. Based on low power consumption TI MSP430FR6989 launchpad

series are determined as the choice for implementation. These 16-bit MCUs have active current

consumption of 100 µA/MHz, and 350 nA at standby with real-time clock. Maximum clock

frequency is defined at 16 MHz and three type of clocks are provided (ACLK, MCLK and

SMCLK). In addition, the peripherals offered by this launchpad enable the communication

with a MATLAB test platform through a serial universal asynchronous receiver/transmitter

(UART) connection.

The overall system realisation is shown in Fig. 5.4. Oscilloscope (LeCroy WavePro 7300A) is

utilised to affirm the clock frequency of the MCU and Code Composer Studio (CCS) v6 is used

as the integrated development environment (IDE) to develop an interrupt service routine (ISR)

in system testing.

OSCILLOSCOPE

MATLAB 
SERIAL CONNECTION

AND DATA PROCESSING

MSP430FR6989 
LAUNCHPAD

SERIAL CONNECTION
UART

PROBE

Figure 5.4.: Testing on an embedded system - MSP430FR6989
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5.5.1. System Clock

The system clock defines the maximum number of instructions per cycle that can be utilised

to process a sampled signal without loss of information. For this reason, it has a direct impact

on the total power consumption of the microcontroller in addition to the peripherals utilised

throughout system design. MSP430FR6989 launchpad provides an option to set the register

of the MCU to utilise three system clocks to select best balance of performance and power

consumption. These system clocks utilise low frequency, high frequency, or digitally controlled

internal oscillators with dividers to achieve various clock frequencies up to 16 MHz.

In the embedded system realisation, Table 5.2 results are accounted for setting the system

and peripheral clocks, MCLK and SMCLK. As presented in that table, approximately 50 multi-

plication operations per sample are required, and the system clock is initiated at 16 MHz. This

way, the suitability of the system clock frequency in terms of total number of instructions per

cycle is tested. It should be noted that clock frequencies above 8 MHz, exceed the ferroelectric

random access memory (FRAM) access time, and therefore a waitstate is required. The register

settings for the clock and the waitstate configuration are provided in Appendix E.

5.5.2. Peripherals

5.5.2.1. UART

Utilisation of certain peripherals is required in testing of the system realisation of the baseline

wander estimation algorithm. One of these peripherals involves data communication between

the MSP430 and the MATLAB environment to evaluate the accuracy of the processed data. This

data transfer is achieved via the utilisation of the universal asynchronous receiver/transmitter

(UART) protocol.

During the serial data communication, the first UART transmits a byte as individual bits,

which are then re-assembled by the second UART back into a byte. Due to this operation, a

string of binary code is generated and its data framing depends on the application type [191].

In Fig. 5.5, the data framing utilised for ECG baseline wander estimation on MSP430FR6989

launchpad is presented. This data frame utilises a total of 10-bits which consists of a start bit,

8 data bits, and a stop bit. A parity bit can be included in data transfer to detect errors in

communication and the incorrect data can then be discarded.

The transfer rate is determined by the baud rate set by the UART in each device. In cases

BIT NUMBER 1 2 3 4 5 6 7 8 9 10

DATA BIT
1

DATA BIT
5

DATA BIT
4

DATA BIT
8

DATA BIT
3

DATA BIT
6

DATA BIT
2

DATA BIT
7

START BIT
1

STOP BIT
1

Figure 5.5.: Utilised UART data frame on MSP430FR6989
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where the baud rates are not matching, the data can be either misinterpreted or missed; there-

fore, both devices require the same speed and the utilisation of data ports to transmit data

successfully. The total time spent for each byte transfer is expressed as in Eq 5.5 where baud

rate is denoted as BR and the total number of bits sent in each cycle is represented as NB.

Tper byte =
BR

NB
(5.5)

Each complete cycle transmits or receives a byte through the UART communication protocol

in bits. Therefore, the speed required to receive and transmit the data must be sufficient enough

to process ECG data, which requires 6 complete cycles per sample. The detailed breakdown

of such a requirement originates from the 16-bit input data represented as an integer and the

processed 32-bit output data represented as float. For a typical baud rate of 9600 bits per

second, the total time elapsed for data communication is 6.25 ms, which is slower compared to

the sampling frequency. In a complete system analysis, the time spent for data communication

needs to be counted as a part of allowable instructions per cycle to preserve signal integrity,

meaning that higher baud rates are required. Fig. 5.6 shows the baud rate and the maximum

allowable instruction per cycle relationship of the overall system based on 6 bytes of data transfer

sampled at 360 Hz for different system clock frequencies.

Based on the standard baud rates and typical SMCLK frequencies, timing errors are expected

in terms of the sum of individual bit timings. To reduce the cumulative bit error, modulation

features of the baud rate generator are utilised and registers of the UART configuration are set

to minimise these errors. For a clock frequency of 16 MHz and a baud rate of 230400, a float

representation is transmitted in 170 µs and a maximum transmit/receive error of 1.36 µs and 3 µs

is expected based on the recommended baud rate settings [192]. The detailed UART register

code of MSP430FR6989 utilised in baseline wander estimation is included in Appendix E.
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Figure 5.6.: Maximum allowable instructions per cycle vs baud rate
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5.5.2.2. 32-bit Hardware Multiplier

Similar to the UART, a 32-bit hardware multiplier (MPY32) is a peripheral and its registers are

loaded and read with CPU instructions. The hardware multiplier is able to achieve signed/un-

signed multiply and accumulate operations with 8-bit, 16-bit, 24-bit and 32-bit operands.

The multiplication operation is started when the second operand is loaded into the registry

and the result is generated within a certain number of clock cycles depending on the operation

as specified by the datasheet [192]. In the saturation mode, 32-bit operation requires 11 MCLK

cycles after OP2L is written. Therefore, delay cycles are needed to guarantee a successful

multiplication operation, before reading data from the 16-bit result registers (RES0, RES1,

RES2, RES3). The code generated to initiate the multiplier control registry written for 32-bit

hardware multiplier is provided in the CCS Code in Appendix E.

In the absence of a hardware multiplier, MSP430 provides approximations based on Horner’s

method [193]. This approach requires the multiplier and the divisor to be known in advance.

Therefore, such an approximation cannot be utilised on unknown variables. There are also

other existing methods reported in the literature [194]. Due to the absolute error introduced in

float operations, these methods, however, are not utilised in baseline wander estimation.

5.6. Embedded System Test Results

In this section, real data test results presented in Table 3.4 are validated with C implementation

and MSP430 test results and presented in Table 5.3 and Table 5.4 respectively. These tests

involve both of the algorithms developed in Chapter 3 and Chapter 4. The main motivation in

presenting both C implementation and MSP430 results is to evaluate the true system response of

both algorithms without any built-in functions. These results are then compared to embedded

system measurements to evaluate the accuracy of both algorithms and their implementation

thoroughly.

System evaluation tests are performed as indicated in Section 3.4 by adding baseline wander

signal, BWM1, at various SNR levels to the dataset 100 and 101 from the MIT-BIH Arrhythmia

Database. Both C implementation and its embedded system response are evaluated based on the

same evaluation metrics utilised for MATLAB tests as in Section 3.4.3. Table 5.3 and Table 5.4

results show that C implementation and embedded system results match when compared with

each other.

When RMSD results in Table 5.4 are compared with the MATLAB real data results in

Table 3.4, it can be seen that there is an average of 2.0 µV, 1.8 µV and 0.9 µV difference in mean,

median and standard deviation respectively. However, these differences are expected as they are

related to the interpolation method utilised in each approach. As indicated in Chapter 1, cubic

spline interpolation polynomial performs better when compared to WPL interpolation. These

differences, however, are negligible when compared to the maximum allowable errors defined

by the standards whereas computational resource requirements of WPL interpolation are more

relaxed when compared to cubic spline approach.
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Table 5.3.: C implementation system realisation - RMSD errors of MIT-BIH Database signals
with added baseline wander from MIT-BIH Noise Stress Database

Dataset Att. RMSD error (µV) Total Int.

(Real) (dB) (With motion art.) (Without motion art.) beats Err

µ Med σ µ Med σ # ε

100+BWM1 (R) 0 43.3 30.5 67.2 33.6 29.8 18.2 2243 P-T

100+BWM1 (R) 6 25.8 20.3 32.5 23.5 20.2 14.4 2243 P-T

100+BWM1 (R) 12 20.6 16.6 22.8 19.5 16.6 12.6 2243 P-T

100+BWM1 (R) 18 18.6 15.2 19.5 17.9 15.1 12.0 2243 P-T

100+BWM1 (R) 24 18.0 14.7 17.7 17.4 14.7 11.5 2243 P-T

101+BWM1 (R) 0 46.2 32.0 84.5 34.9 30.9 18.5 1835 P-T

101+BWM1 (R) 6 33.0 23.6 58.6 26.9 23.2 15.3 1835 P-T

101+BWM1 (R) 12 28.8 20.4 56.7 23.3 20.2 13.5 1835 P-T

101+BWM1 (R) 18 27.5 19.7 56.4 22.2 19.4 13.0 1835 P-T

101+BWM1 (R) 24 27.1 19.4 56.4 21.9 19.3 12.8 1835 P-T

Average - 28.9 21.2 47.2 24.1 20.9 14.2 2039 P-T

Table 5.4.: MSP430 system realisation - RMSD errors of MIT-BIH Database signals with added
baseline wander from MIT-BIH Noise Stress Database

Dataset Att. RMSD error (µV) Total Int.

(Real) (dB) (With motion art.) (Without motion art.) beats Err

µ Med σ µ Med σ # ε

100+BWM1 (R) 0 43.4 30.5 67.3 33.6 29.8 18.2 2243 P-T

100+BWM1 (R) 6 25.9 20.4 32.5 23.6 20.3 14.5 2243 P-T

100+BWM1 (R) 12 20.7 16.8 22.8 19.6 16.8 12.6 2243 P-T

100+BWM1 (R) 18 18.9 15.2 19.5 17.9 15.1 11.9 2243 P-T

100+BWM1 (R) 24 18.1 14.7 17.7 17.4 14.7 11.4 2243 P-T

101+BWM1 (R) 0 46.2 32.0 84.5 34.9 30.9 18.5 1835 P-T

101+BWM1 (R) 6 33.0 23.6 58.4 26.9 23.2 15.4 1835 P-T

101+BWM1 (R) 12 28.8 20.5 56.7 23.3 20.2 13.5 1835 P-T

101+BWM1 (R) 18 27.5 19.7 56.4 22.3 19.4 13.0 1835 P-T

101+BWM1 (R) 24 27.1 19.3 56.4 22.0 19.1 13.0 1835 P-T

Average - 29.0 21.3 47.2 24.2 21.0 14.2 2039 P-T

129



Chapter 5 - ECG Baseline Drift Removal In Low Power Real-Time Hardware

First Heartbeat First Heartbeat

First HeartbeatFirst Heartbeat

Figure 5.7.: MCU-based P-T interval heart beat error analysis of MIT-BIH Arrhythmia
Database dataset 100 with added baseline wander, BWM1

First Heartbeat

First Heartbeat

First Heartbeat

First Heartbeat

Figure 5.8.: MCU-based P-T interval heart beat error analysis of MIT-BIH Arrhythmia
Database dataset 101 with added baseline wander, BWM1
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Fig 5.7 and Fig 5.8 show the MCU-based P-T interval heart beat results of dataset 100 and

dataset 101 with added baseline wander, BWM1, at various SNR levels. As the total number

of heart beats in both datasets does not yield a good matrix distribution, missing heartbeats

are filled with zeros to obtain a 50× 50 matrix representation in these plots. As can be seen in

both datasets with the BWM1 baseline signal attenuated by 24 dB, certain areas of the ECG

recordings are contaminated. Their time domain response shows either EMG activity or step

changes. When baseline estimation is utilised on these sections, the overall system accuracy

degrades, independent of the utilised SNR level of the baseline wander. These noise artefacts

define the noise floor, and the evaluation of the baseline wander estimation at these segments is

not a realistic representation. However, as these noise artefacts subside, the overall algorithm

recovers and baseline wander is detected accurately at the subsequent heart beats.

The same plots also show the effect of SNR levels and baseline wander degradation with

increased noise. As indicated in Chapter 4, the baseline wander signal BWM1 shows a higher

standard deviation (93 vs 36) and a higher kurtosis (15.6 vs 4.3); therefore, a 0 dB attenuated

version of this noise source degrades the system performance by far the most. Specifically, at

the start and at the end of the recording, the error results reach to higher levels. When the

overall response is investigated, it is seen that these errors are due to white Gaussian noise

present at certain sections of the baseline wander recording as can be seen in the time domain

response in Fig 5.9(a). Similar to the EMG artefacts, when these errors define the noise floor,

system degradation is expected as the high frequency content cannot be re-captured due to the

Nyquist sampling theorem. When these datasets are utilised with a 6 dB attenuated version

of the noise artefact, there is a substantial accuracy improvement on the whole dataset. Fast

Fourier transform (FFT) of the BWM1 signal also confirms this observation as can be seen in

Fig 5.9(b).
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Figure 5.9.: Time domain and FFT response of MIT-BIH Noise Stress Database signal, BWM1
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5.6.1. Embedded System Time-Domain Response

Throughout the thesis, it has been discussed that in reality fiducial points, J1, J2 and J3, are

not isoelectric. As covered in Section 3.5.5.1, this discrepancy information resides within the

ECG signal and requires detection.

Fig. 5.10(a) shows the MCU response at the start-up to detect discrepancy differences between

fiducial points. As can be seen, initially the baseline estimation passes through every single

detected fiducial point for 8 consecutive successful heart cycles until discrepancy information

is stabilised. After that, upcoming fiducial points, J1 and J3, are adjusted according to the

calculated information to achieve a more realistic baseline wander estimation. It should be noted

that discrepancy information is introduced on the J1 and J3 fiducial points only to preserve J2

level at all instances.

The baseline estimation with initialised discrepancy calculations is shown in Fig. 5.10(b). In

this plot, FIR filter response mentioned in Section 3.4.3 is also depicted with the purple graph.

This filter avoids non-linear phase distortion and the deformation due to ringing is minimal as

the presented signal does not contain any step changes. When these distortions are kept to

a minimum, the FIR filter detects baseline wander content below 0.67 Hz accurately and its

response is in strong resemblance with the MCU baseline estimation with discrepancy calcula-

tions. During baseline estimation, however, if the discrepancy calculations are not included, the

baseline estimation passes through every single detected fiducial point, resulting in heart-related

information to be removed. Such an approach degrades the accuracy of the overall algorithm

and the degradation magnitude depends on the discrepancy information residing within the sig-

nal. When evaluating dataset 100 and 101 with 24 dB attenuated BWM1 signal as in Table 5.3

and Table 5.4, tests without introducing discrepancy information at the start-up resulted in

31.2 µV mean, 28.9 µV median, 12.0 µV standard deviation, and 39.1 µV mean, 37.7 µV median,

12.3 µV standard deviation RMSD errors respectively. As can be seen, discrepancy information
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Figure 5.10.: MCU-based baseline estimation with discrepancy initialisation and compensation
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increases the mean and median RMSD errors, whereas the standard deviation errors remain

almost constant.

The complete MCU time domain responses are also investigated for the dataset 100 and 101,

acquired from the MIT-BIH Arrhythmia Database. Fig. 5.11 shows the “clean” sections of

these datasets, whereas Fig. 5.12 presents the baseline wander, BWM1, added to these sections

with its MCU-based baseline wander estimation. These estimates are then removed to obtain

noise-free signal as in Fig. 5.13 and depicted with the shifted “clean” ECG signal representation

for comparison. Finally, the same approach is performed on FIR filter responses of the same

datasets as in Fig. 5.14.

The original datasets 100 and 101 carry residual baseline wander in addition to other noise

interferences within the recording as can be seen in Fig 5.11(b). The ground truth, therefore,

is not known. Even though the FIR filter response does provide a realistic estimate in baseline

wander removal for the frequency content below 0.67 Hz, the higher spectral content with this

approach is not filtered and during step changes, the signal might get distorted due to ringing

(Gibbs phenomenon). Therefore, not all of the reported errors in Table 5.4 are “true” errors

and in reality the overall system response might be better. Such an example can be seen in

Fig. 5.13(a) and Fig. 5.14(a). These figures show that at the 9 second mark the FIR filter

response generates an equal P and T wave magnitude. However, if the MCU response is closely

investigated, it can be seen that the baseline wander response is exactly identical with the

original signal generating a better estimate.

Fig. 5.13(a) and 5.13(b) show that the microcontroller-based system implementation removes

the baseline wander while preserving the integrity of the ECG recording. In dataset 100, at

the 2 second mark ST segment happens to have a positive slope when compared to the shifted

original signal on the same plot. These shifts, however, are within the standards and are in

accordance with Table 5.4 results. On the other hand, FIR filter response shows a residual

offset due to the defined stop-band attenuation of the filter.

When MCU baseline estimation results are compared with the monitoring and data collection

ECG devices in the market, the difference is notable. Fig. 5.15 shows the output of a recorded

subject with a Shield-EKG-EMG device, which utilises Arduino Uno board for data acquisition.

The Lead-II recording shows disturbance to the ECG signal integrity (ST segment and T-wave

deformation) due to the high-pass filtering introduced in the analogue-front-end (AFE) design.

The datasheet provides the details for the filtering stage, which utilises a single pole high-pass

filter with the cut-off frequency defined at 0.16 Hz [195]. With the 1% tolerances of the utilised

discrete components, and the non-linear phase distortion of high-pass filtering performed at two

distinctive times - at the output of the instrumental amplifier and at the output of the regulated

operational amplifier, the signal of interest is distorted. As mentioned before, a single-pole

analogue filter with a cut-off frequency defined at 0.05 Hz is permitted by the standards [17–20].

In addition to the high-pass filtering, the system introduces low-pass filtering at 40 Hz and as

a consequence, the ST segment is depressed, T-wave is deformed and the ECG signal loses its

clinical validity.
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Figure 5.11.: “Clean” sections of MIT-BIH Arrhythmia Database: Datasets 100 and 101
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Figure 5.12.: MCU-based baseline estimations of “clean” sections of MIT-BIH Arrhythmia
Database signals with added baseline wander from MIT-BIH Noise Stress Database
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Figure 5.13.: MCU-based baseline wander removal of datasets 100 and 101
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Figure 5.14.: FIR-based baseline wander removal of datasets 100 and 101
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Figure 5.15.: Real recording with Shield-EKG-EMG open source hardware

5.6.2. MCU Memory & Instruction Measurements

As indicated in Section 5.4.3.1, the total memory requirement for the overall algorithm is 652

bytes. When the baseline wander algorithm is loaded on the microcontroller, total memory

allocation shows 698 bytes in the RAM using the CCS memory allocation toolbox. The CCS

code, however, utilises additional parameters for the UART communication and pointers for

addressing variable locations.

Based on the 230400 bps baud rate and the 16 MHz MCU clock frequency, a maximum number

of 40277 instructions per sample is allowed to avoid loss of information on data sampled at

360 Hz. The detailed analysis of maximum allowable number of instructions per cycles with

baud rates was previously shown in Fig. 5.6. Table 5.5 shows the total number of instructions

per sample generated at four distinctive sections of the ECG recording. As can be seen, the

Table 5.5.: MSP430 total number of instructions

Stage Total number of instructions

Reading # 1 Reading # 2 Reading # 3 Reading # 4

Per downsampled sample

Filter Stage (S1) 13246 12877 12942 12924

Pan & Tomp. Stage (S2) 2507 2450 2423 2506

Fiducial P.D. Stage (S3) 2070 2021 2126 2071

WPL Interp. Stage (S4) 6693 5919 4137 2911

Total 24516 23267 21628 20412

Per non-downsampled sample

WPL Interp. Stage (S4) 6693 5919 4137 2911
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table is divided into two main sections to show total number of instructions per downsampled

and non-downsampled sample. As the first three stages (Filter, Pan & Tompkins, and Fiducial

Point Detection) operate at the downsampled rate (M = 3), it follows that their total effective

contribution ( instructions per cycledownsampling rate ) to the total number of instructions per sample is on the same

order as the WPL interpolation stage and the complete system is below the 40277 instructions

per sample limit.

As indicated in the work of Venkat, an example of integer-float multiplication and division

using C library requires 427 and 476 instructions (including type conversion from float to in-

teger) respectively [193]. Similarly, during simulation it is observed that the filtering stage

multiplication operation instruction count varies from 350 to 450 instructions. Combining this

observation with the total number of computations defined in Table 5.2, it can be concluded that

multiplication operations performed in each stage approximately determine the total number

of instructions of that stage.

The total number of instructions, on the other hand, can be reduced with 32× 32 bit hardware

multiplier utilisation. Integer multiplication is evaluated in 40 instructions per cycle. However,

as the MCU does not know the details about the types as these are defined by the compiler,

the float representation requires additional adjustments such as multiplication of the fraction

mantissas and addition of the exponents whereas fixed point number multiplication relaxes these

requirements.

5.6.3. Power Consumption

As the battery-powered applications are targeted, power consumption of the embedded mi-

croprocessors is becoming more and more crucial for system design. Most silicon vendors have

low-power designs, and the battery life is determined by the average current consumption, which

is expressed by the function of active and low-power states of the MCU and the peripherals.

Here, an approximation to the total power consumption of the MCU design is discussed and

measurement results are reported.

Initially, the parameters that affect the power dissipation of the overall system design need to

be quantified. As the C implementation is designed in a serial-in serial-out structure, the heart

rate does not have an effect on the total power dissipation. This is because the downsampled

and non-downsampled samples are processed in the same way at every clock cycle independent

of the heart rate, and the power consumption is determined by the total time elapsed is in the

active mode (AM), the low power mode (LPM0 1) and any peripherals that are being used. The

duration of these instances, however, is a function of the downsampling rate and the sampling

frequency in relation to the number of instructions per sample with the MCU clock frequency.

The total time required by each operation is demonstrated in Fig. 5.16, where 3 ECG samples

denote the downsampling rate, 1st sample is the downsampled sample and the 2nd and the 3rd

samples are the non-downsampled samples.

While processing a downsampled sample, the MCU operates in the AM longer than the non-

1This mode disables the CPU and MCLK whereas ACLK and SMCLK (UART clock) remain active
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Figure 5.16.: MSP430 power dissipation modes

downsampled samples. However, after each operation the device is always put back into low-

power mode to preserve current consumption before exiting the interrupt service routine (ISR)

as opposed to polling. Therefore, the average current consumption based on 3 ECG samples

(1 downsampled and 2 non-downsampled samples), generates the total power dissipation of the

MCU. Eq. 5.6 shows the average current estimation of the overall system, where n denotes the

sample number and Tn1 and Tn2 denote the total time for the current mode elapsed in that

time frame.

IAV =
∞∑
n=0

IAVn

IAVn =
IAMn ∗ Tn1 + ILPM0n ∗ Tn2

Tn1 + Tn2

(5.6)

As covered in the previous section, the total number of instructions required for a down-

sampled and a non-downsampled sample is approximately equal to 25000 and 7000 (worst case

conditions) instructions respectively. Based on a sampling rate of 360 Hz, each sample is re-

quired to be processed approximately in 2.78 ms. This duration is demonstrated on the x-axis

of Fig. 5.16. During a downsampled sample, therefore, the MCU can be in low-power mode for

approximately 1 ms, whereas this operation increases to 2.3 ms during a non-downsampled sam-

ple processing. Based on the datasheet of the MSP430, the MCU stabilises the 8 MHz MCLK

in 292 ns once an interrupt is received [196]. Even with the worst conditions (6 µs) defined for

such an operation, the latency at the 16 MHz clock frequency is equal to 96 cycles. When these

are combined with the interrupt acceptance latency (6 cycles) and the return time from the

interrupt (5 cycles), they are negligible as to the total time estimated for the low-power mode

operation is larger by at least two orders of magnitude.
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Based on the datasheet values with 100 % FRAM cache-hit ratio, 730 µA of current is dissi-

pated in active mode (AM), whereas in low-power mode (LPM0) 275 µA of current is required.

Using Eq. 5.6, the average theoretical current consumption on 3 samples of an ECG recording is

calculated as 408 µA and the worst case pin leakage is defined as 1 µA per input. At 3.0 V supply

voltage, theoretical total power dissipation of the overall system is expected to be 1.23 mW with

low-power operation, whereas it is expected to increase to 2.19 mW when only the active mode

is utilised.

Experimental testing of the TI MSP430FR6989 launchpad’s power and current dissipation is

achieved by differential measurements. Initially, the registers of the microcontroller unit (MCU)

is set to low-power mode (LPM4) to disable the CPU and all the clocks. This way the static

power dissipation of the launchpad is measured by recording the average current dissipated

and the supply voltage of the launchpad over seven different resistor values. Following this,

the MCU is set to active mode (AM) to measure the operational and the data dependent

power dissipation. These measurements are recorded with the same resistor values and the

average power dissipation and the current consumption of the TI MSP430FR6989 launchpad

is shown in Fig. 5.17(a) and 5.17(b) respectively. As can be seen in Fig. 5.17(a), the overall

power dissipation is on average 5.6 mW, whereas the data dependent power dissipation (active

mode operation + processing) is measured to be on average 2.4 mW matching our theoretical

calculations. The same figure also shows static and operational power dissipations where the

static power dissipation is determined by the launchpad and operational power dissipation is

determined by the active mode operation of the MCU without the baseline detection algorithm

running.

Fig. 5.18(a) shows the overall power dissipation percentages in a pie chart. As can be seen

in the figure, 61% of the total power dissipation is statically dissipated, whereas the active

mode operation and the data dependent operation consumes 36% and % 3% of the total power

dissipation respectively. Fig. 5.18(b) depicts the data dependent power consumption in more
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detail.

Based on a typical coin cell battery, CR2032, with a nominal voltage of 3.0 V - 3.4 V and a

typical capacity of 225 mAh and the power dissipation measurements, 5 days of operation can

be targeted respectively. With a 1000 mAh CR2477 coin cell battery, the run-time increases to

22 days of operation with the same settings respectively.

5.7. Conclusion

Due to the high computational complexity of baseline wander detection algorithms, certain

limitations exist when they are applied in real-time environments. These algorithms generally

rely on iterative multiplication operations which act as a bottleneck.

This chapter has demonstrated a low-power hardware realisation of the baseline wander de-

tection and the interpolation algorithm on a MSP430FR6989 MCU. Through extensive tests on

MIT-BIH Arrhythmia Database data with added baseline wander acquired from MIT-BIH Noise

Stress Database, average RMSD errors of 24.2 µV mean, 21.0 µV median and 14.2 µV standard

deviation are measured. These RMSD errors match with the C implementation results and the

observed average RMSD differences of 2.0 µV, 1.8 µV and 0.9 µV in mean, median and standard

deviation between the MCU and MATLAB tests in Chapter 3 are associated with the utilised

interpolation method in baseline estimation.

The overall algorithm is arranged for the MCU to process the data in a serial-in serial-out data

flow. Based on this implementation, the total number of instructions per sample is quantified

and an average of four readings requires 22456 and 4915 instructions per downsampled and per

non-downsampled sample respectively. Additionally, the total power dissipation is calculated

as a function of the sampling rate and the total instructions per sample measurements. Based

on the empirical calculations, the MCU exhibits 1.23 mW and 2.19 mW power dissipation with

low-power and active mode operation respectively. Measurement results, on the other hand,
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show a total power dissipation of 5.6 mW of which 2.4 mW is operational and data dependent,

and 3.2 mW is static power dissipation.

When the time domain results are compared with the market devices which utilise high-

pass filtering to remove the electrode offset and the baseline wander, the accuracy difference

is significant. Unlike these systems, the baseline wander hardware realisation can be used to

remove the baseline drift while preserving the ECG signal integrity.
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Conclusions

With recent advances in the medical device technology, mobile and ambulatory applications

prove to be the new advancement in early detection of coronary heart diseases. Comprehen-

sive understanding of the ECG waveform and its characteristics, therefore, has been the first

priority in system-level design before addressing any noise interference present in an ECG sig-

nal. A detailed analysis provides the reader what problems are associated with each approach

beforehand, and aids to address the present noise sources accurately and efficiently.

A detailed literature review shows that computationally-efficient real-time baseline wander

removal techniques are yet to be proposed. As most of the reported works focus on compu-

tational algorithms, the lack of hardware realisations has led to the research presented in this

thesis. Initially, a novel computationally-efficient real time baseline wander removal method

is proposed. This method is then improved with the foundation of a computationally-efficient

interpolation technique suitable for non-uniformly sampled signals. These algorithms are vali-

dated with the biomedical data and the MCU-based hardware implementation is tested as the

final aspect of our work.

When the research objectives are re-evaluated, to what extent the original goals are achieved

is one of the main questions that needs to be addressed. As initially indicated, baseline wander

detection and its removal are achieved within the limits specified by the standards. While

achieving this, computational complexity requirements are kept light and as the end application

targeted for ambulatory designs, system evaluation and its real-time hardware implementation

are demonstrated in an embedded system to achieve real-time baseline estimation.

The remainder of this chapter states the original contributions made throughout the thesis

with possible future directions and is organised as follows: Section 6.1 summarises the literature

review briefly; Section 6.2 lists the original contributions accreted to the literature; Section 6.3

discusses possible future directions; and Section 6.4 concludes the Thesis.
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6.1. Literature Review

Initially, the interdisciplinary background makes a thorough understanding of the ECG wave-

form and its characteristics. The ascertained background knowledge combined with the detailed

literature review in engineering simplifies the evaluation of the challenges associated with the

removal of noise artefacts, in particular the baseline drift, while preserving the clinical validity

of the ECG signal. Such an approach has made a break-through in this research as the conven-

tional approaches disregarding the integrity of the ECG signal are discarded whilst investigating

the literature and the reported works in detail.

As the research initiated, various studies have addressed myocardial infarction based ischaemic

conditions in their motivation and utilised filters with non-linear phase characteristics that are

not approved by the standards. This finding has a clear impact on this thesis in regards to

the utilisation of analogue filtering. Even though the direction of the thesis is modified based

on the literature findings, direct-coupled approaches with the sampling of the whole dynamic

range without low-frequency high-pass filtering express the direction of the reported research.

6.2. Original Contributions

Based on the foundations of algorithms and their embedded system realisation, this thesis has

made the following original contributions:

• Proposed a novel computationally-efficient baseline wander removal method based on

“isoelectric” fiducial point detections. This approach preserves the ECG signal integrity

with limited distortion to the ST segment when compared to the conventional algorithms

and hardware solutions. The significant faults and challenges associated with baseline

estimation are discussed in Chapter 2, whereas Chapter 3 describes the proposed algorithm

to overcome these challenges. The key design parameters are balanced for accuracy and

computationally efficiency, and both real and synthetic data test results show accurate

baseline estimation with a detailed analysis when compared to most of the reported work

in the literature.

• During baseline estimation, it is observed that polynomial interpolation techniques are

demanding and overusing available computational resources due to quantisation noise

present in the signal. Therefore, a new computationally efficient interpolation algorithm

based on weighted piecewise linear interpolation has been introduced in Chapter 4. This

approach finds a balance between accuracy and computational resource requirements while

providing an interpolation solution for non-uniform sampled signals as required by the

baseline estimation algorithm. Real and synthetic test results show accuracy improve-

ment when compared to linear and PCHIP interpolation, whereas the algorithm proves

to be implementable and less computationally demanding compared to the cubic spline

approach.
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• Embedded system realisation on a MCU produces real-time results for baseline wander

estimation. Up-to-date, a few hardware-based solutions with limited analysis have been

reported in the literature. Chapter 5 presents the practical implementation results and

shows accurate baseline wander removal in detail and concludes an achievable real-time

system implementation. The overall approach complies with the allowable distortion to

the ST segment, and is far superior to the conventional techniques present and produces

comparable results to its computational counterparts.

6.3. Future Directions

As pointed out in the previous section, this thesis has made unique contributions to the literature

and there are various possible ways to pursue the presented work. In this section, possible

ideas and future directions of the computational-efficient real-time baseline wander removal are

discussed in more detail.

• Confidence Levels: As observed in real data tests, during step changes and motion arte-

facts the accuracy of the baseline wander estimation degrades. Therefore, an additional

algorithm might introduce confidence levels and during these instances system response

and ST segment distortion can be neglected.

• Impedance Measurements: As an extension to confidence level calculations, impedance

measurements can be utilised as an additional input and the abrupt changes associated

in the impedance measurements can be discarded as motion artefacts increasing the reli-

ability of the overall system.

• Further Power Optimisation: Improvements on optimising the code and pursuing

hardware data multiplication by utilising fixed point arithmetic can be targeted so that

the total number of instructions per cycle requirements is further reduced and the total

power consumption of the overall system is improved.

• Full System Implementation: A complete system implementation with an AFE ac-

quired from major biomedical silicon vendors can be targeted. Within this context, the

utilisation of mains as a power source in addition to battery-powered implementations

need to be investigated. The effect of notch filters on low-pass filtering requirements of

the baseline wander estimation algorithm might reduce the total number of instructions

required. In addition, an integrated approach with instrumentation amplifiers and high

resolution ADC to sample the data can be investigated to observe the system response.

• Additional Fiducial Points: Utilisation of additional fiducial points during T offset and

P onset can be investigated. Even though such an approach increases the computational

requirements, their effect on total power consumption might be negligible as the power is

determined by the total number of multiplication operations, which are mostly associated

with the filtering and interpolation stages.
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• Extension to Multi-Lead ECG: Additional leads provide a better visual image of the

heart’s activity. Therefore, algorithms for augmented leads, Lead-I, Lead-III and the chest

leads can be investigated and these might utilise the timestamp information generated on

a Lead-II recording.

6.4. Concluding Remarks

It is of no doubt that wearable technology has had a great impact on our lifestyles over the last

decade. We now understand the human body better and work on devices that have an effect

on the lives of thousands of others.

With such a fast pace in a very short period of time, the limitations of the conventional

approaches and their drawbacks are well understood and the present challenges have led us to

seek for thoroughly analysed systems, which provide reliable, safe and accurate system solutions.

This research helps us comprehend the functioning of the heart thoroughly, and offer reliable

and efficient solutions to improve on real-time monitoring by concentrating on computationally-

efficient real-time baseline wander estimation. As not so many hardware approaches exist in

the literature and most lack in-depth analysis and data validation, the work presented in this

thesis provides a solution to a better understanding and leads to further advancements in ECG

signal processing techniques while preserving the integrity of the ST segment.
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[173] N. Chihab, A. Zergäınoh, and J.-P. Astruc, “Generalized non-uniform B-spline functions

for discrete signal interpolation,” in IEEE Proceedings of the Signal Processing and Its

Applications, vol. 2. IEEE, 2003, pp. 129–132.

[174] M. Obata, K. Mori, M. Ohira, K. Wada, and K. Toraichi, “Nonuniform sampling and

interpolation based on partially dilated sampling function,” in IEEE Proceedings of the

Communications, Computers and Signal Processing, vol. 1. IEEE, 1997, pp. 453–456.

[175] C. Cenker, H. G. Feichtinger, and M. Herrmann, “Iterative algorithms in irregular sam-

pling: A first comparison of methods,” in IEEE Proceedings of the Computers and Com-

munications. IEEE, 1991, pp. 483–489.

[176] F. Marvasti, M. Analoui, and M. Gamshadzahi, “Recovery of signals from nonuniform

samples using iterative methods,” IEEE Transactions on Signal Processing, vol. 39, no. 4,

pp. 872–878, 1991.

[177] R. G. Wiley, “Recovery of bandlimited signals from unequally spaced samples,” IEEE

Transactions on Communications, vol. 26, no. 1, pp. 135–137, 1978.

[178] O. Guven, A. Eftekhar, W. Kindt, and T. Constandinou, “Computationally-efficient real-

time interpolation algorithm for non-uniform sampled biosignals,” Healthcare Technology

Letters, 2016.

[179] J. C. Butcher, “A history of Runge-Kutta methods,” Applied Numerical Mathematics,

vol. 20, no. 3, pp. 247–260, 1996.

[180] P. K. Stein, M. S. Bosner, R. E. Kleiger, and B. M. Conger, “Heart rate variability: A

measure of cardiac autonomic tone,” American Heart Journal, vol. 127, no. 5, pp. 1376–

1381, 1994.

[181] E. L. Melanson, “Resting heart rate variability in men varying in habitual physical activ-

ity.” Medicine and Science in Sports and Exercise, vol. 32, no. 11, pp. 1894–1901, 2000.

[182] S. Seiler, O. Haugen, and E. Kuffel, “Autonomic recovery after exercise in trained athletes:

Intensity and duration effects,” Medicine and Science in Sports and Exercise, vol. 39, no. 8,

p. 1366, 2007.

[183] W. F. Ganong and K. E. Barrett, Review of medical physiology (24th ed.). McGraw-Hill

Medical, 2012.

[184] C. P. Bonafide, P. W. Brady, R. Keren, P. H. Conway, K. Marsolo, and C. Daymont,

“Development of heart and respiratory rate percentile curves for hospitalized children,”

Pediatrics, vol. 131, no. 4, pp. e1150–e1157, 2013.

160



Bibliography

[185] D. H. Barlow, P. M. Lehrer, R. L. Woolfolk, and W. E. Sime, Principles and practice of

stress management. Guilford Press, 2007.

[186] V. Magagnin, M. Mauri, P. Cipresso, L. Mainardi, E. N. Brown, S. Cerutti, M. Villamira,

and R. Barbieri, “Heart rate variability and respiratory sinus arrhythmia assessment of

affective states by bivariate autoregressive spectral analysis,” in IEEE Proceedings of the

Computing in Cardiology. IEEE, 2010, pp. 145–148.

[187] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, D. Bhandarkar,

M. Bhat, D. Bindel, S. Boldo et al., “IEEE standard for floating-point arithmetic,” IEEE

Std 754-2008, pp. 1–70, 2008.

[188] American Heart Association, Heart and stroke facts. The Association, 1993.

[189] K. Fox, J. S. Borer, A. J. Camm, N. Danchin, R. Ferrari, J. L. L. Sendon, P. G. Steg,

J.-C. Tardif, L. Tavazzi, and M. Tendera, “Resting heart rate in cardiovascular disease,”

Journal of the American College of Cardiology, vol. 50, no. 9, pp. 823–830, 2007.

[190] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cambridge

university press, 2007.

[191] Texas Instruments. (2010, November) Keystone architecture universal asynchronous

receiver/transmitter (UART). [Online]: http://www.ti.com.cn/cn/lit/ug/sprugp1/

sprugp1.pdf

[192] Texas Instruments. (2016, May) MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and

MSP430FR69xx family. [Online]: http://www.ti.com/lit/ug/slau367j/slau367j.pdf

[193] K. Venkat. (2006, September) Efficient multiplication and division using MSP430.

[Online]: http://www.ti.com/lit/an/slaa329/slaa329.pdf

[194] C. Hamacher, Z. Vranesic, and S. Zaky, Computer organization. McGraw-Hill, 2002.

[195] Olimex. (2014, June) Shield-EKG-EMG bio-feedback shield user’s man-

ual. [Online]: https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/

resources/SHIELD-EKG-EMG.pdf

[196] M. Mitchell. (2004, June) Choosing an ultra low-power MCU. [Online]: http:

//www.ti.com/lit/an/slaa207/slaa207.pdf

161

http://www.ti.com.cn/cn/lit/ug/sprugp1/sprugp1.pdf
http://www.ti.com.cn/cn/lit/ug/sprugp1/sprugp1.pdf
http://www.ti.com/lit/ug/slau367j/slau367j.pdf
http://www.ti.com/lit/an/slaa329/slaa329.pdf
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/resources/SHIELD-EKG-EMG.pdf
https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/resources/SHIELD-EKG-EMG.pdf
http://www.ti.com/lit/an/slaa207/slaa207.pdf
http://www.ti.com/lit/an/slaa207/slaa207.pdf


Appendix A

Publications

Published conference and letter materials constitute relevant sections of this thesis. The list of

publications are listed as follows:

Chapter 3 contains content from BIOCAS 2014 conference publication:

• Guven, Onur, Amir Eftekhar, Reza Hoshyar, Giovanni Frattini, Wilko Kindt, and Timo-

thy G. Constandinou. “Realtime ECG baseline removal: An isoelectric point estimation

approach.” In IEEE Proceedings of the Biomedical Circuits and Systems Conference

(BioCAS), 2014 IEEE, pp. 29-32. IEEE, 2014.

Chapter 4 contains content from HTL 2016 letter publication:

• Guven, Onur, Amir Eftekhar, Wilko Kindt, and Timothy Constandinou. “Computationally-

efficient realtime interpolation algorithm for non-uniform sampled biosignals” Healthcare

Technology Letters (2016).
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Appendix B

ECG Baseline Removal Algorithm

B.1. Differentiator Analysis

As discussed in Chapter 3, Eq. 3.10 covers N-point FIR approximated differentiator implemen-

tations. The response of each computationally efficient differentiator with integer coefficients is

investigated and their parametric analysis plots are illustrated in Fig. B.1, B.2 and B.3.

Here, the sampling frequency is defined based on downsampling rate of 3 at 360 Hz and plots

are generated in MATLAB. As can be seen, increasing the order N , also increases the total

number of side lobes and their cut-off frequency location is defined based on the coefficient

relationships. Increasing the differentiator order, N , however, limits its applications in ECG

systems as the QRS complex is filtered partially with higher order differentiators. For a 7-

point differentiator, the first sidelobe ranges approximately from 150 rad/s to 200 rad/s. This

corresponds to 24 - 32 Hz and as the signal of interest that is required to be preserved extends

to 30 Hz, a 7th order increases the computational complexity and degrades system performance.
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Figure B.1.: 3-point differentiator parametric analysis with varying a1
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Appendix C

Interpolation Methods

C.1. WPL Interpolation Supplementary Equations & Figures

C.1.1. Equations

Other weighted mean equations that are tested apart from weighted arithmetic mean (WAM)

approach are shown in Table C.1. Methods are denoted as: (1) Weighted geometric mean

(WGM); (2) Weighted harmonic mean (WHM); (3) Weighted quadratic mean (WQM); (4)

Weighted Heronian Mean (WHeM)

Table C.1.: Other WPL implementations

# WPL Parameter Parameter Hi1 Hi2 Hi3

Imp. a & b c

WGM
1

2
, 1,

3

2
, 2 1 a+b

√
Ma
i−1 ∗M b

i c ∗Mi (3− c) ∗Mi −Hi1

WHM
1

2
, 1,

3

2
, 2 1

a+ b

a

Mi−1
+

b

Mi

c ∗Mi (3− c) ∗Mi −Hi1

WQM
1

2
, 1,

3

2
, 2 1

√
a ∗M2

i−1 + b ∗M2
i

a+ b
c ∗Mi (3− c) ∗Mi −Hi1

WHeM
1

2
, 1,

3

2
, 2 1

2

3
∗WHM +

1

3
∗WGM c ∗Mi (3− c) ∗Mi −Hi1

C.1.2. Figures

Similarly, these methods are tested on 1 mVp−p synthetic sinusoidal signals and the figures

shown here cover only c = 1 test results with the same turning point condition requirements.

In these plots, same colour mapping has been utilised with the weighted mean average plots to

identify accuracy results easily.
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Figure C.1.: WGM based WPL interpolation equation, Hi1 , parametric analysis
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Figure C.2.: WHM based WPL interpolation equation, Hi1 , parametric analysis
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Figure C.3.: WQM based WPL interpolation equation, Hi1 , parametric analysis
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Figure C.4.: WHeM based WPL interpolation equation, Hi1 , parametric analysis
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C.2. Maple Analytical Expressions

C.2.1. Linear Interpolation

Let, (x1, y1) and (x2, y2) be two interpolation points on a sinusoid function f(x) = sin(x), linear

equation of a line is written as follows:

fLinear(x) =

(
sin (x2 )− sin (x1 )

x2 − x1

)
(x− x1 ) + sin (x1 ) (C.1)

Integrating the difference of this sinusoid and the linear function yields an error function

evaluated at x2 and x1 as in Eq.C.2:

ErrLinear =

x2∫
x1

f(x)− fLinear(x) dx

ErrLinear = − cos (x2 )−
(

sin (x2 )− sin (x1 )

x2 − x1

)(
1/2 x2

2 − x1 x2
)
− sin (x1 ) x2 + ...

cos (x1 )− 1/2

(
sin (x2 )− sin (x1 )

x2 − x1

)
x1

2 + sin (x1 ) x1

(C.2)
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C.2.2. Weighted Piecewise Linear Interpolation

Similarly, let, (x0, y0), (x1, y1) and (x2, y2) be three interpolation points on the same sinusoid

function, f(x) = sin(x), WPL interpolation equation of three equal segments are written as

follows:

fWPL−S1(x) = 1/2

(
sin (x1 )− sin (x0 )

x1 − x0
+

sin (x2 )− sin (x1 )

x2 − x1

)
(x− x1 ) + sin (x1 )

fWPL−S2(x) =

(
sin (x2 )− sin (x1 )

x2 − x1

)
(x− x1 1 ) + ...

1/2

(
sin (x1 )− sin (x0 )

x1 − x0
+

sin (x2 )− sin (x1 )

x2 − x1

)
(x1 1 − x1 ) + sin (x1 )

fWPL−S3(x) =− 1/2

(
sin (x1 )− sin (x0 )

x1 − x0
− 3 ∗ sin (x2 )− sin (x1 )

x2 − x1

)
(x− x2 ) + sin (x2 )

(C.3)

Integrating the difference of this sinusoid and the WPL functions yields an overall error

function evaluated: (1) from x1 to x11 for the first segment, fWPL−S1, (2) x11 to x12 for the

second segment, fWPL−S2 and (3) x12 to x2 for the last segment, fWPL−S3 as shown below in

Eq.C.5. As mentioned in Section 4.6.1, the interpolation points from x0 to x1 is considered equal

to the distance from x1 to x2 and this segment is partitioned into 3 equal smaller segments.

√
(x1 − x0)2 =

√
(x2 − x1)2

x11 =
|x2 − x1|

3
+ x1

x12 =
2 ∗ |x2 − x1|

3
+ x1

(C.4)

170



Appendix C - Interpolation Methods

ErrWPL =

x11∫
x1

|f(x)− fS1(x)| dx+

x12∫
x11

|f(x)− fS2(x)| dx+

x2∫
x12

|f(x)− fS3(x)| dx

| − cos(x2/3 + 2/3 x1 )− 1/2 (
sin(x1 )− sin(2 x1 − x2 )

x2 − x1
+

sin(x2 )− sin(x1 )

x2 − x1
) ∗ ...

(1/2 (x2/3 + 2/3 x1 )2 − x1 (x2/3 + 2/3 x1 ))− sin(x1 )(x2/3 + 2/3 x1 ) + cos(x1 )− ...

1/4 (
sin(x1 )− sin(2 x1 − x2 )

x2 − x1
+

sin(x2 )− sin(x1 )

x2 − x1
)x1

2 + sin(x1 )x1 |+ ...

| − cos(2/3 x2 + x1/3) + sin(x1 )(x2/3 + 2/3 x1 )− ...

(sin(x2 )− sin(x1 ))(1/2 (2/3 x2 + x1/3)2 − (x2/3 + 2/3 x1 )(2/3 x2 + x1/3))

x2 − x1
− ...

1/2 (
sin(x1 )− sin(2 x1 − x2 )

x2 − x1
+

sin(x2 )− sin(x1 )

x2 − x1
)(x2/3− x1/3)(2/3 x2 + x1/3)− ...

sin(x1 )(2/3 x2 + x1/3) + cos(x2/3 + 2/3 x1 )− 1/2
(sin(x2 )− sin(x1 ))(x2/3 + 2/3 x1 )2

x2 − x1

+ 1/2 (
sin(x1 )− sin(2 x1 − x2 )

x2 − x1
+

sin(x2 )− sin(x1 )

x2 − x1
)(x2/3− x1/3)(x2/3 + 2/3 x1 )|+ ...

| − cos(x2 ) + 1/4 (3
sin(x2 )− sin(x1 )

x2 − x1
− sin(x1 )− sin(2 x1 − x2 )

x2 − x1
)x2

2 − sin(x2 )x2 + ...

cos(2/3 x2 + x1/3) + 1/2 (3
sin(x2 )− sin(x1 )

x2 − x1
− sin(x1 )− sin(2 x1 − x2 )

x2 − x1
)

(1/2 (2/3 x2 + x1/3)2 − x2 (2/3 x2 + x1/3)) + sin(x2 )(2/3 x2 + x1/3)|

(C.5)
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Appendix D

C Code: Real-Time ECG Baseline

Wander Removal Algorithm

1 // main . c

2 // Created by OnurG on 12/08/2015.

3 // Copyright ( c ) 2015 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude <s t d i o . h>

6 #inc lude ” f i l t e r s t a g e . h”

7 #inc lude ”Pan Tompkins . h”

8 #inc lude ” F iduc i a l Po in t De t e c t . h”

9 #inc lude ” i n t e r p o l a t i o n . h”

10

11 i n t main ( i n t argc , const char ∗ argv [ ] ) {
12 char i n p u t y f i l e [ ]= ” . . . ” , o u t p u t f i l e [ ]= ” . . . ” , o u t p u t f i l e 2 [ ]= ” . . . ” ,

o u t p u t f i l e 3 [ ]= ” . . . ” ;

13 i n t i =0, counter=0, counter2=0, counter3=0, s ame d i s t an c e f l a g =0;

14 f l o a t o r i g i n a l i npu ty , f i l t e r e d i n pu t y , mov ing integrator inputy ,

i n t e r p o l a t o r i npu t x [3 ]={0} , i n t e r p o l a t o r i npu t y [3 ]={0} , output , output2 ,

output3 f i d u c i a l p o i n t i n p u t x =0, f i d u c i a l p o i n t i n p u t y =0, p r o c e s s e d s i g n a l =0;

15 f l o a t f i l t e r e d i n p u t [12 ]={0} , u n f i l t e r e d i n pu t [ 8 ]={0} ;
16

17 FILE ∗ op e n i n pu t y f i l e= fopen ( i n p u t y f i l e , ” r ” ) ; // input f i l e s to read

18 FILE ∗ op en ou tpu t f i l e= fopen ( ou t pu t f i l e , ”wb” ) ; // output f i l e s to wr i t e

19 FILE ∗ op en ou tpu t f i l e 2= fopen ( ou tpu t f i l e 2 , ”wb” ) ; // output f i l e s to wr i t e

20 FILE ∗ op en ou tpu t f i l e 3= fopen ( ou tpu t f i l e 3 , ”wb” ) ; // output f i l e s to wr i t e

21

22 whi le (1 ) {
23

24 f s c a n f ( op en i npu ty f i l e , ”%f ” , &o r i g i n a l i n pu t y ) ;

25 un f i l t e r e d i n pu t [ counter2 ]= o r i g i n a l i n pu t y ;

26 i f ( counter==3){
27 f i l t e r s t a g e l e v e l (&o r i g i n a l i npu ty ,&output ) ;

28 f i l t e r e d i n p u t y=output ;

29 f i l t e r e d i n p u t [ counter3 ]= f i l t e r e d i n p u t y ;

30 Pan Tompkins(& f i l t e r e d i n pu t y ,&output ) ;
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31 mov ing in t eg ra to r inputy=output ;

32 f i d u c i a l p o i n t d e t e c t (&un f i l t e r e d i n pu t [ counter2 ] ,& f i l t e r e d i n p u t [

counter3 ] ,& mov ing integrator inputy ,& f i d u c i a l p o i n t i n pu t x ,&

f i d u c i a l p o i n t i n pu t y ,&output2 ,&output3 , counter2 , counter3 ) ;

33 f p r i n t f ( open ou tpu t f i l e 2 , ”%f \n” , output2 ) ;

34 f p r i n t f ( open ou tpu t f i l e 3 , ”%f \n” , output3 ) ;

35 i f ( i n t e r p o l a t o r i npu t x [ 2 ] != f i d u c i a l p o i n t i n p u t x ) {
36 f o r ( i =0; i <2; i++){
37 i n t e r p o l a t o r i npu t x [ i ]= i n t e r p o l a t o r i npu t x [ i +1] ;

38 i n t e r p o l a t o r i npu t y [ i ]= i n t e r p o l a t o r i npu t y [ i +1] ;

39 }
40 i n t e r p o l a t o r i npu t x [2 ]= f i d u c i a l p o i n t i n p u t x ;

41 i n t e r p o l a t o r i npu t y [2 ]= f i d u c i a l p o i n t i n p u t y ;

42 i f ( i n t e r p o l a t o r i npu t x [2]− i n t e r p o l a t o r i npu t x [1]==

in t e r p o l a t o r i npu t x [1]− i n t e r p o l a t o r i npu t x [ 0 ] ) {
43 s ame d i s t an c e f l a g =1;

44 }
45 }
46 e l s e {
47 i n t e r p o l a t o r i npu t x [2 ]= f i d u c i a l p o i n t i n p u t x ;

48 i n t e r p o l a t o r i npu t y [2 ]= f i d u c i a l p o i n t i n p u t y ;

49 }
50 counter=0;

51 counter3++;

52 }
53 counter++;

54 counter2++;

55 i f ( counter2==8)

56 counter2=0;

57 i f ( counter3==12)

58 counter3=0;

59 i f ( i n t e r p o l a t o r i npu t x [0 ]>0) {
60 hyb r i d i n t e r p o l a t i o n (& i n t e r p o l a t o r i npu t x [ 2 ] , &i n t e r p o l a t o r i npu t y

[2 ] ,& p ro c e s s ed s i gna l ,& same d i s t an c e f l a g ) ;

61 }
62 f p r i n t f ( op en ou tpu t f i l e , ”%f \n” , p r o c e s s e d s i g n a l ) ;

63 }
64 f c l o s e ( o p e n i n pu t y f i l e ) ; // input f i l e to c l o s e

65 f c l o s e ( op en ou tpu t f i l e ) ; // output f i l e to c l o s e

66 f c l o s e ( op en ou tpu t f i l e 2 ) ; // output f i l e to c l o s e

67 f c l o s e ( op en ou tpu t f i l e 3 ) ; // output f i l e to c l o s e

68 p r i n t f ( ”Completed\n” ) ;
69 re turn 0 ;

70 }
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1 // f i l t e r s t a g e . c

2 // Created by OnurG on 12/08/2015.

3 // Copyright ( c ) 2015 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude ” f i l t e r s t a g e . h”

6

7

8 void f i l t e r s t a g e l e v e l ( f l o a t ∗pInput , f l o a t ∗pOutput ) {
9

10 s t a t i c f l o a t d e l a y c e l l s h i g h p a s s [ 4 ] ;

11 s t a t i c f l o a t d e l a y c e l l s l ow p a s s [ 4 ] ;

12

13 f l o a t f i l t e r c o e f f i c i e n t s [ 2 4 ] = // Sca led f o r f l o a t i n g po int

14 {
15 b0 , b1 , a1 , b2 , a2

16 1 ,−2 ,−1.9512939453125 , 1 , 0 .954833984375 , // h i g hp a s s f i r s t b i q u ad

17 1 ,−2 ,−1.89093017578125 ,1 ,0.89434814453125 , // h ighpass second b iquad

18 1 , 2 , 0 .9725341796875 , 1 ,0 .54205322265625 , // l owpa s s f i r s t b i q u ad

19 1 , 2 , 0 .73468017578125 ,1 ,0 .16485595703125 , // lowpass second biquad

20 0 . 25 , 0 . 25 , 0 . 25 , 0 .25 // moving average f i l t e r

21 } ;
22

23 f i l t e r p o i n t e r s Progres s ;

24 Progres s . pInput = pInput ;

25 Progres s . pOutput = pOutput ;

26 Progres s . pCo e f f i c i e n t s=f i l t e r c o e f f i c i e n t s ;

27 Progres s . pDelays H=d e l a y c e l l s h i g h p a s s ;

28 Progres s . pDelays L=d e l a y c e l l s l ow p a s s ;

29

30 Progres s . s tage =0;

31 f i l t e r b i q u a d h i g h p a s s (&Progres s ) ; // Running HIGH−PASS f i r s t biquad

32 Progres s . pInput=Progres s . pOutput ; // Ass ign ing the output to input

33

34 Progres s . s tage =1;

35 f i l t e r b i q u a d h i g h p a s s (&Progres s ) ; // Running HIGH−PASS second biquad

36 Progres s . pInput=Progres s . pOutput ; // Ass ign ing the output to input

37

38 Progres s . s tage =0;

39 f i l t e r b i q u ad l owpa s s (&Progres s ) ; // Running LOW−PASS f i r s t biquad

40 Progres s . pInput=Progres s . pOutput ; // Ass ign ing the output to input

41

42 Progres s . s tage =1;

43 f i l t e r b i q u ad l owpa s s (&Progres s ) ; // Running LOW−PASS second biquad

44 Progres s . pInput=Progres s . pOutput ; // Ass ign ing the output to input

45

46 f i l t e r mov i n g av e r a g e (&Progres s ) ; // Running MOVING AVERAGE

47

48 Progres s . pCo e f f i c i e n t s=f i l t e r c o e f f i c i e n t s ; // Res ta r t ing Co e f f i c i e n t s

49

50 }
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51

52 void f i l t e r b i q u a d h i g h p a s s ( f i l t e r p o i n t e r s ∗biquad ) { // HIGH PASS FILTER

53

54 f l o a t ∗pInput= biquad−>pInput ;

55 f l o a t inputtemp ;

56 f l o a t ∗pOutput= biquad−>pOutput ;

57

58 f l o a t ∗temp1=(biquad−>pDelays H ) ; // Reading Delay Ce l l r e g i s t e r s

59 f l o a t d1 s tage1=∗ ( biquad−>pDelays H++);

60 f l o a t d2 s tage1=∗ ( biquad−>pDelays H++);

61 f l o a t ∗temp2=(biquad−>pDelays H ) ;

62 f l o a t d1 s tage2=∗ ( biquad−>pDelays H++);

63 f l o a t d2 s tage2=∗ ( biquad−>pDelays H ) ;

64

65 f l o a t b0=∗ ( biquad−>pCo e f f i c i e n t s++) ; // Reading Co e f f i c i e n t r e g i s t e r s

66 f l o a t b1=∗ ( biquad−>pCo e f f i c i e n t s++) ;

67 f l o a t a1=∗ ( biquad−>pCo e f f i c i e n t s++) ;

68 f l o a t b2=∗ ( biquad−>pCo e f f i c i e n t s++) ;

69 f l o a t a2=∗ ( biquad−>pCo e f f i c i e n t s++) ;

70

71 i f ( biquad−>s tage==0) // biquad implementation −> STAGE 1

72 { // b0 b1 b2 a1 a2 are f i l t e r c o e f f i c i e n t s − d1 , d2 are de lay c e l l s

73 biquad−>pDelays H=temp1 ;

74 ∗pOutput = b0 ∗ ∗pInput + d1 stage1 ;

75 ∗biquad−>pDelays H++ = b1 ∗ ∗pInput − a1 ∗ ∗pOutput + d2 stage1 ;

76 ∗biquad−>pDelays H = b2 ∗ ∗pInput − a2 ∗ ∗pOutput ;

77 biquad−>pDelays H=temp1 ;

78 }
79 e l s e i f ( biquad−>s tage==1) // biquad implementation −> STAGE 2

80 { // b0 b1 b2 a1 a2 are f i l t e r c o e f f i c i e n t s − d1 , d2 are de lay c e l l s

81 inputtemp=∗pInput ;
82 biquad−>pDelays H=temp2 ;

83 ∗pOutput = b0 ∗ inputtemp + d1 stage2 ;

84 ∗biquad−>pDelays H++= b1 ∗ inputtemp − a1 ∗ ∗pOutput + d2 stage2 ;

85 ∗biquad−>pDelays H = b2 ∗ inputtemp − a2 ∗ ∗pOutput ;

86 biquad−>pDelays H=temp1 ;

87 }
88 }
89

90 void f i l t e r b i q u ad l owpa s s ( f i l t e r p o i n t e r s ∗biquad ) { //LOW PASS FILTER

91

92 f l o a t ∗pInput= biquad−>pInput ;

93 f l o a t inputtemp ;

94 f l o a t ∗pOutput= biquad−>pOutput ;

95

96 f l o a t ∗temp1=(biquad−>pDelays L ) ; // Reading Delay Ce l l r e g i s t e r s

97 f l o a t d1 s tage1=∗ ( biquad−>pDelays L++) ;

98 f l o a t d2 s tage1=∗ ( biquad−>pDelays L++) ;

99 f l o a t ∗temp2=(biquad−>pDelays L ) ;

100 f l o a t d1 s tage2=∗ ( biquad−>pDelays L++) ;
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101 f l o a t d2 s tage2=∗ ( biquad−>pDelays L ) ;

102

103 f l o a t b0=∗ ( biquad−>pCo e f f i c i e n t s++) ; // Reading Co e f f i c i e n t r e g i s t e r s

104 f l o a t b1=∗ ( biquad−>pCo e f f i c i e n t s++) ;

105 f l o a t a1=∗ ( biquad−>pCo e f f i c i e n t s++) ;

106 f l o a t b2=∗ ( biquad−>pCo e f f i c i e n t s++) ;

107 f l o a t a2=∗ ( biquad−>pCo e f f i c i e n t s++) ;

108

109

110 i f ( biquad−>s tage==0) // biquad implementation −> STAGE 1

111 { // b0 b1 b2 a1 a2 are f i l t e r c o e f f i c i e n t s − d1 , d2 are de lay c e l l s

112 inputtemp=∗pInput ;
113 biquad−>pDelays L=temp1 ;

114 ∗pOutput = b0 ∗ inputtemp + d1 stage1 ;

115 ∗biquad−>pDelays L++ = b1 ∗ inputtemp − a1 ∗ ∗pOutput + d2 stage1 ;

116 ∗biquad−>pDelays L = b2 ∗ inputtemp − a2 ∗ ∗pOutput ;

117 biquad−>pDelays L=temp1 ;

118 }
119 e l s e i f ( biquad−>s tage==1) // biquad implementation −> STAGE 2

120 { // b0 b1 b2 a1 a2 are f i l t e r c o e f f i c i e n t s − d1 , d2 are de lay c e l l s

121 inputtemp=∗pInput ;
122 biquad−>pDelays L=temp2 ;

123 ∗pOutput = b0 ∗ inputtemp + d1 stage2 ;

124 ∗biquad−>pDelays L++= b1 ∗ inputtemp − a1 ∗ ∗pOutput + d2 stage2 ;

125 ∗biquad−>pDelays L = b2 ∗ inputtemp − a2 ∗ ∗pOutput ;

126 biquad−>pDelays L=temp1 ;

127 }
128 }
129

130 void f i l t e r mov i n g av e r a g e ( f i l t e r p o i n t e r s ∗moving ) { //MOVING AVERAGE FILTER

131 i n t i ;

132 s t a t i c f l o a t inputtemp [ 4 ] ;

133 f l o a t ∗pInput= moving−>pInput ;

134 f l o a t ∗pOutput= moving−>pOutput ;

135

136 f l o a t b0=∗ (moving−>pCo e f f i c i e n t s++) ; // Reading Co e f f i c i e n t r e g i s t e r s

137 f l o a t b1=∗ (moving−>pCo e f f i c i e n t s++) ;

138 f l o a t b2=∗ (moving−>pCo e f f i c i e n t s++) ;

139 f l o a t b3=∗ (moving−>pCo e f f i c i e n t s++) ;

140

141 inputtemp [3 ]= ∗pInput ;
142 ∗pOutput = b0 ∗ inputtemp [ 3 ] + b1∗ inputtemp [ 2 ] + b2 ∗ inputtemp [ 1 ] + b3 ∗

inputtemp [ 0 ] ; // Moving Average F i l t e r Implementation

143

144 f o r ( i =0; i <3; i++) // Updating Delay Reg i s t e r s

145 inputtemp [ i ] = inputtemp [ i +1] ;

146

147 }
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1 // Pan Tompkins . c

2 // Created by OnurG on 16/10/2015.

3 // Copyright ( c ) 2015 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude ”Pan Tompkins . h”

6

7 void Pan Tompkins ( f l o a t ∗pInput , f l o a t ∗pOutput ) {
8

9 i n t i ;

10 f l o a t y ;

11 s t a t i c f l o a t x derv [4 ]={0} , x i n t e g r a l [ 8 ]={0} ;
12 s t a t i c f l o a t sum=0;

13 s t a t i c i n t ptr=0;

14

15 Pan Tompkins pointers Pan ;

16 Pan . pInput= pInput ;

17 Pan . pOutput= pOutput ;

18

19 //−−−−−−−−−−−−−−−−−−D i f f e r e n t i a t o r Sect ion−−−−−−−−−−−−−−−−−−−−//
20

21 // 5 − point d i f f e r e n t i a t o r − 1/8 (2x (nT) + x(nT−T) − x (nT−3T) − 2x (nT−4T) )

22 y= ( ∗Pan . pInput ∗ 2 ) + x derv [ 3 ] −x derv [ 1 ] − ( x derv [ 0 ] ∗ 2) ;

23 y/=8;

24

25 f o r ( i =0; i <3; i++) // New sample s h i f t

26 x derv [ i ] = x derv [ i +1] ;

27

28 x derv [ 3 ] = ∗Pan . pInput ; // Ass ign ing new input

29

30 //−−−−−−−−−−−−−−−−−−Squaring Sect ion−−−−−−−−−−−−−−−−−−−−−−−−//
31

32 y∗=y ; // Squaring Operation

33

34 //−−−−−−−−−−−−−−−Moving In t e g r a t o r Sect ion−−−−−−−−−−−−−−−−−−//
35

36 i f (++ptr==8) // Loading the new sample space

37 ptr=0;

38

39 sum−=x i n t e g r a l [ ptr ] / 8 ; // Removing old sample

40

41 x i n t e g r a l [ ptr ]=y ; // Updating In t e g r a t o r

42

43 sum+=y/8 ; // Adding averaged new sample

44

45 //−−−−−−−−−−−−−−−−−−−Output Sect ion−−−−−−−−−−−−−−−−−−−−−−−−//
46 ∗Pan . pOutput=sum ; // Updating Output

47

48 }
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1 // F iduc i a l Po in t De t e c t . c

2 // Created by OnurG on 16/10/2015.

3 // Copyright ( c ) 2016 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude <math . h>

6 #inc lude ” F iduc i a l Po in t De t e c t . h”

7

8 void f i d u c i a l p o i n t d e t e c t ( f l o a t ∗ pUnf i l t e r ed input , f l o a t ∗ pFi l t e r ed input , f l o a t ∗
pInput , f l o a t ∗ pF iduc i a l po in t inputx , f l o a t ∗ pF iduc i a l po in t inputy , f l o a t ∗
pOutput2 , f l o a t ∗pOutput3 , i n t counter2 , i n t counter3 ) {

9

10 //−−−−−−−−−−−−−− Threshold Var iab les−−−−−−−−−−−−−−−−−−//
11 i n t i , QRS flag=0;

12 s t a t i c i n t count , count2 , watchdog=0;

13 s t a t i c f l o a t thresho ld , mov ing integra to r [ 3 ] , p r ev i ou s th r e sho ld , new thresho ld ;

14 //−−−−−−−−−−−−−− F iduc i a l Point Var iab les−−−−−−−−−−−−−//
15 s t a t i c i n t Tsearch=0,Psearch=0,QRS Detected=0, T Detected=0, P Detected=0,

wait window=0, search window=0, timestamp=0,MTC flag=0, T thre sho ld counte r=0,

P thre sho ld counte r =0, d i s c r epancy counte r1=0, d i s c r epancy counte r2=0,

d i s c r e p an cy f l a g =0, de t e c t ed bea t s1 =0, de t e c t ed bea t s2 =0;

16 s t a t i c f l o a t F i l t e r ed i npu t [ 2 ] , MTC tempx , MTC tempy , T mu l t i p l i e r =1.0 ,

P mu l t i p l i e r =1.0 , J 2J1d i f f =0, J 2J3d i f f =0, J2J1 locked=0, J2J3 locked=0;

17 f l o a t Un f i l t e r ed i npu t [5 ]={0} , j 1 =0, j 2=0, j 3 =0;

18 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Updating Arrays−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
19 timestamp++; // F iduc i a l po int in terms o f sampling time − timestamp

20 f o r ( i =4; i>=0; i−−){ // Updating Un f i l t e r e d input

21 Unf i l t e r ed i npu t [ i ]=∗ pUn f i l t e r ed input ;

22 i f ( counter2==0)

23 pUn f i l t e r ed input=pUnf i l t e r ed input +7; // For Correct Dere f e r enc ing

24 e l s e

25 pUnf i l t e r ed input −−;
26 counter2−−;
27 }
28 i f ( counter3 <5)

29 F i l t e r ed i npu t [1 ]= ∗ ( pF i l t e r ed input+7) ; // Updating F i l t e r ed i npu t array

30 e l s e

31 F i l t e r ed i npu t [1 ]= ∗ ( pF i l t e r ed input −5) ; // For Correct Dere f e r enc ing

32 moving integra to r [2 ]= ∗pInput ; // Updating moving i n t e g r a t o r array

33 //−−−−−−−−−−−−−− Threshold Generation o f QRS, P and T waves−−−−−−−−−−−−−−−−−−//
34 i f ( mov ing integra to r [ 0 ] < moving integra to r [ 1 ] && moving integra to r [ 1 ] >

moving integra to r [ 2 ] && moving integra to r [ 1 ] > p r ev i ou s th r e sho l d ) {
35 new thresho ld = 0 .5 ∗ p r ev i ou s th r e sho l d + 0.125 ∗ moving integra to r [ 1 ] ;

36 watchdog=0; // Se t t i ng up the new thre sho ld and r e s e t t i n g watchdog

37 }
38 watchdog++; // Watchdog f o r system r e s e t

39 i f ( watchdog == 180)

40 new thresho ld=0;

41 i f ( mov ing integra to r [2]> new thresho ld && moving integra to r [1]< new thresho ld

) { // QRS de t e c t i on

42 QRS flag=1;
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43 count=1;

44 }
45 i f ( count > 0) { // QRS f l a g gene ra t i on

46 QRS flag=1;

47 count++;

48 i f ( count>15){
49 count=0;

50 count2=1;

51 }
52 }
53 i f ( QRS flag==1){ // Adjust ing Thresholds

54 th r e sho ld=new thresho ld / 3 2 . 0 ;

55 }
56 e l s e i f ( count2<35){
57 th r e sho ld=new thresho ld /128 . 0 ;

58 count2++;

59 }
60 e l s e

61 th r e sho ld=new thresho ld /312 . 0 ;

62 //−−−−−−−−−−−−−−−− Detect ion o f QRS, P and T waves−−−−−−−−−−−−−−−−−−−−−−−−//
63 // Checking o v e r a l l s i g n a l f o r th r e sho ld c r o s s i n g s

64 i f ( F i l t e r ed i npu t [0]> th r e sho ld && F i l t e r ed i npu t [1]< th r e sho ld && QRS flag==1){
65 QRS Detected=1;

66 P Detected=0; // Fo r f e i t any MTC re l a t e d search

67 T Detected=0;

68 wait window=0;

69 search window=0;

70 Psearch=0;

71 i f (MTC flag>0){
72 ∗ pF iduc i a l po i n t i npu tx=MTC tempx ; // Mult ip l e P wave de t e c t i on

73 j 1=MTC tempy ; // Used f o r d i s c repancy c a l c u l a t i o n s

74 ∗ pF iduc i a l po i n t i npu ty=MTC tempy+J2J1 locked ; // Discrepancy

75 }
76 MTC flag=0;

77 i f ( T thre sho ld counte r==8)

// I f no T wave thr e sho ld c r o s s i n g i s detected , ad jus t th r e sho ld

78 T mul t i p l i e r =0.5 ;

79 T thre sho ld counte r++;

80 }
81 e l s e i f ( F i l t e r ed i npu t [0 ]>( T mu l t i p l i e r ∗ th r e sho ld ) && F i l t e r ed i npu t [1 ]<(

T mu l t i p l i e r ∗ th r e sho ld ) && Tsearch==1){
82 T Detected=1;

83 T thre sho ld counte r =0;

84 wait window=0;

85 search window=0;

86 i f ( P thre sho ld counte r==8)

// I f no P wave thr e sho ld c r o s s i n g i s detected , ad jus t th r e sho ld

87 P mu l t i p l i e r =0.5 ;

88 P thre sho ld counte r++;

89 }
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90 e l s e i f ( F i l t e r ed i npu t [0 ]>( P mu l t i p l i e r ∗ th r e sho ld ) && F i l t e r ed i npu t [1 ]<(

P mu l t i p l i e r ∗ th r e sho ld ) && Psearch==1){
91 P Detected=1;

92 P thre sho ld counte r =0;

93 wait window=0;

94 search window=0;

95 }
96 //−−−−−−−−−−−−−−−−Detect ion o f F iduc i a l Point Locat ions−−−−−−−−−−−−−−−−−−−//
97 i f ( QRS Detected==1){
98 i f ( wait window > 6) {
99 i f ( ( Un f i l t e r ed i npu t [ 0 ] > Unf i l t e r ed i npu t [ 1 ] && Un f i l t e r ed i npu t [ 1 ] >

Unf i l t e r ed i npu t [ 2 ] && search window < 10) | | ( f abs ( Un f i l t e r ed i npu t [0]−
Unf i l t e r ed i npu t [ 1 ] )<3 && search window < 10) ) {

100 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

101 j 2=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

102 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [ 1 ] ;

103 QRS Detected=0;

104 Tsearch=1;

105 }
106 e l s e i f ( ( Un f i l t e r ed i npu t [ 1 ] > Unf i l t e r ed i npu t [ 2 ] && Un f i l t e r ed i npu t

[ 2 ] > Unf i l t e r ed i npu t [ 3 ] && search window < 10) | | ( f abs ( Un f i l t e r ed i npu t [1]−
Unf i l t e r ed i npu t [ 2 ] )<3 && search window < 10) ) {

107 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

108 j 2=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

109 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [ 1 ] ;

110 QRS Detected=0;

111 Tsearch=1;

112 }
113 e l s e i f ( ( Un f i l t e r ed i npu t [2]> Unf i l t e r ed i npu t [ 3 ] && Un f i l t e r ed i npu t [ 3 ]

> Unf i l t e r ed i npu t [ 4 ] && search window < 10) | | ( f abs ( Un f i l t e r ed i npu t [2]−
Unf i l t e r ed i npu t [ 3 ] )<3 && search window < 10) ) {

114 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

115 j 2=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

116 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [ 1 ] ;

117 QRS Detected=0;

118 Tsearch=1;

119 }
120 search window++;

121 }
122 wait window++;

123 }
124 i f ( T Detected==1){
125 i f ( wait window > 8) {
126 i f ( ( Un f i l t e r ed i npu t [ 0 ] > Unf i l t e r ed i npu t [ 1 ] && Un f i l t e r ed i npu t [ 1 ] >

Unf i l t e r ed i npu t [ 2 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [0]−
Unf i l t e r ed i npu t [ 1 ] )<3 && search window < 6) ) {

127 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

128 j 3=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

129 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [1 ]+ J2J3 locked ; // Discr .

130 T Detected=0;
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131 Tsearch=0;

132 Psearch=1;

133 }
134 e l s e i f ( ( Un f i l t e r ed i npu t [ 1 ] > Unf i l t e r ed i npu t [ 2 ] && Un f i l t e r ed i npu t

[ 2 ] > Unf i l t e r ed i npu t [ 3 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [1]−
Unf i l t e r ed i npu t [ 2 ] )<3 && search window < 6) ) {

135 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

136 j 3=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

137 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [1 ]+ J2J3 locked ; // Discr .

138 T Detected=0;

139 Tsearch=0;

140 Psearch=1;

141 }
142 e l s e i f ( ( Un f i l t e r ed i npu t [2]> Unf i l t e r ed i npu t [ 3 ] && Un f i l t e r ed i npu t [ 3 ]

> Unf i l t e r ed i npu t [ 4 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [2]−
Unf i l t e r ed i npu t [ 3 ] )<3 && search window < 6) ) {

143 ∗ pF iduc i a l po i n t i npu tx= 3∗ timestamp ;

144 j 3=Un f i l t e r ed i npu t [ 1 ] ; // Used f o r d i s c repancy c a l c u l a t i o n s

145 ∗ pF iduc i a l po i n t i npu ty=Un f i l t e r ed i npu t [1 ]+ J2J3 locked ; // Discr .

146 T Detected=0;

147 Tsearch=0;

148 Psearch=1;

149 }
150 search window++;

151 }
152 wait window++;

153 }
154 i f ( P Detected==1){
155 i f ( wait window > 0) {
156 i f ( ( Un f i l t e r ed i npu t [ 0 ] > Unf i l t e r ed i npu t [ 1 ] && Un f i l t e r ed i npu t [ 1 ] >

Unf i l t e r ed i npu t [ 2 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [0]−
Unf i l t e r ed i npu t [ 1 ] )<3 && search window < 6) ) {

157 MTC tempx= 3∗ timestamp ; //Temporari ly s t o r i n g mul t ip l e P waves

158 MTC tempy=Un f i l t e r ed i npu t [ 1 ] ;

159 P Detected=0;

160 MTC flag++;

161 }
162 e l s e i f ( ( Un f i l t e r ed i npu t [ 1 ] > Unf i l t e r ed i npu t [ 2 ] && Un f i l t e r ed i npu t

[ 2 ] > Unf i l t e r ed i npu t [ 3 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [1]−
Unf i l t e r ed i npu t [ 2 ] )<3 && search window < 6) ) {

163 MTC tempx= 3∗ timestamp //Temporari ly s t o r i n g mul t ip l e P waves

164 MTC tempy=Un f i l t e r ed i npu t [ 1 ] ;

165 P Detected=0;

166 MTC flag++;

167 }
168 e l s e i f ( ( Un f i l t e r ed i npu t [2]> Unf i l t e r ed i npu t [ 3 ] && Un f i l t e r ed i npu t [ 3 ]

> Unf i l t e r ed i npu t [ 4 ] && search window < 6) | | ( f abs ( Un f i l t e r ed i npu t [2]−
Unf i l t e r ed i npu t [ 3 ] )<3 && search window < 6) ) {

169 MTC tempx= 3∗ timestamp ; //Temporari ly s t o r i n g mul t ip l e P waves

170 MTC tempy=Un f i l t e r ed i npu t [ 1 ] ;
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171 P Detected=0;

172 MTC flag++;

173 }
174 search window++;

175 }
176 wait window++;

177 }
178 //−−−−−−−−−−−−−−−−−−−−−Discrepancy Ca l cu la t i ons−−−−−−−−−−−−−−−−−−−−−−−−−//
179 i f ( timestamp>350 && timestamp<1350 && d i s c r e p an cy f l a g==0){
180 // 8 consecu t i v e heart c y c l e s at 72bpm requ i r e 800 samples

181 i f ( j1>0)

182 d i s c r epancy counte r1++;

183 i f ( d i s c r epancy counte r1 >0){
184 J2J1d i f f+=j2−j 1 ; // j1 , j2 , j 3 are f l o a t=0 when no de t e c t i on

185 i f ( d i s c r epancy counte r1 >0 && j2>0) // Counts t o t a l detec ted beats

186 de t e c t ed bea t s1++;

187 }
188 i f ( j2>0){
189 d i sc repancy counter1 −−;
190 i f ( d i s c repancy counter1 <0)

191 d i s c r epancy counte r1 =0;

192 d i s c r epancy counte r2++;

193 }
194 i f ( d i s c r epancy counte r2 >0){
195 J2J3d i f f+=j2−j 3 ; // J2J1d i f f−J2J3d i f f are s t a t i c

196 i f ( d i s c r epancy counte r2 >0 && j2>0) // Counts t o t a l detec ted beats

197 de t e c t ed bea t s2++;

198 }
199 i f ( j3>0)

200 d i sc repancy counter2 −−;
201 i f ( d i s c repancy counter2 <0)

202 d i s c r epancy counte r2 =0;

203 i f ( timestamp>1150 && di s c r epancy counte r1==0 && di s c r epancy counte r2==0)

{ // Averaging d i s c repancy c a l c u l a t i o n s

204 J2J1 locked=J2J1d i f f / de t e c t ed bea t s1 ;

205 J2J3 locked=J2J3d i f f / de t e c t ed bea t s2 ;

206 d i s c r e p an cy f l a g =1;

207 }
208 }
209 //−−−−−−−−−−−−−−−Update R e g i s t r i e s Prepare f o r next cyc l e−−−−−−−−−−−−−−−−−−−−//
210 f o r ( i =0; i <2; i++){ // Moving i n t e g r a t o r s h i f t in the memory

211 moving integra to r [ i ] = mov ing integra to r [ i +1] ;

212 }
213 F i l t e r ed i npu t [0 ]= F i l t e r ed i npu t [ 1 ] ; // F i l t e r e d input in the memory

214 p r ev i ou s th r e sho l d=new thresho ld ; // Updating Threshold Reg i s t e r s

215 ∗pOutput2=thre sho ld ;

216 ∗pOutput3=∗ pF iduc i a l po i n t i npu tx ;

217 }
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1 // i n t e r p o l a t i o n . c

2 // Created by OnurG on 18/08/2015.

3 // Copyright ( c ) 2015 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude <math . h>

6 #inc lude ” i n t e r p o l a t i o n . h”

7

8 void hyb r i d i n t e r p o l a t i o n ( f l o a t ∗pInput x , f l o a t ∗pInput y , f l o a t ∗pOutput , i n t ∗
pFlag ) {

9

10 s t a t i c f l o a t s l ope1 [ 1 2 ] , s l ope2 [ 1 2 ] , l o c a t i o n y [ 1 2 ] , output ;

11 // s l ope1 & s lope2 f o r WPL i n t e r p o l a t i o n

12 f l o a t tempy , temp plus , temp minus ; ;

13 s t a t i c i n t tempx , duration temp={0} , timestamp=0, de lay =0; ;

14 s t a t i c i n t durat ion [12 ]={0} , dura t i on counte r=0, counter=0, i =11;

15

16 timestamp++;

17 tempy=∗pInput y ;

18 // s t o r e missed po in t s in the memory un t i l i n t e r p o l a t i o n i s complete

19 tempx=∗pInput x ;

20 l o c a t i o n y [ i ]=tempy ;

21 durat ion [ i ]=tempx−∗(−−pInput x ) ; // time frame f o r i n t e r p o l a t i o n

22 // second s l ope gene ra t i on

23 s l ope2 [ i ]= ( tempy−∗(−−pInput y ) ) /( tempx−∗ ( pInput x ) ) ;

24 tempy=∗pInput y ; // to avoid unsequenced operat i on by po i n t e r s

25 tempx=∗pInput x ;

26 // f i r s t s l ope gene ra t i on

27 s l ope1 [ i ]= ( tempy−∗(−−pInput y ) ) /( tempx−∗(−−pInput x ) ) ;

28 i f ( ( durat ion [ i ] !=0 && duration temp !=durat ion [ i ] ) | | ∗pFlag==1){
29 duration temp=durat ion [ i ] ;

30 i−−;
31 ∗pFlag=0;

32 }
33 i f ( i <1)

34 i =1;

35 //−−−−−−−−−−−−−−−−−−−−− Empty proce s sed bu f f e r s−−−−−−−−−−−−−−−−−−−−−−−−−//
36 i f ( dura t i on counte r==durat ion [ 1 1 ] ) {
37 i++;

38 dura t i on counte r =0;

39 counter=0;

40 f o r ( i n t j =11; j >1; j−−) {
41 durat ion [ j ]= durat ion [ j −1] ;

42 s l ope1 [ j ]= s l ope1 [ j −1] ;

43 s l ope2 [ j ]= s l ope2 [ j −1] ;

44 l o c a t i o n y [ j ]= l o c a t i o n y [ j −1] ;

45 i f ( durat ion [ j ]==0) {
46 durat ion [ j +1]=0;

47 s l ope1 [ j +1]=0;

48 s l ope2 [ j +1]=0;

49 l o c a t i o n y [ j +1]=0;
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50 }
51 }
52 }
53 //−−−−−−−−−−−−−−−−− F i l l empty bu f f e r s and check−−−−−−−−−−−−−−−−−−−−//
54 i f ( durat ion [11]==0){
55 delay=0;

56 i =11;

57 }
58 i f ( delay <300){
59 output+=0;

60 ∗pOutput=output ;

61 }
62 i f ( delay >300){
63 delay =300;

64 //−−−−−−−−−−−−−−−−−−−−−−−−WPL Int e rpo l a t i on−−−−−−−−−−−−−−−−−−−−−−−−−//
65 dura t i on counte r++;

66 i f ( ( s l ope1 [11]>0 && s lope2 [11]<0) | | ( s l ope1 [11]<0 && s lope2 [11]>0) | |
0 .75 ∗ f abs ( s l ope1 [ 1 1 ] )>f abs ( s l ope2 [ 1 1 ] ) | | f abs ( s l ope1 [ 1 1 ] ) <0.75∗ f abs ( s l ope2
[ 1 1 ] ) ) {

67 // s l ope that w i l l be generated f o r segment 1

68 temp plus= ( s l ope1 [11]+ s l ope2 [ 1 1 ] ) /2 ;

69 // s l ope that w i l l be generated f o r segment 3

70 temp minus= (2 ∗ s l ope2 [11]− temp plus ) ;

71 counter++;

72 i f ( counter<durat ion [ 1 1 ] / 3 ) {
73 output+=temp plus ;

74 ∗pOutput=output ;

75 }
76 e l s e i f ( counter >= durat ion [ 1 1 ] / 3 && counter < durat ion [ 1 1 ] / 3 ∗ 2) {
77 output+=s lope2 [ 1 1 ] ;

78 ∗pOutput=output ;

79 }
80 e l s e {
81 output+=temp minus ;

82 ∗pOutput=output ;

83 }
84 i f ( dura t i on counte r==durat ion [ 1 1 ] ) {
85 output=l o c a t i o n y [ 1 1 ] ;

86 ∗pOutput=output ;

87 }
88 }
89 //−−−−−−−−−−−−−−−−−−−−−Linear In t e rpo l a t i on−−−−−−−−−−−−−−−−−−−−−−−−−//
90 e l s e {
91 output+=s lope2 [ 1 1 ] ;

92 ∗pOutput=output ;

93 }
94 }
95 delay++;

96 }
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1 // main . c

2 // Created by OnurG on 12/05/2016.

3 // Copyright ( c ) 2015 OnurG . Al l r i g h t s r e s e rved .

4

5 #inc lude <msp430FR6989 . h>

6 #inc lude <s t d i o . h>

7 #inc lude ” f i l t e r s t a g e . h”

8 #inc lude ”Pan Tompkins . h”

9 #inc lude ” F iduc i a l Po in t De t e c t . h”

10 #inc lude ” i n t e r p o l a t i o n . h”

11 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−IO data−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
12 i n t inputy MSB=0;

13 f l o a t inputy=0;

14 f l o a t output=0;

15 unsigned char ∗ptr ;
16 //−−−−−−−−−−−−−−−−−−−−−−−−− Function De f i n i t i on s−−−−−−−−−−−−−−−−−−−−−−−−−−−//
17 // Proce s s ing

18 void p ro c e s s i ng ( f l o a t inputy , f l o a t ∗ pInterpo la t ion Output ) ;

19 //Mi c r o c on t r o l l e r

20 void setClock ( void ) ;

21 void setUART( void ) ;

22 void s e tMu l t i p l i e r ( void ) ;

23 //−−−−−−−−−−−−−−−−−−−−−−−−−− Reg i s t e r Functions−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
24 // Startup c l o ck system with max DCO˜16MHz

25 void setClock ( void ) {
26 CSCTL0 H = CSKEY >> 8 ; // Unlock c l o ck r e g i s t e r s

27 CSCTL1 = DCOFSEL 4 | DCORSEL; // Set DCO to 16MHz

28 CSCTL2 = SELA VLOCLK | SELS DCOCLK | SELM DCOCLK; // Set Clocks

29 CSCTL3 = DIVA 1 | DIVS 1 | DIVM 1 ; // Set a l l d i v i d e r s

30 CSCTL0 H = 0 ; // Lock CS r e g i s t e r s

31 }
32 // Conf igure Mu l t i p l i e r Reg i s t e r s

33 void s e tMu l t i p l i e r ( void ) {

185



Appendix E - CCS Code: Real-Time ECG Baseline Wander Removal Algorithm

34 MPY32CTL0 = MPYDLYWRTEN | OP1 32 | OP2 32 | MPYM MACS | MPYSAT L;

35 }
36 // Conf igure USCI A0 f o r UART mode

37 void setUART( void ) {
38 UCA0CTLW0 = UCSWRST; // Modif ied only ! 0X0001 ( Reset )

39 UCA0CTLW0 |= UCSSEL SMCLK; // SMCLK as Clock source − BRCLK

40 // Baud Rate c a l c u l a t i o n

41 // 16000000/(16 ∗ 230400) = 4.34028 // OSR > 16 − Use OSR==16

42 // Frac t i ona l por t i on = 0.34028

43 // User ’ s Guide Table 24−4: UCBRSx = 0x55

44 // UCBRFx = in t ( (4.34028−4)∗ 16) = in t ( 5 . 4 4 )=5

45 UCA0BR0 = 4 ; // 16000000/16/230400

46 UCA0BR1 = 0x00 ;

47 UCA0MCTLW |= UCOS16 | UCBRF 5 | 0x5500 ;

48 UCA0CTLW0 &= ˜UCSWRST; // I n i t i a l i z e eUSCI

49 UCA0IE |= UCRXIE; // Enable USCI A0 RX in t e r r up t

50 b i s SR r e g i s t e r (GIE) ;

51 // b i s SR r e g i s t e r ( LPM0 bits | GIE) ; // Enter LPM3, i n t e r r up t s enabled

52 }
53 //−−−−−−−−−−−−−−−−−−In t e r rup t Se rv i c e Routine ( ISR)−−−−−−−−−−−−−−−−−−−−−−−−//
54 #pragma vec to r=USCI A0 VECTOR

55 i n t e r r u p t void USCI A0 ISR ( void )

56 {
57 switch ( e v en i n r ang e (UCA0IV, USCI UART UCTXCPTIFG) ) {
58 case USCI NONE: break ;

59 case USCI UART UCRXIFG: // in t e rup t based on p r i o r i t y

60 whi le ( ! (UCA0IFG & UCTXIFG) ) ;

61 //−−−−−−−−−−−−−−−−−LOADING INPUT BUFFER−−−−−−−−−−−−−−−//
62 inputy=UCA0RXBUF; // f i r s t 8 b i t s

63 whi le ( ! (UCA0IFG&UCRXIFG) ) ;

64 inputy MSB=UCA0RXBUF; // second 8 b i t s

65 inputy+=inputy MSB<<8;

66 //−−−−−−−−−CALLING BASELINE WANDER ESTIMATION−−−−−−−−−//
67 pro c e s s i ng ( inputy , &output ) ;

68 //−−−−−−−−−−−−−−−−LOADING OUTPUT BUFFER−−−−−−−−−−−−−−−//
69 ptr= ( unsigned char ∗ ) &output ;

70 UCA0TXBUF=∗ptr++;

71 whi le ( ! (UCA0IFG&UCTXIFG) ) ;

72 UCA0TXBUF=∗ptr++;

73 whi le ( ! (UCA0IFG&UCTXIFG) ) ;

74 UCA0TXBUF=∗ptr++;

75 whi le ( ! (UCA0IFG&UCTXIFG) ) ;

76 UCA0TXBUF=∗ptr ;
77 no ope r a t i on ( ) ;

78 b i c SR r e g i s t e r o n e x i t ( LPM0 bits ) ;

79 break ;

80 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
81 case USCI UART UCTXIFG: break ;

82 case USCI UART UCSTTIFG: break ;

83 case USCI UART UCTXCPTIFG: break ;
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84 }
85 }
86 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Main . c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
87 i n t main ( void ) {
88 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog t imer

89 //−−−−−−−−−−−−−−− I n i t i l a s i n g Ports A,B,C,D,E−−−−−−−−−−−−−−−−−−//
90 P1DIR = 0xFF ;

91 P1OUT = 0x00 ;

92 P2DIR = 0xFF ;

93 P2OUT = 0x00 ;

94 P3DIR = 0xFF ;

95 P3OUT = 0x00 ;

96 P4DIR = 0xFF ;

97 P4OUT = 0x00 ;

98 P5DIR = 0xFF ;

99 P5OUT = 0x00 ;

100 P6DIR = 0xFF ;

101 P6OUT = 0x00 ;

102 P7DIR = 0xFF ;

103 P7OUT = 0x00 ;

104 P8DIR = 0xFF ;

105 P8OUT = 0x00 ;

106 P9DIR = 0xFF ;

107 P9OUT = 0x00 ;

108 P10DIR = 0xFF ;

109 P10OUT = 0x00 ;

110 //−−−−−−−−−−−−−−−−−− UART Pin Se l e c t i on−−−−−−−−−−−−−−−−−−−−−−−−//
111 P2SEL0 |= BIT0 | BIT1 ; // USCI A0 UART operat i on

112 P2SEL1 &= ˜(BIT0 | BIT1) ; // Conf igure GPIO

113 //−−−−Disab le the GPIO power−on de f au l t high−impedance mode−−−−//
114 PM5CTL0 &= ˜LOCKLPM5;

115

116 // FRAM wa i t s t a t e c on f i g u r a t i on as r equ i r ed by the dev i c e datasheet

117 // MCLK above 8MHz be f o r e the system c lock s e t t i n g .

118 FRCTL0 = FRCTLPW | NWAITS 1 ;

119 //−−−−−−−−−−−−−−−−−−−−−Load Reg i s t e r s−−−−−−−−−−−−−−−−−−−−−−−−−−//
120 se tClock ( ) ;

121 s e tMu l t i p l i e r ( ) ;

122 setUART( ) ;

123 re turn 0 ;

124 }
125 //−−−−−−−−−−−−−−−−Base l i ne Wander Est imation Function−−−−−−−−−−−−−−−−−−−−−//
126 void p ro c e s s i ng ( f l o a t o r i g i n a l i npu ty , f l o a t ∗ pInterpo la t ion Output ) {
127 s t a t i c i n t i =0, counter=0, counter2=0, counter3=0, s ame d i s t an c e f l a g =0;

128 s t a t i c f l o a t f i l t e r e d i n pu t y , mov ing integrator inputy , i n t e r p o l a t o r i npu t x

[3 ]={0} , i n t e r p o l a t o r i npu t y [3 ]={0} , f i d u c i a l p o i n t i n p u t x =0,

f i d u c i a l p o i n t i n p u t y =0;

129 s t a t i c f l o a t output , p r o c e s s e d s i g n a l =0;

130 s t a t i c f l o a t f i l t e r e d i n p u t [ 1 2 ] ;

131 s t a t i c f l o a t un f i l t e r e d i n pu t [ 8 ] ;
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132

133 un f i l t e r e d i n pu t [ counter2 ]= o r i g i n a l i n pu t y ;

134 i f ( counter==3){
135

136 f i l t e r s t a g e l e v e l (&o r i g i n a l i npu ty ,&output ) ;

137 f i l t e r e d i n p u t y=output ;

138 f i l t e r e d i n p u t [ counter3 ]= f i l t e r e d i n p u t y ;

139

140 Pan Tompkins(& f i l t e r e d i n pu t y ,&output ) ;

141 mov ing in t eg ra to r inputy=output ;

142

143 f i d u c i a l p o i n t d e t e c t (&un f i l t e r e d i n pu t [ counter2 ] ,& f i l t e r e d i n p u t [

counter3 ] ,& mov ing integrator inputy ,& f i d u c i a l p o i n t i n pu t x ,&

f i d u c i a l p o i n t i n pu t y , counter2 , counter3 ) ;

144

145 i f ( i n t e r p o l a t o r i npu t x [ 2 ] != f i d u c i a l p o i n t i n p u t x ) {
146 f o r ( i =0; i <2; i++){
147 i n t e r p o l a t o r i npu t x [ i ]= i n t e r p o l a t o r i npu t x [ i +1] ;

148 i n t e r p o l a t o r i npu t y [ i ]= i n t e r p o l a t o r i npu t y [ i +1] ;

149 }
150 i n t e r p o l a t o r i npu t x [2 ]= f i d u c i a l p o i n t i n p u t x ;

151 i n t e r p o l a t o r i npu t y [2 ]= f i d u c i a l p o i n t i n p u t y ;

152 i f ( i n t e r p o l a t o r i npu t x [2]− i n t e r p o l a t o r i npu t x [1]==

in t e r p o l a t o r i npu t x [1]− i n t e r p o l a t o r i npu t x [ 0 ] ) {
153 s ame d i s t an c e f l a g =1;

154 }
155 }
156 e l s e {
157 i n t e r p o l a t o r i npu t x [2 ]= f i d u c i a l p o i n t i n p u t x ;

158 i n t e r p o l a t o r i npu t y [2 ]= f i d u c i a l p o i n t i n p u t y ;

159 }
160 counter=0;

161 counter3++;

162 }
163 counter++;

164 counter2++;

165 i f ( counter2==8)

166 counter2=0;

167 i f ( counter3==12)

168 counter3=0;

169 i f ( i n t e r p o l a t o r i npu t x [0 ]>0) {
170 hyb r i d i n t e r p o l a t i o n (& i n t e r p o l a t o r i npu t x [ 2 ] , &i n t e r p o l a t o r i npu t y

[2 ] ,& p ro c e s s ed s i gna l ,& same d i s t an c e f l a g ) ;

171 }
172 ∗ pInterpo la t ion Output=p r o c e s s e d s i g n a l ;

173 }
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1 %% FILTER DESIGN BLOCK

2 %

3 % This block de s i gn s the high−pass and low−pass f i l t e r c h a r a c t e r i s t i c s and

4 % return s c o e f f i c i e n t parameters to the main func t i on

5

6 f unc t i on [ LP coef f numerator , LP coef f denominator , HP coeff numerator ,

HP coef f denominator ] = bandp a s s f i l t e r d e s i g n b l o c k ( f i l t e r t y p e , Fp lp , Fst lp ,

Ap lp , Ast lp , Fst hp , Fp hp , Ast hp , Ap hp )

7

8 %−−−−−−−−−−−−−−−−−−−−−−−−−−LOW−PASS FILTER DESIGN−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 d=fd e s i gn . lowpass ( ’Fp , Fst ,Ap, Ast ’ , Fp lp , Fst lp , Ap lp , Ast lp ) ; %low−pass des ign

11 temp=designmethods (d) ; %des ign methods

12 i f strcmp ( temp( f i l t e r t y p e ) , ’ e q u i r i p p l e ’ )==1

13 Hd Low Pass = des ign (d , temp{ f i l t e r t y p e }) ;
14 f v t o o l (Hd Low Pass ) ; %f i l t e r r e s p o n s e s

15 e l s e

16 Hd Low Pass = des ign (d , temp{ f i l t e r t y p e } , ’ matchexactly ’ , ’ stopband ’ ) ;

17 f v t o o l (Hd Low Pass ) ; %f i l t e r r e s p o n s e s

18 end

19 % butter=1, cheby1=2, cheby2=3, e l l i p =4, e qu i r i p p l e =5, i f i r =6, ka i s e rw in=7

20 i f strcmp ( temp( f i l t e r t y p e ) , ’ e q u i r i p p l e ’ )==1

21 LP coef f numerator=Hd Low Pass . numerator ;

22 LP coef f denominator=1;

23 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ but te r ’ )==1

24 [ LP coef f numerator , LP coe f f denominator ] = s o s 2 t f ( Hd Low Pass . sosMatrix ,

Hd Low Pass . Sca leValues ) ;

25 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ cheby1 ’ )==1

26 [ LP coef f numerator , LP coe f f denominator ] = s o s 2 t f ( Hd Low Pass . sosMatrix ,

Hd Low Pass . Sca leValues ) ;

27 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ cheby2 ’ )==1

28 [ LP coef f numerator , LP coe f f denominator ] = s o s 2 t f ( Hd Low Pass . sosMatrix ,

Hd Low Pass . Sca leValues ) ;

29 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ e l l i p ’ )==1
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30 [ LP coef f numerator , LP coe f f denominator ] = s o s 2 t f ( Hd Low Pass . sosMatrix ,

Hd Low Pass . Sca leValues ) ;

31 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ i f i r ’ )==1

32 [ LP coef f numerator , LP coe f f denominator ] = s o s 2 t f ( Hd Low Pass . sosMatrix ,

Hd Low Pass . Sca leValues ) ;

33 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ ka i s e rw in ’ )==1

34 LP coef f numerator=Ld Low Pass . numerator ;

35 LP coef f denominator=1;

36 end

37

38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−HIGH−PASS FILTER DESIGN−−−−−−−−−−−−−−−−−−−−−−−−−−
39

40 d=fd e s i gn . h ighpass ( ’ Fst , Fp , Ast ,Ap ’ , Fst hp , Fp hp , Ast hp , Ap hp ) ; %high−pass des ign

41 temp=designmethods (d) ; %des ign methods

42 i f strcmp ( temp( f i l t e r t y p e ) , ’ e q u i r i p p l e ’ )==1

43 Hd High Pass = des ign (d , temp{ f i l t e r t y p e }) ;
44 f v t o o l ( Hd High Pass ) ; %f i l t e r r e s p o n s e s

45 e l s e

46 Hd High Pass = des ign (d , temp{ f i l t e r t y p e } , ’ matchexactly ’ , ’ passband ’ ) ;

47 f v t o o l ( Hd High Pass ) ; %f i l t e r r e s p o n s e s

48 end

49 % butter=1, cheby1=2, cheby2=3, e l l i p =4, e qu i r i p p l e =5, i f i r =6, ka i s e rw in=7

50 i f strcmp ( temp( f i l t e r t y p e ) , ’ e q u i r i p p l e ’ )==1

51 HP coef f numerator=Hd High Pass . numerator ;

52 HP coef f denominator=1;

53 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ but te r ’ )==1

54 [ HP coeff numerator , HP coef f denominator ] = s o s 2 t f ( Hd High Pass . sosMatrix ,

Hd High Pass . Sca leValues ) ;

55 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ cheby1 ’ )==1

56 [ HP coeff numerator , HP coef f denominator ] = s o s 2 t f ( Hd High Pass . sosMatrix ,

Hd High Pass . Sca leValues ) ;

57 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ cheby2 ’ )==1

58 [ HP coeff numerator , HP coef f denominator ] = s o s 2 t f ( Hd High Pass . sosMatrix ,

Hd High Pass . Sca leValues ) ;

59 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ e l l i p ’ )==1

60 [ HP coeff numerator , HP coef f denominator ] = s o s 2 t f ( Hd High Pass . sosMatrix ,

Hd High Pass . Sca leValues ) ;

61 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ i f i r ’ )==1

62 [ HP coeff numerator , HP coef f denominator ] = s o s 2 t f ( Hd High Pass . sosMatrix ,

Hd High Pass . Sca leValues ) ;

63 e l s e i f strcmp ( temp( f i l t e r t y p e ) , ’ ka i s e rw in ’ )==1

64 HP coef f numerator=Hd High Pass . numerator ;

65 HP coef f denominator=1;

66 end

67 i f l ength ( temp)˜=7

68 e r r o r ( ’Wrong F i l t e r Type ’ )

69 end

70 end
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1 %% PT INTERVAL ERROR BLOCK

2 %

3 % This block de s i gn s c a l c u l a t e s the RMS PT i n t e r v a l e r r o r s de f ined

4 % by the ba s e l i n e wander e s t imat ion a lgor i thm

5

6 f unc t i on [ d e t e c t e d e r r o r ] = PT in t e r va l e r r o r ( s a v e f i l e , f i l e )

7

8 %−−−−−−−−−−−−−−−−−−−−−−−LOAD FILES & READ ANNOTATIONS−−−−−−−−−−−−−−−−−−−−−
9

10 f o r i =1: l ength ( f i l e )

11 ann=rdann ( s t r c a t ( ’mcode/MIT BIH Arrythmia Annotations/ ’ , f i l e ( 1 : 3 ) ) , ’ a t r ’

, [ ] , [ ] , 1 ) ;

12 load ( s a v e f i l e ) ;

13 f o r i =5: l ength ( ann )−30 % Discard f i n a l 30 samples i f FIR f i l t e r i s used

14 T=f ind ( l o c a t i o n o f z e r o s>ann ( i −1) & l o c a t i o n o f z e r o s<ann ( i ) ) ;

15 P=f ind ( l o c a t i o n o f z e r o s>ann ( i −2) & l o c a t i o n o f z e r o s<ann ( i −1) ) ;
16 i f l ength (T)<2 | | isempty (P)

17 de t e c t e d e r r o r ( i )=rms ( d i f f e r e n c e ( ann ( i −1) : ann ( i ) ) ) ;
18 e l s e

19 T s=so r t (T) ;

20 T s p=T s (2 ) ;

21 P s=max(P) ;

22 de t e c t e d e r r o r ( i )=rms ( d i f f e r e n c e ( l o c a t i o n o f z e r o s ( P s )−50: l o c a t i o n o f z e r o s (
T s p ) ) ) ;

23 end

24 end

25 de t e c t e d e r r o r=de t e c t e d e r r o r ( 1 6 : end ) ; % d i s c r e ga rd i ng the i n i t a l i z a t i o n

e r r o r

26 de t e c t e d e r r o r=de t e c t e d e r r o r ∗ 1000/200; % use microvo l t e r r o r ( Recording has

200V/V as gain )

27

28 %−−−−−−−−−−−−−−−WITH MOTION ARTEFACT MEAN MEDIAN STD−−−−−−−−−−−−−−−−
29

30 MEAN err=mean( d e t e c t e d e r r o r ) ;

31 MEDIAN err=median ( d e t e c t e d e r r o r ) ;

32 STD err=std ( d e t e c t e d e r r o r ) ;

33

34 %−−−−−−−−−−−−−−−WITHOUT MOTION ARTEFACT MEAN MEDIAN STD−−−−−−−−−−−−−−−−
35

36 WMA MEAN err=mean( d e t e c t e d e r r o r ( f i nd ( de t e c t ed e r r o r <200) ) ) ;

37 WMA MEDIAN err=median ( d e t e c t e d e r r o r ( f i nd ( de t e c t ed e r r o r <200) ) ) ;

38 WMA STD err=std ( d e t e c t e d e r r o r ( f i nd ( de t e c t ed e r r o r <200) ) ) ;

39

40 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−FILE SAVE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 save ( s a v e f i l e , ’ d e t e c t e d e r r o r ’ , ’MEAN err ’ , ’MEDIAN err ’ , ’ STD err ’ , ’

WMA MEAN err ’ , ’WMA MEDIAN err ’ , ’WMA STD err ’ , ’−append ’ ) ;

42

43 end
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1 %% SYNTHETIC DATA SEGMENT ANALYSIS

2 % Synthet i c data generated through Karthik ’ s code i s segmented with the

3 % code de f ined covered here . Plot f unc t i on s are not inc luded due to space

4 % requirements

5

6 f unc t i on [ P onset , P o f f s e t , Q onset , S o f f s e t , T onset , T o f f s e t ] = segmentana lys i s (

joinedECG)

7

8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−SEGMENTATION CALCULATIONS−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 va l=joinedECG ;

11 g va l=grad i en t ( va l ) ;

12 s qua r e g va l=g va l . ˆ 2 ;

13 s e cond g va l=grad i ent ( g va l ) ;

14 s qua r e s e c ond g va l=se cond g va l . ˆ 2 ;

15 %Def in ing a moving average f i l t e r to suppres s EMG i f e x i s t s

16 a=1;

17 b=[0.25 0 .25 0 .25 0 . 2 5 ] ;

18 s qua r e s e c ond g va l=f i l t e r (b , a , s qua r e s e c ond g va l ) ;

19 %Synthet i c th r e sho ld

20 th r e sho ld=ze ro s (1 , l ength ( va l ) ) ;

21 th r e sho ld=thre sho ld +0.8 ;

22 de t e c t ed th r e sho l d=f i nd ( square s e cond g va l<th r e sho ld . ˆ 2 ) ;

23

24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−FIND FIDUCIAL LOCATIONS−−−−−−−−−−−−−−−−−−−−−−−−−−
25

26 j =1;

27 f o r i =1: l ength ( d e t e c t ed th r e sho l d )−1
28 i f d e t e c t ed th r e sho l d ( i )+1 ˜= de t e c t ed th r e sho l d ( i +1)

29 [ r ]= f i nd ( s e cond g va l ( d e t e c t ed th r e sho l d ( i ) : d e t e c t ed th r e sho l d ( i +1) )>max(

s e cond g va l ( ( d e t e c t ed th r e sho l d ( i ) : d e t e c t ed th r e sho l d ( i +1) ) ) −0.0001) ) ;

30 i f l ength ( r )>1

31 r=r (1 ) ;

32 end

33 l o c a t i o n o f f i d u c i a l ( j )=de t e c t ed th r e sho l d ( i )+r−1;
34 j=j +1;

35 end

36 end

37 i f ˜ e x i s t ( ’ l o c a t i o n o f f i d u c i a l ’ , ’ var ’ )

38 e r r o r ( ’ Lower your segment de t e c t i on th re sho ld value ’ )

39 end

40

41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−DEFINE FIDUCIAL POINTS−−−−−−−−−−−−−−−−−−−−−−−−−−
42

43 P onset = l o c a t i o n o f f i d u c i a l (1 ) ;

44 P o f f s e t = l o c a t i o n o f f i d u c i a l (2 ) ;

45 Q onset = l o c a t i o n o f f i d u c i a l (3 ) ;

46 S o f f s e t = l o c a t i o n o f f i d u c i a l (7 ) ;

47 T onset = l o c a t i o n o f f i d u c i a l (8 ) ;

48 T o f f s e t = l o c a t i o n o f f i d u c i a l (9 ) ;
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49

50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−MATRIX FORMATION−−−−−−−−−−−−−−−−−−−−−−−−−−
51

52 f o r j =1: f l o o r ( ( l ength ( l o c a t i o n o f f i d u c i a l ) ) /9)−1
53

54 P onset temp=l o c a t i o n o f f i d u c i a l (1+ j ∗ 9) ;
55 P onset=[P onset P onset temp ] ;

56

57 P of f s e t t emp=l o c a t i o n o f f i d u c i a l (2+ j ∗ 9) ;
58 P o f f s e t =[ P o f f s e t P o f f s e t t emp ] ;

59

60 Q onset temp=l o c a t i o n o f f i d u c i a l (3+ j ∗ 9) ;
61 Q onset=[Q onset Q onset temp ] ;

62

63 S o f f s e t t emp=l o c a t i o n o f f i d u c i a l (7+ j ∗ 9) ;
64 S o f f s e t =[ S o f f s e t S o f f s e t t emp ] ;

65

66 T onset temp=l o c a t i o n o f f i d u c i a l (8+ j ∗ 9) ;
67 T onset=[T onset T onset temp ] ;

68

69 T of f s e t t emp=l o c a t i o n o f f i d u c i a l (9+ j ∗ 9) ;
70 T o f f s e t =[ T o f f s e t T o f f s e t t emp ] ;

71

72 end

73 end

74

75 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77

78

79 %% HISTOGRAM FUNCTION UTILISING SYNTHETIC SEGMENT ANALYSIS

80 %

81 % This block uses the detec ted segment l o c a t i o n s by the segment ana l y s i s

82 % func t i on to f i nd RMS e r r o r s with in these segments

83

84 f unc t i on [ DB e , DB e ST , DB e PRi , DB e PRs , DB e QRSc , DB e QTi ] = histogram (

de t e c t ed e r r o r , l o c a t i o n o f z e r o s , P onset , P o f f s e t , Q onset , S o f f s e t , T onset ,

T o f f s e t )

85

86 %−−−−−−−−−−−−−−−−−−−−−−−−−ERROR IN MICRO VOLTS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87

88 %de t e c t e d e r r o r=de t e c t e d e r r o r (1500 : end ) ; % d i s c r e ga rd i ng the i n i t a l i z a t i o n e r r o r

89 de t e c t e d e r r o r=de t e c t e d e r r o r ∗ 1000/200; % microvo l t e r r o r

90

91 x=[P onset (1 )− l o c a t i o n o f z e r o s (1 ) P o f f s e t (1 )− l o c a t i o n o f z e r o s (1 ) Q onset (1 )−
l o c a t i o n o f z e r o s (1 ) S o f f s e t (1 )− l o c a t i o n o f z e r o s (1 ) T onset (1 )− l o c a t i o n o f z e r o s

(1 ) T o f f s e t (1 )− l o c a t i o n o f z e r o s (1 ) ] ;

92 [ r ]= f i nd (x<0) ;

93 r=max( r )+1;

94
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95 %−−−−−−−−−−−−−−−−−−−−−−SYNTHETIC DATA FIDUCIAL POINT−−−−−−−−−−−−−−−−−−−−−−−
96

97 i f r==2

98 P onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

99 e l s e i f r==3

100 P onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

101 P o f f s e t (1 )=l o c a t i o n o f z e r o s (1 ) ;

102 e l s e i f r==4

103 P onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

104 P o f f s e t (1 )=l o c a t i o n o f z e r o s (1 ) ;

105 Q onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

106 e l s e i f r==5

107 P onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

108 P o f f s e t (1 )=l o c a t i o n o f z e r o s (1 ) ;

109 Q onset (1 )=l o c a t i o n o f z e r o s (1 ) ;

110 S o f f s e t (1 )=l o c a t i o n o f z e r o s (1 ) ;

111 e l s e

112 e r r o r ( ’ Reset T onset & T o f f s e t va lue s ’ )

113 end

114

115 %−−−−−−−−−−−−−−−−−−−−−−−−−−DEFINING INTERVALS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116

117 PR interval max=(Q onset−P onset )+1;

118 PR segment max=(Q onset−P o f f s e t )+1;

119 QRS complex max=( S o f f s e t−Q onset )+1;

120 QT interval max=(T o f f s e t−Q onset )+1;

121 ST segment max=(T onset−S o f f s e t )+1;

122 f o r i =1: l ength ( P onset )

123 PR interva l ( i , 1 : PR interval max ( i ) )=P onset ( i ) : Q onset ( i ) ;

124 PR segment ( i , 1 : PR segment max ( i ) )=P o f f s e t ( i ) : Q onset ( i ) ;

125 QRS complex ( i , 1 : QRS complex max ( i ) )=Q onset ( i ) : S o f f s e t ( i ) ;

126 QT interva l ( i , 1 : QT interval max ( i ) )=Q onset ( i ) : T o f f s e t ( i ) ;

127 ST segment ( i , 1 : ST segment max ( i ) )=S o f f s e t ( i ) : T onset ( i ) ;

128 end

129 PR in t e r va l h i s t =0;

130 PR segment hist=0;

131 QRS complex hist=0;

132 QT in t e rva l h i s t =0;

133 ST segment hist=0;

134 s i z ePR int=s i z e ( PR interva l ) ;

135 f o r j =1: s i z ePR int (1 )

136 PR in t e r va l h i s t= [ PR in t e r va l h i s t PR interva l ( j , : ) ] ;

137 PR segment hist= [ PR segment hist PR segment ( j , : ) ] ;

138 QRS complex hist= [ QRS complex hist QRS complex ( j , : ) ] ;

139 QT in t e rva l h i s t= [ QT in t e rva l h i s t QT interva l ( j , : ) ] ;

140 ST segment hist= [ ST segment hist ST segment ( j , : ) ] ;

141 end

142 PR in t e r va l h i s t ( : , PR in t e r v a l h i s t==0)= [ ] ;

143 PR segment hist ( : , PR segment hist==0)= [ ] ;

144 QRS complex hist ( : , QRS complex hist==0)= [ ] ;
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145 QT in t e rva l h i s t ( : , QT in t e rva l h i s t==0)= [ ] ;

146 ST segment hist ( : , ST segment hist==0)= [ ] ;

147

148 ST segment hist=ST segment hist . ∗ ( ST segment hist<l o c a t i o n o f z e r o s (1 )+

l o c a t i o n o f z e r o s ( l ength ( l o c a t i o n o f z e r o s ) ) ) ;

149 ST segment hist ( : , ST segment hist==0)= [ ] ;

150 ST segment hist=ST segment hist ( 1 : f i nd ( ST segment hist<l ength ( d e t e c t e d e r r o r ) ,1 , ’

l a s t ’ ) ) ;

151 PR in t e r va l h i s t=PR in t e r va l h i s t . ∗ ( PR in t e rva l h i s t<l o c a t i o n o f z e r o s (1 )+

l o c a t i o n o f z e r o s ( l ength ( l o c a t i o n o f z e r o s ) ) ) ;

152 PR in t e r va l h i s t ( : , PR in t e r v a l h i s t==0)= [ ] ;

153 PR in t e r va l h i s t=PR in t e r va l h i s t ( 1 : f i nd ( PR in t e rva l h i s t<l ength ( d e t e c t e d e r r o r )

,1 , ’ l a s t ’ ) ) ;

154 PR segment hist=PR segment hist . ∗ ( PR segment hist<l o c a t i o n o f z e r o s (1 )+

l o c a t i o n o f z e r o s ( l ength ( l o c a t i o n o f z e r o s ) ) ) ;

155 PR segment hist ( : , PR segment hist==0)= [ ] ;

156 PR segment hist=PR segment hist ( 1 : f i nd ( PR segment hist<l ength ( d e t e c t e d e r r o r ) ,1 , ’

l a s t ’ ) ) ;

157 QRS complex hist=QRS complex hist . ∗ ( QRS complex hist<l o c a t i o n o f z e r o s (1 )+

l o c a t i o n o f z e r o s ( l ength ( l o c a t i o n o f z e r o s ) ) ) ;

158 QRS complex hist ( : , QRS complex hist==0)= [ ] ;

159 QRS complex hist=QRS complex hist ( 1 : f i nd ( QRS complex hist<l ength ( d e t e c t e d e r r o r )

,1 , ’ l a s t ’ ) ) ;

160 QT in t e rva l h i s t=QT in t e rva l h i s t . ∗ ( QT inte rva l h i s t<l o c a t i o n o f z e r o s (1 )+

l o c a t i o n o f z e r o s ( l ength ( l o c a t i o n o f z e r o s ) ) ) ;

161 QT in t e rva l h i s t ( : , QT in t e rva l h i s t==0)= [ ] ;

162 QT in t e rva l h i s t=QT in t e rva l h i s t ( 1 : f i nd ( QT inte rva l h i s t<l ength ( d e t e c t e d e r r o r )

,1 , ’ l a s t ’ ) ) ;

163

164 %−−−−−−−−−−−−−−−−−−−−−−−−INTERVAL ERROR ANALYSIS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
165 % −−−−−−−−−−−−−−−−−−−−−RMS e r r o r R−R−−−−−−−−−−−−−−−−−−−−−
166

167 j =1;

168 f o r i =1: f l o o r ( ( f i nd ( l o c a t i o n o f z e r o s<l ength ( d e t e c t e d e r r o r ) , 1 , ’ l a s t ’ )−1)/3)
169 DB e( j )=rms ( d e t e c t e d e r r o r ( l o c a t i o n o f z e r o s (3 ∗ i −2) : l o c a t i o n o f z e r o s (3 ∗ i +1) )

) ;

170 j=j +1;

171 end

172 i f mod( l ength ( l o c a t i o n o f z e r o s ) −1 ,3)˜=0

173 DB e( j )=rms ( d e t e c t e d e r r o r ( l o c a t i o n o f z e r o s (3 ∗ i +1: f i nd ( l o c a t i o n o f z e r o s<

l ength ( d e t e c t e d e r r o r ) , 1 , ’ l a s t ’ ) ) ) ) ;

174 end

175

176 % −−−−−−−−−−−−−−−−−RMS e r r o r ST segment−−−−−−−−−−−−−−−−−−
177 j =1;

178 temp=0;

179 f o r i =1: l ength ( ST segment hist )−1
180 i f ST segment hist ( i +1)˜=ST segment hist ( i )+1

181 DB e ST( j )=rms ( d e t e c t e d e r r o r ( ST segment hist ( temp+1: i ) ) ) ;

182 temp=i ;
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183 j=j +1;

184 end

185 end

186

187 % −−−−−−−−−−−−−−−−−RMS e r r o r PR in t e r va l−−−−−−−−−−−−−−−−−
188 j =1;

189 temp=0;

190 f o r i =1: l ength ( PR in t e r va l h i s t )−1
191 i f PR in t e r v a l h i s t ( i +1)˜=PR in t e r va l h i s t ( i )+1

192 DB e PRi ( j )=rms ( d e t e c t e d e r r o r ( PR in t e r va l h i s t ( temp+1: i ) ) ) ;

193 temp=i ;

194 j=j +1;

195 end

196 end

197

198 % −−−−−−−−−−−−−−−−−RMS e r r o r PR segment−−−−−−−−−−−−−−−−−−
199 j =1;

200 temp=0;

201 f o r i =1: l ength ( PR segment hist )−1
202 i f PR segment hist ( i +1)˜=PR segment hist ( i )+1

203 DB e PRs ( j )=rms ( d e t e c t e d e r r o r ( PR segment hist ( temp+1: i ) ) ) ;

204 temp=i ;

205 j=j +1;

206 end

207 end

208

209 % −−−−−−−−−−−−−−−−−RMS e r r o r QRS complex−−−−−−−−−−−−−−−−−
210 j =1;

211 temp=0;

212 f o r i =1: l ength ( QRS complex hist )−1
213 i f QRS complex hist ( i +1)˜=QRS complex hist ( i )+1

214 DB e QRSc( j )=rms ( d e t e c t e d e r r o r ( QRS complex hist ( temp+1: i ) ) ) ;

215 temp=i ;

216 j=j +1;

217 end

218 end

219

220 % −−−−−−−−−−−−−−−−−RMS e r r o r QT in t e r va l−−−−−−−−−−−−−−−−−
221 j =1;

222 temp=0;

223 f o r i =1: l ength ( QT in t e rva l h i s t )−1
224 i f QT in t e rva l h i s t ( i +1)˜=QT in t e rva l h i s t ( i )+1

225 DB e QTi ( j )=rms ( d e t e c t e d e r r o r ( QT in t e rva l h i s t ( temp+1: i ) ) ) ;

226 temp=i ;

227 j=j +1;

228 end

229 end

230 end
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