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Abstract—Unmanned aerial vehicle (UAV) cluster applications,
for tasks such as target localisation and tracking, are required to
collect and utilise the data received on “flexible” sensor arrays,
where the sensors, i.e. UAVs in this scenario, have time-variant
positions. In this paper, using a parametric channel model, a UAV
cluster mobility model and a kinematic model of the targets, an
extended Kalman based state space model is proposed that tracks
the unknown UAV positions and target parameters snapshot by
snapshot. Simulation studies illustrating the tracking capabilities
of the proposed technique have been presented.

Notation

A, a Scalar

A, a Column vector

A Matrix

(·)T Transpose

(·)H Hermitian transpose

exp (A) Element by element exponential of vector A
1N Column vector of N ones

IN N ×N identity matrix

R Set of real numbers

C Set of complex numbers

I. INTRODUCTION

Clusters of unmanned aerial vehicles (UAVs) find appli-

cations in a variety of areas such as remote sensing, com-

mercial aerial surveillance, domestic policing, oil and gas

exploration, post battle surveillance for casualties, scientific

research and synthetic aperture radar. As UAV capabilities

improve, a cluster of UAVs has been proven to perform

better as compared to a single UAV in terms of time and

efficiency [1]. However, the major challenge with UAV clusters

is twofold: tackling arbitrary and known movement since each

UAV has its own propulsion system and arbitrary unknown

movement due to turbulent sources such as gusts of wind

and imperfections in the motors. Thus, the cluster of UAVs

form a “flexible array” which is defined as a class of sensor

arrays that have time variant sensor positions (i.e. time variant

array geometry). Flexible array signal processing refers to the

detection, estimation and reception of signals received on such

“flexible arrays”. The challenge presented by such scenarios

is that the array manifold becomes a function of time and thus

the resulting received signal covariance matrix that forms the

basis of superresolution algorithms such as MUSIC is not time

invariant. Hence, typical array signal processing algorithms fail

since they are built on the premise of a constant, known and

time-invariant array geometry.

A few techniques have been proposed in literature in order

to tackle the problems arising with the detection, estima-

tion and reception on flexible/time variant arrays. The most

common approach employed is that of recursive localisation

or repetitive localisation. However, such techniques do not

account for source mobility and assume that there exists an

interval over which the array geometry may be assumed to

be static. Thus, these techniques do not address the true

problem of a “flexible array”. A category of techniques attempt

to perform the task of source localization for static sources

with time varying arrays using a maximum likelihood (ML)

estimator that splits the estimation problem into optimiza-

tion over the directions of arrival (DOAs) and signal/noise

parameters [2] [3] [4]. However, such estimators require a

multidimensional search and are often computationally very

expensive. Alternatively, there are incoherent techniques in

which the array is split into rigid subarrays where a simpli-

fied ML estimator could be utilised for each subarray [5].

However, these estimates are not accurate and they place

a severe limitation on the number of sensors and types of

perturbations. There are also techniques which tweak the

traditional subspace approaches, such as MUSIC, towards time

varying arrays. In incoherent subspace techniques, the array

is split into subarrays such that the spatial covariance of the

measurements of the subarray can be considered constant

enabling the usage of the MUSIC algorithm whose spectra

are subsequently combined [6]. This technique starts to face

problems in effective combining when the signal-to-noise ratio

(SNR) is low. There are also coherent subspace techniques

such as array interpolation [2] and focussing matrices [2] that

transform the time variant covariance matrix to a time invariant

covariance matrix. The major drawback of this technique is

that the transformation holds true only for signals within an

interpolation sector and hence limits the observation space to

a small region. Some alternative flexible array techniques are

also discussed in [7], albeit towards a different flexible array

application namely the underwater towed array. However, a

majority of these approaches cannot support high mobility of

the target and the array i.e. either the array and/or the target

is assumed to be stationary within a specified observation

interval. Also, the mobility model of the flexible array under

consideration is not incorporated in the problem definition

losing crucial information that may be exploited towards target

localisation and tracking. Thus, in this paper, towards the

problem of target tracking using a UAV cluster, a state space

model that incorporates

• the flexible arrayed parametric model of the received



signal,

• mobility model of the UAV cluster, and

• the mobility model of the targets,

is employed in conjunction with an extended Kalman filter to

simultaneously track the UAV locations and target parameters.

Note that this is complementary to approaches that track

the deviation in array geometry and employ a controller to

correct these deviations. For example, in [8], decentralized

controllers are employed where each UAV is assigned a linear

kinematic model under the constraint that each vehicle (except

the leading one) has state information about the vehicle ahead

of it. On the other hand, in [9], distributed controllers are

employed, where in addition to a local controller, each vehicle

receives information about the state of a huge subset of vehi-

cles in the cluster. However, such controllers are not perfect

and are often quite expensive. In this paper, the proposed

algorithm that simultaneously tracks the sensor/UAV positions,

whilst tracking the target parameters, would enable the min-

imal usage/simplification of such controllers that attempt to

continually measure (using physical sensors such as depth,

height and pressure sensors) and maintain the UAV cluster’s

geometry.

The paper is organised as follows. In Section II, three crucial

models are presented namely the parametric model of the

received signal at the flexible array, mobility model of the UAV

cluster and the mobility model of the targets. Following this, in

Section III, the proposed state space model based algorithm in

conjunction with an extended Kalman filter is detailed. This is

followed by Section IV wherein a discussion on the simulation

studies to evaluate the performance of the proposed algorithm

is presented. Finally, the paper is concluded in Section V.

II. FLEXIBLE ARRAY SYSTEM MODEL FOR A UAV

CLUSTER

Consider the UAV cluster as a “flexible” antenna array

consisting of N antennas (where each UAV is treated as

an antenna of the array) with time varying array geometry

r (t) ∈ RN×3 at a time instant t. Figure 1 is an illustration of

the problem under consideration with a flexible UAV cluster

array and unknown targets whose parameters need to be

estimated. In this section, three important models are described

namely: (i) the mathematical model of the signal received at

the flexible array incorporating all the channel parameters of

interest and the time varying array geometry, (ii) the mobility

model of the flexible UAV array and (iii) the mobility model

of the targets.

A. Received Signal Model

Assume that the UAV cluster, whose locations at time

instant t are given by r (t) =
[
rx (t) , ry (t) , rz (t)

]
∈ RN×3,

operates in the presence of M narrowband far field sources.

Each source is assumed to be moving with an unknown

constant radial velocity. The signal x(t) ∈ CN×1 received at

the UAV cluster array at a time instant t can be modelled1 as

1It is assumed that there exists one path that is of much higher power than

the other multipaths of the target.

follows

x(t) =

M∑
i=1

βi (t)Si (t)mi(t) exp (j2πFit) + n(t), (1)

where for the i-th user, Si (t) ∈ CN×1 denotes the time

varying manifold vector, βi (t) ∈ C1×1 represents the path

fading coefficient, mi(t) ∈ C1×1 represents the delayed

message received at the antenna array, Fi denotes the Doppler

frequency and n(t) ∈ CN×1 represents the channel noise. In

this paper, n(t) is modelled as an additive white Gaussian

noise whose covariance matrix Rnn is given by

Rnn = σ2nIN . (2)

However, this is not a constraint as long as an estimate of the

second order statistics may be estimated. The array manifold

vector is given by

Si (t) , S (r (t) , θi (t) , φi (t))

= exp

(
−j 2πFc

c
r (t)ui (t)

)
, (3)

where Fc denotes the carrier frequency, c denotes the speed

of the transmitted signal in the transmission medium and the

wavenumber vector ui (t) is given by

ui (t) , u (θi (t) , φi (t))

= [cos θi (t) cosφi (t) , sin θi (t) cosφi (t) , sinφi (t)]
T
,

(4)

where (θi (t) , φi (t)) denotes the azimuth and elevation re-

spectively. In this paper, without any loss of generality, the

array elements (i.e. UAVs) are assumed to lie in the same

plane, i.e. rz (t) = 0N , and the elevation is assumed to be

known (i.e. the altitude of the UAV array from the targets is

known) and is set to zero. Consider that the received data is

sampled at a sampling rate Fs (sampling period Ts). Therefore,

the discretised version of Eq. 1 is given by

x (tl) =

M∑
i=1

βi (tl)Si (tl)mi (tl) exp (j2πlFiTs) + n (tl) ,

(5)

where tl = lTs denotes the l-th snapshot.

B. UAV Cluster Mobility Model

Choosing an appropriate mobility model is crucial to vehic-

ular cluster applications. Models such as random way-point

and Gauss-Markov model have been widely used towards

modelling the distributions of vehicles. However, these models

fail to capture all the constraints of aeronautical applications

such as the inability of UAVs to make sharp turns and changes

in velocity. Thus, taking these factors into account, mobility

models for UAVs may be classified into three broad categories.

The first class of mobility models follows a semi-random

distribution of UAVs, i.e. the variation in the UAV array

geometry can be split into the sum of a known and an unknown

perturbation in array geometry. An example of such a model is

the semi-random circular mobility model proposed in [10] and



Fig. 1. Illustration of the problem formulation with the UAV cluster and the

unknown targets in the x-y plane

such models are well suited for search and rescue missions. A

second class of mobility models are based on a predetermined

flight plan and are more suited for cargo and transportation

applications [11]. The third class of mobility models that

are employed for patrolling applications resemble swarms of

vehicles and are closer in structure to the random way-point

models in vehicular adhoc networks (VANETs). In this paper,

the first group of mobility models is considered. Semi-random

mobility models may be further classified as group mobility

models and entity mobility models. In this paper, the group

random mobility model will be considered, where the UAVs

move as a group in formation around a fixed reference point,

with each UAV permitted an element of random motion whose

statistical properties are known. Therefore, in this paper, with

no loss of generality, the group motion is assumed to be

split into two terms namely a known fixed rotation about the

reference point and an unknown random component associated

with each sensor whose statistics are known. Therefore, the

mobility model for the UAV array may be written as[
rx (tl)
ry (tl)

]
= F

[
rx (tl−1)
ry (tl−1)

]
+

[
r̃x (tl)
r̃y (tl)

]
, (6)

where

F =
[
cosωTs, − sinωTs
sinωTs, cosωTs

]
⊗ IN , (7)

where ω represents the angular velocity (deg/sec) of the

array about the reference point. Here rx (tl) , ry (tl) ∈ RN×1
denote the instantaneous x and y array positions respectively.

The known transition matrix F ∈ R2N×2N is determined

by the known forces and the physics of the medium. The

errors in the array positions namely r̃x (tl) , r̃y (tl) ∈ RN×1
arise from approximations in the mobility model and other

external disturbances such as drifts/winds not modelled by the

transition matrices and the driver terms. It is assumed that

the first and second order statistics of these noise vectors

is available. However, please note that although a relatively

simple mobility model is chosen here, it may be modified

to suit other class of mobility models as well. For example,

for the third class of random mobility models, the transition

matrix would be a random matrix and this may be further

rewritten as a known transition matrix (obtained from the

mean of the random transition matrix) and an error component

whose second order statistics would be state dependent. This

can be handled with an additional recursive update step of the

extended Kalman filter to update the covariance matrix.

C. Target Constant Velocity Mobility Model

In this paper, the targets are assumed to move along a

path with constant angular velocity. However, perturbations

in angular velocity are also modelled as perturbations in the

angular acceleration. Thus, the unknown target parameters for

the i-th user may be grouped into a state vector bi (tl) ∈ R2×1
given by

bi (tl) = [θi (tl) , vθi (tl)]
T
, (8)

where θi (tl) denotes the azimuth of the i-th user and vθi (tl)
denotes the azimuthal angular velocity for the i-th user. As

per the constant velocity motion model, the discrete kinematic

model for the i-th target is given by

bi (tl) = Gbi (tl−1) + b̃i (tl) , (9)

where

G =
[
1, Ts
0, 1

]
, (10)

and the perturbations b̃i (tl) are modelled as zero mean with

the covariance matrix Qi given by

Qi = σ2vθi

[
T 3s
3 ,

T 2s
2

T 2s
2 , Ts

]
, (11)

where σ2vθi
denotes the continuous time model intensity in the

azimuthal acceleration of the i-th target. Thus, the composite

state vector b(tl) consisting of the unknown parameters of M
targets is given by

b (tl) =
[
bT1 (tl) , b

T
2 (tl) , . . . , b

T
M (tl)

]T
∈ R2M×1, (12)

and the composite kinematic model may be written as

b (tl) = (IM ⊗G) b (tl−1) + b̃ (tl) , (13)

where the perturbations b̃ (tl) are zero mean with the covari-

ance matrix Q ∈ R2M×2M that is a block diagonal matrix

consisting of the individual covariance matrices Qi of each of

the users.



III. UAV CLUSTER ARRAY POSITIONS AND TARGET

TRACKING USING A STATE SPACE MODEL FOR FLEXIBLE

ARRAYS

The signal x (tl) received at the flexible array at an instant

tl in the observation interval, as given by Eq. 5, can be written

as

x (tl) = H (tl)m (tl) + n (tl) , (14)

where H (tl) ∈ CN×M is the channel matrix given by

H (tl) = [S1 (tl) , S2 (tl) , . . . , SM (tl)] , (15)

and m (tl) ∈ CM×1 encompasses the message, path fading

and Doppler coefficients and is given as

m (tl) =


β1 (tl)m1 [tl] exp (j2πlF1Ts)
β2 (tl)m2 [tl] exp (j2πlF2Ts)

...

βM (tl)mM [tl] exp (j2πlFMTs)

 . (16)

The next stage of building the state space model is to group

all the unknowns of the problem under consideration into a

state vector z(tl) given by

z (tl) =
[
rTx (tl) , r

T
y (tl) , b

T (tl)
]T
∈ R2(N+M)×1. (17)

Thus, Eqs. 6 and 13 may be combined to yield an evolution

equation for the state vector z(tl) as follows

z (tl) = Fallz (tl−1) + z̃ (tl) , (18)

where the state transition matrix Fall ∈ R2(N+M)×2(N+M) is

given by

Fall=
[

F, 02N×2M
02M×2N , IM ⊗G

]
. (19)

The term z̃ (tl) ∈ R2(N+M)×1 incorporates all the uncertain-

ties that arise due to approximations in the mobility model or

due to the presence of forces unaccounted for in the mobility

model, such as gusts of wind, and can be represented as

follows

z̃ (tl) =
[
r̃Tx (tl) , r̃

T
y (tl) , b̃

T
(tl)
]T
. (20)

Equations 14 and 18 constitute an arrayed state space model

that describes the signal received at the flexible array i.e.

the UAV cluster in terms of the unknown target parameters

and unknown UAV positions encompassed in the state vector.

Thus, the state space model can be written as

z (tl) = Fallz (tl−1) + z̃ (tl)
x (tl) = H (z (tl))m (tl) + n (tl)

. (21)

Also, the mean of the state vector z (tl) is given by

E {z (tl)} = FallE {z (tl−1)}
= Flallz (t0) , (22)

assuming E {z̃ (tl)} = 02(N+M). Also, the covariance matrix

of z (tl) denoted by Rzz (tl) ∈ R2(N+M)×2(N+M) is given

by

Rzz (tl) = E
{
(z (tl)− E {z (tl)}) (z (tl)− E {z (tl)})T

}
= FallRzz (tl−1)FTall + E

{
z̃ (tl) z̃

T (tl)
}

= FallRzz (tl−1)FTall + Rz̃z̃, (23)

where Rz̃z̃ ∈ R2(N+M)×2(N+M) is given as

Rz̃z̃ =

 σ2rxIN , 0N×N , 0N×2M
0N×N , σ2ry IN , 0N×2M
02M×N , 02M×N , Q

 , (24)

where the perturbations in the UAV cluster array geometry

are modelled as white Gaussian noise with zero mean and

intensity of σ2rx and σ2ry along the x and y axes respectively.

Note that Eq. 24 has been assumed for simplicity and is not a

constraint. For instance, Eq. 24 can be suitably modified for

the case of correlated noise in the state vector across the x and

y antenna elements. Thus, the state space model presented by

Eq. 21 forms the input to an arrayed extended Kalman filter

(EKF) that tracks and adaptively estimates the state vector

z(tl) is presented. An extended Kalman filter is employed

since the transition matrix H (z (tl)) is non-linear. In order to

estimate z(tl) adaptively in the extended Kalman framework,

the algorithm summarised in Table I may be employed where

the notations are simplified as zl , z (tl), Hl , H (z (tl)),
m̂l , m̂ (tl) and xl , x (tl).

TABLE I

SUMMARY OF STEPS TO ESTIMATE TARGET PARAMETERS AND THE UAV

ARRAY POSITIONS USING THE EXTENDED KALMAN FILTER

Initialization

ẑ0|0 = E {z0}

P0|0 = E
{(
z0 − ẑ0|0

)(
z0 − ẑ0|0

)T}
For l = 1, . . . , L

ẑl|l−1 = Fallẑl−1|l−1
Pl|l−1 = FallPl−1|l−1FTall + Rz̃z̃
m̂l = HH

l|l−1

(
Rnn + Hl|l−1HHl|l−1

)−1
xl

Dl|l−1 = ∇zl
(
Hl|l−1m̂l

)∣∣
ẑl|l−1

Kl = Pl|l−1DHl|l−1×(
Dl|l−1Pl|l−1DHl|l−1 + Rnn

)−1
ẑl|l = ẑl|l−1 +Re

{
Kl
(
xl − Hl|l−1m̂l

)}
Pl|l =

(
I4M − KlDl|l−1

)
Pl|l−1

Thus the predicted state vector ẑl consists of all the pa-

rameters to be estimated namely the unknown UAV cluster

locations and the parameters of the targets. Note that the

initial covariance matrix P0 can be tuned according to the

level of uncertainty in the initial estimate ẑ0. For instance, for

high levels of uncertainty in the initial estimates, P0 may be

set to µI2(N+M) where µ is an arbitrarily large real number

indicating the confidence level in the estimate. Note that an

estimate of the unknown message is obtained at each step.

At low SNR, this may be further refined by substituting the



Fig. 2. True (red) and tracked (blue) azimuth trajectories of the two targets

in the environment by the proposed algorithm.

updated estimate at the end of any iteration and may be

repeated as many times as desired.

IV. SIMULATION STUDIES

For the purpose of simulations, the UAV cluster is assumed

to consist of N = 7 elements. As described in Section II-B,

the UAV cluster is assumed to begin with a circular geometry

r given as follows in metres

rT =

3.2, 1.1, −1.9, −3.4, −2.4, 0.4, 2.9
1.2, 3.2, 2.9, 0.3, −2.7 −3.4, −1.8
0 0 0 0, 0, 0, 0

 .
(25)

Two narrowband far-field targets are assumed to be present in

the environment. The signals of the targets are assumed to be

independent identically distributed Gaussian sources of zero

mean and unity variance. The carrier frequency is assumed

to be 50 MHz. The input SNR is assumed to be 20 dB.

Tracking is assumed to be carried out over an interval of 50 s

with a sampling interval Ts = 0.01 s (i.e. 5000 snapshots).

Figures 2 and 3 illustrate the true and tracked azimuthal and

azimuthal velocity trajectories of the two moving targets. It is

clear from these figures that the target parameters are indeed

tracked successfully. The continuous time model intensity σ2vθ
in the azimuth tracking model is chosen to be 10 (deg/s)

2
.

Also, the intensities of the perturbations along the x and y
axis, are set as follows σ2rx = σ2ry = 1.8 (m/s)

2
. Furthermore,

the angular velocity of the array ω is chosen to be 1 deg/s.

The covariance matrix P0 is set to µI2(N+M) where µ = 10−4

which indicates a reasonably high confidence in the accuracy

of the initial estimates.

The proposed arrayed EKF algorithm also simultaneously

tracks the sensor/UAV positions as shown in Fig. 4. The initial

estimates of the array locations are set to the known circular

geometry is shown in Fig. 4a at t = 0Ts. As dictated by

the mobility model in Section II-B, this geometry evolves to

the perturbed geometry illustrated in Figs. 4b, 4c and 4d at

Fig. 3. True (red) and tracked (blue) azimuthal velocity trajectories of the

two targets in the environment. The black line indicates the azimuthal velocity

if no process noise were present in the mobility model.

time t = 500Ts, t = 1000Ts and t = 3000Ts respectively.

The black markers indicates the positions predicted by the

rotation alone in the mobility model without accounting for

the noise. The blue markers indicates the estimated positions

of the UAVs while the red markers indicate the true positions.

It is clear that the proposed algorithm indeed tracks the

array locations iteratively even though the deviations from

the mobility model is quite high. This illustrates that the

algorithm is robust to errors in the mobility model due to

factors such as winds or controller imperfections. Table II

demonstrates the difference in the mean square error (MSE) in

predictions from the noiseless mobility model and the tracked

state estimates provided by the proposed algorithm. The results

are obtained from Monte-Carlo simulations carried out over

100 iterations. For instance, a 20 dB suppression ability in

azimuth angle implies that an azimuthal root mean square

error of 10 degrees from a prediction made by the mobility

model with no knowledge of the state and environmental

noise would be brought down to about 1 degree by the

proposed algorithm. Note that, to our knowledge, there exist

TABLE II

DIFFERENCE IN MSE OF THE PREDICTIONS FROM THE NOISELESS

MOBILITY MODEL AND THE PROPOSED ALGORITHM

Parameter MSE Difference

Azimuth 20.2 dB

Azimuthal velocity 4.0 dB

UAV sensor positions 5.2 dB

no alternative algorithms that support these levels of mobility

in the targets and variations in array geometry.

V. CONCLUSIONS

In this paper, an algorithm to track farfield fast-moving

targets using a UAV cluster is presented. The proposed al-



Fig. 4. True (red), estimated (blue) and no-noise mobility model predictions (black) of the UAV cluster array’s sensor locations at (a) t = 0Ts (b) t = 500Ts
(c) t = 1000Ts and (d) t = 3000Ts. The input SNR is set to 20 dB.

gorithm incorporates a fully parametric array channel model

incorporating the flexible geometry of the array, mobility

model of the UAV cluster and the mobility model of the

targets in conjunction with an extended Kalman filter to

simultaneously predict the unknown UAV locations and target

parameters. Simulation studies to illustrate the performance of

the proposed algorithm are also presented.
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